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Abstract 

The dynamics of gene regulatory networks are often modeled with the assumption of 

cellular homogeneity. However, this assumption contradicts the plethora of 

experimental results in a variety of systems, which designates that cell populations are 

heterogeneous systems in the sense that properties such as size, shape, and DNA/RNA 

content are unevenly distributed amongst their individuals. In order to address the 

implications of heterogeneity, we utilize the so-called cell population balance (CPB) 

models. Here, we solve numerically multivariable CPB models to study the effect of 

heterogeneity on populations carrying the toggle switch network, which features 

nonlinear behavior at the single-cell level. In order to answer whether this nonlinear 

behavior is inherited to the heterogeneous population level, we perform bifurcation 

analysis on the steady-state solutions of the CPB model. We show that bistability is 

present at the population level with the pertinent bistability region shrinking when the 

impact of heterogeneity is enhanced. 
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1. Introduction 

 Advances that occurred in the middle of the last and at the beginning of the 

current century in the fields of biotechnology, genomics and computational biology 

have supplied us with powerful techniques and methods that can shed light on the 

complex mechanisms that take place at the single-cell level. However, it is of equally 

great importance to illuminate and gain profound understanding of the impact that 

perplex processes, which take place amongst the cells of an isogenic population, have 

on the individuals’ phenotypic variability, and consequently on the average 

population phenotype. The aforementioned phenomenon -the so-called cell population 

heterogeneity- has been frequently observed in numerous biological systems. 

Indicatively, we report the burst variation of bacteriophages (Delbruck, 1945), the 

existence of transcriptional states of heterogeneity in sporulating cultures of Bacilus 

subtillis (Chung & Stephanopoulos, 1995), various isogenic Escherichia coli systems 

(Elowitz et al., 2002), the endothelial cell surface markers (Oh et al., 2004), 



transcriptional states at single-cell-resolution (Tischler & Surani, 2013) and single-

cell metabolomics (Rubakhin et al., 2013). Furthermore, recent studies have shown 

the importance of heterogeneity on drug discovery and optimal design of therapeutic 

strategies (A. Gough et al., 2017; A. H. Gough et al., 2014).  

 Despite the wealth of experimental evidence for the importance of cell 

heterogeneity, a number of modeling approaches (e.g., (Chung & Stephanopoulos, 

1995; Fedoroff & Fontana, 2002; Sadeghpour et al., 2017) are based on the 

assumption that all individuals of an isogenic populations share the same phenotype 

(homogeneous populations). Despite the fact, that this assumption leads to simple 

mathematical models consisting of systems of ordinary differential equations, 

disregarding cell heterogeneity can lead to false quantitative predictions, as shown in 

relative studies (Aviziotis, Kavousanakis, Bitsanis, et al., 2015; Aviziotis, 

Kavousanakis, & Boudouvis, 2015; Kavousanakis et al., 2009; Mantzaris, 2005; 

McAdams & Arkin, 1998) in which cell heterogeneity is taken into account. 

 In this work, we adopt the modeling approach of cell population balance 

(CPB) to model the dynamics and compute the steady-state solution of heterogeneous 

isogenic populations, i.e., populations consisting of individuals that carry the same 

genetic network. In such populations, cell heterogeneity originates from two main 

sources. The first source, the so-called intrinsic heterogeneity, is the result of 

stochastic fluctuations of regulatory molecules (Alberts et al., 1994), which exist in 

small concentrations and control a network of intracellular reactions. Gene regulatory 

molecules are a set of DNA segments inside the cell that interact with each other 

through their RNA and protein expression products as well as with other intracellular 

substances. The type and the number of genes expressed at each moment alongside 

with the intracellular reactions define the phenotype of each cell. Furthermore, gene 

expression is a stochastic process as shown in (Blake et al., 2003; Elowitz et al., 2002) 

leading also to phenotypic variability, which originates from intracellular processes 

 The second source of heterogeneity is the so-called extrinsic heterogeneity, 

which is the result of the uneven distribution of the intracellular content -with the 

exception of DNA- from a mother cell to its daughter cells during cellular division. 

The uneven distribution of mother content to the offsprings results in different 

phenotypes as a result of the different rates of the intracellular reaction network. 

Furthermore, it is not only the intracellular content which is distributed unevenly; the 

regulatory molecules are also unevenly distributed, and the phenomenon repeats itself 

due to the process of cell cycle leading to further phenotypic variability. It has been 

shown by experimental studies (Elowitz et al., 2002), for E.coli populations, that 

extrinsic heterogeneity has a more significant quantitative impact; in this work we 

focus on the extrinsic heterogeneity impact on E.coli populations carrying the genetic 

toggle switch.  

 In order to quantify the heterogeneity and combine it with the pertinent genetic 

network, we introduce the CPB models, which were developed in mid 1960s (Eakman 

et al., 1966; Fredrickson et al., 1967; Tsuchiya et al., 1966). They are partial integro-

differential equations and are characterized from high mathematical complexity -even 

with the application of model-reduction techniques (Stamatakis, 2013). Analytical 



solutions cannot be obtained for the general case and the use of numerical methods is 

mandatory, as presented in numerous studies (Liou et al., 1997; Mantzaris et al., 

2001a, 2001b, 2001c; Zhang et al., 2003; Zhang et al., 2002; Zhu et al., 2000). 

However, a common feature of the applied numerical methods is the assumption that 

the physiological state space boundaries (e.g., the boundaries of the average 

intracellular content) are known a priori. This assumption may be valid for the 

minimum intracellular content -which we can assume that has the same value from 

the initial distribution or that is equal to zero-  but this does not apply when it comes 

to the value of the maximum intracellular content. In order to bypass this impediment 

one can apply a free boundary formulation as presented in (Kavousanakis et al., 

2009), based on a valid assumption that the maximum intracellular content is a 

positive multiple of its average value.  

 The mathematical formulation of the applied free boundary CPB model is 

described in Section 2. In particular, we present a two-variable CPB model in order to 

describe the dynamics of E.coli cells carrying a synthetic toggle switch which has 

been presented in (Gardner et al., 2000). A brief description of its design and 

mathematical formulation is provided in Section 3. A key feature of this synthetic 

network is its nonlinear behavior and the existence of a range of extracellular inducer 

concentration values - IPTG (isopropyl-β-D-thiogalactopyranoside)- with multiple co-

existing steady-state phenotypes. In order to examine whether this nonlinear behavior 

is inherited also to the population level, we first study homogeneous populations 

using systems of ODEs which describe their dynamics, and the pseudo arc-length 

continuation algorithm (Keller, 1977) to track the entire steady-state solution space as 

a function of the [IPTG].  

 The study of heterogeneous populations is presented in Section 4, where we 

utilize the pseudo arc-length method in combination with CPBs, in order to determine 

and quantify the impact of heterogeneity on the range of bistability (the interval of 

[IPTG] values with multiple solutions). We need to stress at this point, that the steady-

state solution of multivariable CPBs is not a trivial numerical task, with significantly 

large computational and memory requirements. In order to bypass these difficulties 

we resort to Newton-like algorithms, and in particular Broyden’s algorithm, 

(Broyden, 1965), which requires only an approximation of the Jacobian matrix, and 

not the Jacobian matrix itself (as required in Newton-Raphson), thus saving 

significant computational effort as compared to Newton’s method.  

