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ABSTRACT 

 

Developing reduced-order models for nonlinear parabolic partial differential equation 

(PDE) systems with time-varying spatial domains remains a key challenge as the dominant 

spatial patterns of the system change with time. To address this issue, there have been several 

studies where the time-varying spatial domain is transformed to the time-invariant spatial domain 

by using an analytical expression that describes how the spatial domain changes with time. 

However, this information is not available in many real-world applications, and therefore, the 

approach is not generally applicable. This study aims to overcome this challenge by introducing 

sparse proper orthogonal decomposition (SPOD)-Galerkin methodology. The proposed 

methodology exploits the key features of ridge and lasso regularization techniques for the model 

order reduction of such systems. This methodology is successfully applied to a hydraulic 

fracturing process, and a series of simulation results indicates that it is more accurate in 

approximating the original nonlinear system than the standard POD-Galerkin methodology.  
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1. INTRODUCTION 

 

A large number of industrial control problems involve highly nonlinear parabolic PDE 

systems with time-varying spatial domains such as hydraulic fracturing, crystal growth, and 

metal casting. Developing high-fidelity models from first-principles has been one of the most 

important research areas to achieve a fundamental understanding of these systems. However, it is 

not practical to employ these computationally expensive high-fidelity models for the design of 

real-time model-based feedback control systems. Motivated by this, model order reduction 

(MOR) has become an active research area and efforts in this field to develop new MOR 

techniques for significant CPU time reductions at the expense of model accuracy are progressing 

at a surprising pace (Benner et al., 2015, Rowley and Dawson, 2017). 

MOR techniques are based on an observation that very often the solution of a large-scale 

complex system resides on a subspace whose dimension is lower than that of the original system. 

Many MOR techniques have been introduced and implemented in a variety of applications. For 

example, Nagy (1979) described modal representation of geometrically nonlinear behavior by 

the finite element method. Noor et al. (1981) and Noor and Peters (1981) presented reduced basis 

techniques for collapse analysis of shells and for predicting the post-limit-point paths of 

structures, respectively. Peterson (1989) introduced a reduced basis method for incompressible 

viscous flow calculations. Verhaegen and Dewilde (1992) presented algorithms to realize a finite 

dimensional, linear time-invariant state-space model from input-output data. Van Overschee and 

De Moor (1994) presented subspace algorithms to identify mixed deterministic-stochastic 
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systems. Schmid (2010) introduced dynamic mode decomposition to extract dynamic 

information from flow fields. Today, perhaps one of the most popular MOR techniques is based 

on proper orthogonal decomposition (POD) which is also known as Karhunen–Loéve analysis 

(Algazi and Sakrison, 1969, Graham and Kevrekidis, 1996, Glavaski et al., Rathinam and 

Petzold, 2002, Rathinam and Petzold, 2003, Shvartsman and Kevrekidis, 1998, Shvartsman et 

al., 2000, Willcox and Peraire, 2002). In POD, a set of empirical basis functions that captures 

dominant spatial patterns of the system is computed from spatiotemporal data obtained via 

experiments or large-scale high-fidelity simulations. In 1987, Sirovich introduced the method of 

snapshots to compute basis functions without calculating the kernel necessary for POD 

(Sirovich, 1987a, Sirovich, 1987b). This method is based on the assumption that each basis 

function can be represented by a linear combination of the snapshots. The obtained basis 

functions are then used in a projection method such as Galerkin’s projection method to derive 

low-dimensional ordinary differential equation systems (ODEs) which approximate the original 

high-dimensional PDE systems.  

The POD-based MOR techniques have been traditionally applied to various systems 

characterized by time-invariant spatial domains. For example, empirical basis functions 

computed via POD have been employed to derive accurate reduced-order models (ROMs) for 

dissipative PDEs arising in the modeling of reaction-diffusion systems and fluid flows (Baker 

and Christofides, 2000, Bangia et al., 1997, Park and Cho, 1996, Park and Jang, 2000, Park and 

Lee, 1998, Shvartsman and Kevrekidis, 1998). Other applications include, but are not limited to, 

Burgers equation (Kunisch and Volkwein, 1999), rapid thermal chemical vapor deposition 

processes (Baker and Christofides, 2000), batch electrochemical reactors (Zhou et al., 2001), 
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sheet forming processes (Arkun and Kayihan, 1998), and groundwater flow (McPhee and Yeh, 

2008). 

Although POD-based MOR techniques have been successfully implemented to develop 

accurate ROMs for parabolic PDE systems with time-invariant spatial domains, there are only 

few studies on parabolic PDE systems with time-varying spatial domains. Specifically, Armaou 

and Christofides (Armaou and Christofides, 2001a, Armaou and Christofides, 2001b, Armaou 

and Christofides, 2001c) employed an analytical expression that describes how the spatial 

domain changes with time to mathematically transform the time-varying spatial domain to the 

time-invariant one. Then, POD was applied to the transformed time-invariant spatial domain to 

compute a set of empirical basis functions for MOR of one-dimensional reaction- diffusion 

systems. Furthermore, a group of efforts was made to develop a new MOR technique by 

preserving the invariant properties of the system while transforming the time-varying spatial 

domain to the time-invariant one. Specifically, Fogleman et al. (2004) applied POD to the 

spatiotemporal data of internal combustion engine flows to compute phase-invariant basis 

functions. They transformed the flow velocity defined on a moving grid into a fixed grid in such 

a way that the divergence-free (continuity) property of the original velocity field is preserved. 

