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Highlights: 

 An algorithm for integration of design, control, and scheduling is proposed. 

 Variable transition times are considered using flexible finite elements. 

 The proposed algorithm provides a robust solution, superior to the sequential method. 

 Interactions between design, control, and scheduling are shown to be significant. 

 Multi-product CSTR case study shows the benefits of the algorithm. 

Abstract: A novel dynamic optimization framework is presented for integration of design, control, and 

scheduling for multi-product processes in the presence of disturbances and parameter uncertainty. This 

framework proposes an iterative algorithm that decomposes the overall problem into flexibility and 

feasibility analyses. The flexibility problem is solved under a critical (worst-case) set of disturbance and 

uncertainty realizations, whereas the feasibility problem evaluates the dynamic feasibility of each 

realization, and updates the critical set accordingly. The algorithm terminates when a robust solution is 

found, which is feasible under all identified scenarios. To account for the importance of grade transitions 

in multiproduct processes, the proposed framework integrates scheduling into the dynamic model by the 

use of flexible finite elements. This framework is applied to a multi-product continuous stirred-tank reactor 

(CSTR) system subject to disturbance and parameter uncertainty. The proposed method is shown to return 

robust solutions that are of higher quality than the traditional sequential method. The results indicate that 

scheduling decisions are affected by design and control decisions, thus motivating the need for integration 

of these three aspects. 
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1. Introduction 

Multiproduct processes are widely used in different sectors due to their versatility and convenience, 

e.g. oil & gas (Harjunkoski et al., 2009), pharmaceutical (Nie and Biegler, 2012), and polymer production 

(Harjunkoski et al., 2009; Terrazas-Moreno et al., 2008). To remain competitive, companies are required 

to operate their systems at nearby optimal conditions that can efficiently produce their products under 

environmental, safety and product specification constraints. Most major chemical companies have invested 

in large computing networks that are dedicated to solving large-scale process optimization problems 

(Seferlis and Georgiadis, 2004). Obtaining a solution for design, control, and scheduling can be quite 

challenging, as the problems are typically very large, and there are many aspects to a process which can 

impact the process economics. There are multiple approaches for obtaining solutions, each of which vary 

in solution quality and computational time. 

The simplest approach to address optimal process design, scheduling and control for large process 

networks is the sequential approach, where the design, control, and scheduling of the system are all 

considered separately (Patil et al., 2015; Zhuge and Ierapetritou, 2012). This approach is popular in many 

industries (Mohideen et al., 1996) because solutions can be obtained very quickly, due to independence of 

the sub-problems. Although the sequential method is fast, there are many limitations. Since each sub-

problem is solved independently, the interactions between design, control, and scheduling are typically 

neglected, even though it has been recognized that these interactions can be significant (Flores-Tlacuahuac 

and Grossmann, 2011; Pistikopoulos and Diangelakis, 2015; Zhuge and Ierapetritou, 2012). Furthermore, 

assumptions need to be made in each sub-problem, e.g. steady-state operation or adding overdesign factors, 

and these assumptions may be invalid or return expensive plant designs. Hence, the solution generated by 

the sequential approach is likely to be suboptimal, and may become dynamically infeasible in some cases 

leading to the specification of invalid designs and scheduling sequences (Chu and You, 2014a). These 

limitations have motivated the development of a more reliable and robust method of determining design, 

control, and scheduling. 

The simultaneous approach is a more advanced method of integrated optimization. In this approach, 

the design, control, and scheduling are optimized simultaneously, for the purpose of considering 

interactions. This approach has the potential to provide attractive solutions, which are more optimal and 

reliable (Chu and You, 2014b; Mendez et al., 2006; Nie et al., 2015; Patil et al., 2015). While several studies 

have considered integration of design and control (Ricardez-Sandoval et al., 2009; Sakizlis et al., 2004; 

Yuan et al., 2012), integration of scheduling has not been deeply explored. In the case of multi-product 
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plants, it can be advantageous to account for scheduling decisions at the design stage since it dictates the 

dynamic transitions between the different products to be produced, which in turn, depend on design and 

control (Bhatia and Biegler, 1996; Flores-Tlacuahuac and Grossmann, 2011; Pistikopoulos and 

Diangelakis, 2015). For large-scale problems, the simultaneous method has a high computational cost due 

to the large number of variables involved, including the integer variables considered in the scheduling 

formulation. The problem can be complicated further by considering dynamic evolution of the system 

subject to process disturbances and uncertainty in the model parameters. Solving the simultaneous problem 

explicitly is challenging due to the reasons described above; therefore, decomposition algorithms that 

account for different aspects of the integration of design, control and/or scheduling have been proposed to 

arrive at economically attractive solutions (Chu and You, 2013; Heo et al., 2003; Mohideen et al., 1996; 

Sanchez-Sanchez and Ricardez-Sandoval, 2013; Seferlis and Georgiadis, 2004; Zhuge and Ierapetritou, 

2016). Currently, there is no commercial software which is specifically designed to solve these types of 

problems (Pistikopoulos and Diangelakis, 2015). 

Typically, the decomposition algorithm consists of two sub-problems: a flexibility analysis and a 

feasibility analysis (Sakizlis et al., 2004; Sanchez-Sanchez and Ricardez-Sandoval, 2013; Seferlis and 

Georgiadis, 2004). In the flexibility sub-problem, a solution is chosen such that total cost is minimized and 

all constraints are satisfied, subject to a critical set of process disturbances and parameter uncertainty. In 

the feasibility sub-problem, the solution from the flexibility sub-problem is tested for feasibility at all 

realizations of disturbance and uncertainty. If the solution is determined to be invalid (i.e. infeasible for one 

or more realizations), the critical set is updated, and the algorithm returns to the flexibility problem. The 

algorithm terminates when all realizations are feasible at the given solution.   

As shown in Table 1, previous publications typically focus on either design and control, design and 

scheduling, or control and scheduling. Due to problem complexity, few publications address the integration 

of design, control, and scheduling. In one of the first studies, the design, control, and scheduling of a methyl-

methacrylate process are optimized simultaneously (Terrazas-Moreno et al., 2008). The scheduling 

decisions include production order and transition times, which account for process dynamics. The 

formulation includes uncertainty, as values that are selected from a discrete set. Process disturbances were 

not considered. In lieu of a closed-loop control scheme, the profile of the manipulated variable was directly 

obtained from dynamic optimization. In another study (Patil et al., 2015), the integration was applied to 

multiproduct processes under disturbance and uncertainty. Decisions were made on equipment sizing, 

steady-state operating conditions, control tuning, production sequence, and transition times between 

product grades. The total cost was based on the worst-case disturbance frequency, which was identified 

using frequency response analysis on the linearized process model. One limitation is that the non-linear 
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process model was linearized, which reduced the complexity of the problem, but introduced approximations 

to the model behavior and therefore to the resulting solution. A recent work presents the PAROC solution 

for solving integrated optimization problems, summarizes recent efforts in the subject area, and proposes 

simultaneous design and operational optimization of heat and power cogeneration units (Pistikopoulos and 

Diangelakis, 2015). 

The objective of this study is to develop a mathematical framework for integrated dynamic 

optimization of design, control, and scheduling of multiproduct systems under process disturbances and 

parameter uncertainty. The novelty of this work is that the proposed approach explicitly considers the 

mechanistic non-linear dynamic process model with disturbances and parameter uncertainty, while most 

previous works on integrated optimization have disregarded one or more of those aspects. The scheduling 

sequence and transition times are explicitly accounted for in the dynamic model by the use of orthogonal 

collocation on finite elements, where the finite elements are allowed to vary in size. This framework has 

been applied to a multiproduct CSTR, and several scenarios were considered including a comparison of 

solution quality between the proposed methodology and the sequential approach.  

 This paper is organized as follows: the next section outlines the problem definition of the general 

problem that this framework aims to solve, followed by the mathematical representation of the equations 

involved in the problem. The framework is applied to a CSTR system, the results and benefits are shown, 

and then conclusions are presented in the final section. The notation used in the study is defined in the 

nomenclature section of this article. 

2. Problem definition 

 Consider a multiproduct processing unit that operates continuously, alternating production between 

various grades of a product in a wheel fashion, such as in Fig. 1. A cycle consists of transition and 

production regions for each product grade, therefore the total number of regions 𝐼 is twice the number of 

grades 𝐺. During the transition region, the process set-point is changed linearly (in a ramp fashion) to the 

next set-point, to allow the system to smoothly transition to the new operating conditions. Following each 

transition region, a production region begins. The production region ends after a fixed time interval for each 

grade, after which the transition region begins for the next product grade. This process repeats until the 

demands for all grades have been satisfied. The duration of each region 𝑖 is denoted as ∆𝑡𝑖 . Additionally, 

since the processing unit is expected to operate continuously in a wheel fashion, the initial conditions in the 

first region must be equal to the final conditions in the final region, as shown in Fig. 1. 

This study assumes that the following are given: the actual process model representing the system’s 

dynamic behavior, model parameters that are known with certainty (e.g. reaction rate constant, inlet flow 
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rate), the control scheme, the required product grades and amounts to be produced and process constraints. 

The present study also assumes that mathematical descriptions describing the process disturbances and 

uncertain parameters are provided. The framework proposed in this work aims to provide a solution that 

specifies: the optimal equipment sizing, the optimal steady state operating conditions for each product 

grade, the optimal control scheme tuning parameters, the sequence of grades to be produced, and the 

transition times between production of each grade. The proposed solution will be dynamically operable in 

the presence of disturbances and model uncertainty. 