 In Section 5, we present temporal and steady-state computations for the 

aforementioned CPB model, which is discretized with the finite element method. We 

also present the steady-state solution space of heterogeneous populations carrying the 

synthetic toggle switch as a function of the IPTG concentration. The pertinent 

bifurcation diagrams show that bistability is also present for heterogeneous cell 

populations, however the range is narrowed down as the impact of heterogeneity is 

enhanced. Furthermore, we also study the impact of other parameters on the range of 

bistability, including the parameters which quantify the asymmetry and sharpness of 

the division mechanism. Finally, in Section 6 we provide a brief summary of the main 

results of this study. 



2. Cell population balance modeling 

 In this work, we study a two-dimensional CPB model, which describes the 

dynamics of a heterogeneous population carrying the synthetic toggle switch (Gardner 

et al., 2000). Each individual of the evolved distribution is characterized by the values 

of two intracellular variables, namely x and y.  In the more general case of a k-variable 

CPB model, each cell is characterized by a vector of k intracellular content values, 

𝑥 ≡ (𝑥1, … , 𝑥𝑘), the dynamics of the population are described by the following  

expression (Mantzaris, 2006): 

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
+ ∇𝑥 ∙ [𝑅(𝑥)𝑢(𝑥, 𝑡)] + 𝛤(𝑥)𝑢(𝑥, 𝑡) = 2∫ 𝛤(𝑥′)𝑃(𝑥, 𝑥′)𝑢(𝑥′, 𝑡)d𝑘𝑥′

𝑥𝑚𝑎𝑥

𝑥
−

𝑢(𝑥, 𝑡) ∫ 𝛤(𝑥)𝑢(𝑥, 𝑡)d𝑘𝑥
𝛬

,                 (2.1) 

where: 

𝛬 = [0, 𝑥1,𝑚𝑎𝑥] × …× [0, 𝑥𝑘,𝑚𝑎𝑥] ⊆ ℝ
𝑘, 𝑘 ∈ ℕ,               (2.2) 

and 𝑥𝑚𝑎𝑥 ≡ (𝑥1,𝑚𝑎𝑥, … , 𝑥𝑘,𝑚𝑎𝑥) denotes the vector with the maximum intracellular 

content values. The number density function, 𝑢(𝑥, 𝑡), (Fredrickson et al., 1967), 

expresses the number of cells with content x at time t divided by the total number of 

cells at this time. The boundary conditions imposed to (2.1) require that the 

population cells do not grow outside the domain, 𝛬, i.e.:   

𝑢(0, 𝑡) = 𝑢(𝑥𝑚𝑎𝑥, 𝑡) = 0.                  (2.3) 

 The first term in (2.1) quantifies accumulation, and the second denotes the rate 

at which cells with intracellular content 𝑥 change their content due to intracellular 

reactions, 𝑅(𝑥). The third term represents division, which yields cells with lower 

content, when the cell division rate is 𝛤(𝑥). The first term at the right hand side 

describes the birth of cells with content, 𝑥, by cells with larger intracellular content. 

The factor 2 multiplies the integral to model the birth of two cells at the end of each 

division. The function, 𝑃(𝑥, 𝑥′), models the mechanism of intracellular content 

distribution amongst the two daughter cells; in effect 𝑃(𝑥, 𝑥′) models the probability 

that a mother cell with content, x’, produces a daughter cell with content, x, and one of 

content, x’-x. Finally, the last term of the right hand side (dilution term) is the one 

forcing the solution to reach a steady-state; at this state, the non-normalized 

distribution of cells reaches a time-invariant shape, while cells continue to proliferate.  

 Taking into account that 𝑢(𝑥, 𝑡) is the number density function (already 

normalized by the total number of cells), the following condition must apply: 

∫ 𝑢(𝑥, 𝑡)d𝑘𝑥
𝛬

= 1.                      (2.4) 

Equation (2.1) incorporates single-cell operations through three key functions: 

𝛤(𝑥), 𝑅(𝑥) and 𝑃(𝑥, 𝑥′) known in the relative literature as Intrinsic Physiological 

State Functions (IPSF). In particular, 𝛤(𝑥) formulates the single-cell division rate,  

𝑅(𝑥) describes the single-cell network of reactions containing the net production rates 



of all intracellular species, and 𝑃(𝑥, 𝑥′) is the partition probability density function 

which describes the mechanism of intracellular content partition during the division of 

a mother cell giving birth to two daughter cells. In this work, we adopt for the division 

rate, 𝛤(𝑥), a generalization of the normalized power law, as shown in (Dien, 1994): 

𝛤(𝑥) = ∏ (
𝑥𝑖

〈𝑥𝑖〉
)
𝑚𝑖𝑘

𝑖=1 .                  (2.5) 

 The values of exponents, 𝑚𝑖, quantify the sharpness/rapidness of cellular 

division, with larger values leading to higher division rates.  

 For the partition probability density function, we assume the simplest possible 

partition mechanism:  

𝑃(𝑥, 𝑥′) = ∑ 𝛿(𝑓𝑥𝑖
′ − 𝑥𝑖) +

1

2(1−𝑓)
𝛿((1 − 𝑓)𝑥𝑖

′ − 𝑥𝑖)
𝑘
𝑖=1 ,             (2.6) 

where 𝛿 is the Dirac function, and the parameter 𝑓, quantifies the asymmetry during 

the cellular division. In every division cycle, the mother cell -with intracellular 

content 𝑥′- is divided in two daughter cells, with their intracellular content being 

fractions of 𝑥′, i.e.,  𝑓𝑥′ and (1 − 𝑓)𝑥′, respectively. The values of parameter 𝑓 are 

defined in the interval [0, 0.5], with 𝑓=0.5 corresponding to the symmetric partition 

mechanism (equal distribution of mother intracellular content). A more asymmetric 

mechanism is modeled with lower values of 𝑓.  

 

2.1 Free boundary transformation 

  CPB models are characterized by high complexity and in the general case one 

cannot obtain analytical solutions. A number of numerical methods has been proposed 

in the relative literature (Liou et al., 1997; Mantzaris et al., 2001a, 2001b, 2001c; 

Ramkrishna, 2000; Subramanian & Ramkrishna, 1971; Zhang et al., 2003; Zhang et 

al., 2002; Zhu et al., 2000), however in all these studies the boundaries of intracellular 

state space are considered a priori known. This is a very limiting modeling approach, 

which can increase the computational demands, since larger domains are required in 

order to capture accurately the maximum values of the intracellular state space, or 

they can lead to inaccurate results when the assumption of the size of the domain is 

invalid. In order to confront this issue, we adopt a free boundary algorithm based on a 

previous work (Kavousanakis et al., 2009), in which the maximum intracellular 

content is considered to be a positive multiple of the average intracellular content. 