Izadi and Dubljevic (2013) introduced a mapping functional which relates the time-evolution of 

the solution of a parabolic PDE with time-varying spatial domains to the one on a fixed reference 

domain such that space invariant properties (e.g., thermal energy or density) of the data are 

preserved. They applied this method to develop ROMs of nonlinear reaction-diffusion systems 

and Czochralski crystal growth processes. Recently, Narasingam et al. (2017) proposed a 

temporally local MOR technique by partitioning the temporal domain into multiple temporal 

subdomains using global optimum search (GOS) framework. Then, they applied POD within 
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each temporal subdomain to compute a set of temporally local basis functions that captures the 

dominant spatial patterns of the system more effectively than the temporally global basis 

functions. They employed this method to develop a ROM that describes fracture propagation in a 

hydraulic fracturing process. 

Motivated by these earlier efforts, we have adopted the idea of sparse principal 

component analysis (PCA) from Zou et al. (2006) and applied this idea to develop sparse proper 

orthogonal decomposition (SPOD) for the MOR of parabolic PDE systems with moving 

boundaries. Even though PCA and POD are known to be mathematically equivalent, the 

implementation of SPOD along with Galerkin’s projection framework to develop a ROM for 

moving boundary problems is not a trivial task. Therefore, based on (Zou et al., 2006), we have 

illustrated steps required to compute basis functions via SPOD and used the basis functions in 

Galerkin’s projection method to derive a ROM of hydraulic fracturing. Hydraulic fracturing is an 

important moving boundary problem in chemical and petroleum engineering and developing an 

accurate ROM will be beneficial for future research directions such as designing optimal 

pumping schedules to enhance the productivity of produced wells. 

The organization of this thesis is as follows. First, a detailed procedure for transforming 

the time-varying spatial domain to the time-invariant one is presented and the necessity of a new 

model reduction technique for moving boundary problems is justified. Second, a brief 

introduction of the concepts and mathematical formulations for regularization techniques such as 

lasso, ridge and naive elastic net used in SPOD algorithm is provided. Third, the proposed 

methodology is addressed and a comprehensive algorithm to obtain a ROM using the basis 

functions obtained by SPOD is presented. Fourth, the application of the proposed methodology 

to develop a ROM for a highly nonlinear parabolic PDE system with moving boundaries 
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describing the fracture propagation in a hydraulic fracturing process is described. Lastly, a series 

of results is presented that demonstrates the accuracy of the proposed methodology in developing 

a ROM compared to the standard POD-Galerkin methodology as well as local proper orthogonal 

decomposition (LPOD)-Galerkin methodology (Narasingam et al., 2017). 
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2. PROBLEM STATEMENT 

 

In parabolic PDE systems with moving boundaries, the main obstacle in developing an 

accurate ROM is that the dominant spatial patterns of the system change with time, which are not 

able to be captured by the standard POD. As mentioned in previous section, many researchers 

have tried to address this challenge by transforming the time-varying spatial domain to the time-

invariant one. Based on this approach, we introduce a new methodology for MOR of a parabolic 

PDE system with moving boundaries describing the fracture propagation in a hydraulic 

fracturing process where an analytical expression describing how the spatial domain changes 

with time is unavailable, because the boundary of the spatial domain is a part of the solution to 

be determined along with other in-domain solutions. In this work, the time-varying spatial 

domain is viewed as a time-invariant one by leveraging the fact that the fracture width is zero 

when the fracture does not propagate to a specified spatial location. More specifically, the spatial 

domain where the fracture has not propagated is considered as a fictitious domain with zero 

width. This approach will result in a modified spatiotemporal data matrix as shown in Eq. (1) 

that has nonzero values in the upper triangular part and 0’s in the lower triangular part. The 

upper triangular part represents the spatial locations where the fracture has propagated and the 

lower triangular part with 0’s corresponds to the spatial locations where the fracture has not 

propagated yet. Please note that in the modified spatiotemporal data matrix, each row implies the 

temporal profile of fracture width at a particular location and each column indicates the spatial  
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profile of fracture width at a particular time. Incorporating zeros in the spatiotemporal data 

matrix will result in spurious spatial patterns that are not present in the original system. 

Consequently, it is not feasible to build accurate ROMs that capture the dominant process 

dynamics with the affordable number of global (with respect to time) basis functions.  