3. Problem formulation 

 This section presents the algorithmic framework that is proposed to address simultaneous design, 

control, and short-term scheduling of multi-product plants. First, the formal optimization formulation is 

presented for the conceptual problem. The approximations made to the original formulation are explained 

next, followed by the decomposition algorithmic framework proposed in this work. 

3.1. Conceptual optimization formulation  

The explicit formulation to address the integration of design, scheduling, and control is presented 

in problem (1). The problem aims to minimize the total expected cost of the process 𝒛, by manipulating 

design, control, and scheduling decisions, while subject to time-dependent process disturbances, and 

uncertainty in model parameters. The design variables 𝜿 consist of equipment design parameters and 

operating conditions. The control parameters 𝚲 consist of controller tuning parameters (e.g. 𝐾𝑐 and 𝜏𝑖). The 

scheduling variables consist of integer variables 𝓑 that determine the production sequence, and continuous 

variables 𝚫𝐭 that determine the duration of each transition region. For simplicity, all these variables will be 

referred to collectively as the decision variables 𝓓 = {𝜿, 𝚲,𝓑, 𝚫𝐭}. Note that each of these decisions are 

independent (i.e. transition durations 𝚫𝐭 do not depend on control parameters, but are instead obtained 

explicitly from optimization). 

min
𝓓={𝜿,𝚲,𝓑,𝚫𝐭}

max
𝜼(𝑡),𝓟

 𝑧(𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒚𝒔𝒑(𝑡), 𝜼(𝑡),𝓟,𝜿, 𝚲, 𝓑, 𝚫𝐭)                                                                          (1) 

𝑠. 𝑡. 

𝒇(𝒙(𝑡), 𝒙̇(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒚𝒔𝒑(𝑡), 𝜼(𝑡),𝓟,𝜿, 𝚲, 𝓑,𝚫𝐭) = 𝟎                                                                         

𝒈(𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒚𝒔𝒑(𝑡), 𝜼(𝑡),𝓟, 𝜿, 𝚲, 𝓑, 𝚫𝐭) ≤ 𝟎                                              

𝒉(𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒚𝒔𝒑(𝑡), 𝜼(𝑡),𝓟, 𝜿, 𝚲, 𝓑, 𝚫𝐭) = 𝟎                                          

𝒚𝒔𝒑(𝑡) = 𝝍(𝓑,𝚫𝐭)                                                                                                               

𝜼𝑙𝑜 ≤ 𝜼(𝑡) ≤ 𝜼𝑢𝑝                                                                                                                                         
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𝓟𝑙𝑜 ≤ 𝓟 ≤ 𝓟𝑢𝑝                                                                                                                                           

𝓓𝑙 ≤ 𝓓 ≤ 𝓓𝑢                                                                                                                                               

𝓑 ∈ ℤ                                                                                                                                                              

𝑡 ∈ [0, 𝑡𝑒𝑛𝑑]                                                                                                                                                   

The process states 𝒙(𝑡) and its derivatives 𝒙̇(𝑡) are typically described by differential equations 

and are represented here by the closed-loop process model 𝒇. The process constraints can take the form of 

inequality constraints 𝒈 (physical constraints, safety constraints, quality constraints, stability constraints, 

and scheduling constraints) or equality constraints 𝒉 (typically representing the process model algebraic 

equations). As shown in problem (1), the output set-points 𝒚𝒔𝒑(𝑡) are determined from the integer 

scheduling decisions 𝓑 and the lengths of each time region 𝚫𝐭 using the function 𝝍. The vector of process 

disturbances 𝜼(𝑡) is time-varying but is assumed to be bounded by a lower limit 𝜼𝑙𝑜 and an upper limit 𝜼𝑢𝑝 

whereas the vector of uncertain parameters 𝓟 is assumed to be time-invariant and bounded by a lower limit 

𝓟𝑙𝑜 and an upper limit 𝓟𝑢𝑝. The conceptual formulation shown in problem (1) can be considered as a 

robust optimization formulation given that the optimal solution is required to remain valid at the worst-case 

critical realizations of process disturbances and parametric uncertainty, thus resulting in a minimax 

optimization problem. Also, the formulation presented in problem (1) makes no assumptions about the 

disturbances and the uncertain parameters, i.e. 𝜼(𝑡) and 𝓟 are assumed to be continuous variables 

encompassing an infinite number of possible realizations. Therefore, problem (1) can be classified as an 

infinite-dimensional mixed integer non-linear dynamic optimization problem. A large-scale problem of this 

type is very challenging to solve for many reasons, notably the infinite search space for disturbance and 

uncertain parameter domains, the combination of scheduling (integer) and continuous decisions, and the 

corresponding solution of differential equations at each step in the optimization. This provides motivation 

for the development of efficient algorithms that can circumvent these difficulties, and make the problem 

tractable.  

3.2. Decomposition Algorithm 

 In this section, the assumptions used to make the bulk problem (1) tractable are explained. The time 

domain is discretized, reformulating all continuous variables into discrete points. Following that, the 

approximations for process disturbances and parameter uncertainty are presented. The decomposition 

algorithm is explained, along with each of the sub-problems. 

3.2.1. Discretization of time domain 
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The problem under consideration includes time-dependent variables, which are embedded within 

the closed-loop dynamic model of the system defined by the vector function 𝒇. In addition, integer variables 

𝓑 are considered in the analysis to account for scheduling decisions. Thus, presence of these time-dependent 

and integer variables makes the overall problem a mixed-integer nonlinear dynamic optimization (MIDO) 

problem. These types of problems can be solved using two approaches; the shooting method, and the 

simultaneous method. In the shooting method, the ODEs are solved at fixed levels of the decision variables, 

and this is repeated multiple times in a sensitivity analysis to calculate the gradients of the objective and 

constraints. The gradients are then used to update the decision variables, and the process is repeated. In the 

simultaneous method, the ODEs are discretized, reformulating the differential equations as algebraic 

equations, which are then implemented into a bulk model along with the decision variables. More details 

about the shooting method and the simultaneous method can be found elsewhere (Biegler, 2010). The 

analytical gradients can be determined, and an optimal solution can be approached. In this work, the 

simultaneous approach has been used to reduce the computational costs and facilitate the integrated 

optimization of design, control, and scheduling decisions. Accordingly, the ODEs representing the closed-

loop dynamic equations 𝒇 are transformed into algebraic form using orthogonal collocation on finite 

elements, resulting in an overall problem that is a mixed-integer non-linear program (MINLP). As shown 

in Fig. 2, the time domain is divided into 𝐼 regions, which alternate between transition regions and 

production regions. Each region contains 𝐽 finite elements, and each finite element contains 𝐾 collocation 

points which are spaced according to Gauss-Legendre quadrature. The duration of each region 𝑖 (∆𝑡𝑖) is 

directly determined from optimization, allowing for differently sized regions to be explicitly accounted for 

in the MINLP formulation. As the size of each region 𝑖 changes, the size of the contained finite elements 

(𝛿𝑡𝑖), and their collocation points, also changes. In each region 𝑖, the size of finite elements 𝛿𝑡𝑖 is related 

to the total region size ∆𝑡𝑖 as shown in Eq. 2. 

∆𝑡𝑖 = 𝐽𝛿𝑡𝑖       ∀𝑖                                                                                                                                                             (2)  

 Based on the above descriptions, the process states 𝒙(𝑡) can be discretized and defined as 𝒙𝑖𝑗𝑘, as 

shown in Eq. 3, where 𝑖 is the index of time regions, 𝑗 is the index of finite elements, and 𝑘 is the index of 

collocation points. The remaining time-dependent variables (i.e. 𝒚𝒔𝒑(𝑡), 𝒖(𝑡), 𝜼(𝑡)  etc.) and functions (i.e. 

𝒈, 𝒉) are discretized in the same fashion. The value of time at each point is a function of 𝑖, 𝑗, 𝑘 and the 

region lengths 𝚫𝒕. Moreover, the time derivative for process states 𝒙̇(𝑡) can be discretized using the 

orthogonal collocation matrix 𝓐, which is defined in Appendix A, and the finite element size 𝛿𝑡𝑖 in each 

region 𝑖. Furthermore, the time-dependent variables are defined using two more indices (𝜃,𝜔), where 𝜃 and 

𝜔 are the indexes corresponding to particular realizations in parameter uncertainty, and process 

disturbances, respectively. 
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𝒙̇(𝑡) = 𝒇(𝒙(𝑡), 𝒚𝒔𝒑(𝑡), 𝒖(𝑡), 𝜼(𝑡),𝓟) →∑𝓐𝑘𝑘′𝒙𝑖𝑗𝑘′
𝜃,𝜔

𝑘′

= 𝛿𝑡𝑖  𝒇(𝒙𝑖𝑗𝑘
𝜃,𝜔 , (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝒖𝑖𝑗𝑘

𝜃,𝜔 , 𝜼𝑖𝑗𝑘
𝜔 , 𝓟𝜃  )              

𝑖 ∈ {1,2, … , 𝐼}, 𝑗 ∈ {1,2, … , 𝐽}, 𝑘 ∈ {1,2, … , 𝐾}      𝜔 ∈ {1, 2, … , 𝑁}, 𝜃 ∈ {1, 2, … ,𝑀}                                 (3) 

 As shown in problem (1), the region lengths 𝚫𝒕 (i.e. transition and production durations) are 

decision variables in the optimization. The effect of scheduling on the model equations can be seen directly 

in Eq. (3), which includes the finite element size 𝛿𝑡𝑖 for each region 𝑖 directly in the process model. Also, 

Eq. (3) depends on the set-points of the system at each discrete point in time 𝑖, 𝑗, 𝑘 (i.e. (𝒙𝑠𝑝)𝑖𝑗𝑘), where the 

corresponding set-points imposed on the process at any time point 𝑖, 𝑗, 𝑘 are determined from the function 

𝝍, which depends on the binary sequencing matrix 𝓑 and the region lengths 𝚫𝒕, i.e. scheduling decisions. 

