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Fault Diagnosis Based on Dissipativity Property

Qingyang Lei, Ruigang Wang, Jie Bao∗

School of Chemical Engineering, The University of New South Wales,

UNSW, Sydney, NSW, 2052

Abstract

In this paper, a novel fault diagnosis scheme for linear process systems using dissipativity

theory is developed. Dissipativity (supply rate) of a process is an input/output property,

which may not be valid when a fault occurs. For a given process, dissipativity is not a unique

property, with different dissipative supply rates reflecting different aspects of its dynamics.

In this approach, the dissipativity of a process is “shaped” such that it is fault-sensitive (i.e.,

no longer valid when faults occur) and fault-selective (i.e., no longer valid when one par-

ticular fault occurs). By adopting the storage functions and supply rates in the Quadratic

Difference Form (QdF), the dissipativity conditions are represented as quadratic functions of

the input/output trajectories of the process, which captures much more detailed dynamical

features compared to conventional dissipativity (e.g., QSR-type supply rates). These dissi-

pativity properties are determined offline by solving an optimization problem with linear ma-

trix inequality constraints. The online diagnosis algorithm involves checking of inequalities

on input/output trajectories, which is much simpler compared to the diagnosis approaches

based on observers or parameter estimation. The proposed approach is illustrated using a

case study of fault diagnosis of a heat exchanger.

Keywords: Fault diagnosis; dissipativity; quadratic difference form

1 Introduction

Modern industrial processes are becoming very complex. The increasing dependence of complex

processes on automatic control systems can make the plants susceptible to faults such as sen-

sor/actuator failures. Therefore, fault detection (i.e., to identify if there is a fault) and diagnosis

(i.e., to determine what fault occurs) are becoming an important issue in process control prac-

tice. Model-based fault detection approaches, including observer-based, parity equation-based

and parameter estimation-based methods, utilize the mathematical models of the processes (re-

ferred to surveys [1, 2]). The general procedure of observer-based methods usually involves

∗Corresponding author. e-mail: j.bao@unsw.edu.au.
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Figure 1: Model-based fault diagnosis scheme (adapted from [9])

two steps, residual generation and decision making [3], as depicted in Figure 1. The residuals

are shaped such that they are sensitive to abnormal conditions. An example of observer-based

method is the fault detection filter, proposed in [4] and [5]. Parity equation based methods (e.g.,

[6]) generate parity vector (residuals), that is used to check the consistency between process

model and process outputs [7]. While they are simpler than observer-based approaches, parity

equation based methods can be less effective in detecting faults and are limited to faults that do

not include gross parameter drifts [1]. Another fault detection method is based on parameter

estimation, which is formed on the basis of system identification techniques [8]. The basic idea

is to identify the actual process parameters online, and compare them with the parameters of

the fault-free process model.

Many of the above fault detection methods have been extended for fault diagnosis [9]. For

observer-based methods, a bank of observers, one for each fault or a group of faults, are required

for fault diagnosis. One intuitive idea is to make a residual sensitive to the fault that is concerned

and robust to all other faults (i.e., structure residual fault isolation [10]). Alternatively, the

residual can be shaped to be robust to all but one fault and also robust against uncertainties (i.e.,

generalized residual fault isolation [3]). Generally, a fault diagnosis method needs to generate

several representative symptoms. For example, in [11], fault-symptom tables have been used,

and systematic treatment of fault-symptom trees is based on approximative reasoning with if-

then-rules by fuzzy logic. However, the implementation of above observer based approach can

be complex, especially for large scale chemical processes [1]. Fault diagnosis methods based

on parameter estimation methods are suitable for the diagnosis of multiplicative faults (with

process parameter changes), but they require dynamic process input excitation which is often

infeasible in online monitoring [11].

In this paper, a fault diagnosis approach is developed based on dissipativity theory. Dissipa-

tivity theory, introduced by Willems in [12], has become an important tool for system analysis
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Figure 2: Dissipativity-based fault diagnosis scheme

and control design (e.g., [13, 14, 15]). Dissipativity (represented by a supply rate) is an in-

put/output property of a system [12], representing the features of process dynamics, such as

the gain and phase conditions and their combinations [16]. When a fault (e.g., a multiplica-

tive fault, which is modeled by parameter changes [9]) occurs, it can be identified by checking

the change of dissipativity property, as depicted in Figure 2. The dissipativity property of a

process is not unique. For the same process, different aspects of the process dynamics can be

captured by different supply rates. In this paper, the dissipativity properties of a process are

shaped to be sensitive to different faults (fault-selective). The dissipativity shaping problem

is formulated in linear matrix inequality (LMI) constraints, which can be easily solved offline

using any semi-definite programming tools. Furthermore, a robust dissipativity condition is

also developed, which is incorporated in the proposed fault diagnosis approach to reduce the

rates of false alarm caused by uncertainties. Compared to existing approaches, the proposed

approach is simpler to implement, as it does not require observers or parameter estimation.

Passivity condition (a special case of dissipativity) was used for fault detection and diagnosis

for passive electronic circuits, as shown in [17]. However, the passivity condition is very coarse

and may not capture sufficient dynamic details of process input output relationship, leading

to limited capacity in fault detection and diagnosis. Another issue in existing passivity based

approach is that it needs the full state information as the storage function is defined on state

variables, which are usually unavailable in practice. To overcome the above problems, dissipa-

tivity in the Quadratic Difference Forms (QdF) (the discrete-time version of the dissipativity

in Quadratic Differential Forms developed by Willems and Trentelman [18]) is adopted in this

work, where both the storage functions and supply rates are defined as functions of input/output

trajectories (as in [19, 20, 21]). This eliminates the need for state estimation for fault diagno-

sis. Furthermore, as a more general form of dissipativity, the QdF supply rates and storage

functions can capture much more details of the dynamic features (e.g. the gain, phase or their

combination at different frequencies) of the process, comparing to traditional QSR dissipativity

[22, 23], leading to much more effective fault diagnosis.
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This paper is organized as follows. The framework for analyzing faults using dissipativity

theory is introduced in Section 2. The developments of the novel dissipativity-based fault

diagnosis method is presented in Sections 3. The robust dissipativity condition for the proposed

fault diagnosis approach is developed in Section 4. The proposed approach is illustrated on a

heat exchanger case study in Section 5, followed by the discussion and conclusion in Section 6.