 Modified spatiotemporal data matrix =

[
 
 
 
 
𝑤11

0
0
⋮
0

𝑤12

𝑤22

0
⋮
0

…
…

𝑤33

⋱
⋯

…
…
…
⋱
…

𝑤1𝑛

𝑤2𝑛

𝑤3𝑛

⋮
𝑤𝑚𝑛]

 
 
 
 

 (1) 

Recently, there have been key developments driven by applying data science techniques 

to chemical engineering applications, particularly to biological and energy systems (Carothers, 

2013, Carothers et al., 2009, Dubey et al., 2006, Khorshidi and Peterson, 2016, Kieslich et al., 

2016a, Kieslich et al., 2016b, Lee and Lee, 2006, Lee and Wong, 2010, Lee and Lee, 2005, Qin, 

2014, Wilson and Sahinidis, 2017). Motivated by these earlier efforts, we exploit the key features 

of regularization techniques such as lasso, ridge, and naive elastic net to deal with the spurious 

spatial patterns that may arise due to the addition of zeros while constructing a ROM to describe 

the fracture propagation in a hydraulic fracturing process.
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3. THE LASSO, RIDGE AND THE NAÏVE ELASTIC NET 

 

Consider the data set that has m observations and q predictors. Let Y = (𝑦1,⋯ , 𝑦𝑚)𝑇 be 

the response vector and 𝐗 = [𝑋1, ⋯ , 𝑋𝑞] where for 𝑋𝑗 = (𝑥1𝑗 , ⋯ , 𝑥𝑚𝑗)
𝑇 for 𝑗 = 1,⋯ , 𝑞 be the 

predictors. By assuming all the predictors in X are normalized to have zero mean and unit 

variance and the response Y is normalized to have zero mean, we can write a standard linear 

multiple regression problem as follows:  

 𝑦𝑖 = ∑𝛽𝑗𝑥𝑖𝑗 + 𝑒𝑖

𝑞

𝑗=1

,          𝑖 = 1,2,⋯ ,𝑚 (2) 

where 𝑒1, 𝑒2, ⋯ , 𝑒𝑚 are the error terms and 𝛽 = [𝛽1, 𝛽2,⋯ , 𝛽𝑞]
𝑇
are the regression coefficients. In 

ordinary least squares (OLS) regression analysis, these coefficients are estimated by minimizing 

the squared sum of residual (or error). Since the coefficients estimated by OLS have low bias but 

large variance, they perform poorly in prediction. This limitation of OLS can be handled by a 

regularization technique named ridge regression (Hoerl and Kennard, 1988) that imposes an 

additional 𝐿2-penalty, ∑ |𝛽𝑗|
2𝑞

𝑗=1 , on the regression coefficients. To estimate the coefficients by 

ridge technique, 𝛽̂𝑟𝑖𝑑𝑔𝑒, we minimize 

 ‖𝑌 − ∑𝑋𝑗𝛽𝑗

𝑞

𝑗=1

‖

2

+ 𝜆2 ∑|𝛽𝑗|
2

𝑞

𝑗=1

 (3) 

where 𝜆2 is a non-negative parameter. Ridge regression improves the prediction accuracy of 

OLS via bias-variance trade-off. However, ridge regression always keeps all the predictors in the 
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model because of which it is not possible to produce a parsimonious model. With an objective to 

remove redundant predictors from the model, a new regularization technique named lasso 

(Tibshirani, 1996) was introduced that imposes an additional 𝐿1-penalty, ∑ |𝛽𝑗|
𝑞
𝑗=1 , on the 

regression coefficients. To estimate the coefficients by lasso, 𝛽̂𝑙𝑎𝑠𝑠𝑜, we minimize 

 ‖𝑌 − ∑𝑋𝑗𝛽𝑗

𝑞

𝑗=1

‖

2

+ 𝜆1 ∑|𝛽𝑗|

𝑞

𝑗=1

 (4) 

where owing to the nature of 𝐿1-penalty, some coefficients will become exact zero if 𝜆1 (non-

negative parameter) is sufficiently large. Despite its success in many applications, lasso has some 

limitations (Zou and Hastie, 2005). The most relevant one to the purpose of this work, 

developing SPOD and applying it to moving boundary problems, is that the number of variables 

selected by lasso are limited by the number of observations. More specifically, if 𝑞 ≫ 𝑚, lasso 

can select at most m predictors (Efron et al., 2004). To overcome this major drawback, Zou and 

Hastie (2005) proposed a new technique named naive elastic net. For any non-negative 𝜆1 and 

𝜆2, the coefficients can be estimated by naive elastic net, 𝛽̂𝑒𝑛, as follows: 

 𝛽̂𝑒𝑛 = argmin
𝛽

‖𝑌 − ∑𝑋𝑗𝛽𝑗

𝑞

𝑗=1

‖

2

+ 𝜆2 ∑|𝛽𝑗|
2

𝑞

𝑗=1

+ 𝜆1 ∑|𝛽𝑗|

𝑞

𝑗=1

 (5) 

where given a fixed 𝜆2, LARS-EN algorithm (Zou and Hastie, 2005) can be used to solve Eq. (5) 

for all 𝜆1. When 𝑚 ≥ 𝑞, the value of 𝜆2 can be zero. When 𝑞 > 𝑚, we choose 𝜆2 > 0, because 

then the naive elastic net can potentially include all variables in the model, and thus, it can deal 

with the aforementioned drawback of lasso.
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4. SPOD-GALERKIN METHODOLOGY 