When the intrinsic physiological state of each cell content is two-dimensional, i.e., 

𝑥 ≡ (𝑥, 𝑦), then we consider: 

𝑥𝑚𝑎𝑥 = 𝜆1〈𝑥〉

𝑦𝑚𝑎𝑥 = 𝜆2〈𝑦〉
,                   (2.7) 

where 〈𝑥〉, 〈𝑦〉 are the average values of intracellular contents 𝑥, 𝑦, respectively. The 

parameters 𝜆1, 𝜆2 are constant positive values. Using Eqs. (2.7) we consider the 

following transformations for 𝑥, 𝑦, variables: 



0 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 → 0 ≤
𝑥

〈𝑥〉
≤
𝑥𝑚𝑎𝑥

〈𝑥〉

(2.7)
→  0 ≤ 𝜉 ≡

𝑥

〈𝑥〉𝜆1
≤ 1

0 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥 → 0 ≤
𝑦

〈𝑦〉
≤
𝑦𝑚𝑎𝑥

〈𝑦〉

(2.7)
→  0 ≤ 𝜓 ≡

𝑦

〈𝑦〉𝜆2
≤ 1

.              (2.8) 

Using the transformations (2.8), the domain of intrinsic physiological state 𝛬 =
[0, 𝑥𝑚𝑎𝑥] × [0, 𝑦𝑚𝑎𝑥] with a priori unknown maximum boundaries is transformed to 

the fixed square domain, 𝛬̅ = [0,1] × [0,1]. 

The number density function 𝑢(𝑥, 𝑦, 𝑡) is related with the transformed 𝑔(𝜉, 𝜓, 𝑡) 
through the relation: 

𝑢(𝑥, 𝑦, 𝑡)d𝑥d𝑦 = 𝑔(𝜉, 𝜓, 𝑡)d𝜉d𝜓
(2.8)
→  𝜆1𝜆2〈𝑥〉〈𝑦〉𝑢(𝑥, 𝑦, 𝑡) = 𝑔(𝜉, 𝜓, 𝑡),              (2.9) 

The division rate (2.5) for the two-dimensional case is transformed using (2.8): 

𝛤(𝑥, 𝑦) = (
𝑥

〈𝑥〉
)
𝑚1
(
𝑦

〈𝑦〉
)
𝑚2
→ 𝛤(𝑥, 𝑦) = 𝜆1

𝑚1𝜆2
𝑚2𝜉𝑚1𝜓𝑚2 = 𝜆1

𝑚1𝜆2
𝑚2�̃�(𝜉, 𝜓).      (2.10) 

In addition, we transform the reaction rate vector, 𝑅(𝑥, 𝑦) = (𝑅1(𝑥, 𝑦), 𝑅2(𝑥, 𝑦)), 

onto �̃�(𝜉, 𝜓) = (�̃�1(𝜉, 𝜓), �̃�2(𝜉, 𝜓)) and get the transformed (2.1) for two-

dimensional intrinsic physiological state, using (2.6)-(2.10):  

𝜕𝑔

𝜕𝑡
−

1

〈𝑥〉

d〈𝑥〉

d𝑡

𝜕

𝜕𝜉
(𝜉𝑔) −

1

〈𝑦〉

d〈𝑦〉

d𝑡

𝜕

𝜕𝜓
(𝜓𝑔) +

1

〈𝑥〉𝜆1

𝜕

𝜕𝜉
(�̃�1𝑔) +

1

〈𝑦〉𝜆2

𝜕

𝜕𝜓
(�̃�2𝑔) +

𝜆1
𝑚1𝜆2

𝑚2𝑔∫ ∫ �̃�𝑔d𝜉d𝜓
1

0

1

0
=

𝜆1
𝑚1𝜆2

𝑚2�̃� [
1

𝑓2+𝑚1+𝑚2
𝑔 (

𝜉

𝑓
,
𝜓

𝑓
) +

1

(1−𝑓)2+𝑚1+𝑚2
𝑔 (

𝜉

1−𝑓
,
𝜓

1−𝑓
) − 𝑔].             

           (2.11) 

We need to mention at this point that both average intracellular contents, which 

appear in (2.11), are unknown values and need to be determined. Taking the first-

order moment of (2.1) for each intracellular content variable, and considering the 

conservation of mass for each of them during cell division the following expressions 

are derived:                     

𝑑〈𝑥〉

𝑑𝑡
= ∫ ∫ 𝑅1𝑢d𝑥d𝑦

𝑥𝑚𝑎𝑥

0

𝑦𝑚𝑎𝑥

0
− 〈𝑥〉 ∫ ∫ 𝛤𝑢d𝑥d𝑦

𝑥𝑚𝑎𝑥

0

𝑦𝑚𝑎𝑥

0

𝑑〈𝑦〉

𝑑𝑡
= ∫ ∫ 𝑅2𝑢d𝑥d𝑦

𝑥𝑚𝑎𝑥

0

𝑦𝑚𝑎𝑥

0
− 〈𝑦〉 ∫ ∫ 𝛤𝑢d𝑥d𝑦

𝑥𝑚𝑎𝑥

0

𝑦𝑚𝑎𝑥

0

 ,              (2.12) 

and using (2.7)-(2.10)  

we obtain: 

 

𝑑〈𝑥〉

𝑑𝑡
= ∫ ∫ �̃�1𝑔d𝜉d𝜓

1

0

1

0
− 𝜆1

𝑚1𝜆2
𝑚2〈𝑥〉 ∫ ∫ �̃�𝑔d𝜉d𝜓

1

0

1

0

𝑑〈𝑦〉

𝑑𝑡
= ∫ ∫ �̃�2𝑔d𝜉d𝜓

1

0

1

0
− 𝜆1

𝑚1𝜆2
𝑚2〈𝑦〉 ∫ ∫ �̃�𝑔d𝜉d𝜓

1

0

1

0

.            (2.13) 

𝑅1, 𝑅2 are the single-cell reaction rates for the net production of intracellular contents 

𝑥 and 𝑦, respectively. Their expressions for the studied synthetic toggle switch are 

described in the following section. 

 

 



3. Synthetic toggle switch genetic network 

 A well-known genetic network that has been experimentally designed and 

implemented in E. coli populations is the so-called toggle switch model (Gardner et 

al., 2000). We choose to study this particular network, motivated by its simplicity and 

the nonlinear behavior it exhibits at the single-cell level. The genetic toggle is a 

synthetic bistable network, where flipping between co-existing stable steady-states is 

feasible using chemical or thermal induction. In the following subsections we provide 

a brief description of its design, and the respective mathematical framework, for 

which we apply bifurcation analysis to show the steady-state solution multiplicity of 

phenotypes within a range of extracellular inducer concentration values (chemical 

induction).  

 

3.1. Design, principles and mathematical modeling 

 The toggle switch model consists of two constitutive promoters -genes- and 

two repressors. The basic mechanism of this model is that each promoter is inhibited 

by the respective repressor, which has been transcribed by the opposing promoter 

(i.e., promoter 1 is inhibited by repressor 1, which in turn has been transcribed by 

promoter 2; promoter 2 is inhibited by repressor 2, which has been transcribed by 

promoter 1). The inducer induces the respective repressor (i.e., inducer 1 induces 

repressor 1, and inducer 2 induces repressor 2). The schematic representation of this 

network is shown in Fig. 1. Schematic of the synthetic toggle switch model(Gardner et al., 2000). 

(Gardner et al., 2000). 