2 Fault Analysis using Dissipativity Theory

In this section, some important concepts of dissipativity theory and quadratic difference form

(QdF) are introduced, followed by the framework of dissipativity based fault analysis, which is

different from classical fault detection and diagnosis methods based on analytical redundancy.

2.1 Introduction to Dissipativity Theory

The dissipativity theory was first introduced by Willems in [12], as a framework for analyzing

dynamical systems. While inspired by a class of systems which dissipate energy, the concept of

dissipative systems is developed for general systems where the energy can be abstract and not

necessarily physical [12, 15].

Consider a linear time-invariant process defined by the following state space equations

xk+1 = Axk +Buk

yk = Cxk +Duk

(1)

where x ∈ X ⊂ Rn are process variables, k is the time step, u ∈ U ⊂ Rp is the input vector and

y ∈ Y ⊂ Rq is the output vector.

Definition 1 ([12]). Consider the system described by (1). Define a function s(uk, yk) on input

and output variables, called the supply rate. The system is said to be dissipative with respect

to the supply rate s(uk, yk) if there exists a positive semi-definite function V (xk) defined on the

states, called the storage function, such that the following dissipativity inequality is satisfied

V (xk+1)− V (xk) ≤ s(uk, yk). (2)

for all xk ∈ X , uk ∈ U and k.

The following (Q,S,R) type supply rate is commonly used:

s(u, y) = y>Qy + 2y>Su+ u>Ru. (3)

As aforementioned, full state measurements are usually unavailable in online monitoring

and process control practice [1]. Therefore the traditional dissipativity condition given in (2),
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with storage function defined on state variables, cannot be directly used for fault detection and

diagnosis. To overcome this difficulty, in this work, the behavior systems approach developed

by Willems [24] is adopted. For continuous time systems, Willems and Trentelman introduced

storage functions and supply rates in the “Quadratic Differential Forms” (QDF) which are func-

tions of the input and output and their derivatives [18]. This was later extended to “Quadratic

Difference Forms” (QdF) for discrete time systems by Kojima and Takaba [19, 20], as follows:

Definition 2 (adopted from [19]). Consider the system described by the model in (1). Define

the extended input and output as

ûk =
(
u>k u>k+1 . . . u>k+nu

)>
ŷk =

(
y>k y>k+1 . . . y>k+ny

)>
.

(4)

for some finite nu, ny. Also define the storage function QΨ and a supply rate QΦ in the following

Quadratic Difference Form (QdF) ([25]), as functions of the extended input and output:

QΨ(uk, yk) =

ŷk
ûk

> ψ̃
ŷk
ûk

 , QΦ(uk, yk) =

ŷk
ûk

> φ̃
ŷk
ûk

 . (5)

where ψ̃ and φ̃ are the constant coefficient matrices respectively. The system is said to be

dissipative with respect to supply rate QΦ if there exists a semi-positive definite storage functions

QΨ(uk, yk) such that the following inequality is satisfied,

QΨ(uk+1, yk+1)−QΨ(uk, yk) ≤ QΦ(uk, yk) (6)

for all uk ∈ U and k.

The QdF in (5) can be rewritten as

QΦ(uk, yk) =
N∑
i=0

N∑
j=0

yk+i

uk+i

T

φ̃ij

yk+j

uk+j

 (7)

where N =max(nu, ny) is called the degree of supply rate, which is the maximum number of

forward steps in the supply rate. Here φ̃ij is a sub-matrix of the coefficient matrix φ̃ as shown

below:

φ̃ =



φ̃00 · · · · · · · · · φ̃0,N

...
. . .

...
... φ̃i,j

...
...

. . .
...

φ̃N,0 · · · · · · · · · φ̃N,N


. (8)
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The above QdF is said to be induced by the symmetric two-variable polynomial matrix φ(ζ, η)

defined as

φ(ζ, η) =

N∑
i=0

N∑
j=0

ζiφ̃ijη
j (9)

where the indeterminates ζ and η represent a forward step in time on the left and right of

input/output signals respectively, i.e., yTk ζ = yTk+1 and ηyk = yk+1. The two-variable polynomial

matrix, φ(ζ, η), was introduced in [18] as a general and compact representation of QdFs. For

example, a dynamic supply rate

QΦ(uk, yk) = y2
k + y2

k+1 + ykuk+1 − 2u2
k+2

=



yk

yk+1

yk+2

uk

uk+1

uk+2



>

1 0 0 0 1/2 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1/2 0 0 0 0 0

0 0 0 0 0 −2





yk

yk+1

yk+2

uk

uk+1

uk+2


(10)

can also be represented by

QΦ(uk, yk) =

yk
uk

>1 + ζη 1/2η

1/2ζ −2ζ2η2

yk
uk

 (11)

Therefore, the supply rate in (10) is said to be induced by the following polynomial matrix:

φ(ζ, η) =

1 + ζη 1/2η

1/2ζ −2ζ2η2

 . (12)

The advantage of adopting above notation of two-variable polynomial matrix is that the

dynamic features of processes (e.g., frequency weighted gain and phase conditions) can be

directly represented by dynamic supply rates in the QdF form. As shown in (17) that the

two-variable polynomial matrix φ(ζ, η) that represents a frequency weighted gain condition can

be determined directly from the weighting function.

The QdF supply rate QΦ can be viewed as an extension of the commonly used QSR type

supply rate in (3) by including future steps of inputs and outputs (trajectories) ([19, 20]):

QΦ(uk, yk) =

ŷk
ûk

> Q̃ S̃

S̃> R̃

ŷk
ûk

 (13)

QdF storage functions are defined similarly as functions of input and output trajectories rather

than based on state variables.
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The dissipation rate Q∆ is defined as follows:

Q∆(uk, yk) = QΦ(uk, yk)− [QΨ(uk+1, yk+1)−QΨ(uk, yk)], (14)

where a positive dissipation rate indicating the dissipativity condition is satisfied. With suit-

able choices of QΦ(uk, yk) and QΨ(uk, yk), when a fault occurs, the system will no longer be

dissipative with respect to above supply rate QΦ(uk, yk) and storage function QΨ(uk, yk) (i.e.,

the dissipation rate becomes negative).