The process to obtain (𝒙𝑠𝑝)𝑖𝑗𝑘  is described in detail in Appendix B. This represents a novelty in the present 

formulation since scheduling decisions are explicitly accounted for in the optimal design and control of 

multi-product systems under the effect of disturbances and uncertainty; an aspect that, to the authors’ 

knowledge, has not been addressed in the literature. 

 To ensure zero- and first-order continuity between regions, and between finite elements, additional 

constraints are added to the formulation, i.e.  

𝒙𝑖,𝑗,𝐾
𝜃,𝜔 = 𝒙𝑖,𝑗+1,1

𝜃,𝜔        ∀𝑖, 𝑗 ⋀  ∀(𝜃, 𝜔) ∈ 𝒄                                                                                                                   (4) 

𝒙𝑖,𝐽,𝐾
𝜃,𝜔 = 𝒙𝑖+1,1,1

𝜃,𝜔      ∀𝑖  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄                                                                                                                       (5) 

∑ 𝒜𝐾,𝑘′𝒙𝑖,𝑗,𝑘′
𝜃,𝜔

𝑘′

𝛿𝑡𝑖
=
∑ 𝒜1,𝑘′𝒙𝑖,𝑗+1,𝑘′

𝜃,𝜔
𝑘′

𝛿𝑡𝑖
      ∀𝑖, 𝑗  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄                                                                            (6) 

∑ 𝒜𝐾,𝑘′𝒙𝑖,𝐽,𝑘′
𝜃,𝜔

𝑘′

𝛿𝑡𝑖
=
∑ 𝒜1,𝑘′𝒙𝑖+1,1,𝑘′

𝜃,𝜔
𝑘′

𝛿𝑡𝑖+1
    ∀𝑖  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄                                                                                 (7) 

3.2.2. Process Disturbances and Parameter Uncertainty Descriptions 

 As shown in the conceptual problem (1), the process disturbances 𝜼(𝑡) have been initially defined 

as bounded time-varying continuous variables, which makes problem (1) computationally challenging. To 

circumvent this issue, the present analysis approximates the disturbances from a set of possible functions 

specified a priori, as shown in Eq. (8). For example, the set of disturbances can take the form of sinusoidal 

waves with different frequency content (i.e. variability). The index 𝜔 refers to the particular realization that 

the disturbance can take during operation; e.g. the frequency for a sinusoidal disturbance. Similarly, the 

vector of uncertain parameters 𝓟 are approximated from a set of possible realizations defined a priori. The 

index 𝜃 refers to the particular realization that the parameter uncertainty vector 𝓟 can take during operation, 

as shown in Eq. (9). The realizations corresponding to 𝜔 = 0 or 𝜃 = 0 represent the nominal operating 
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condition considered for those parameters. The sets of realizations for disturbance and uncertainty should 

be selected carefully, as different sets will affect the solution provided by the framework. Note that 

increasing the number of discrete realizations is expected to have a diminishing effect on the solution (i.e. 

the problem is expected to converge to the same solution as the number of scenarios grows sufficiently 

large). 

𝜼𝑖𝑗𝑘
𝜔 ∈ {𝜼𝑖𝑗𝑘

0 , 𝜼𝑖𝑗𝑘
1 , 𝜼𝑖𝑗𝑘

2 , … , 𝜼𝑖𝑗𝑘
𝑁 }     ∀ 𝑖, 𝑗, 𝑘             𝜔 ∈ {0,1, 2, … , 𝑁}                        (8) 

𝓟𝜃 ∈ {𝓟0, 𝓟1, 𝓟2,… ,𝓟𝑀}                                    𝜃 ∈ {0, 1, 2, … ,𝑀}                        (9) 

In the present analysis, a critical set 𝒄 is introduced in Eq. (10) as a set of (𝜔,𝜃) pairs. This set is used to 

define the realizations among those defined in Eq. (8) and (9) that have the most critical impact on process 

performance, and may also produce dynamic infeasibility. Note that when a realization is referred to as 

critical, it is with respect to the discrete set of disturbance and uncertain realizations, which are defined a 

priori. Each set of pairs in 𝒄 is a subset of all combinations of (𝜔,𝜃) considered in the disturbance and 

uncertain parameter sets, i.e. all (N×M) combinations. 

𝒄 ⊆ 𝜔 × 𝜃 = [
(0,0) ⋯ (0,𝑀)
⋮ ⋱ ⋮

(𝑁, 0) ⋯ (𝑁,𝑀)
]                                             (10) 

3.2.3. Algorithm Formulation 

Using the approximations described above, the conceptual problem (1) can be transformed into a 

minimax MINLP. Furthermore, to avoid the challenging task of optimizing over every possible combination 

of (𝜔,𝜃) in an MINLP problem, a decomposition algorithm is implemented. As shown in Fig. 3, the 

proposed algorithm decomposes the problem into a Flexibility Analysis and a Feasibility Analysis. These 

sub-problems contain the actual process model and nonlinear constraints (in discrete form), and also include 

orthogonal collocation constraints, Eq. (4)-(7), which are required to ensure continuity of the process state 

variables 𝒙𝑖𝑗𝑘
𝜃,𝜔 and their derivatives due to the discretization scheme employed in this work.  

The flexibility analysis formulation is presented in problem (11). This problem is initialized with a 

critical set 𝒄, which specifies the realizations of process disturbances 𝜼𝑖𝑗𝑘𝜔  and parameter uncertainty 𝓟𝜃 to 

be considered in the analysis. As shown in Fig. 3, the critical set can be initialized in the first iteration (n = 

1) with the corresponding nominal values (i.e. 𝜼𝑖𝑗𝑘0 , 𝓟0). For a fixed critical set 𝒄, the flexibility analysis 

searches for the design, control, and scheduling scheme that minimizes the expected cost in the objective 

function and accommodates the realizations considered in critical set 𝒄. As shown in problem (11), each 
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critical realization is weighted by a user-defined factor 𝜁𝜃,𝜔, which must be defined a priori and represents 

the likelihood or confidence that realization (𝜃, 𝜔) may occur during operation. 

min
𝓓={𝜿,𝚲,𝓑,𝚫𝐭}

 ∑ 𝜁𝜃,𝜔𝑧𝜃,𝜔(𝒙𝑖𝑗𝑘
𝜃,𝜔 , 𝒚𝑖𝑗𝑘

𝜃,𝜔 , (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝜿, 𝚲, 𝓑, 𝚫𝐭)

(𝜃,𝜔)∈𝒄

                                                                                       (11)    

𝑠. 𝑡. 

∑𝒜𝑘𝑘′𝒙𝑖𝑗𝑘′
𝜃,𝜔

𝑘′

= 𝛿𝑡𝑖𝒇(𝒙𝑖𝑗𝑘
𝜃,𝜔 , 𝒖𝑖𝑗𝑘

𝜃,𝜔 , 𝒚𝑖𝑗𝑘
𝜃,𝜔 , (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝜼𝑖𝑗𝑘

𝜔 , 𝓟𝜃 , 𝜿, 𝚲, 𝓑, 𝛿𝑡𝑖),      ∀𝑖, 𝑗, 𝑘  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄    

𝒈(𝒙𝑖𝑗𝑘
𝜃,𝜔 , 𝒖𝑖𝑗𝑘

𝜃,𝜔 , 𝒚𝑖𝑗𝑘
𝜃,𝜔 , (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝜼𝑖𝑗𝑘

𝜔 , 𝓟𝜃 , 𝜿, 𝚲, 𝓑, 𝛿𝑡𝑖) ≤ 𝟎 ,     ∀𝑖, 𝑗, 𝑘  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄                                 

𝒉(𝒙𝑖𝑗𝑘
𝜃,𝜔 , 𝒖𝑖𝑗𝑘

𝜃,𝜔 , 𝒚𝑖𝑗𝑘
𝜃,𝜔 , (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝜼𝑖𝑗𝑘

𝜔 , 𝓟𝜃 , 𝜿, 𝚲, 𝓑, 𝛿𝑡𝑖) = 𝟎 ,     ∀𝑖, 𝑗, 𝑘  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄 

(𝒚𝑠𝑝)𝑖𝑗𝑘 = 𝝍𝑖𝑗𝑘(𝓑),     ∀𝑖, 𝑗, 𝑘  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄                                                                           

𝓓𝑙 ≤ 𝓓 ≤ 𝓓𝑢                                                                                                                                               

𝓑 ∈ ℤ     

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (4) − (7) 

The optimal solution for design, control, and scheduling returned by the flexibility problem is only 

guaranteed to be valid for the critical realizations considered in 𝒄. Thus, a feasibility analysis is needed to 

ensure a robust solution that is immune to any combination of disturbance and parameter uncertainty. 