 

Fig. 1. Schematic of the synthetic toggle switch model(Gardner et al., 2000). 

 The key feature of this network is that it enables the existence of multiple co-

existing phenotypes, for the same extracellular conditions, i.e., the same concentration 

of extracellular inducer. This effect is known as bistability, and in biologic systems is 

frequently observed, in particular in systems involving the interaction between two 

genes.  

 Bistability is of great importance due to the impact that has on basic cell 

operations, such as the processes of decision making during cell cycle, cell 

differentiation and apoptosis (Eissing et al., 2004). In addition, bistability is involved 

with the loss of cellular homeostasis, which in turn is linked to the first stages of 



cancer (Kim et al., 2007) and the diseases of protein prion (Kellershohn & Laurent, 

2001). Moreover, in a -relatively- recent study (Veening et al., 2008) many bistability 

phenomena such as different phenotypes in clone populations are discussed, which are 

important for the birth of new species. Bistability has also been observed in virus 

phage λ, which contaminates the E.coli and can be found in two distinct states: 

lysogenic and lytic (Tian & Burrage, 2004). 

 For the case of the synthetic toggle switch, (Gardner et al., 2000) developed a 

simple mathematical model, which can capture the nonlinear behavior of the toggle 

switch. In particular, the dynamic behavior of the toggle switch as well as the 

conditions for bistability can be studied using the following dimensionless model: 

d𝑅1(𝑥,𝑦)

d𝑡
≡
d𝑥

d𝑡
=

𝑎1

1+𝑦𝛽
− 𝛿𝑥,                  (3.1) 

d𝑅2(𝑥,𝑦)

d𝑡
≡
d𝑦

d𝑡
=

𝑎2

1+(
𝑥

𝑟
)
𝛾 − 𝛿𝑦,                  (3.2) 

where 𝑥, 𝑦 are the intracellular concentrations of repressors 1 and 2, respectively, and  

𝑟 = (1 +
[𝐼𝑃𝑇𝐺]

𝐾
)
𝑛

. [𝐼𝑃𝑇𝐺] is the concentration of the extracellular induced IPTG 

(isopropyl-β-D-thiogalactopyranoside) ([Μ]), and 𝐾 is the dissociation constant of 

IPTG from its bound repressor (LacR), and 𝑛 is the cooperativity of IPTG binding; 

𝑎1, and 𝑎2 are the effective synthesis rates of repressors 1 and 2, respectively; 𝛽 and 𝛾 

are repression cooperativities of promoters 1 and 2, respectively and 𝛿 is the 

dimensionless degradation rate of repressors 1 and 2.  

 The first terms of Eqs (3.1)-(3.2) represent the cooperative repression of the 

constitutively transcribed promoters and the second terms represent the 

degradation/dilution of the repressors. In this work, we adopt the following set of 

parameter values as used in the original work of (Gardner et al., 2000): 𝑎1=156.25, 

𝑎2=15.6, 𝛽=2.4, 𝛾=1 𝑛=2.00015, 𝛿=0.005, 𝐾=2.9618×10
-5

 M, for which the toggle 

network becomes bistable. Before we proceed with the examination of the effect of 

cell heterogeneity, we first present the parametric analysis results for the 

homogeneous isogenic population with cells carrying the genetic toggle. 

3.2. Parametric analysis of homogeneous cell population 

 In this case, all cells of the population are identical in the sense that they all 

feature the same phenotype, i.e., their intracellular content is the same, and equal with 

the average intracellular content. Thus, the number density function of a 

homogeneous population can be represented using the Dirac function (Kavousanakis 

et al., 2009): 

𝑢(𝑥, 𝑦) = 𝛿(𝑥 − 〈𝑥〉, 𝑦 − 〈𝑦〉).                                                                                 (3.3) 

Substituting (3.3) in (2.12) yields the following equations for the average intracellular 

content, 〈𝑥〉 and 〈𝑦〉:  

d〈𝑥〉

d𝑡
= 𝑅1(〈𝑥〉, 〈𝑦〉) − 〈𝑥〉𝛤(〈𝑥〉, 〈𝑦〉)

(2.5),(3.1)
→      

d〈𝑥〉

d𝑡
=

𝑎1

1+〈𝑦〉𝛽
− (𝛿 + 1)〈𝑥〉,            (3.4) 



d〈𝑦〉

d𝑡
= 𝑅2(〈𝑥〉, 〈𝑦〉) − 〈𝑦〉𝛤(〈𝑥〉, 〈𝑦〉)

(2.5),(3.2)
→      

d〈𝑦〉

d𝑡
=

𝑎2

1+(
〈𝑥〉

𝑟
)
𝛾 − (𝛿 + 1)〈𝑦〉.            (3.5) 

 The complete solution space of steady-state phenotypes of homogeneous 

isogenic populations carrying the toggle switch (i.e., 
d〈𝑥〉

d𝑡
=
d〈𝑦〉

d𝑡
= 0) is computed for 

a range of [IPTG] values using the so-called pseudo arc-length continuation algorithm 

(Keller, 1977). In Fig. 2. Dependence of steady-state average intracellular concentration of (a) 

repressor 1, 〈x〉, and (b) repressor 2, 〈y〉, for a homogeneous population carrying the toggle switch on 

the IPTG concentration. By increasing the repression cooperativity of promoter 2, β, the range of 

bistability is enlarged. Lines with circles, rectangles and triangles correspond to β=2.2, 2.3 and 2.4, 

respectively. Solid and dashed lines depict stable and unstable steady-state solutions, respectively. we 

present the results of this analysis for different values of promoter 1 repression 

cooperativity, 𝛽. One can observe the existence of a range of IPTG concentration 

values within which three different steady-state solutions co-exist, with two of them 

being dynamically stable (upper and lower branches of solutions), and one 

dynamically unstable (intermediate branch, marked with dashed lines in Fig. 2. 
Dependence of steady-state average intracellular concentration of (a) repressor 1, 〈x〉, and (b) repressor 

2, 〈y〉, for a homogeneous population carrying the toggle switch on the IPTG concentration. By 

increasing the repression cooperativity of promoter 2, β, the range of bistability is enlarged. Lines with 

circles, rectangles and triangles correspond to β=2.2, 2.3 and 2.4, respectively. Solid and dashed lines 

depict stable and unstable steady-state solutions, respectively.). Furthermore, by increasing the 

value of parameter, 𝛽, the range of bistability is enlarged.  

 

 

Fig. 2. Dependence of steady-state average intracellular concentration of (a) repressor 1, 〈x〉, and (b) 

repressor 2, 〈y〉, for a homogeneous population carrying the toggle switch on the IPTG concentration. 

By increasing the repression cooperativity of promoter 2, β, the range of bistability is enlarged. Lines 

with circles, rectangles and triangles correspond to β=2.2, 2.3 and 2.4, respectively. Solid and dashed 

lines depict stable and unstable steady-state solutions, respectively. 