2.2 Dissipativity based Fault Analysis

In the proposed approach, the changes of process dynamic features caused by faults are cap-

tured by the changes of the dissipativity (storage functions and supply rates). For example, a

multiplicative fault modeled by changes in the parameters of the model [9], leads to changes

in the gain and phase at different frequencies, which can be in turn captured by changes in

dissipativity. A process can have different dissipativity properties, capturing different aspects

of its dynamic features. For example, if a process is dissipative with respect to a supply rate of

s(u, y) = −y>y + γ2u>u, (15)

then the L∞ norm of this process is bounded by γ. If a process is dissipative with respect to

the supply rate

s(u, y) = y>u, (16)

then this process is passive and phase bounded between [−π/2, π/2]. The QSR-dissipativity in

(3) implies the conditions on both the gain and phase. It should be noted that the dissipativity

concept is very general, not limited to physically dissipative systems. Any process (even unsta-

ble) can be dissipative with respect to certain storage functions and supply rates. Intuitively

the changes in the gain and phase caused by a fault will invalidate a dissipativity condition. To

illustrate this, we consider a number of simple examples:

Example 1. Consider a static nominal process y = u. It has many dissipativity properties,

among which we have (1) a supply rate of s(u, y) = −y>y + u>u with a void storage function

(in this case the dissipation inequality is −y>y + u>u > 0), representing the upper bound of

the process gain (2) a supply rate of s(u, y) = y>y − u>u with a void storage function (in this

case the dissipation inequality is y>y − u>u > 0), representing the lower bound of the process

gain. It can be easily verified that: if a fault that causes the process gain to increase occurs

(e.g., the process becomes y = 1.1u), the first dissipation inequality will be invalid; if a fault that
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causes the process gain to decrease (e.g., the process becomes y = 0.9u), the second dissipation

inequality will be invalid.

For dynamic systems, the above simple dissipativity conditions are insufficient to capture

the changes in the process dynamics when a fault occurs. The concept of QdF dissipativity

is adopted. QdF supply rate allows for more information on system dynamics to be captured,

including information related to gain and phase at different frequencies [18]. For example, for a

single-input single-output linear system G(z), a dissipativity condition with QSR-type of supply

rate shown in (15) (with scalar Q = −1, S = 0 and R = γ2) implies the L∞ norm (an upper

bound of L2 gain) of the system. In contrast, a corresponding QdF supply rate of

φḡ(ζ, η) =

−NT (ζ)N(η) 0

0 γ2d(ζ)d(η)I

 . (17)

implies a frequency weighted L∞ norm bound of ‖WG‖∞ ≤ γ, where W (z) = N(z)/d(z)

(see [26] for details). If the weighting is chosen as W (z) = G(z)−1 together with γ = 1,

the dissipativity inequality with the supply rate given in (17) will be invalid if a fault causes

the process gain to increase at any frequency. This is very important for fault detection and

diagnosis applications as the QSR type supply rates can be too coarse for this purpose.

Example 2. Consider a discrete process G(z) = 0.1+∆fn
z−0.9+∆fd

. For the fault-free case, ∆fn =

∆fd = 0 (with a steady-state gain of 1). A fault is modeled with ∆fn = 0.1,∆fd = 0, i.e.,

G̃f (z) = 0.2
z−0.9 (with a steady-state gain of 2).

The simplest form of supply rate that can identify changes in process gain is a QR supply

rate (which is a traditional QSR supply rate with S = 0). In this simple example, one can

choose the value of Q = −1, R = 1.22 such that the supply rate is as follows:

s(u, y) = −y2 + 1.44u2, (18)

and the above supply rate implies an L∞ norm ≤ 1.2 (gain increase to above 1.2 will be detected).

The simulation result is shown in Figure 3a, with a fault occurring after 200s. As can be seen,

some of the dissipation rates are negative which indicates the process with fault is no longer

dissipative with respect to the original supply rate in (18). However, the change of dissipation

rate does not capture the fault effectively due to the fact that the QSR dissipativity only reflect

the L∞ norm of the system, which is too conservative for the fault detection and diagnosis

purpose.

To capture more process dynamic information, a QdF supply rate of the form in (17) is

8
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Figure 3: Comparison of QSR and QdF dissipativity results of gain change

chosen with W (z) = n(z)
d(z) = z−0.9

0.1 . The polynomial matrix is then given below:

φ(ζ, η) =

−(ζ − 0.9)(η − 0.9) 0

0 γ20.12

 , (19)

where γ = 1.2, which induces a supply rate of

QΦ(uk, yk) = −0.81y2
k + 1.8ykyk+1 − y2

k+1 − 0.0144u2
k. (20)

The coefficient matrix of above supply rate is:

φ̃ =


−0.81 0.9 0 0

0.9 −1 0 0

0 0 0.0144 0

0 0 0 0

 . (21)

The result using QdF dissipativity is shown in Figure 3b. After the fault occurs, the dissipation

rate becomes negative which indicates that process with fault is no longer dissipative with respect

to the dissipativity property of original process. This shows that the QdF dissipativity can capture

sufficient details of dynamic feature of the process for fault detection and diagnosis.

The next example shows that the change of a time constant of a process caused by a fault

can also be reflected by the change in QdF dissipativity.

Example 3. Consider the same discrete process in Example 2: G(z) = 0.1+∆fn
z−0.9+∆fd

, with another

fault ∆fn = 0.08,∆fd = 0.09, i.e., G̃(z) = 0.18
z−0.81 .
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Figure 4: Comparison of QSR and QdF dissipativity results of time constant change

The same QSR and QdF supply rates in Example 2 are used in this example. The simulation

results of QSR supply rate are shown in Figure 4a and the results of QdF dissipativity are shown

in Figure 4b. It can be seen that fault detection based on the QSR dissipativity is ineffective

in this example. This is because the QSR supply rate only implies an L∞ norm bound which

is still satisfied by the process with new fault. However, the QdF dissipativity, which implies

a frequency weighted L∞ norm bound, is no longer valid when the fault occurs, as the process

with fault G̃(z) has a gain increase in the high frequency range. The difference in gain between

process with and without fault is shown in the Bode diagrams in Figure 5.