 

In this section, we present SPOD for MOR of nonlinear parabolic PDE systems with 

moving boundaries. Let 𝐗 ∈ ℝ𝑛×𝑝 be the ensemble of snapshots where n and p are the number of 

spatial measurements and the number of snapshots, respectively. The matrix X is obtained after 

solving the high-fidelity model (or equivalently, by obtaining the experimental measurements) 

and incorporating zeros into the spatiotemporal data with an objective to transform the time-

varying spatial domain to the time-invariant one. SPOD employs the naive elastic net technique 

which is a convex combination of ridge and lasso penalties as described in Section 3 to obtain 

the basis functions. Specifically, the ridge penalty plays a crucial role to reconstruct the basis 

functions for spatiotemporal data with any dimensions (𝑛 ≥ 𝑝 or 𝑛 < 𝑝), whereas the lasso 

penalty mitigates the impact of added zeros by neglecting redundant snapshots from X. 

Therefore, SPOD generates basis functions that are able to capture the dominant spatial patterns 

of the original moving boundary system in an effective way (from the standpoint of model 

accuracy) as compared to the standard POD method. 

We now present the methodology to obtain basis functions by employing the close 

connection between POD and singular value decomposition (SVD) of the spatiotemporal data 

matrix X (Kunisch and Volkwein, 1999, Kunisch and Volkwein, 2001, Pinnau, 2008). Let the 

SVD of X be 

 𝐗 = 𝐔𝐃𝐕𝐓 (6) 
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where U is an 𝑛 × 𝑛 orthonormal matrix, D is an 𝑛 × 𝑝 diagonal matrix having only non-

negative and non-increasing entries on the diagonal and V is an 𝑝 × 𝑝 orthogonal matrix. The 

columns {𝑈𝑗}𝑗=1

𝑛
 of U are the left singular vectors of X, the non-zero entries of D are the singular 

values of X and the columns {𝑉}𝑖=1
𝑝

 of V are the right singular vectors of X. It then follows that 

the POD basis functions may be expressed in terms of the singular values and the right singular 

vectors of X as follows: 

 𝚽𝒊 =
1

𝜎𝑖
𝐗𝑉𝑖 (7) 

where Φ𝑖 is the 𝑖𝑡ℎ basis function, 𝜎𝑖 is the 𝑖𝑡ℎ singular value of X, 𝑉𝑖 is the 𝑖𝑡ℎ column of V. 

Next, we select k basis functions that describe the dominant spatial patterns of the system by 

using the first k singular values (𝜎1
2 ≥ ⋯𝜎𝑘

2 ≥ ⋯𝜎𝑛
2) to build a ROM. Such a method of 

determining POD basis functions is also called the method of snapshots (Sirovich, 1987a, 

Sirovich, 1987b). Note that the product of the 𝑖𝑡ℎ basis function and 𝑖𝑡ℎ singular value of X, i.e., 

𝑍𝑖 = Φi𝜎𝑖 = 𝐗𝑉𝑖, is a linear combination of the p snapshots, X , and thus, we can obtain the  𝑖𝑡ℎ 

right singular vector 𝑉𝑖 by regressing 𝑍𝑖 on the p snapshots, X. For any non-negative 𝜆1 and 𝜆2, 

the regression coefficients estimated by naive elastic net, 𝛽̂𝑒𝑛, are given by 

 𝛽̂𝑒𝑛 = argmin
𝛽

‖𝑍𝑖 − 𝐗𝛽‖2 + 𝜆2‖𝛽‖2 + 𝜆1‖𝛽‖1 (8) 

Where 𝛽 = [𝛽1, 𝛽2, … , 𝛽𝑝], ‖𝛽‖1 = ∑ |𝛽𝑗|
𝑝
𝑗=1  and 𝑉̂𝑖 =

𝛽̂𝑒𝑛

‖𝛽̂𝑒𝑛‖
 denotes an approximation to 𝑉𝑖. The 

𝐿1-penalty plays an important role by penalizing the regression coefficients (i.e., the elements of 

𝛽̂𝑒𝑛), to achieve a sparse approximation, i.e., 𝑉̂𝑖 to the 𝑖𝑡ℎ right singular vector. This 

approximation will be used to alleviate the impact of added zeros by neglecting redundant 

snapshots from the spatiotemporal data matrix while constructing the 𝑖𝑡ℎ basis function. One 



 

12 

 

drawback of Eq. (8) is that it cannot be used to determine sparse approximations to right singular 

vectors without obtaining the POD basis functions from the method of snapshots. To overcome 

this challenge, we employed the self-contained regression developed by (Zou et al., 2006) for 

sparse principal component analysis (SPCA). Using the self-contained regression, SPOD can be 

reformulated as the following optimization problem to determine the approximations to the first 

k right singular vectors of X: 

 

(𝐀̂, 𝐁̂) =  argmin
𝐀,𝐁

∑‖𝒙𝒊 − 𝐀𝐁𝑇𝒙𝒊‖
2

𝑛

𝑖=1

+ 𝜆2 ∑‖𝛽𝑗‖
2

𝑘

𝑗=1

+ ∑𝜆1,𝑗‖𝛽𝑗‖1

𝑘

𝑗=1

 