 Thus, bistability which is observed at the single-cell level (Gardner et al., 

2000) is also inherited to the population level when all individuals feature identical 

phenotypes. However, neglecting heterogeneity can lead to significant quantitative, as 

well as qualitative discrepancies even for the average intracellular properties 

(Aviziotis, Kavousanakis, Bitsanis, et al., 2015; Aviziotis, Kavousanakis, & 

Boudouvis, 2015; Kavousanakis et al., 2009; Mantzaris, 2005; McAdams & Arkin, 

1998). In order to study the effect of cell heterogeneity, one needs to perform 

bifurcation analysis on the CPB model (see (2.1) or the transformed (2.11)). This 

analysis is not as trivial as for the homogenous population case, in which ordinary 

differential equations are only involved.  



Here, we employ the finite element method for the discretization of the CPB 

model using the software package COMSOL Multiphysics® (COMSOL, 2017). The 

finite element discretization yields a nonlinear set of algebraic equations, which we 

solve with iterative pseudo-Newton algorithms, and in particular Broyden’s algorithm 

(Broyden, 1965), with significantly lower computational and memory requirements 

compared to the standard Newton-Raphson method. In order to implement Broyden’s 

algorithm, as well as bifurcation analysis techniques, we utilize the interface of 

COMSOL with MATLAB as presented in (Kavousanakis et al., 2009). 

 

  

4. Bifurcation analysis of heterogeneous cell populations 

 In general, the discretization of a boundary value problem, using the finite 

element method yields a system of nonlinear equations, which we denote with:  

F(u,ρ)=0                                                                          (4.1) 

where ρ is the bifurcation parameter (e.g., for our study the [IPTG]), and u is the 

discretized form of the sought solution. The nonlinear set of equations (4.1) can be 

iteratively solved using the Newton-Raphson algorithm, which at each step solves the 

linearized set of equations: 

∂𝐹(𝑢(𝑛))

∂𝑢
𝛿𝑢(𝑛) = −𝐹(𝑢(𝑛)),                  (4.2) 

where 𝑱(𝑛) ≡
∂𝐹(𝑢(𝑛))

∂𝑢
, is the Jacobian matrix computed at step, 𝑛, of the algorithm; the 

solution of (4.2), 𝛿𝑢(𝑛), is used to update the solution vector for the next iteration, 

𝑛 + 1, using: 𝑢(𝑛+1) = 𝑢(𝑛) + 𝛿𝑢(𝑛).  

For CPBs the Jacobian matrix is a highly dense matrix, and the required 

computational cost to obtain all entries of it, as well as the memory requirements to 

store them are extremely high. For a typical case of a 10,000-dimensional 𝑢(𝑛) vector, 

it would require the computation and storage of 10
8
 entries for the Jacobian matrix or 

800 MB for each iteration of the Newton-Rapshon method, since the algorithm does 

not facilitate the re-use of data from previous iterations.  

 

4.1 Broyden’s algorithm. 

An alternative is to modify the Newton-Raphson method so that approximate partial 

derivatives are used for the computation of the Jacobian at an expense of slower 

convergence. In particular, one can adopt quasi-Newton methods, which maintain 

approximations of the solution 𝑢∗ and the Jacobian at the solution 
∂𝐹(𝑢∗)

∂𝑢
 as the 

iteration progresses. If we denote with 𝑢𝑐 and 𝑱𝑐 the current approximate solution and 

Jacobian, then the solution is updated according to the relation: 

𝑢+ = 𝑢𝑐 − 𝑱𝑐
−1𝐹(𝑢𝑐). )                 (4.3) 

After the computation of 𝑢+, 𝑱𝑐is also updated to form the approximate Jacobian for 

the next step, 𝑱+; the relation used to construct 𝑱+ determines the quasi-Newton 

method. In this work, we adopt Broyden’s algorithm, which is locally superlinearly 



convergent, hence is a very powerful alternative of Newton-Rapshon method, and 

computes 𝑱+ using: 

𝑱+ = 𝑱𝑐 +
𝐹(𝑢𝑐)(𝑢+−𝑢𝑐)

𝑇

(𝑢+−𝑢𝑐)𝑇(𝑢+−𝑢𝑐)
.                  (4.4) 

Broyden’s algorithm is an example of a secant update, which means that the 

approximation for 𝑱+ satisfies the secant equation: 𝑱+(𝑢+ − 𝑢𝑐) = 𝐹(𝑢+) − 𝐹(𝑢𝑐). 

However, for problems with a dense Jacobian matrix Broyden’s algorithm (4.4) is still 

ineffective. In order to sidestep the computational and memory limitations imposed by 

the density of the Jacobian matrix, we utilize the Sherman-Morrison approach, which 

minimizes the storage requirements and incorporates only a small number of vectors 

for the update of the Jacobian’s approximations. In particular, the algorithm reads 

(Kelley, 1995): 

1. 𝑟0 = ‖𝑷
−1𝐹(𝑢0)‖2, 𝑛 = 0 

    𝑠0 = −𝑷
−1𝐹(𝑢0), 𝑖𝑡𝑐 = 0.  

2. Do while 𝑖𝑡𝑐 < 𝑚𝑎𝑥𝑖𝑡: 

  (a) 𝑛 = 𝑛 + 1; 𝑖𝑡𝑐 = 𝑖𝑡𝑐 + 1 

  (b) 𝑢𝑛 = 𝑢𝑛 + 𝑠𝑛−1 

  (c) Evaluate 𝑷−1𝐹(𝑢𝑛) 

  (d) if ‖𝑷−1𝐹(𝑢𝑛)‖2 ≤ 𝜏𝑟𝑟0 + 𝜏𝛼 exit. 

  (e) if 𝑛 < 𝑛𝑚𝑎𝑥 then 

        i.  𝑧 = −𝑷−1𝐹(𝑢𝑛) 

        ii. for 𝑗 = 0, 𝑛 − 1 

                  𝑧 = 𝑧 + 𝑠𝑗+1𝑠𝑗
𝑇𝑧/‖𝑠𝑗‖2

2
  

        iii. 𝑠𝑛+1 =
𝑧

1−
𝑠𝑛
𝑇𝑧

‖𝑠𝑗‖2

2

  

  (f) if 𝑛 = 𝑛𝑚𝑎𝑥 then 

       𝑛 = 0, 𝑠0 = −𝑷
−1𝐹(𝑢𝑛)   

 

This variant of Broyden’s algorithm uses restarting, and the storage is cleared when a 

maximum number, 𝑛𝑚𝑎𝑥, of stored vectors, 𝑠𝑗 is reached; 𝑚𝑎𝑥𝑖𝑡 is the maximum 

number of Broyden’s iterations, and 𝜏𝑟, 𝜏𝑎 are the relative and absolute tolerances 

which determine the termination criterion of the iterative process.  The matrix 𝑷 is the 

preconditioner applied in order to achieve better convergence rate. In this work, we 

use as preconditioner the Jacobian of the CPB equation at 𝑢0, and removing the 

entries resulting from the contribution of the integral term, 𝜆1
𝑚1𝜆2

𝑚2𝑔∫ ∫ �̃�𝑔d𝜉d𝜓
1

0

1

0
, 

in Eq. (2.11). Thus, we only compute a sparse banded matrix, which can be used as 

preconditioner. We report here, that according to Broyden’s algorithm reported above, 



the only expensive operation is the solution of the sparse linear system, 𝑧 =

−𝑷−1𝐹(𝑢𝑛), which is performed only once per iteration.  