Therefore, the solution from the flexibility problem at the nth iteration (𝓓𝑛) is held constant and is passed 

to the feasibility problem. As shown in problem (12), a formal feasibility analysis optimization formulation 

can be formulated to search for the combination of (𝜔, 𝜃) in the disturbances and uncertain parameters that 

produces the maximum (positive) deviation in the slack variables 𝜶, at any point in time 𝑖, 𝑗, 𝑘, for constraint 

𝑔𝑎 ∈ 𝒈. Binary variables (𝑌𝑎,𝑖𝑗𝑘
𝜃,𝜔 ) are incorporated into the formulation to identify such a condition. Note 

that a problem of this type would be very difficult to solve on a continuous time domain with non-discretized 

disturbance and parameter uncertainty, due to the infinite-dimensional search space, as mentioned in 

Section 3.1. Active set strategies (Mohideen et al., 1996) and structured singular value analysis (Trainor et 

al., 2013) have been proposed to solve such problems. The problem in (12) is an integer optimization (IP) 

problem, as all the decisions are made on binary variables. Although the search space is finite, the problem 

is challenging to solve directly due to the curse of dimensionality, as the number of integer variables grows 

prohibitively large. However, the finite search space lends itself very well to rigorous simulations. Recent 

studies have used simulations to evaluate feasibility (Mansouri et al., 2016; Pistikopoulos et al., 2015; 

Ricardez-Sandoval, 2012; Shi et al., 2016; Zhuge and Ierapetritou, 2016). In this work, and with the aim of 

reducing computational complexity, process simulations are performed to calculate the values of the 
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process variables (e.g. 𝒙𝑖𝑗𝑘
𝜃,𝜔) and constraint violations 𝛼𝑎,𝑖𝑗𝑘

𝜃,𝜔 , over the entire discrete set of process 

disturbances and parameter uncertainty, as shown in problem (12A).  

𝜙 = max
𝒀
 ∑ 𝑌𝑎,𝑖𝑗𝑘

𝜃,𝜔  𝛼𝑎,𝑖𝑗𝑘
𝜃,𝜔

𝑎,𝑖,𝑗,𝑘,𝜃,𝜔

                                                                                                                              (12) 

𝑠. 𝑡. 

∑𝓐𝑘𝑘′𝒙𝑖𝑗𝑘′
𝜃,𝜔

𝑘′

= 𝛿𝑡𝑖 ∗ 𝒇(𝒙𝑖𝑗𝑘
𝜃,𝜔 , (𝒙𝑠𝑝)𝑖𝑗𝑘 , 𝒖𝑖𝑗𝑘

𝜃,𝜔 , 𝒚𝑖𝑗𝑘
𝜃,𝜔 , 𝜼𝑖𝑗𝑘

𝜔 , 𝓟𝜃 , 𝜿, 𝚲, 𝓑, 𝛿𝑡𝑖)       ∀ 𝑖, 𝑗, 𝑘  

𝑔𝑎,𝑖𝑗𝑘
𝜃,𝜔 (𝒙𝑖𝑗𝑘

𝜃,𝜔 , (𝒙𝑠𝑝)𝑖𝑗𝑘 , 𝒖𝑖𝑗𝑘
𝜃,𝜔 , 𝒚𝑖𝑗𝑘

𝜃,𝜔 , 𝜼𝑖𝑗𝑘
𝜔 , 𝓟𝜃 , 𝜿, 𝚲, 𝓑, 𝛿𝑡𝑖) = 𝛼𝑎,𝑖𝑗𝑘

𝜃,𝜔  ,     ∀ 𝑎, 𝑖, 𝑗, 𝑘    

𝒉(𝒙𝑖𝑗𝑘
𝜃,𝜔 , (𝒙𝑠𝑝)𝑖𝑗𝑘 , 𝒖𝑖𝑗𝑘

𝜃,𝜔 , 𝒚𝑖𝑗𝑘
𝜃,𝜔 , 𝜼𝑖𝑗𝑘

𝜔 , 𝓟𝜃 , 𝜿, 𝚲, 𝓑, 𝛿𝑡𝑖) = 𝟎 ,       ∀ 𝑖, 𝑗, 𝑘 

∑ 𝑌𝑎,𝑖𝑗𝑘
𝜃,𝜔

𝑎,𝑖,𝑗,𝑘,𝜃,𝜔

= 1    

𝑌𝑎,𝑖𝑗𝑘
𝜃,𝜔 ∈ {0,1}    ∀ 𝜃, 𝜔, 𝑎, 𝑖, 𝑗, 𝑘 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (4) − (7) 

𝛷 = max
𝜃,𝜔

 𝛼𝑎,𝑖𝑗𝑘
𝜃,𝜔                                                                                                                                                (12𝐴) 

𝑠. 𝑡. 

∑𝓐𝑘𝑘′𝒙𝑖𝑗𝑘′
𝜃,𝜔

𝑘′

= 𝛿𝑡𝑖 ∗ 𝒇(𝒙𝑖𝑗𝑘
𝜃,𝜔 , (𝒙𝑠𝑝)𝑖𝑗𝑘 , 𝒖𝑖𝑗𝑘

𝜃,𝜔 , 𝒚𝑖𝑗𝑘
𝜃,𝜔 , 𝜼𝑖𝑗𝑘

𝜔 , 𝓟𝜃 , 𝜿, 𝚲, 𝓑, 𝛿𝑡𝑖)       ∀ 𝑖, 𝑗, 𝑘  

𝑔𝑎,𝑖𝑗𝑘
𝜃,𝜔 (𝒙𝑖𝑗𝑘

𝜃,𝜔 , (𝒙𝑠𝑝)𝑖𝑗𝑘 , 𝒖𝑖𝑗𝑘
𝜃,𝜔 , 𝒚𝑖𝑗𝑘

𝜃,𝜔 , 𝜼𝑖𝑗𝑘
𝜔 , 𝓟𝜃 , 𝜿, 𝚲, 𝓑, 𝛿𝑡𝑖) = 𝛼𝑎,𝑖𝑗𝑘

𝜃,𝜔  ,     ∀ 𝑎, 𝑖, 𝑗, 𝑘    

𝒉(𝒙𝑖𝑗𝑘
𝜃,𝜔 , (𝒙𝑠𝑝)𝑖𝑗𝑘 , 𝒖𝑖𝑗𝑘

𝜃,𝜔 , 𝒚𝑖𝑗𝑘
𝜃,𝜔 , 𝜼𝑖𝑗𝑘

𝜔 , 𝓟𝜃 , 𝜿, 𝚲, 𝓑, 𝛿𝑡𝑖) = 𝟎 ,       ∀ 𝑖, 𝑗, 𝑘 

𝜃 ∈ {1,2, … ,𝑀} 

𝜔 ∈ {1,2, … ,𝑁} 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (4) − (7) 

The realization with the highest objective function (i.e. the most infeasible realization) in the 

feasibility problem is deemed the “worst case” realization for the current iteration of the algorithm, 

represented as (𝜔, θ)
𝑛
 as shown in Fig. 3. Associated with that realization is a vector of slack 

variables 𝜶(𝜔,θ)𝑛, where positive values represent infeasible operating conditions. As shown in Problem 

(12A) and Fig. 3, if 𝛷𝑛 ≥ 0, i.e. any slack variables related to the “worst case” realization (𝜔, θ)𝑛 in 

iteration 𝑛 are greater than zero, which implies a dynamically infeasible operation because a constraint ga 

is violated, then the algorithm continues to the next iteration, adding the worst case realization (𝜔, θ)𝑛 to 
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the critical set c, and solving the flexibility problem subject to the updated critical set. Conversely, if 𝛷𝑛 ≤

0, i.e. all the slack variables are less than or equal to zero (i.e. all operating conditions are dynamically 

feasible), the algorithm terminates, and returns the current solution 𝓓𝑛 to be the most optimal solution 𝓓∗. 

This is a robust solution that is dynamically feasible for all the discrete realizations of disturbance and 

uncertainty that have been considered; however, it is not guaranteed to be optimal for the entire set of 

realizations in the disturbance and uncertain parameters. Furthermore, dynamic feasibility cannot be 

guaranteed for realizations other than at the discrete points in Eq. (8) and (9). Adding more realizations in 

the disturbances and uncertain parameter sets will improve the robustness of the resulting design, control 

and scheduling scheme at the expense of solving more intensive and challenging optimization problems. 

Structural decisions (e.g. control schemes, integer design decisions) can be considered in the flexibility 

analysis using additional integer variables, at the cost of increased complexity. Though the solution is 

robust, it may be overly conservative, especially in cases of very rare critical realizations. This can be 

partially remedied by careful selection of the weights 𝜁𝜃,𝜔 for each realization. However, robust solutions 

always remain conservative to some degree. Current research carried out by the authors is focused on 

developing new numerical approaches that can reduce the conservatism in the solution.  

4. Results and discussions: non-isothermal CSTR 

This section describes the case study that was adopted for the application of the methodology 

described in Section 3. The results presented in this work were obtained using GAMS on a system running 

Windows 7, using an Intel® Core™ i7-2600 CPU 3.40 GHz and 8.00 GB RAM. For MINLP problems, 

SBB is the chosen solver. For NLP and CNS (constrained non-linear system), CONOPT is selected. Hence, 

the present analysis accepts locally optimal solutions. Preliminary analysis showed that these solvers 

provided better performance than other solvers (e.g. DICOPT, IPOPT) for this case study.  

The approach described in the previous section has been applied to a continuous stirred tank reactor 

(CSTR), which is shown in Fig. 4. This case study is intended to be of similar complexity to the case studies 

used in other works on integrated design, control and/or scheduling optimization (Mehta and Ricardez-

Sandoval, 2016; Patil et al., 2015; Terrazas-Moreno et al., 2008; Zhuge and Ierapetritou, 2016, 2012). The 

reactor has constant volume, due to an overflow outlet. The reactor is non-isothermal, and is capable of 

producing multiple grades of product B via an irreversible first-order reaction that coverts reactant A into 

product B. Demand for each of the grades is assumed to be equal, and they are produced one at a time, i.e. 

in a wheel fashion. Scheduling decisions include the production sequence and the transition durations (i.e. 

region lengths 𝚫𝒕) between product grades. During the production regions, set-point tracking of product 

concentration is desired. 
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 As shown in Fig. 4, the feed to the reactor consists entirely of species A, at a concentration of 𝐶𝐴𝑖𝑛  

(3.0 𝑚𝑜𝑙/𝐿), flow rate 𝑞𝑖𝑛, and temperature 𝑇𝑖𝑛 (40°C). The feed must be converted to product B via an 

exothermic reaction. The reaction is assumed to follow first order Arrhenius kinetics as in Eq. (13). 