𝑠. 𝑡.  𝐀𝐓𝐀 =  𝐼𝑘×𝑘 

(9) 

where 𝒙𝒊 denotes the 𝑖𝑡ℎ row vector of the matrix X, 𝐀𝒑×𝒌 = [𝛼1, … , 𝛼𝑘] and 𝐁𝒑×𝒌 =

[𝛽1, … , 𝛽𝑘] are the parameters that will be solved to minimize Eq. (9) , 𝜆2 is the ridge penalty 

coefficient and 𝜆1,𝑗 is the lasso penalty coefficient that determines the degree of sparsity of the 

approximation corresponding to the 𝑗𝑡ℎ right singular vector. Then, for a pair of non-negative 

parameters 𝜆2  and 𝜆1,𝑗, 𝑉̂𝑗 =
𝛽̂𝑗

‖𝛽̂𝑗‖
 is a sparse approximation to 𝑉𝑗 and Φ̂𝒋 =

1

𝜎𝑗
𝐗𝑉̂𝑗 is the basis 

function obtained by SPOD for 𝑗 = 1, 2, … , 𝑘. Furthermore, for 𝑝 > 𝑛 data, by letting 𝐁 = 𝐀 in 

Eq. (9) and removing the lasso penalty, the proposed SPOD reduces to the standard POD. 

For 𝑛 ≥ 𝑝 data, the default choice of 𝜆2 can be zero. For 𝑝 > 𝑛 data, i.e., the number of 

snapshots are greater than the number of spatial points, which is usually the case in moving 

boundary problems. Eq. (9) is valid for all 𝜆2 > 0, so in principle we can select any positive 𝜆2. 

In particular, Eq. (9) can be reduced to the following optimization problem if 𝜆2 is set to be a 

large value (Zou et al., 2006). 
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 (𝐀̂, 𝐁̂) =  argmin
𝐀,𝐁

−2tr(𝐀𝐓𝐗𝐓𝐗𝐁) + ∑‖𝛽𝑗‖
2

𝑘

𝑗=1

+ ∑𝜆1,𝑗‖𝛽𝑗‖1

𝑘

𝑗=1

 

(10) 

𝑠. 𝑡.  𝐀𝐓𝐀 = 𝐼𝑘×𝑘 

An iterative algorithm, which is introduced by Zou et al. (2006) can be employed to obtain the 

parameters 𝐀̂ and 𝐁̂ without computing the POD basis functions. 

 Let (Φ𝑖, 𝑖 = 1,⋯ , 𝑘, 𝑘 + 1) be the first 𝑘 + 1 basis functions computed by the standard 

POD method and (Φ̂𝑖, 𝑖 = 1,⋯ , 𝑘, 𝑘 + 1)  be the first 𝑘 + 1  basis functions computed by the 

proposed SPOD method. In POD, Φ𝑘+1 is not correlated with (Φ𝑖, 𝑖 = 1, 2,⋯ , 𝑘), and 

therefore, the total energy occupied by the first 𝑘 + 1  basis functions is the sum of the energy by 

the first k basis functions and the additional energy from Φ𝑘+1. However, SPOD does not 

explicitly impose a constraint that enforces Φ̂𝑘+1 to be uncorrelated with (Φ̂𝑖, 𝑖 = 1,⋯ , 𝑘), 

because of which its energy may contain contributions from (Φ̂𝑖, 𝑖 = 1,⋯ , 𝑘). Therefore, its 

energy cannot be directly added to the energy occupied by the first k basis functions to obtain the 

energy occupied by the first 𝑘 + 1 basis functions. To overcome this challenge, Zou et al. (2006) 

suggested a regression projection method to remove the linear dependence between the 

correlated basis functions. According to this method, 𝑇𝑗, which is the residual after removing the 

correlation of Φ̂𝑗 with Φ̂1, … , Φ̂𝑗−1 can be written as follows: 

 𝑇𝑗 = Φ̂𝑗 − 𝐇1,⋯ ,𝑗−1 Φ̂𝑗 (11) 

where 𝐇1,⋯ ,𝑗−1 is the projection matrix onto the subspace spanned by {Φ̂𝑖}1
𝑗−1

. Then, the energy 

occupied by Φ̂𝑗 after removing the contribution from is Φ̂1, … , Φ̂𝑗−1 is ‖𝑇𝑗‖
2
. Therefore, total 

energy occupied by the first k basis functions is defined as ∑ ‖𝑇𝑗‖
2𝑘

𝑗=1 . 
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 After normalization, the computed basis functions, Φ̂, via SPOD can be used in the 

Galerkin’s projection method to derive low- dimensional ODE systems that accurately describe 

the dominant dynamics of the parabolic PDE systems with moving boundaries. In Galerkin’s 

projection method, we obtain the low-dimensional ODE system by replacing the state variable, 

𝑥(𝑧, 𝑡), as follows: 

 𝑥(𝑧, 𝑡) = ∑𝑎𝑖(𝑡)Φ̂𝑖(𝑧)

𝑘

𝑖=1

 (12) 

where z is the spatial coordinate, t is the time coordinate, and 𝑎𝑖′𝑠 are the time-dependent 

coefficients. Finally, the derived system of ODEs can be numerically integrated to obtain the 

time-dependent coefficients, which will be used to compute a solution which approximates the 

full-order solution. 