Theoretically, any multiplicative fault can be reflected by the change of a or some dissipa-

tivity property/properties. In general, the physical meanings of such dissipativity properties

may not be explicit. To illustrate the point that the dissipativity property can be fault sen-

sitive, we can choose the following dissipativity conditions representing the upper and lower

bounds of the gain and phase of the nominal process at all frequencies, one of which will

be invalid when any multiplicative fault occurs. Given a nominal process G(z), choosing

W (z) = N(z)/d(z) = G(z)−1 we have W (z)G(z) = I, which should have gain to be 1 and

a phase of 0 at all frequencies. A multiplicative fault (which causes changes in the input/output

behavior through changes in process parameter) will cause the above one or both of the above

conditions to change at certain frequencies, which means that one of the following conditions

will be violated:
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• Upper bound of the gain: ‖WG‖∞ ≤ γ, where γ = 1 + ε, ε is a small number, which is

implied by the following dissipativity supply rate:

φḡ(ζ, η) =

−NT (ζ)N(η) 0

0 γ2d(ζ)d(η)I

 (22)

• Lower bound of the gain: minω σmin(W (ω)G(ω)) ≥ γ, where γ = 1−ε, ε is a small number,

which is implied by the following dissipativity supply rate:

φg(ζ, η) =

NT (ζ)N(η) 0

0 −γ2d(ζ)d(η)I

 (23)

• Bound on phase lead: (1− z−1)W (z)G(z) is passive (i.e., a differentiator with W (z)G(z)

is passive), which is implied by the following dissipativity supply rate:

φp̄(ζ, η) =

 0 1/2(ζ − 1)NT (ζ)d(η)

1/2d(ζ)(η − 1)N(η) R̄

 (24)

• Bound on phase lag: 1
1−z−1W (z)G(z) is passive (i.e., an integrator with W (z)G(z) is

passive), which is implied by the following dissipativity supply rate:

φp(ζ, η) =

 0 1/2NT (ζ)(η − 1)d(η)

1/2(ζ − 1)d(ζ)N(η) R

 (25)
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Note that W (z) can be non-causal and/or unstable [22, 23, 27]. Generally, the supply rates

should be chosen so that they are sensitive to the changes of process models caused by faults.

More general form of QdF (full matrix of φ(ζ, η)) supply rate can capture phase and gain

information simultaneously. The detailed systematic algorithm of determination of supply rates

is discussed in next section.

3 Fault Diagnosis using Dissipativity Properties

The dissipativity based fault diagnosis approach is developed in this section. The proposed

fault diagnosis approach is comprised of two stages: (1) Process dissipativity shaping for fault

diagnosis (offline), where the dissipativity property is shaped to be sensitive to a particular

fault; (2) Online fault diagnosis, where multiple dissipativity conditions associated to different

faults are evaluated. This is a tractable method as most of the computational burdens are

shifted to the offline design, allowing for simple method for online fault diagnosis. As shown

in Figure 2, in the online stage, model of the process, observer and residual generator are not

required.

In this section, a fault diagnosis approach is developed to determine if a particular fault

(with prior knowledge) has occurred. In proposed dissipativity based framework, multiplicative

faults are considered, whose models are in the following form [9]:

xk+1 = (A0 + ∆Aq)xk + (B0 + ∆Bq)uk

yk = (C0 + ∆Cq)xk + (D0 + ∆Dq)uk

(26)

where A0, B0, C0, D0 represent the nominal model, different faults (fault 1 to fault m) are

described by ∆Aq, ∆Bq, ∆Cq, ∆Dq (q = 1 . . .m). Denote Aq = A0 + ∆Aq, and Bq, Cq, Dq are

similarly defined. Subsequently, process model with fault q, are described by Aq, Bq, Cq, Dq,

referred to as Σq. The proposed fault diagnosis approach is developed based on process models

with and without faults (without disturbance and noise). The effects of disturbances and noises

are addressed by using a robust threshold developed in Section 4.

3.1 Process Dissipativity Shaping for Fault Diagnosis

As we discussed earlier, a given process can have many dissipativity properties (the dissipativity

property is not unique), each of which describes different aspects of its process dynamics. The

basic idea of dissipativity based fault diagnosis is as follows: to identify certain fault, one

dissipativity property of the normal process is shaped such that it is not valid when a fault (to

be identified) occurs but is valid when all other faults occur. That is, the dissipativity property
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is shaped to be fault-selective, which is presented in Proposition 1. The shaping is formulated

as an LMI problem, the numerical solution of which provides the coefficient matrices of the QdF

supply rate and storage function. The optimization problems with convex objective and LMI

constrains can be efficiently solved using any semi-definite programming tools [28].

Proposition 1. Consider a process which is modeled by Σ0 when it is normal and is described

by Σq when one fault q occurs. Each Σq, (q = 0, . . . ,m) is described as below:

xk+1 = Aqxk +Bquk

yk = Cqxk +Dquk.
(27)

Define a fault index j, j = 1, . . . ,m to denote the fault needs to be identified. The j-th dissipativ-

ity of the system Σ0 consists of the storage function QjΨ and supply rate QjΦ with corresponding

coefficient matrices ψ̃j and φ̃j partitioned as ψ̃j =

 X̃j Ỹ j

Ỹ j> Z̃j

 and φ̃j =

 Q̃j S̃j

S̃j> R̃j

, respec-

tively. The j-th dissipativity property of the system, which is satisfied by Σq, (q = 0, . . . ,m, q 6= j)

but not satisfied by Σj, can be determined by solving the following LMI feasibility problem with

decision variables Q̃j , S̃j , R̃j , X̃j , Ỹ j , Z̃j:

Tjq > 0, 0 ≤ q ≤ m, q 6= j (28)

Tjq ≯ 0, q = j (29)

ψ̃j > 0 (30)

where (29) implies that Tjq is indefinite and Tjq =

T jq,11 T jq,12

T j>q,12 T jq,22

, q = 0, . . . ,m with

T jq,11 =Ĉ>q (Q̃j − X̂j)Ĉq

T jq,12 =Ĉ>q (Q̃j − X̂j)D̂q + Ĉ>q (S̃j − Ŷ j)

T jq,22 =D̂>q (Q̃j − X̂j)D̂q + D̂>q (S̃j − Ŷ j) + (S̃j − Ŷ j)>D̂q + (R̃j − Ẑj)

(31)

Ĉq =


Cq

CqAq
...

CqA
N
q

 , D̂q =


Dq 0 · · · 0 0

CqBq Dq · · · 0 0
...

...
. . .

...
...