𝑟𝐴 = 𝑘𝑜𝐶𝐴 exp (
−𝐸𝑅
𝑅 𝑇

)                                                                                                                                               (13) 

where 𝐶𝐴 is the concentration of species A in the reactor, 𝑘𝑜  is the pre-exponential constant (1.3 𝑠−1), 𝑅 is 

the gas constant (8.3144 𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1 ), 𝑇 is the temperature in the reactor, and 𝐸𝑅 is the activation 

energy of the reaction (20000 𝐽/𝑚𝑜𝑙). The dynamic behavior of the state variables 𝒙𝐶𝑆𝑇𝑅 = {𝑇, 𝐶𝐵} is 

described in Eq. (14)-(15). Equations are shown in continuous form and have been discretized before 

implementation as shown in Section 3. Orthogonal collocation for this case study is discussed further in 

Appendix A. 

𝑑𝑇

𝑑𝑡
=
𝑞𝑖𝑛(𝑇𝑖𝑛 − 𝑇)

𝑉
+
∆𝐻𝑅𝑘𝑜(𝐶𝐴𝑖𝑛 − 𝐶𝐵)

𝜌 𝐶𝑃
exp (

−𝐸𝑅
𝑅 𝑇

) −
𝑄𝐻
𝜌𝐶𝑃𝑉

                                                                       (14) 

𝑑𝐶𝐵
𝑑𝑡

= 𝑘𝑜(𝐶𝐴𝑖𝑛 − 𝐶𝐵) exp (
−𝐸𝑅
𝑅 𝑇

) +
𝑞𝑖𝑛𝐶𝐵
𝑉

                                                                                                         (15) 

where 𝐶𝐵  is the concentration of species B (product) in the reactor, 𝑉 is the volume of liquid in the reactor, 

∆𝐻𝑅  is the heat of reaction (4780 𝐽/𝑚𝑜𝑙), 𝜌 is the density of the liquid in the reactor (1 𝑘𝑔/𝐿), 𝐶𝑃  is the 

specific heat capacity of the liquid (4.1813 𝐽 ∙ 𝑔−1 ∙ 𝐾−1), and 𝑄𝐻 is the rate at which heat is added/removed 

to the system.  

The control scheme consists of a PI controller that uses the heating rate 𝑄𝐻 to control the product 

concentration 𝐶𝐵  at the outlet. As shown in Eq. (16), the concentration set-point is denoted by 𝐶𝐵
𝑠𝑝 whereas 

the controller parameters are represented by the proportional gain 𝐾𝑐, and the integral time 𝜏𝑖. The steady 

state (nominal) heating rate is 𝑄𝐻𝑆𝑆 . Due to large differences between typical values of 𝐶𝐵(𝑡) and 𝑄𝐻(𝑡), 

the value of 𝐾𝑐 is scaled by 106 (not shown), for clarity of results. 

𝑄𝐻(𝑡) = 𝑄𝐻𝑆𝑆 + 𝐾𝐶(𝐶𝐵
𝑠𝑝 − 𝐶𝐵(𝑡)) +

𝐾𝑐
𝜏𝑖
∫ (𝐶𝐵

𝑠𝑝 − 𝐶𝐵(𝑡
′))

𝑡

0

𝑑𝑡′                                                                     (16) 

For safety reasons, the temperature inside the reactor must be maintained between 0°C and 400°C 

during operation, as shown in Eq. (17). Additionally, the rate of change in the manipulated variable (heat 

input 𝑄𝐻) is constrained, as shown in Eq. (18), to prevent drastic changes in the heat input. This case study 

considers five set-points 𝐶𝐵
𝑠𝑝 shown in Eq. (19), which are also referred to as set-points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 

respectively. As described in Section 2, for each set-point, there is a corresponding transition and production 
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region. As such, there are I=10 regions; consisting of 5 production regions and 5 transition regions. As 

described in Section 3.2.1, all variables are discretized into regions 𝑖, finite elements 𝑗, and collocation 

points 𝑘. In this case study, each region 𝑖 contains 100 finite elements, i.e. J=100. Within each finite 

element, there are 𝐾=5 collocation points, including the boundary points. The number of finite elements 

and collocation points were selected a priori based on a preliminary analysis of computational effort against 

accuracy in the solution. 

To account for grade transitions, the duration Δti of each region i is an optimization variable in the 

transition regions (odd numbered regions), and is bounded as shown in Eq. (20) to resemble a real process 

where there may be scheduling/operational limits imposed on time. In production regions (even numbered 

regions), the region duration is fixed at 4,000 seconds. As discussed in Section 3.2.3, additional constraints 

are necessary to ensure zero- and first-order continuity between finite elements and regions. Details on the 

implementation for this case study are discussed in Appendix A.  

0°C ≤ 𝑇 ≤ 400°C                                                                                                                                                       (17) 

−50 kW/s ≤
𝑑𝑄𝐻(𝑡)

𝑑𝑡
≤ 50 kW/s                                                                                                                         (18) 

𝐶𝐵
𝑠𝑝 ∈ {0.7, 0.9, 1.2, 1.5, 1.7} 𝐿/𝑚𝑜𝑙                                                                                                                      (19) 

10 𝑠 ≤ Δ𝑡𝑖 ≤ 300 𝑠        ∀ 𝑖 | 𝑖 odd                                                                                                                        (20) 

The objective of the optimization problem is to minimize total cost of the process. The total cost 

𝑧𝐶𝑆𝑇𝑅  shown in Eq. (21) is assumed to be the sum of capital cost, scheduling cost, and variability cost. 

Capital cost is a direct function of reactor volume 𝑉, scheduling cost is a function of the length of each 

transition region Δ𝑡𝑖 , and variability cost is a function of the integral of squared error 𝐼𝑆𝐸𝑖 of the outlet 

product concentration in each production region. Gaussian quadrature is used in place of a traditional 

integral to calculate 𝐼𝑆𝐸𝑖, as shown in (22), where 𝜑𝑘 is the Gaussian weight of each discrete point. Note 

that the weights assigned to each of the cost function terms were arbitrarily selected. 

𝑧𝐶𝑆𝑇𝑅 = 10𝑉 + 20 ∑ Δ𝑡𝑖  

𝑖 odd

+ 10 ∑ 𝐼𝑆𝐸𝑖
𝑖 even

                                                                                                      (21) 

𝐼𝑆𝐸𝑖 = ∑ ∑
𝜑𝑘
2
𝛿𝑡𝑖  (𝐶𝐵𝑖𝑗𝑘

𝑠𝑝 − 𝐶𝐵𝑖𝑗𝑘)
2

𝑘∉{1,𝐾}𝑗

        ∀ 𝑖                                                                                           (22) 

The decision variables for this case study are the reactor volume 𝑉 (design decisions), the controller 

tuning parameters 𝐾𝐶  and 𝜏𝑖 (control decisions) and the sequence of production (binary matrix 𝓑) and the 
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transition region lengths 𝚫𝒕 (scheduling decisions). Constraints on the production sequence such that only 

one grade is produced at a time (Eq. (23)), and all grades are produced by the end of the time horizon (Eq. 

(24)) were included in the flexibility analysis formulation. Due to the repeating production schedule as 

mentioned in Section 2, there are many production sequences which are identical (e.g. A-B-C-D-E and B-

C-D-E-A, etc.). Therefore, to reduce the computational costs, the first set-point is fixed so it is always the 

first grade (0.7 𝑚𝑜𝑙/𝐿). 

∑ℬ𝑔,𝑔′

𝑔′

= 1      ∀𝑔                                                                                                                                                   (23) 

∑ℬ𝑔,𝑔′

𝑔

= 1      ∀𝑔′                                                                                                                                                  (24) 

4.2. Scenario A 

In this scenario, the results from two implementations are compared. The first problem (Scenario 

A1) considers that the selected process disturbance, i.e. the inlet flow rate 𝑞𝑖𝑛, is set to its nominal operating 

condition while the second problem (Scenario A2) considers an oscillating inlet flow rate 𝑞𝑖𝑛. In both 

problems, design, control, and scheduling are optimized simultaneously using the proposed algorithm. The 

purpose of this scenario is to illustrate the effect that disturbance has on the optimal design, control, and 

scheduling. 

As shown in Eq. (25), the inlet flow rate 𝑞𝑖𝑛 is assumed to oscillate around a nominal point 𝑞𝑖𝑛𝑛𝑜𝑚  

(0.4 L/s) following a sinusoidal wave with an amplitude of 𝑞𝑖𝑛𝑎𝑚𝑝  (0.08 L/s),. The oscillation frequency Ω 

is assumed to be an unknown parameter chosen from a discrete set of frequencies shown in Eq. (26). 

Accordingly, 𝜔 ∈ {0,1,2, … ,10} refers to a particular disturbance realization, similar to Eq. (8) in Section 

3.2.2. All realizations are assumed to be equally likely, i.e. 𝜁𝜔 = 1/11. In Scenario A1, the inlet flow rate 

is assumed to be equal to the nominal value, i.e. Ω = 0. 