4.1 SPOD-Galerkin Algorithm 

1. Obtain N snapshots by solving the high-fidelity model (or equivalently, by obtaining the 

experimental measurements) and incorporating zeros to transform the time-varying 

spatial domain to the time-invariant one.  

2. Solve the naive elastic net problem described in Eq. (10) to obtain 𝐁̂.  

3. Obtain the sparse approximations, 𝐕̂𝑝×𝑘 = [𝑉̂1, … , 𝑉̂𝑘], to the first k right singular vectors 

of X, by normalizing the columns of 𝐁̂. 

4. Compute the basis functions, {Φ̂𝑖}𝑖=1

𝑘
, by multiplying the data matrix, X, with the 

obtained sparse approximation to the right singular vectors, 𝐕̂𝑝×𝑘 = [𝑉̂1, … , 𝑉̂𝑘], and the 

corresponding singular value 𝜎𝑖 as follows: 
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Φ̂𝑖 =
1

𝜎𝑖
𝐗𝑉̂𝑖 

5.  Apply the Galerkin’s projection method after normalizing the obtained basis functions to 

derive a low-dimensional ODE system. 

6. Numerically integrate the low-dimensional ODE system to obtain the time-dependent 

coefficients in Galerkin’s projection method, which will be used to compute a low-order 

solution which approximates the full-order solution.   

 The tuning parameters 𝜆1,𝑗 should be selected such that each basis function obtained by 

SPOD algorithm has the energy similar to that of the corresponding basis function obtained from 

the standard POD (Zou et al., 2006). Please note that the energy occupied by the first k basis 

functions can be obtained by decomposing Φ̂ = [Φ̂1, … , Φ̂𝑘] into a product of two matrices, Φ̂ =

𝐐𝐑 where Q is the orthonormal matrix and R is the upper triangular matrix as described by Zou 

et al. (2006) and Gajjar et al. (2017). It then follows that ‖𝑇𝑗‖
2

= 𝐑𝑗𝑗
2 and thus, the total energy 

occupied by the first k basis functions is equal to ∑ 𝐑𝑗𝑗
2𝑘

𝑗=1 . 



*Reprinted with permission from “Model order reduction of nonlinear parabolic PDE systems with moving 

boundaries using sparse proper orthogonal decomposition: Application to hydraulic fracturing” by Sidhu, H. S., 

Narasingam, A., Siddhamshetty, P. and Kwon, J. S. I., 2017. Computers & Chemical Engineering, 112, 92-100, 

Copyright 2018 by Harwinder Singh Sidhu. 
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5. APPLICATION TO HYDRAULIC FRACTURING PROCESS 

 

5.1 Hydraulic fracturing process 

 Unconventional natural-gas resources such as shale gas, coalbed (coal-seam) methane, 

gas hydrates are trapped in rock formations of very low porosity (2% or less) and low-

permeability (0.01 to 0.0001 mD or even less) (Nikolaou, 2013). Therefore, the trapped gas 

cannot be extracted economically without stimulation. This challenge is addressed by the 

combination of directional drilling (Watters and Dunn-Norman, 1998) and hydraulic fracturing 

(Economides and Nolte, 1989) techniques that lead to the shale gas revolution. 

 A hydraulic fracturing process begins with a perforation technique, in which a well is 

drilled and a wire equipped with explosive charges is dropped into the well to create initial 

fracture channels. Then, a high-pressure clean fluid (called pad) is introduced to propagate the 

fractures in the rock formation at perforated sites. Subsequently, a fracturing fluid consisting of 

water, additives, and proppant is pumped into the wellbore at sufficiently high pressure and flow 

rate for further fracture propagation. Once the pumping is stopped, the fractures are closed due to 

the natural stress of the rock formation. During the closure process, the remaining fluid is 

allowed to leak off to the rock formation and the proppant is trapped inside the fracture walls. At 

the end of pumping, the concentration of this trapped proppant should be uniform along the 

fracture so that it can result in the formation of spatially uniform conductive channels to help 

effective extraction of the oil and gas from the reservoir (Siddhamshetty et al., 2017a, 
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Siddhamshetty et al., 2017b, Yang et al., 2017, Narasingam and Kwon, 2017, Narasingam et al., 

2018, Siddhamshetty et al., 2018). 