CqA
N−1
q Bq CqA

N−2
q Bq · · · CqBq Dq

 (32)

and X̂j =

0 0

0 X̃j

−
X̃j 0

0 0

, Ŷ j , Ẑj are similarly defined.
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Proof. Inequality (30) implies that the storage function QΨ is positive definite. For each Σq,

taking forward steps for the state space equation in (27), we have
yk

yk+1

...

yk+N

 =


Cq

CqAq
...

CqA
N
q

xk +


Dq 0 · · · 0 0

CqBq Dq · · · 0 0
...

...
. . .

...
...

CqA
N−1
q Bq CqA

N−2
q Bq · · · CqBq Dq




uk

uk+1

...

uk+N

 , (33)

which can be represented in a compact form:

ŷk = Ĉqxk + D̂qûk. (34)

The QdF dissipativity inequality (2) can be rewritten as:ŷk
ûk

> X̂ Ŷ

Ŷ > Ẑ

ŷk
ûk

 ≤
ŷk
ûk

> Q̃ S̃

S̃> R̃

ŷk
ûk

 . (35)

From (34) and (35), we can derivexk
ûk

>Tq,11 Tq,12

T>q,12 Tq,22

xk
ûk

 > 0. (36)

Since xk and ûk are independent, system Σq is dissipative if Tq > 0 and it does not satisfy the

above dissipativity condition if Tq ≯ 0.

The fault index j is introduced for the convenience of distinguishing between different dissi-

pativity properties of the (same) normal process model, as the dissipativity properties are not

unique. For example, denote j = 1 when shaping dissipativity property for diagnosis of fault 1,

which leads to T1
q > 0 (q = 0, 2 . . .m) and T1

1 ≯ 0 .

A sufficient condition for the indefinite LMI condition in (29) which can be numerically

solved is

tr(Tq) < 0. (37)

The LMI conditions in (28)-(30) are solved simultaneously to determine the dissipativity prop-

erty of the nominal process which is not valid when certain fault occurs. The dissipation

inequality of which can be checked numerically by calculating the dissipation rate in real time

using the plant data for fault diagnosis (as detailed in Section 3.2). Based on Proposition 1,

the dissipativity shaping approach for fault diagnosis of fault j is stated as follows.

Problem 1 (Dissipativity Shaping for Fault Diagnosis). Consider a process which is modeled

by Σ0 when it is normal and is described by Σq when fault q occurs (Σq includes nominal model
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and multiplicative fault ∆Aq, ∆Bq, ∆Cq, ∆Dq). The dissipativity properties shaped for fault

diagnosis of Fault j can be determined by solving the following problem:

min
Q̃j ,S̃j ,R̃j ,

X̃j ,Ỹ j ,Z̃j ,αj

αj

s.t. ψ̃j > 0,

Tjq > 0, q = 0, . . . ,m, q 6= j,

tr(Tjj) < 0,

Tjj − α
jI < 0.

(38)

The idea behind above LMIs can be understood as follows. To isolate the j-th fault, the

dissipativity property of the nominal process is determined such that: (1) the dissipation in-

equality is satisfied by the process models with all faults except the j-th fault, with positive

definite Tjq, q = 0, . . . ,m, q 6= j (i.e., the “common” dissipativity property of the nominal pro-

cess and the models with all faults except the j-th fault); (2) the dissipation inequality is not

satisfied by the process model with the j-th fault, with non-positive definite Tjq, q = j (and the

minimized maximum eigenvalue). A total of j sets of dissipativity properties can be determined

using above problem formulation. Therefore, when fault j occurs, the process with fault j will

no longer be dissipative with respect to the j-th dissipativity property. Consequently, the j-th

dissipativity inequality is not satisfied, which will be indicated by negative dissipation rate Qj∆.

In Section 2.2, we illustrated the change of dissipativity properties caused by faults (Exam-

ples 1-3) using special types of supply rates which are associated with process gain (the static,

L∞norm and frequency dependent gain conditions). The approach presented in Problem 1

gives a general dissipativity property with no limit on the type of supply rates (e.g., captures

the process dynamic features of both gain and phase), which may lead to more effective fault

diagnosis.

Successful shaping in the design stage leads to each dissipativity property being “fault-

selective” (only sensitive to certain fault). A numerical solution to Problem 1 provides the

coefficient matrices of the j-th dissipativity property of the process, which are used for fault

diagnosis by checking the validity of the dissipativity inequality. Some faults may cause similar

changes of process dynamic features, therefore hard to classify under the general problem formu-

lation in Problem 1. If above LMI problem does not have a feasible solution, an alternative way

is to adopt the “divide-and-conquer” approach. That is, break all possible faults into several

subgroups, then formulate the LMIs similar to Problem 1 and forms a hierarchical diagnosis

system.

The proposed approach diagnoses faults based on the change of process input-output rela-
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tionships captured by the dissipativity properties. The storage function and supply rate are

optimized to be most sensitive to the faults to be diagnosed by solving the LMI problem in

Problem 1. The detectability of the fault using the proposed approach depends on the fea-

sibility of this LMI problem. To illustrate this point, consider the following process nominal

model:

xk+1 =

1.4 −0.48

1 0

xk +

0.5

0

uk, yk =
(

0 0.4
)
xk (39)

with a faulty model:

xk+1 =

1.4 −0.48

1 0

xk +

0.25

0

uk, yk =
(

0 0.8
)
xk. (40)

In this case, while the state-space models of the process in normal and faulty conditions are

different, the input-output relationships are unchanged. As such, Problem 1 is infeasible.

3.2 Online Dissipativity Inequality Evaluation for Fault Diagnosis

Online fault diagnosis is performed by checking different dissipativity inequalities at each sample

instance k. While in (4) the extended variables are defined with future inputs and outputs uk+N

and yk+N , the history of process input and output is used in process monitoring. Therefore, if

the QdF order is N , the extended input and output at sample instance k−N are used for fault

diagnosis at sample instance k, denoted as ǔ and y̌ respectively:

ǔk =
(
u>k−N u>k+1−N . . . u>k

)>
y̌k =

(
y>k−N y>k+1−N . . . y>k

)>
.