𝑞𝑖𝑛 = 𝑞𝑖𝑛𝑛𝑜𝑚 + 𝑞𝑖𝑛𝑎𝑚𝑝 sin(Ω𝑡)                                                                                                                               (25) 

Ω ∈ {0, 0.001, 0.002, 0.004, 0.007, 0.01, 0.02, 0.04, 0.07, 0.1, 0.2} 𝑠−1                                                       (26) 

The results for these implementations are summarized in Table 2. Scenario A1 requires a single 

flexibility problem to generate a solution subject to nominal conditions. Scenario A2 requires four iterations 

of the proposed algorithm to converge to an optimal solution that is feasible for all the realizations 

considered. Note that the solution provided by Scenario A1 does not remain feasible under all realizations 

of process disturbance (not shown for brevity). The size of the flexibility analysis (11) in Scenario A2 grows 
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in each successive iteration, because the problem must be solved over all realizations in the critical set, 

which is expanded following each feasibility analysis, as shown in Fig. 3. In the final iteration of the 

algorithm for Scenario A2, the flexibility problem consisted of 119,529 equations and 89,553 variables, 

while the feasibility simulations consisted of 21,507 equations and variables. The use of simulations in the 

feasibility analysis is justified, as the formal optimization in (12) would have contained 50,000 binary 

variables, resulting in a nearly intractable IP problem. Conversely, the computational time for the feasibility 

analysis simulations in (12A) required only 25 seconds.  

The problem size of Scenario A1 is smaller than that of Scenario A2, consisting of 46,519 equations 

and 36,543 variables. As expected, the CPU time is much higher for Scenario A2 (at least one order of 

magnitude) since the problem is larger and requires multiple iterations. As expected, the total process cost 

and ISE are higher in Scenario A2, due to the presence of disturbance. Note that both scenarios returned 

different scheduling solutions, in terms of sequencing and transition durations, aside from the starting point 

(which was fixed). Scenario A2 has lower transition durations, to account for process disturbances. Control 

parameters are also significantly different, due to the differences in scheduling. Furthermore, the reactor 

volume is 13% larger in Scenario A2 than in Scenario A1. These results highlight the importance of taking 

scheduling decisions into account while performing the optimal design of a multiproduct system. Fig. 5 

displays the concentration profile from each of the scenarios. The differences in sequence, transition times, 

and control tuning can be observed. 

4.3. Scenario B 

In this scenario, results from the proposed methodology (Scenario B1) are compared to the results 

from the sequential method (Scenario B2) and the sequential method with overdesign factors (Scenario 

B3). The purpose of this scenario is to compare these competing methodologies in terms of solution quality 

and computational time. The problems are solved subject to the process disturbance described in the 

previous scenario. Additionally, uncertainty is considered for two parameters in this process: heat of 

reaction ∆𝐻𝑅 , and activation energy 𝐸𝑅. The corresponding value of these parameters is determined by the 

uncertainty realization 𝜃 ∈ {0,1,2,3,4} as shown in Table 3. Note that the complexity of the problem 

increases since all the combinations of disturbance (11 realizations) and uncertainty (5 realizations) are 

considered, resulting in 55 possible realizations. The decomposed algorithm is initialized with 𝜔 = 0 (see 

Eq. (25)) and 𝜃 = 0, to represent nominal values.  

For Scenario B2 and B3, the sequential method consists of three consecutive sub-problems (i.e. 

design, control, and scheduling), where the solution from each sub-problem is fixed in the calculations and 

passed to the next sub-problem; hence, there is no interaction between the different sub-problems. Due to 
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the independence of the sub-problems in the sequential method, it is much less complex than the 

simultaneous approach. Once a solution is determined using the sequential method, the solution is tested 

against the full set of realizations of disturbance and uncertainty. The worst-case solution (i.e. the most 

infeasible solution) is returned as the final solution. This is to provide a fair comparison to the proposed 

method, which also returns the solution that accommodates the worst-case (critical) realizations in 𝜔 and 𝜃. 

The solution obtained from the sequential approach (Scenario B2) contained multiple infeasible 

realizations. Hence, an overdesign factor of 1.5 was applied to the reactor volume in Scenario B3 to prevent 

dynamic infeasibility, based on a preliminary analysis of overdesign factors ranging from 1.1 to 2.0, in 

increments of 0.05. With the overdesigned sequential approach (Scenario B3), all the realizations become 

feasible and comparison to the integrated approach is possible. 

For Scenario B1, five iterations of the proposed algorithm are required before convergence is met. 

Results following the flexibility problem from each iteration are summarized in Table 4. The critical set c 

is initialized with the nominal point (0,0), and a new realization in the disturbance and uncertain parameters 

is added to the critical set in each iteration. The effects of the expanding critical set can be seen as the 

problem size increases and the solution changes slightly in each iteration. Given that the present approach 

uses the solution from the previous iteration to initialize the problem at the current iteration, then a direct 

relationship between computational costs and problem size shall not be expected since it also depends on 

other factors such as initial conditions and non-linearities. In the final iteration, all realizations are identified 

as feasible in the feasibility analysis, so the algorithm is terminated, and the design, control and scheduling 

scheme corresponding to that iteration is reported as the optimal solution (𝓓∗) as shown in Fig. 3. 

Table 5 presents the results obtained from Scenario B. As shown in this table, the optimal process 

cost provided by the integrated approach (Scenario B1) is 17% lower than the solution provided by the 

overdesigned sequential approach (Scenario B3), and every component of the cost function is also lower. 

Scenario B2 has the lowest process cost out of all scenarios considered though it returns a dynamically 

infeasible design. The computational cost of the integrated approach (Scenario B1) is approximately three 

times higher than that of Scenario B3, due to the increased complexity of the integrated problem, as 

mentioned above.  

As shown in Table 5, the controller integral time is significantly different for each approach, and 

the lower variability cost indicates that the integrated approach offers better set-point tracking performance 

than Scenario B3. The reactor volume is also lower in the integrated approach, leading to a 16% lower 

design cost compared to Scenario B3. Note that the reactor volume from the integrated approach (V = 18.9) 

is only 26% greater than Scenario B2 (V = 15), which was found to be dynamically infeasible. This indicates 

that by integrating design with control and scheduling decisions, the reactor volume was able to remain 
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relatively low without resulting in dynamically infeasible (invalid) designs in the presence of disturbance 

and parameter uncertainty. Additionally, it is likely that reactor volume has a large effect on process 

dynamics; thus, the reactor sizing in the sequential approach is suboptimal because it is determined in the 

first stage of optimization (before control and scheduling have been determined). Note that the production 

sequence and transition durations are also significantly different. This is a clear indication that scheduling 

decisions are affected by design and control decisions, thus motivating the need for integration of these 

three aspects. Scenario B1 and Scenario B3 are feasible over all realizations of process disturbance and 

uncertainty, while Scenario B2 is dynamically infeasible. The concentration profiles from Scenario B1 and 

Scenario B3 are shown in Fig. 6, where differences can be observed in production sequence, transition 

times, process variability and controller tuning.  

In Fig. 7a, it can be observed that the temperature from the integrated approach (Scenario B1) 

remains within the corresponding limits specified for this variable (see Eq. (17)), and oscillates as closely 

as possible to the limit. For Scenario B2, the temperature surpasses the upper bound, resulting in infeasible 

operating conditions. In Fig. 7b, the profile of the manipulated variable (heat input) in Scenario B1 is 

illustrated. Similar to temperature, the heat input oscillates to correct for changes in the disturbances and 

the uncertain parameters (∆𝐻𝑅  and 𝐸𝑅), and no drastic changes are observed. 

The progression of the algorithm in the integrated approach can be observed in Fig. 8, which 

displays the maximum infeasibility (𝛷𝑛) detected from the feasibility analysis at each iteration 𝑛. 

Infeasibility starts out high (55 °C above upper bound), and then generally decreases with each iteration, 

although that is not guaranteed. The algorithm terminates after the fifth iteration, when no infeasibilities 

were detected, i.e. 𝛷 ≤ 0. 

4.4. Scenario C 

In this scenario, a sensitivity analysis is performed on the weights in the objective function (Eq. 

21) to determine the effect on the solution. The case study is the same as described in Scenario B. Three 

scenarios are considered in this section. Scenarios C1, C2 and C3 have a 10% increase in the capital cost 

weight, the scheduling cost weight and the variability cost weight, respectively. To simplify the analysis, 

each scenario is initialized with the solution from Scenario B1. As shown in Table 6, the three scenarios 

returned a solution that is nearly identical to that obtained for Scenario B1 with only very small differences 

in transition times and controller integral time. For Scenarios C1, C2 and C3, a change in the total process 

cost of 3.03%, 1.81% and 5.11%, respectively, is observed with respect to that obtained from Scenario B1. 

These differences in the total process cost are fully explained by the differences in cost weights, i.e. a 10% 

increase in the capital cost weight returned a 10% increase in the capital cost for Scenario C1. Similar 
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observations can be drawn for Scenarios C2 and C3. These results show that the solutions obtained for the 

present case study are robust (i.e. insensitive) to small changes in the weights specified in the cost function. 

 

5. Conclusions 

A framework for integration of design, control, and scheduling for multiproduct processes under 

disturbance and uncertainty has been presented. The novelty of this framework is that it performs a direct 

integration of design, control, and scheduling, while explicitly accounting for scheduling decisions in the 

process model by the use of variable-sized finite elements in the model discretization. The decomposition 

algorithm successfully simplifies the problem of an infinite-dimensional search space over all disturbance 

and uncertainty, by considering a critical set of disturbance and uncertainty, greatly reducing the 

computational costs. This method is specifically for multiproduct processes, due to the scheduling 

formulation. However, it can be extended to consider other processes where scheduling is key, e.g. flow-

shop systems. 

The framework was applied to a case study of a multiproduct CSTR. It is shown that design, control, 

and scheduling are affected by one another, and it can be advantageous to optimize them simultaneously. 

The results from the integrated approach are compared to the common alternative, the sequential method. 