5.2 Modeling of fracture propagation 

 In this study, we apply the proposed SPOD-Galerkin projection methodology to build a 

ROM for a nonlinear parabolic PDE system with moving boundaries describing the fracture 

propagation in a hydraulic fracturing process. The dynamic model used to describe the fracture 

propagation is adopted from Siddhamshetty et al. (2017a) and is based on the following 

assumptions: (1) fracture propagation is described by Perkins, Kern, and Nordgren (PKN) model; 

(2) the rock properties (e.g., Young’s modulus) remain constant with respect to time and space; 

(3) the formation layers below and above are where the fractures have sufficiently large stresses 

such that vertical fracture is confined within a single horizontal rock layer; and (4) the fracture 

length is much greater than its width, and as a result the fluid pressure across the vertical 

direction is constant. 

 A brief description of the model equations is presented below.  The fluid flow rate in the 

horizontal direction is determined by the following equation for flow of a Newtonian fluid in an 

elliptical section (Nordgren, 1972, Economides and Nolte, 1989) 

 
𝑑𝑃

𝑑𝑧
= −

64µ𝑄

𝜋𝐻𝑊3
 (13) 

Where P is the net pressure, 𝑧 ∈ [0, 𝐿(𝑡)] is the time-dependent spatial coordinate in the 

horizontal direction, µ is the fluid viscosity, 𝑸 is the local flow rate in the horizontal direction, H 

is the fracture height, and W is the fracture width. 
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 For a rock under constant normal pressure, the fracture shape is elliptical as shown in Fig. 

1. The relationship between the maximum fracture width (i.e., the minor axis of the ellipse) and 

the net fluid pressure is calculated using the following equation (Sneddon and Elliot, 1946, 

Gudmundsson, 1983): 

 𝑊 =
2𝑃𝐻(1 − 𝜈2)

𝐸
 (14) 

Where ν is the Poisson ratio of the formation, and E is the Young’s modulus of rock formation. 

The volume conservation of an incompressible fluid inside the fracture is given by Nordgren 

(1972): 

 
𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑧
+ 𝐻𝑈 = 0 (15) 

Where 𝐴 = 𝜋𝑊 𝐻 4⁄  is the cross-sectional area of the elliptic fracture (Nordgren, 1972) and U is 

the fluid leak-off rate per unit height accounting for both walls. Eq. (15) requires two boundary 

equations and one initial condition as follows: 

 𝑞𝑧(0, 𝑡) =  𝑄0,          𝑊(𝐿(𝑡), 𝑡) = 0 (16) 

 𝑊(𝑧, 0) = 0 (17) 

Where 𝑄0 is the water/slurry injection rate at the wellbore, 𝑞𝑧 is the flow rate at the wellbore 

which is given by the following equation: 

 𝑞𝑧 = −
𝜋𝐸𝑊3

128µ(1 − 𝜈2)

𝑑𝑊

𝑑𝑧
 (18) 

Plugging Eqs. (13) and (14) into Eq. (15) will generate the following nonlinear parabolic PDE 

 
𝜋𝐻

4

𝜕𝑊

𝜕𝑡
−

𝜋𝐸

128µ(1 − 𝜈2)
[3𝑊2 (

𝜕𝑊

𝜕𝑧
)
2

+ 𝑊3
𝜕2𝑊

𝜕𝑧2
] + 𝐻𝑈 = 0 (19) 
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The simplest model of fluid leak-off rate per unit height during fracture propagation is given 

below (Howard and Fast, Economides and Nolte, 1989): 

 𝑈 =
2𝐶𝑙𝑒𝑎𝑘

√𝑡 − 𝜏(𝑧)
 (20) 

Where 𝐶𝑙𝑒𝑎𝑘 is the overall leak-off coefficient, t is the elapsed time since fracturing was initiated, 

and 𝜏(𝑧) is the time at which the fracture propagation has arrived at the location z for the first 

time.  

 The Eq. (19), also known as the porous medium equation has several challenges 

associated with it that need to be addressed from the standpoint of numerical simulation. For 

example, (1) an efficient coupling of governing equations with multiple nonlinear equations that 

describe the important physical phenomena such as rock deformation and fluid flow in hydraulic 

fracturing systems is essential; (2) leak-off rate has to be determined via iterations; (3) the spatial 

domain changes with time in hydraulic fracturing systems; and (4) the number of discretized 

nonlinear algebraic equations to be solved for accurate solutions grows as the fracture treatment 

continues, significantly increasing the computational requirements. 

 The values of the various process parameters used in our calculations are: 𝐻 = 10 m, 

𝑄0 = 0.03 m3/s, µ = 0.56 Pa.s, 𝐸 = 5 × 103 MPa, 𝜈 = 0.2, 𝐶𝑙𝑒𝑎𝑘 = 6.3 × 10−5 m/s1/2. 

5.3 Numerical simulation 

 In this study, we did not use the method of coordinate transformation, which is one of the 

most widely used techniques, to deal with time-varying spatial domains, because it requires an 

analytical expression that describes how the spatial domain, l(t), changes with time to normalize 

the spatial coordinate (Armaou and Christofides, 2001a). Such an analytical expression is not 

available a priori for hydraulic fracturing process. In such cases, the spatial (or temporal) 
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coordinate can be divided into equal intervals, and the resulting system of discretized algebraic 

equations can be solved to determine the corresponding grid size in the other coordinate system 

so that the boundary always remains at a grid point (Murray, 1959, Yuen and Kleinman, 1980, 

Bücker et al., 2009). Based on this, a numerical scheme developed by Narasingam et al. (2017) 

has been employed for solving the above governing equations by effectively handling the issues 

with the time-varying spatial domain and coupling of nonlinear equations. 