(41)

At every sampling step k, the dissipation rate for diagnosis of each fault j can be represented

as

Qj∆(uk, yk) =

y̌k
ǔk

> Q̃j − X̂j S̃j − Ŷ j

S̃j> − Ŷ j> R̃j − Ẑj

y̌k
ǔk

 . (42)

Multiple dissipation rates Qj∆, j = 1, . . .m are calculated simultaneously. If the calculated

dissipation rate Qj∆ is negative we can draw the conclusion that this system is not dissipative

with respect to the j-th dissipativity property and infer the j-th fault has occurred. As the

dissipativity properties are shaped to be sensitive to individual faults, multiple dissipativity

conditions need to be verified to perform fault diagnosis, as shown below:

Procedure 1 (Online fault diagnosis). Online fault diagnosis are performed with the following

steps:
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1. Collect inputs and outputs at sampling step k into extended form y̌k, ǔk;

2. Calculate multiple dissipation rate Qj∆(uk, yk), j = 1, . . . ,m for sampling step k;

3. If the dissipation rate Qj∆(uk, yk) is smaller than threshold r, the associate fault j is

identified;

4. Move to the next sampling step k = k + 1, and go to Step 1.

Online evaluation of dissipation rate can be easily carried out with equation (42), with a

minor computational effort. The choice of dissipativity threshold r is an important issue as it

will affect the accuracy of fault diagnosis. Theoretically the threshold can be r = 0 if there is

no disturbance or noise. The false alarm rate of the proposed diagnosis approach with Gaussian

noises and disturbances is analysed in Section 4. A dynamic threshold is also developed to

reduce false alarms.

4 Dissipativity Threshold for Fault Diagnosis

Noises and disturbances are inevitable in practice and may lead to false alarms. As such,

it is important to analyze the effects of noises and disturbances on the dissipativity of process

models so that a threshold of dissipation rate r can be employed to improve the robustness of the

proposed fault diagnosis approach. In this section, only Gaussian-type of process disturbances

and measure noises are considered. For future work, it is possible to extend it to disturbance

signals over a certain frequency range by choosing dissipativity property which is less sensitive

to disturbances.

In general, the threshold can be time-varying, in the form of r(k) where k is the time step

such that

Ω(k) =


1, Q∆(uk, yk) < r(k)

0, otherwise

(43)

where Ω(k) = 1 indicates that fault is diagnosed at time step k. The dissipation rate Q∆(uk, yk)

is defined by (14). For model (1) which is not perturbed by noises, theoretically the threshold

function can be chosen as r(k) = 0. Here, we consider the nominal model Σ0 perturbed by

Gaussian disturbances/noises as follows:

xk+1 = Axk +Buk + wk

yk = Cxk +Duk + vk

(44)
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where wk, vk are disturbances and noises, respectively. Assume that the covariance matrices of

wk, vk are known as W,V respectively. Taking following linear transform

wk = Ewk, vk = Fvk (45)

where W = ETE, V = F TF and wk(i) and vk(j) are jointly independent random variables with

standard normal distribution N (0, 1) for k ≥ 1, 1 ≤ i ≤ s, 1 ≤ j ≤ q, (44) can be rewritten as

follows:

xk+1 = Axk +Buk + Ewk

yk = Cxk +Duk + Fvk.
(46)

The dissipation rate for model with uncertainty can be represented as follows:

Q∆(ûk, ỹk) =

ỹk
ûk

T Qδ Sδ

STδ Rδ

ỹk
ûk

 (47)

where Qδ = Q̃ − X̂, Sδ = S̃ − Ŷ , Rδ = R̃ − Ẑ, and ỹk is the extended output trajectory of the

noise-perturbed model (46) with initial state xk and extended input trajectory ûk. The notation

ŷk denotes the extended output trajectory of the nominal model (1) with initial state xk and

input trajectory ûk. Trajectory ỹk is actually the trajectory ŷk perturbed by noises w, v, which

has the following representation:

ỹk = ŷk +Gẑk (48)

where ẑk =
(
ŵTk v̂Tk

)T
and G =

(
Ê F̂

)
with

Ê =


0 0 · · · 0

CE 0 · · · 0
...

...
. . .

...

CAN−1E CAN−2E · · · 0

 , F̂ =


F 0 · · · 0

0 F · · · 0
...

...
. . .

...

0 0 · · · F

 . (49)

The dissipation rate Q∆(ûk, ỹk) can be reformulated as follows:

Q∆(ûk, ỹk) =

ŷk +Gẑk

ûk

T Qδ Sδ

STδ Rδ

ŷk +Gẑk

ûk


= Q∆(ûk, ŷk) + 2[ûTk Sδ + ŷTkQδ]Gẑk + ẑTk G

TQδGẑk

= Q∆(ûk, ŷk) + 2[ûTk Sδ + ỹTkQδ]Gẑk − ẑTk GTQδGẑk

= Q∆(ûk, ŷk) +Hkẑk − ẑTk Jẑk

(50)

where

Hk = 2[ûTk Sδ + ŷTkQδ]G, J = GTQδG. (51)
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The term Q∆(ûk, ỹk) is the dissipation rate for nominal model and J ≤ 0. The term Hkẑk is

a random variable with N (0, ‖Hk‖2)-distribution where ‖ · ‖2 denotes the Euclidean norm of

a vector. The term −ẑTk Jẑk is a random variable with χ2(− tr(J))-distribution. Theoretically,

the probability of false alarms for a given threshold can be determined based on the following

proposition:

Proposition 2. Consider a nominal model (27) with a dissipation rate given by (47). Assume

the following threshold function:

r(k) = −λ‖Hk‖2 − µ tr(J) (52)

where constants λ > 0, and µ > 0 are tuning parameters. The extended input and output

trajectories ûk and ỹk are generated by noise-perturbed model (46). Then the probability of

Q∆(ûk, ỹk) < r(k) (false alarms) is upper bounded by

P{Q∆(ûk, ỹk) < r(k)} ≤
∫ ∞

0

∫ r(k)−x

−∞

xa−1e−(x+y2/σ2
k)/2

2a
√

2πΓ(a)σk
dxdy (53)

where a = − tr(J)/2 and σk = ‖Hk‖2.

Proof. The probability density function of random variables x = −ẑTk Jẑk and y = Hkẑ
k are

given by f(x) = xa−1e−x/2

2aΓ(a) and g(y) = 1√
2πσk

e
− y2

2σ2
k , respectively. Since Q∆(ûk, ỹk) ≥ 0, then

the upper bound of a false alarm can be estimated as:

P{Q∆(ûk, ỹk) < r(k)} ≤ P{Hkẑk − ẑTk Jẑk < r(k)}

=

∫ ∞
0

∫ r(k)−x

−∞

xa−1e−(x+y2/σ2
k)/2

2a
√

2πΓ(a)σk
dxdy.