Broyden’s algorithm can be trivially extended for the application of the pseudo arc-

length continuation method (Keller, 1977). In particular, we introduce one additional 

unknown variable, the bifurcation parameter, ρ (here ρ is the 𝐼𝑃𝑇𝐺 concentration 

value). Thus, the sought solution vector is the augmented, 𝑢𝑎𝑢𝑔𝑚 = [𝑢 𝜌]
𝑇. The 

residual vector, 𝐹 is augmented by one additional constraint, 𝑁, the so-called arc-

length constraint. In this work, we adopt the following formulation for constraint, 𝑁: 

𝑁 = (
𝑢𝜌1−𝑢𝜌0

𝑆1−𝑆0
)
𝑇

(𝑢 − 𝑢𝜌1) +
𝜌1−𝜌0

𝑆1−𝑆0
(𝜌 − 𝜌1) − 𝑑𝑆,              (4.5) 

where 𝑢𝜌0 , 𝑢𝜌1 are computed solutions at parameter values 𝜌0 and 𝜌1, respectively; 

𝑆1 − 𝑆0 is the Euclidean distance between the augmented vector solutions [𝑢𝜌1  𝜌1] 

and [𝑢𝜌0  𝜌0], and 𝑑𝑆 is the (user-selected) arc-length parameter step for the 

performance of the continuation algorithm. The results of the Broyden’s algorithm 

implementation in conjunction with the pseudo arc-length continuation method are 

presented in the following section. 

 

5. Results and discussion 

 In this section, we present the results of the bifurcation analysis implemented 

on the CPB model (2.11) in order to study the effect of heterogeneity on the range of 

bistability for cell populations carrying the synthetic toggle switch network. The 

computation of the steady-state solution of a nonlinear problem requires the 

application of iterative algorithms, and their success can be guaranteed when a good 

initial estimation of the sought solution is provided. This initial estimation can be 

obtained through transient simulations.  

 

5.1 Transient simulations 

 The two-dimensional CPB model (2.11) is discretized (as reported above) 

using the finite element method.  Among the different time integration techniques we 

choose the application of an explicit time-integrator, and in particular the 4
th

 order 

Runge-Kutta type, whose basic advantage is the low requirements of computational 

memory. In Fig. 3. Snapshots of the number density function, 𝑢(𝑥, 𝑦), computed from the 

simulation of (2.11)-(2.13), in combination with (3.1)-(3.2) when the initial distribution is a shifted 

bivariate Gaussian distribution (5.1). , we present snapshots of a transient simulation for the 

following set of parameter values: [𝐼𝑃𝑇𝐺] = 16.5 × 10−5𝑀, 𝑚1 = 𝑚2 = 2, 𝑓 =
0.5,  𝜆1 = 𝜆2 = 5. The computational domain, 𝛬̅ = [0,1] × [0,1], is discretized using 

4088 triangular elements, and the resulting number of degrees of freedom using 

quadratic basis functions is 8297.  

The initial condition for the transient simulation presented in Fig. 3. Snapshots 

of the number density function, 𝑢(𝑥, 𝑦), computed from the simulation of (2.11)-(2.13), in combination 

with (3.1)-(3.2) when the initial distribution is a shifted bivariate Gaussian distribution (5.1).  is a 

shifted bivariate Gaussian distribution: 

𝑢(𝑥, 𝑦, 𝑡 = 0) =
1

2𝜋𝜎1𝜎2
exp(− (

(𝑥−𝜇1)
2

2𝜎1
2 +

(𝑦−𝜇2)
2

2𝜎2
2 )),              (5.1) 



where 𝜇1, 𝜇2 are the mean values of intracellular contents 𝑥 and 𝑦, respective at t=0, 

and 𝜎1, 𝜎2 the standard deviation of 𝑥 and 𝑦. The initial distribution of the normalized 

density function, 𝑔, is the following: 

𝑔(𝜉, 𝜓, 𝑡 = 0) =
𝜆1𝜆2𝜇1𝜇2

2𝜋𝜎1𝜎2
exp (−(

(𝜆1𝜇1𝜉−𝜇1)
2

2𝜎1
2 +

(𝜆2𝜇2𝜓−𝜇2)
2

2𝜎2
2 )).             (5.2) 

The snapshots in Fig. 3. Snapshots of the number density function, 𝑢(𝑥, 𝑦), computed 

from the simulation of (2.11)-(2.13), in combination with (3.1)-(3.2) when the initial distribution is a 

shifted bivariate Gaussian distribution (5.1).  show the evolution of the number density 

function, 𝑢(𝑥, 𝑦), which is obtained from the normalized  𝑔(𝜉, 𝜓) through (2.8)-(2.9). 

The transient simulation shown in Fig. 3. Snapshots of the number density function, 𝑢(𝑥, 𝑦), 
computed from the simulation of (2.11)-(2.13), in combination with (3.1)-(3.2) when the initial 

distribution is a shifted bivariate Gaussian distribution (5.1).  also shows that the initial shifted 

Gaussian distribution evolves towards a wider steady-state solution with shorter 

amplitude at dimensionless time, t=6, at which practically a steady-state solution has 

been reached. Similar transient simulations have been performed for different IPTG 

concentration values, and f parameter values (which quantify the degree of asymmetry 

during division) for large time intervals, at the end of which the evolved distributions 

converge to steady-state solutions.  

 

 

Fig. 3. Snapshots of the number density function, 𝑢(𝑥, 𝑦), computed from the simulation of (2.11)-

(2.13), in combination with (3.1)-(3.2) when the initial distribution is a shifted bivariate Gaussian 

distribution (5.1). Parameter set values: [𝐼𝑃𝑇𝐺] = 16.5 × 10−5𝑀, 𝑚1 = 𝑚2 = 2, 𝑓 = 0.5, 𝜆1 = 𝜆2 =
5, 𝜇1 = 𝜇2 = 5, and 𝜎1 = 𝜎2 = 0.25. 

 

  

In practice, a steady-state solution can be reached when transient simulations 

are performed for time intervals, 𝑡 ∈ [0,100]. In Fig. 4. Steady-state solutions of the 

bivariate distribution 𝑢(𝑥, 𝑦) as obtained from long transient simulations, 𝑡 ∈ [0,100]. Parameter set 

values: 𝑚1 = 𝑚2 = 2, 𝜆1 = 𝜆2 = 5. The initial distribution is a bivariate Gaussian distribution (5.1), 

with, 𝜇1 = 𝜇2 = 5, and 𝜎1 = 𝜎2 = 0.25., we present the converged steady-state number 

density function distributions after long transient simulations for different [IPTG] and 

𝑓 values. 



 

 

Fig. 4. Steady-state solutions of the bivariate distribution 𝑢(𝑥, 𝑦) as obtained from long transient 

simulations, 𝑡 ∈ [0,100]. Parameter set values: 𝑚1 = 𝑚2 = 2, 𝜆1 = 𝜆2 = 5. The initial distribution is 

a bivariate Gaussian distribution (5.1), with, 𝜇1 = 𝜇2 = 5, and 𝜎1 = 𝜎2 = 0.25. 