The proposed integrated approach is able to return a solution in a practical time frame, with improved 

feasibility and optimality compared to the sequential method. The improvement in solution quality, and the 

tractable computational time required by the proposed methodology shows that it can be a promising 

approach for integrated optimization of design, control, and scheduling. This framework can be extended 

to more complex case studies, such as flow-shop systems or multi-product plug flow reactors, although the 

effect on computational time still needs to be investigated.  
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Appendix A. Orthogonal Collocation on Finite Elements for CSTR case study 

In orthogonal collocation on finite elements, each finite element is divided into a number of 

collocation points. In this work, the number of collocation points is 5. One benefit of orthogonal collocation 

is that the derivative 𝒙̇ can be estimated from the values 𝒙 at each collocation point, as shown in (A.1). The 

matrix entries 𝒜𝑘,𝑘′  defines the weighting that each point 𝑘′ has towards the derivative at point 𝑘, and is 

defined in (A.2) using the Lagrange polynomial ℓ𝑘′(𝑟𝑘) in (A.3), where the roots 𝒓 are analogous to 

dimensionless time within each finite element, and are defined as the roots of the Legendre polynomial 

which lie within [0,1]. For finite elements of non-unit lengths, the derivative must be scaled using 𝛿𝑡𝑖, as 

in (A.1).  

𝒙̇𝑖𝑗𝑘 =
∑ 𝒜𝑘𝑘′𝑘′ 𝒙𝑖𝑗𝑘′

𝛿𝑡𝑖
    ∀ 𝑖, 𝑗, 𝑘                                                                                                                           (𝐴. 1) 

𝒜𝑘𝑘′ =
𝜕ℓ𝑘′(𝑟𝑘)

𝜕𝑟
    ∀ 𝑘, 𝑘′                                                                                                                                      (𝐴. 2) 

ℓ𝑘′(𝑟𝑘) = ∏
𝑟𝑘 − 𝑟𝑘′′

𝑟𝑘′ − 𝑟𝑘′′

𝐾

𝑘′′=1,
𝑘′′≠𝑘′

   ∀ 𝑘, 𝑘′                                                                                                                      (𝐴. 3) 

The model in the case study (Section 4) is discretized into indices 𝑖, 𝑗, 𝑘. The number of regions 𝐼 

is required to be 10, in order to be double the number of product grades, which is 5. The number of finite 

elements 𝐽 is selected to be 100 to allow for long production times of one hour, and to provide a reasonable 

balance between speed and accuracy. The number of collocation points 𝐾 is selected to be 5 to allow for a 

fourth-order polynomial approximation. 

In the case study, to ensure zero- and first-order continuity of 𝒙𝐶𝑆𝑇𝑅, for 𝒙𝐶𝑆𝑇𝑅 = {𝑇, 𝐶𝐵}, (A.4) 

through (A.15) must be included in the problem formulation. These equations are analogous to the general 

form shown in Section 3.2.1 as Eq. (4)-(7), except here they are shown expanded and in discrete form, 

exactly as they are implemented. 

𝐶𝐵𝑖,𝑗,5 = 𝐶𝐵𝑖,𝑗+1,1       ∀𝑖, 𝑗                                                                                                                                      (𝐴. 5) 

𝐶𝐵𝑖,100,5 = 𝐶𝐵𝑖+1,1,1     ∀𝑖                                                                                                                                       (𝐴. 6) 

∑ 𝒜5,𝑘′𝐶𝐵𝑖,𝑗,𝑘′𝑘′

𝛿𝑡𝑖
=
∑ 𝒜1,𝑘′𝐶𝐵𝑖,𝑗+1,𝑘′𝑘′

𝛿𝑡𝑖
      ∀𝑖, 𝑗                                                                                               (𝐴. 7)  

∑ 𝒜5,𝑘′𝐶𝐵𝑖,100,𝑘′𝑘′

𝛿𝑡𝑖
=
∑ 𝒜1,𝑘′𝐶𝐵𝑖+1,1,𝑘′𝑘′

𝛿𝑡𝑖+1
    ∀𝑖                                                                                                 (𝐴. 8) 
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𝑇𝑖,𝑗,5 = 𝑇𝑖,𝑗+1,1       ∀𝑖, 𝑗                                                                                                                                            (𝐴. 9) 

𝑇𝑖,100,5 = 𝑇𝑖+1,1,1     ∀𝑖                                                                                                                                          (𝐴. 10) 

∑ 𝒜5,𝑘′𝑇𝑖,𝑗,𝑘′𝑘′

𝛿𝑡𝑖
=
∑ 𝒜1,𝑘′𝑇𝑖,𝑗+1,𝑘′𝑘′

𝛿𝑡𝑖
      ∀𝑖, 𝑗                                                                                                  (𝐴. 11) 

∑ 𝒜5,𝑘′𝑇𝑖,100,𝑘′𝑘′

𝛿𝑡𝑖
=
∑ 𝒜1,𝑘′𝑇𝑖+1,1,𝑘′𝑘′

𝛿𝑡𝑖+1
    ∀𝑖                                                                                                   (𝐴. 12) 

 

Appendix B. Set-point Determination from Binary Sequence Matrix 

In the problem formulations, the function 𝝍𝑖𝑗𝑘 maps the binary matrix 𝓑 to a profile of set-

points 𝒚𝑖𝑗𝑘
𝑠𝑝
  ∀ 𝑖, 𝑗, 𝑘. Within the binary matrix 𝓑, element ℬ𝑔,𝑔′  indicates if set-point Y

𝑔′
𝑠𝑝 is being produced 

𝑔𝑡ℎ in the sequence. Note that the index of grades 𝑔 is a subset of the index of time regions 𝑖, so some 

values of 𝑖 may be used as the index for ℬ𝑔,𝑔′ or 𝛽𝑔, in place of 𝑔. The list of set-points 𝐘sp is known a 

priori. Linear transitions between set-points are applied during transition regions (odd-numbered regions). 

As mentioned in Appendix A, 𝒓 represent the roots of the Legendre polynomial which lie within [0,1]. 

𝝍𝑖𝑗𝑘(𝓑) =

{
 
 

 
 𝛽𝐺 +

(𝛽1 − 𝛽𝐺)(𝑗 − 1 + 𝑟𝑘)                   𝑓𝑜𝑟 𝑖 = 1                         
𝛽𝑖/2                                                               𝑓𝑜𝑟 𝑖 = 2,4,6, …  𝐼          

𝛽𝑖−1
2

+ (𝛽𝑖+1
2

− 𝛽𝑖−1
2

) (𝑗 − 1 + 𝑟𝑘)     𝑓𝑜𝑟 𝑖 = 3,5,7, … (𝐼 − 1)
}
 
 

 
 

 ∀ 𝑗, 𝑘                            (𝐵. 1) 

         𝑤ℎ𝑒𝑟𝑒 𝛽𝑔 =∑ℬ𝑔,𝑔′  Y𝑔′
𝑠𝑝

𝑔′

   ∀𝑔 

 

Nomenclature: 

Indices: 

𝑔 = index of product grades (1,2, … , 𝐺) 

𝑖 = index of production/transition regions in time (1,2, … , 𝐼) 

𝑗 = index of finite elements in time (1,2, … , 𝐽) 

𝑘 = index of collocation points in time (1,2, … , 𝐾) 

𝜔 = index of realizations for process disturbances (1,2, … ,𝑁) 

𝜃 = index of realizations for parameter uncertainty (1,2, … ,𝑀) 
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𝑎 = index of inequality constraints 

𝑛 = iteration number of decomposition algorithm 

Parameters: 

𝐼 = number of regions in time 

𝐽 = number of finite elements in each region in time 

𝐾 = number of collocation points in each finite element 

𝑁 = number of realizations for process disturbances 

𝑀 = number of realizations for parameter uncertainty 

𝓐 = matrix of orthogonal collocation weights 

𝒇 = vector function of closed loop non-linear process model equations 

𝒈 = vector function of inequality constraints 

𝒉 = vector function of equality constraints 

𝜶 = infeasibility of inequality constraints 𝒈 at each point in time 

𝛷𝑛 = maximum infeasibility in iteration 𝑛 

𝝍 = function to map the production sequence to a set-point profile 

𝜁𝜃,𝜔 = weight or probability of occurrence for realization (𝜃, 𝜔) 

𝑡 = time 

Variables: 

Δ𝑡𝑖 = length of time region 𝑖 

δ𝑡𝑖 = length of every finite element in time region 𝑖 

𝒙(𝑡) = vector of process states at time 𝑡 

𝒙𝒔𝒑(𝑡) = vector of process state set-points at time 𝑡 

𝒖(𝑡) = vector of process inputs at time 𝑡 

𝒚(𝑡) = vector of process outputs at time 𝑡 
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𝒙𝑖𝑗𝑘 = vector of process states in region 𝑖, finite element 𝑗, and collocation point 𝑘 

𝒙𝑖𝑗𝑘
𝜃,𝜔= vector of process states in region 𝑖, finite element 𝑗, and collocation point 𝑘, corresponding to 

realization (𝜃, 𝜔) of process disturbance and parameter uncertainty 

𝒖𝑖𝑗𝑘
𝜃,𝜔= vector of process inputs in region 𝑖, finite element 𝑗, and collocation point 𝑘, corresponding to 

realization (𝜃, 𝜔) of process disturbance and parameter uncertainty 

𝒚𝑖𝑗𝑘
𝜃,𝜔= vector of process outputs in region 𝑖, finite element 𝑗, and collocation point 𝑘, corresponding to 

realization (𝜃, 𝜔) of process disturbance and parameter uncertainty 

(𝒚𝑠𝑝)𝑖𝑗𝑘= vector of process output set-points in region 𝑖, finite element 𝑗, and collocation point 𝑘 

𝑧 = objective variable 

𝜿 = vector of design decisions 

𝚲 = vector of control decisions 

𝓑 = binary matrix for sequence scheduling 

𝜼 = vector of process disturbances 

𝓟 = vector of uncertain parameters 

𝓓 = vector of all design, control, and scheduling decisions {𝜿, 𝚲, 𝓑, 𝚫𝐭} 

𝒄 = set of critical realizations of process disturbance and parameter uncertainty 

𝜷 = list of process set-points, in order of production 

𝐘𝐬𝐩 = list of process output set-points, unordered 
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Figure Captions: 

Figure 1: General production schedule of a multiproduct processing unit.  