(54)

In theory, the parameters of λ and µ in the threshold function (52) can be determined by

iteratively evaluating (53) such that a required (low) probability of false alarms is achieved.

By assuming Hkẑk and −ẑTk Jẑk are independent random variables, λ and µ can be chosen

according to the empirical rules for normal distribution and p-value table for χ2-distribution

(as in [29]), which will give a rough upper bound of the false alarm events. A larger λ and

a smaller µ imply stronger confidence level, but may also lead to more “missed alarm” events

(false negative errors).

5 Illustrative Example

To illustrate the proposed approach, a simple case study is presented in this section. A heat

exchanger [11] as shown in Figure 6 is studied. In this process, steam mass flow ṁs is measured
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Figure 6: A Heat Exchanger Example[11]

as input variable, and the outlet fluid temperature ϑfo is measured as output variable, the inlet

fluid temperature is denoted as ϑfi. The operating point is:

ṁf = 3000 kg/h; ṁs = 50 kg/h; ϑfi = 60◦C; ϑfo ≈ 70◦C (55)

The system is linearized around the operating point. The approximate transfer function is

G̃(s) =
∆ϑfo(s)

∆ṁs(s)
=

Ks

(1 + T1ss)(1 + T2ss)
(56)

with

Ks =
r

ṁfcf
, T1s =

1

vf
(1 +

Awρwcw
Afρfcf

), T2s =
Awρwcw
αwfUf

1

1 + Awρwcw
Afρf cf

, (57)

where the parameters and subscripts are listed as follows:

Parameters Subscripts

A cross-sectional area f fluid

c specific heat capacity s steam

m, ṁ mass, mass flowrate w wall

r evaporation heat i inlet

U periphery of one tube o outlet

v velocity in the tube

α heat transfer coefficient

ϑ temperature

ρ density
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Figure 7: Normal Operating Condition

There are disturbances in inlet water flow rate ṁf , a controller is implemented to regulate

the outlet temperature. One fault in the heat exchanger is the presence of air (inert gas) in

steam space, later referred to as Fault 1. And another fault, closed condensate valve, are later

referred to as Fault 2. In the simulation studies, it is assume that the process is operating

normally in the beginning and then one of the faults occurs after 600 seconds. Under normal

operating condition, the outlet water temperature and steam flow rate are shown in Figures 7a

and 7b, respectively.

Take steam flow ṁs as input and outlet water temperature ϑfo as output, the transfer

function is converted to a discrete state space model denoted as Σ0 is shown below:

xk+1 = A0xk +B0uk

yk = C0xk

(58)

where

A0 =

1.1676 −0.6675

0.5 0

 , B0 =

0.25

0

 , C0 =
(

0.067 0.093
)

(59)

The state space models of process with two faults are as follows:

Fault 1 (inert gas in steam space), described by Σ1:

xk+1 = A1xk +B1uk

yk = C1xk

(60)

where

A1 = A0 + ∆A1, B1 = B0 + ∆B1, C1 = C0 + ∆C1 (61)

and ∆A1,∆B1,∆C1 represent the multiplicative fault in the process. For simplicity reason,

parameters of process with Fault 1 are presented directly, ∆A1,∆B1,∆C1 are omitted (e.g., in
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this case ∆C1 = (0.0482 0.0524)).

A1 =

1.0045 −0.5045

0.5 0

 , B1 =

0.25

0

 , C1 =
(

0.1152 0.1454
)

(62)

Fault 2 (closed condensate valve), described by Σ2 (defined with A2, B2, C2), are presented

similar to Fault 1, with

A2 =

0.9669 −0.3756

0.5 0

 , B2 =

0.25

0

 , C2 =
(

0.1066 0.1224
)

(63)

Online monitoring of the process is performed by calculating dissipation rates at each sam-

pling instance k using the dissipativity property Q1
Φ, Q

1
Ψ and Q2

Φ, Q
2
Ψ. In this example, the QdF

order is chosen to be 3. The parameters of the dynamic thresholds are chosen as λ = 1.2, µ = 1.

From Proposition 2, the probability of false alarms is roughly upper bounded by 9.4%. However,

from simulation results (as shown in Figure 8 and 9), the actual probability of false alarms is

much lower.

For fault diagnosis, each of the dissipativity property QjΦ and QjΨ are shaped such that they

are associated to different Fault j. As shown in a following example:

Example 4 (Fault diagnosis for Fault 1). Solve the following problem:

min
Q̃1,S̃1,R̃1,

X̃1,Ỹ 1,Z̃1,α1

α1

s.t. ψ̃1 > 0, T1
0 > 0, T1

2 > 0

tr(T1
1) < 0, T1

1 − α1I < 0.

(64)

The coefficient matrices used for diagnosis of Fault 1, ψ̃1 =

 X̃1 Ỹ 1

Ỹ 1> Z̃1

, φ̃1 =

 Q̃1 S̃1

S̃1> R̃1


are determined from solving above LMI problem and provided in the Appendix. Matrices

T1
q , q = 0, 1, 2 are defined using Aq, Bq, Cq as in Proposition 1. The coefficient matrices for

diagnosis of Fault 2, φ̃2 and ψ̃2 are also provided in the Appendix.

For fault diagnosis, two dissipation rates Q1
∆ and Q2

∆ are calculated simultaneously. Dissi-

pation rates are calculated using input output trajectories and the coefficient matrices of the

dissipativity property φ̃1, ψ̃1 and φ̃2, ψ̃2. Fault diagnosis results are shown in Figures 8 and 9.

As shown in Figure 8b, only the dissipation rate Q1
∆,1 (Q1

∆ calculated based on the input/output

trajectories from process with Fault 1) violates the threshold, while Q1
∆,0 in Figure 8a (dissipa-

tion rate of the same dissipativity property but using input output of normal process Σ0) and

Q1
∆,2 in Figure 8c are within the threshold. As such, Fault 1 is diagnosed.