 By increasing the extracellular inducer concentration value, [IPTG], the 

steady-state shape, 𝑢(𝑥, 𝑦) becomes wider (spreads over larger intervals of 

intracellular content). By decreasing the value of parameter, 𝑓, i.e., increasing the 

degree of heterogeneity during cell division, one can observe major quantitative, as 

well as, qualitative differences in the steady-state solution shape. In particular, by 

decreasing the value of parameter, 𝑓 the deviation of the steady-state distribution 

becomes wider and interestingly enough, for the lower presented values of 𝑓=0.25, 

the obtained distribution becomes two-humped.  

We re-iterate, that the computed steady-state solutions presented in Fig. 4. 
Steady-state solutions of the bivariate distribution 𝑢(𝑥, 𝑦) as obtained from long transient simulations, 

𝑡 ∈ [0,100]. Parameter set values: 𝑚1 = 𝑚2 = 2, 𝜆1 = 𝜆2 = 5. The initial distribution is a bivariate 

Gaussian distribution (5.1), with, 𝜇1 = 𝜇2 = 5, and 𝜎1 = 𝜎2 = 0.25. are obtained through the 

performance of long transient simulations. However, utilizing this approach to 

compute the entire solution space for different parameter values is inadequate 

especially for systems that exhibit bistability; a large number of different initial 

conditions should be tested for different sets of parameter values in order to obtain the 

different steady-state solutions, which can co-exist within -a priori unknown- 

intervals of parameter values. A more systematic way should be adopted and in 

particular we utilize bifurcation analysis techniques, e.g. the pseudo arc-length 

parametric continuation algorithm (Keller, 1977), which enables the computation of 

all possible co-existing steady-state solutions, both dynamically stable and unstable. 

The pseudo arc-length continuation method is implemented in conjunction with 

Broyden’s algorithm (Broyden, 1965) to override computational and memory 

limitations.  

 

5.2 Bifurcation analysis results 



 Initially, we present results of this analysis for different values of parameter f 

(asymmetry factor of mother content distribution during division). In Fig. 5. 
Dependence of the steady-state average intracellular , we present a typical bifurcation diagram 

illustrating the dependence of the average intracellular content, 〈𝑥〉, on the 

concentration values of the extracellular inducer. The solid lines correspond to stable 

steady-state solutions, whereas dashed lines show unstable steady-state solutions. In 

order to have a clear picture of the impact of heterogeneity on the bistability range, we 

also include in Fig. 5. Dependence of the steady-state average intracellular  the results obtained 

from the homogenous population case. One can observe that bistability is also present 

for heterogeneous populations, however its range is significantly reduced when the 

impact of heterogeneity is enhanced (by lowering, 𝑓, values).  

Starting from low IPTG concentration values, i.e., [𝐼𝑃𝑇𝐺] < 1𝜇𝛭, there is 

only one stable steady-state distribution, featuring high 〈𝑥〉, and low 〈𝑦〉 concentration 

values. By gradually increasing [𝐼𝑃𝑇𝐺], a critical turning point is encountered at 

approximately [𝐼𝑃𝑇𝐺] = 40𝜇𝛭, for all cases of studied heterogeneous and 

homogenous populations (with small discrepancies between them), which initiates a 

transition towards steady-state distributions with low intracellular content, 〈𝑥〉 (and 

respectively high 〈𝑦〉).  In a reverse experiment, where the initial IPTG concentration 

is high, i.e., [𝐼𝑃𝑇𝐺] > 100𝜇𝛭 one can observe only states with low content, 〈𝑥〉. By 

gradually reducing [𝐼𝑃𝑇𝐺], a transition towards states with high 〈𝑥〉 concentration 

values, will be initiated sooner when the degree of heterogeneity is high. By 

decreasing the value of parameter 𝑓, the range of bistability shrinks, and in particular 

for 𝑓 = 0.25 the bistability interval spans over a very narrow interval of IPTG values. 

As the degree of heterogeneity is further reduced, the range of bistability is enlarged 

and reaches its maximum for homogenous populations.  

 

 

Fig. 5. Dependence of the steady-state average intracellular concentration, 〈𝑥〉, on the IPTG 

concentration values. The lines with solid circles, rectangles and triangles correspond to heterogeneous 

populations with 𝑓 = 0.25, 0.4 and 0.5, respectively. The line with open circles corresponds to 

homogeneous cell populations. Solid and dashed lines represent stable and unstable steady-state 

solutions, respectively. Parameter set values: 𝑚1 = 𝑚2 = 0.35, 𝜆1 = 𝜆2 = 5. 



  

 In order to quantify the stability of the obtained steady-state solutions, one can 

compute the spectrum of eigenvalues of the Jacobian matrix; however as reported 

above the computation and storage of Jacobian matrix which is derived by discretized 

multidimensional CPB problems is a prohibitive task, since the Jacobian in such cases 

is a highly dense matrix. Alternatively, one can study the stability of the obtained 

steady-state solutions by performing temporal simulations with slightly perturbed 

extracellular conditions (IPTG concentration values). In particular, we use as initial 

condition the steady-state solution computed at a parameter value [IPTG]; then we 

perturb the value of [IPTG] and initiate the simulation to observe the evolution of the 

solution. If the solution converges to a nearby one, then it is characterized as 

dynamically stable; on the other hand if it diverges to a solution which is far from the 

initial distribution then it is characterized as dynamically unstable. In Fig. 6. Time 

evolution of the average intracellular contents 〈𝑥〉, 〈𝑦〉 starting from three steady-state (upper, lower, 

and intermediate branch) solutions of 𝑢(𝑥, 𝑦) computed at [𝐼𝑃𝑇𝐺] = 10−5𝑀. The extracellular inducer 

is slightly increased by 10−6𝑀. The line with filled, and open circles shows the evolution of 〈𝑥〉 
and 〈𝑦〉, respectively. Small perturbations to the (a) upper and (b) lower solution branches lead to 

nearby solutions, whereas the slightly perturbed (c) intermediate solution converges to the upper 

solution branch signifying the instability of the intermediate branch solution.
   we present the 

stability analysis performed on three co-existing steady-state solutions obtained for 

[𝐼𝑃𝑇𝐺] = 10−5𝑀 and the following set of parameter values: 𝑓 = 0.5,𝑚1 = 𝑚2 =
0.35, 𝜆1 = 𝜆2 = 5.  The extracellular condition is slightly perturbed by setting 

[𝐼𝑃𝑇𝐺] = (10−5 + 10−6)𝑀 and we initiate a long transient simulation. Starting from 

the solutions which belong to the upper and lower branches, we observe that the 

average intracellular content converge finally to a nearby solution, and the same also 

holds for the cell density function. On the other hand, when the initial condition is the 

solution belonging to the intermediate branch, we observe the solution diverging from 

its initial state and finally converging to the upper solution branch. This behavior is 

typical for dynamically unstable solutions.  