Figure 2: The time domain is discretized into 𝐼 regions, where each region contains J finite elements, and 

each finite element contains 𝐾 collocation points.  

Figure 3: Decomposition algorithm proposed for integration of design, control and scheduling. The 

flexibility sub-problem returns the optimal design, control and scheduling scheme that can accommodate 

the realizations considered in the current critical set 𝑐. The feasibility problem identifies new critical 

realizations in the disturbances and uncertain parameters, and terminates if all considered realizations are 

feasible. 

Figure 4: Schematic of CSTR system. 

Figure 5: Concentration profile comparison between nominal operation (Scenario A1) and disturbed 

operation (Scenario A2). For the disturbed operation, the plot shows the responses due to the critical 

realization for process disturbance identified at the final iteration (ω=5).  

Figure 6: Concentration profile comparison between integrated method and sequential method. 

Figure 7: (a) Reactor temperature profile for Scenario B1 and Scenario B2; (b) Heat input profile from 

integrated method (Scenario B1). 

Figure 8: Maximum infeasibility for temperature constraints identified by feasibility problem in each 

iteration n of the integrated approach.  

 

 

Table 1: Previous works on Integration of Design, Control, and/or Scheduling  

Topic Authors Contributions 
Design & 
Control 

Brengel and Seider, 1992 Fermentation process with model predictive control 
(MPC) 

Luyben and Floudas, 1994 Binary distillation with PI control 
Mohideen et al., 1996 Mixing tank and distillation column with PI control 
Kookos and Perkins, 2001 Evaporator and binary distillation with multiple PI 

controllers 
Bansal et al., 2002 Mixed-integer dynamic optimization of distillation 

with five PI controllers 
Seferlis and Georgiadis, 2004 Book, discussing many aspects of integration of 

design and control 
Ricardez Sandoval et al., 2008 Mixing tank with PI control using a robust modelling 

approach 
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Sanchez-Sanchez and Ricardez-Sandoval, 
2013 

Single stage optimization of CSTR and ternary 
distillation with PI control 

Alvarado-Morales et al., 2010 Model-based optimization of bioethanol process 
Mansouri et al., 2016 Reactive distillation involving multiple elements 
Mehta and Ricardez-Sandoval, 2016 CSTR optimization using back-off approach and 

power series expansion (PSE) 
Ricardez-Sandoval et al., 2009;  
Sakizlis et al., 2004;  
Sharifzadeh, 2013;  
Vega et al., 2014;  
Yuan et al., 2012; 

Reviews on integration of design and control 

Control & 
Scheduling 

Chatzidoukas et al., 2003 Optimal grade transitions for fluidized bed reactor 
with PI control 

Flores-Tlacuahuac and Grossmann, 2011 Non-isothermal PFR 
Zhuge and Ierapetritou, 2012 Multiproduct CSTR with PI control 
Engell and Harjunkoski, 2012 Review on integration of control and scheduling 
Chu and You, 2014b Multiproduct CSTR with optimal control profile 
Chu and You, 2014c Multiproduct CSTR with optimal control profile 
Zhuge and Ierapetritou, 2016 Methyl-methacrylate production with optimal 

control profile 
Design & 
Scheduling 

Bhatia and Biegler, 1996;  
Birewar and Grossmann, 1989;  
Castro et al., 2005;  
Heo et al., 2003;  
Lin and Floudas, 2001 

Multiproduct design and scheduling of batch 
processes 

Design, 
Control, & 
Scheduling 

Terrazas-Moreno et al., 2008 Two stage optimization of methyl-methacrylate 
production with optimal control profile. 

Patil et al., 2015 Multiproduct process with disturbance and 
uncertainty, linearized process model, and frequency 
analysis. 

Pistikopoulos and Diangelakis, 2015 PAROC software for multi-parametric optimization. 
Summary of recent efforts towards integration of 
design, control, and scheduling. 
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Table 2: Summary of results from Scenario A  
Operation Type Scenario A1 Scenario A2 

Optimal Process Cost ($) 177 388 
CPU Time (s) 494 4,649 (four iterations) 
Reactor Volume 𝑉(𝐿) 13.6 15.4 
Controller 𝐾𝐶 , 𝜏𝑖 1.95, 146 5.00, 346 

ISE of concentration 1.22 17.63 

Production sequence A-B-C-E-D A-C-E-D-B 
Transition durations 𝚫𝒕 (s) 46.2, 10.0, 18.3, 63.3, 10.0 33.9, 66.5, 119, 25.0, 46.6 
Critical set c 𝒄 = {(𝜔 = 0)} 𝒄 = {(𝜔 = 0), (𝜔 = 5),  

          (𝜔 = 2), (𝜔 = 4)} 
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Table 3: Uncertainty Realizations for Scenario B  
Realization 𝜃 Heat of Reaction ∆𝐻𝑅  (𝐽/𝑚𝑜𝑙) Activation Energy 𝐸𝑅  (𝐽/𝑚𝑜𝑙) 
0 5000  20000  
1 6000  21000  
2 4000  19000  
3 4000  21000  
4 6000  19000  
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Table 4: Summary of the flexibility analyses (Scenario B1)  

Iteration Critical Set Solution  CPU 
Time 

# of equations 
# of variables 

1 𝒄 = {(0,0)} 

V = 13.48 
𝐾𝑐 , 𝜏𝑖 = 2.11, 823 
Sequence: A-B-C-D-E 
𝚫𝒕 = 88, 52, 40, 48, 10 

183 s 23,269 
18,293 

2 𝒄 = {(0,0), 
(8,1)} 

V = 18.51 
𝐾𝑐 , 𝜏𝑖 = 5.00, 130 
Sequence: A-B-C-D-E 
𝚫𝒕 = 114, 10, 10, 10, 10 

249 s 41,524 
31,548 

3 𝒄 = {(0,0), 
(8,1), (9,1)} 

V = 18.54 
𝐾𝑐 , 𝜏𝑖= 5.00, 137 
Sequence: A-B-C-D-E 
𝚫𝒕 = 101, 40, 10, 10, 10 

469 s 59,779 
44,803 

4 
𝒄 = {(0,0), 
(8,1), (9,1), 
(7,1)} 

V = 18.56 
𝐾𝑐 , 𝜏𝑖= 5.00, 251 
Sequence: A-B-E-D-C 
𝚫𝒕 = 52, 10, 99, 10, 10 

1271 s 78,034 
58,058 

5 
𝒄 = {(0,0), 
(8,1), (9,1), 
(7,1), (5,1)} 

V = 18.89 
𝐾𝑐 , 𝜏𝑖 = 5.00, 764 
Sequence: A-B-E-D-C 
𝚫𝒕 = 155, 51, 281, 35, 28 

920 s 96,289 
71,313 
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Table 5: Summary of results from Scenario B.  

Method Integrated approach 
(Scenario B1) 

Sequential approach 
(Scenario B2) 

Overdesign Sequential 
approach (Scenario B3) 

Optimal Process Cost ($) 607 385 (Infeasible) 735 

       Capital Cost ($) 189 150 225 

       Transition Cost ($) 110 27 119 

       Variability Cost ($) 308 208 391 

CPU Time (s) 4,147 (5 iterations) 1,016 (sum of all stages) 801 (sum of all stages) 

Reactor Volume 𝑉(𝐿) 18.9 15.0 22.5 

Controller 𝐾𝐶 , 𝜏𝑖 5.00, 764 5.00, 137 5.00, 456 

Production sequence A-B-E-D-C A-B-D-E-C A-C-B-E-D 

Transition times 𝚫𝒕 (s) 155, 51.0, 281, 35.4, 
27.9 

39.5, 20.9, 34.9, 10.1, 
29.1 284, 178, 55.8, 48.4, 32.6 

Critical set 𝒄 𝒄 = 
{(0,0), (8,1), (9,1), 
(7,1), (5,1), (9,3)} 

Dynamically Infeasible Dynamically Feasible 
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Table 6: Summary of results from Scenario C.  

Method 
Increased Capital 
Cost Weight (Scenario 
C1) 

Increased Scheduling 
Cost Weight (Scenario 
C2) 

Increased Variability 
Cost Weight (Scenario 
C3) 

Total Process Cost ($) 626 618 638 

       Capital Cost ($) 208 189 189 

       Transition Cost ($) 110 121 110 

       Variability Cost ($) 308 308 339 

Reactor Volume 𝑉(𝐿) 18.9 18.9 18.9 

Controller 𝐾𝐶 , 𝜏𝑖 5.00, 764 5.00, 765 5.00, 761 

Production sequence A-B-E-D-C A-B-E-D-C A-B-E-D-C 

Transition times 𝚫𝒕 (s) 155, 51.0, 281, 35.4, 
27.9 155, 51.0, 281, 35.1, 27.3 155, 51.0, 281, 35.7, 28.2 
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Figure 1: 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 

  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
B

[m
o

l/
L

]

Time t [s]

Setpoint (Scenario A2)

CB(t) (Scenario A2)

Setpoint (Scenario A1)

CB(t) (Scenario A1)



38 
 

Figure 6: 
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Figure 7: 
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Figure 8: 
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