Likewise, Fault 2 is diagnosed with dissipativity property shaped as following example:
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Figure 8: Diagnosis of Fault 1
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Figure 9: Diagnosis of Fault 2

Example 5 (Fault diagnosis for Fault 2). Solve the following problem:

min
Q̃2,S̃2,R̃2,

X̃2,Ỹ 2,Z̃2,α2

α2

s.t. ψ̃2 > 0, T2
0 > 0, T2

1 > 0

tr(T2
2) < 0, T2

2 − α2I < 0

(65)

Different fault indices (superscript) in Example 4 and Example 5 are adopted to indicate

different dissipativity properties of the nominal process. For diagnosis of Fault 2, dissipation

rate are calculated as (42) using φ̃2 and ψ̃2 at each sample instance. As shown in Figure 9, only
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the dissipation rate Q2
∆,2 in Figure 9c (Q2

∆ calculated with the input/output trajectories from

process with Fault 2) violate the threshold, while Q2
∆,0 (Figure 9a) and Q2

∆,1 (Figure 9b) are

within the threshold.

6 Discussion and Conclusion

A fault diagnosis scheme based on dissipativity theory has been developed. For a given nominal

process model, its dissipativity property is shaped to be sensitive to different faults (fault-

selective). Fault diagnosis is performed by evaluating dissipativity inequalities derived from

various dissipativity properties. A fault is diagnosed when its associated dissipation inequal-

ity is violated, leading to a simple fault diagnosis scheme, without observers/estimators (as

depicted in Figure 2). The proposed dissipativity-based approach is suitable for handling mul-

tiplicative faults. While the process models are used to determine the dissipativity property of

the process, they are not directly used in online fault diagnosis. As such the proposed approach

can be classified as a model-based approach but not in the traditional way. The effects of noise

and disturbance are handled by a dynamic threshold which can be tuned to achieve different

confidence levels. It is also worth pointing out that the proposed approach can be applied to

general (linear) processes as the dissipativity concept in this work is a process input-output

property of any systems, not limited to physically dissipative systems.

The proposed dissipativity based method diagnoses fault based on changes in process in-

put/output dynamic relationships, including any changes in process models such as parameters,

coefficients or even system order (e.g., when a fault is demonstrated by a side reaction). As

such the proposed approach is particularly suitable for diagnosing multiplicative faults.

The proposed approach in its current form does not optimize the fault diagnosis algorithm

such that it is insensitive to unknown disturbances. While the proposed approach can deal with

unknown disturbances using a threshold, rigorous results (dynamic thresholds) are limited to

Gaussian noises and disturbances.

Future work will include the extension of the proposed approach to deal with bounded

unknown disturbances. The disturbance model will be considered. The dissipativity of process

model will be optimized to be sensitive to faults to be diagnosed but less sensitive to the

disturbances.

Other possible research includes the extension of the dissipativity based fault diagnosis to

plantwide processes with interactions between process units. The dissipativity property is very

useful in interaction analysis for plantwide systems and the dissipativity theory is an ideal tool

for analysis and control of large-scale systems, for example, in [23, 30, 31, 32]. It is also possible
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to incorporate the proposed fault diagnosis method with a dissipativity based fault-tolerant

control (FTC) approach. An integrated fault diagnosis and fault tolerant control approach can

provide efficient response to enhance fault recovery [33]. The FTCs can be designed such that

the dissipativity of the closed-loop system is valid when faults occur to ensure the stability and

performance, as shown promising from our recent work [34, 35].
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Appendix A Dissipativity Properties in Illustrative Example

The supply rate used for fault diagnosis in Section 5 is provided below. The dissipativity prop-

erties for fault diagnosis of Fault 1 are derived from solving the LMIs as defined in Example 4.

The supply rate coefficient matrices are in the following form

Q̃1 =


2741.10 −12340.1 18139.9 −8284.64

−12340.1 47762.5 −51945.1 11610.8

18139.9 −51945.1 13874.4 34892.7

−8284.64 11610.8 34892.7 −49888.5

 , (66)

S̃1 =


−163.137 −116.036 261.768 0.00006

657.734 722.292 −579.226 −0.00021

−771.036 −1404.06 −368.657 0.00008

213.700 845.191 958.468 −0.00003

 , (67)

R̃1 =


7.08691 9.66420 −8.77291 0

9.66420 5.65613 −21.9709 0.00001

−8.77291 −21.9709 −13.6113 0.00001

0 0.00001 0.00001 6.28622

 . (68)

The difference storage function coefficient matrices are

X̂1 =


−4.16875 −0.00016 0.00003 0

−0.00016 0.00281 −0.00011 −0.00003

0.00003 −0.00011 −0.00363 0.00027

0 −0.00003 0.00027 4.16957

 , (69)

Ŷ 1 =


−0.00007 −0.00009 0 0

0.00006 −0.00012 0.00017 0

−0.00015 −0.00002 0.00024 −0.00009

0 0.00015 −0.00004 −0.00006

 , (70)

Ẑ1 =


−4.16776 0.00001 −0.00001 0

0.00001 0 −0.00002 0.00001

−0.00001 −0.00002 −0.00632 0.00001

0 0.00001 0.00001 4.17407

 . (71)
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The dissipativity properties for fault diagnosis of Fault 2 are derived from solving the LMIs

defined in Example 5. The supply rate coefficient matrices are in the following form

Q̃2 =


−2992.09 10942.4 −10450.9 1278.83

10942.4 −28855.1 2310.44 24802.6

−10450.9 2310.44 86625.7 −99504.8

1278.83 24802.6 −99504.8 88487.5

 , (72)

S̃2 =


157.842 168.525 −113.632 −0.00007

−445.937 −829.778 −294.010 0.00057

137.835 1421.88 2106.36 −0.00239

266.184 −820.270 −2100.47 −0.00698

 , (73)

R̃2 =


−8.21229 −11.2498 −2.03379 0

−11.2498 −0.59347 24.7836 −0.00033

−2.03379 24.7836 49.1902 0

0 −0.00033 0 5.19460

 . (74)

The difference storage function coefficient matrices are

X̂2 =


−3.19201 0.00578 0.00486 0

0.00578 −0.01275 −0.01095 −0.00486

0.00486 −0.01095 0.00144 0.00517

0 −0.00486 0.00517 3.20332

 , (75)

Ŷ 2 =


−0.00292 −0.00204 −0.00033 0

−0.00209 0.00455 0.00432 0.00033

−0.00161 0.00402 0.00523 −0.00228

0 0.00161 −0.00193 −0.00685

 , (76)

Ẑ2 =


−3.20022 −0.00012 0.00034 0

−0.00012 −0.00347 0.00012 −0.00034

0.00034 0.00012 −0.22226 0

0 −0.00034 0 3.42595

 . (77)
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