 

 

 



 

Fig. 6. Time evolution of the average intracellular contents 〈𝑥〉, 〈𝑦〉 starting from three steady-state 

(upper, lower, and intermediate branch) solutions of 𝑢(𝑥, 𝑦) computed at [𝐼𝑃𝑇𝐺] = 10−5𝑀. The 

extracellular inducer is slightly increased by 10−6𝑀. The line with filled, and open circles shows the 

evolution of 〈𝑥〉 and 〈𝑦〉, respectively. Small perturbations to the (a) upper and (b) lower solution 

branches lead to nearby solutions, whereas the slightly perturbed (c) intermediate solution converges to 

the upper solution branch signifying the instability of the intermediate branch solution.
 
  

 In addition to the previous bifurcation analysis for different values of the 

parameter 𝑓, we also perform the same analysis to study the effect of different 

parameter values that are incorporated in the CPB model. In Fig. 7, we show the 

effect of the division rate sharpness, which is quantified through parameters 𝑚1, and 

𝑚2 (division rate becomes larger by increasing the values of exponents  𝑚1, and 𝑚2). 
One can observe that the change in division rate has little effect on the position of the 

right turning point value, which signifies transitions from populations featuring high 

〈𝑥〉 average concentration values, towards populations with low average 〈𝑥〉 
phenotypes. However, it has significant impact on the bistability range, when an 

inverse transition is attempted; in particular, by increasing the sharpness rate the 

bistability range is enlarged, and the position of the left turning point is located at 

lower [𝐼𝑃𝑇𝐺] values. 



 

Fig. 7. Dependence of the steady-state average intracellular content, 〈𝑥〉 on the extracellular inducer 

concentration, [𝐼𝑃𝑇𝐺] for different single-cell division rates. Lines with solid circles correspond to 

lower division rate (𝑚1 = 𝑚2 = 0.29); lines with solid rectangles correspond to intermediate division 

rate (𝑚1 = 𝑚2 = 0.35) and lines with solid triangles depict solutions for higher division rate (𝑚1 =
𝑚2 = 0.38). Lines with open circles corresponds to homogeneous populations. Parameter values for 

the solution of CPB: 𝑓 = 0.5, 𝜆1 = 𝜆2 = 5. 

 

 Finally, we examine the effect of promoter 1 repression cooperativity, 𝛽, on 

the range of bistability range, as illustrated in Fig. 8. . The position of the right turning 

point remains practically invariant for all examined cases of parameter value, 𝛽. On 

the other hand, the left turning point which signifies transitions from states of low 

average 〈𝑥〉 phenotype, towards states of 〈𝑥〉 values, moves towards lower [𝐼𝑃𝑇𝐺] 
concentration values as 𝛽 value increases. We report that the same behavior is also 

observed for homogeneous populations (see Fig. 2), however in all cases of  𝛽 values 

the range of bistability shrinks in comparison with the ones observed for 

homogeneous populations. 



 

Fig. 8. Dependence of the steady-state average intracellular content, 〈𝑥〉 on the extracellular inducer 

concentration, [𝐼𝑃𝑇𝐺] for values of the promoter 2 repression cooperativity, 𝛽. Lines with solid circles 

correspond to 𝛽 = 2.3; lines with solid rectangles correspond to 𝛽 = 2.4 and lines with solid triangles 

depict solutions for higher 𝛽 values (𝛽 = 2.5). Parameter values for the solution of CPB: 𝑓 = 0.5, 

𝜆1 = 𝜆2 = 5.  

  

Conclusions  

 The primary goal of this work is to study the impact of heterogeneity on the 

steady-state (time invariant) phenotype of isogenic populations featuring nonlinear 

behavior. In particular, we study isogenic populations carrying the synthetic toggle 

switch, which at the single-cell exhibits phenotypic multiplicity within a certain range 

of extracellular conditions, e.g., extracellular inducer concentration.  

Cell heterogeneity is incorporated by adopting the CPB modeling approach, 

which consists of partial-integro-differential equations. These models can describe the 

effect of the so-called extrinsic heterogeneity, which is present due to the uneven 

distribution of cell content amongst the daughter cells during division. In addition, the 

intracellular reaction network is also incorporated and the division rate of each 

individual of the population. Among the different numerical methods existing for the 

numerical solution of CPBs, we adopt a finite element method framework, combined 

with a free boundary formulation as shown in (Kavousanakis et al., 2009), which 

surpasses numerical impediments originating from the fact that the physiological state 

space boundaries are not known a priori. This formulation is based on the assumption 

that the maximum intracellular content is a multiple of the average content, which is 

computed on the fly along with the solution of the CPB equation. 

We demonstrate this modeling approach on cell populations which carry the 

synthetic toggle switch, where each individual is characterized by two intracellular 

variables (two-dimensional CPB equation). Since we are interested in studying the 

steady-state behavior of such populations as a function of the extracellular 

environment, we need to utilize iterative algorithms for the solution of large sets of 

nonlinear equations, which are derived from the discretization of CPBs using the 

finite element method. However, the standard Newton-Raphson iteration algorithm is 



practically non-applicable for the case of multidimensional CPBs, since it requires at 

each iteration the computation, storage, and treatment of the Jacobian matrix, which 

in this case is a highly dense matrix. 

An alternative approach is to solve nonlinear sets of equations with pseudo-

Newton algorithms, which use only approximations of the Jacobian at the cost of 

convergence rate. The method used in this work is the Broyden’s algorithm (Broyden, 

1965), which updates the Jacobian matrix at each iteration using its estimation at the 

previous step. We can further reduce the computational cost by applying the 

Sherman-Morrison approach (Kelley, 1995) which utilizes and stores only a small 

number of vectors, in order to update of the approximate Jacobian matrix, and the 

sought solution vector.  

Broyden’s algorithm is combined with the pseudo arc-length parametric 

continuation algorithm (Keller, 1977) in order to track the entire solution space, 

including both stable and unstable solutions. By adopting this numerical framework 

we are able to produce bifurcation diagrams, which clearly depict a range of 

extracellular conditions within which multiple steady-state solutions can co-exist, as 

also shown for the simplified case of homogeneous populations. The comparison of 

heterogeneous and homogeneous populations, shows clearly that as we enhance the 

effect of heterogeneity the bistability interval shrinks, and the transition between 

states of utterly different phenotypes is more rapid. In particular, when we study the 

dependence of phenotypes on the extracellular inducer IPTG concentration we 

observe that the low end of bistability interval tends towards higher IPTG values as 

we increase the effect of heterogeneity. By performing the same analysis for different 

sets of parameter values, we also examine the effect of cell division rate, which shows 

that higher division rates yield wider bistability range.  

Thus, it is evident that cell heterogeneity is a critical factor that needs to be 

addressed in all modeling approaches for the simulation of biological systems. 

Neglecting its effect can lead to false quantitative and qualitative predictions. In this 

paper, we emphasize on the study of the extrinsic heterogeneity which can be 

addressed with the use of CPBs. It is also of high interest to examine the effect of the 

second type of heterogeneity, the so-called intrinsic heterogeneity, which originates 

from stochastic noise during intracellular reactions. This study stands beyond the 

scope of the current work, and requires the development of stochastic models as 

presented in (Aviziotis, Kavousanakis, Bitsanis, et al., 2015; Aviziotis, Kavousanakis, 

& Boudouvis, 2015). In particular, kinetic Monte Carlo algorithms can be developed 

in order to simulate the effect of intrinsic parameters that cannot be incorporated 

through deterministic modeling.  
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