Meshing Strategies: A one-dimensional (1-D) grid system is generated to represent the created 

fracture geometry. There are two widely used meshing strategies to deal with a time-varying 

spatial domain: moving meshing and periodic remeshing of a fixed domain. While the former 

strategy provides a less accurate solution (because of the limited number of meshes) with a 

reasonable computational burden, the latter provides an accurate solution at the expense of CPU 

time (the degree of remeshing could lead to an interpolation error in the solution). To capture the 

detailed process dynamics of the hydraulic fracturing system in which the boundary condition of 

the spatial domain keeps on changing, a fixed mesh strategy is used by additionally adapting the 

size of integration time step. 

Numerical Solution Procedure. The steps of the numerical algorithm are described below: 

1. At time step tk, the fracture length 𝐿(𝑡𝑘+1) is obtained by elongating the fracture tip by 

∆𝑧. 

2. The coupled equations of Eqs. 13–20 are solved to calculate the fracture width 

𝑊(𝑧, 𝑡𝑘+1), the net pressure 𝑃(𝑧, 𝑡𝑘+1),, and the flow rate 𝑞𝑧(𝑧, 𝑡𝑘+1), across the fracture 

via a finite element method. 

3. Calculate 𝜏(𝑧𝑘+1) in Eq. 20 iteratively by repeating Steps 2 and 3. 
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4. The time interval ∆𝑡𝑘+1 is determined based on the Courant–Friedrichs–Lewy (CFL) 

number. 

5. Set 𝑘 → 𝑘 + 1 and go to Step 1. 

For 1-D case, the CFL condition has the following form for explicit numerical schemes 

 
𝑢∆𝑡

∆𝑧
≤ 1 (21) 

where 𝑢 = |𝑑𝑊 𝑑𝑡⁄ | is the fracture width growth rate. This technique has been widely accepted 

to improve the computational efficiency by increasing the CFL number, (Bücker et al., 2009). In 

this study, ∆𝑧 is fixed, and u increases with spatial domain (i.e., the fracture width changes more 

rapidly near the fracture tip compared to that near the wellbore), which provides room for 

improvement in the computational efficiency by increasing ∆𝑡 near the wellbore. 



*Reprinted with permission from “Model order reduction of nonlinear parabolic PDE systems with moving 

boundaries using sparse proper orthogonal decomposition: Application to hydraulic fracturing” by Sidhu, H. S., 

Narasingam, A., Siddhamshetty, P. and Kwon, J. S. I., 2017. Computers & Chemical Engineering, 112, 92-100, 

Copyright 2018 by Harwinder Singh Sidhu. 
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6. SIMULATION RESULTS 

 

 An accurate full-order solution for a nonlinear parabolic PDE system with moving 

boundaries describing the fracture propagation in a hydraulic fracturing process was obtained 

using a numerical procedure as described in Section 5. The acquired solution led to a total of 411 

and 36,144 nodes in the spatial and temporal coordinates, respectively. Fig. 1 describes the 

spatiotemporal evolution of the fracture width with respect to spatial and time coordinates. It can 

be noticed that the fracture width grows very rapidly in the beginning, and the growth rate 

gradually slows down with time. 
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Figure 1: The evolution of fracture width obtained from the high-fidelity model. Reprinted from 

Sidhu et al. (2018). 
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 We now present the computation of the ROM using the proposed SPOD-Galerkin 

methodology. First, a total of 1500 snapshots, out of 36,144 generated from the high-fidelity 

model, were selected at uniform time intervals. Second, the SPOD regression criterion described 

in Eq. (10) was solved to obtain a set of basis functions. From SPOD, 6 basis functions were 

obtained that account for 95.61% energy of the system to effectively describe the dominant 

spatial patterns of the original nonlinear parabolic PDE system with the moving boundaries. 

Specifically, 𝜆1 = (0.01, 0.007, 0.0001, 0.0001, 0.0005, 0.0005) were selected such that each 

basis function obtained by SPOD algorithm has the energy similar to that of the corresponding 

basis function obtained from the standard POD (Zou et al., 2006). Also with these values, lasso 

penalty was able to diminish the impact of added zeros to the spatiotemporal data matrix. Please 

note that choosing larger values for the tuning parameters {𝜆1,𝑗} will lead to highly sparse 

approximations to the right singular vectors of X, resulting in the loss of underlying dominant 

spatial patterns (because only a few snapshots will be used in the computation of basis 

functions). On the other hand, choosing {𝜆1,𝑗} values close to zero reduces SPOD to POD. 

Therefore, one should select {𝜆1,𝑗} that can effectively deal with the spurious spatial patterns that 

arise while transforming the time-varying spatial domain to the time-invariant one. Software in R 

for fitting the SPCA model (and the elastic net models) in the Comprehensive R Archive 

Network (CRAN) contributed package elasticnet was used to obtain the sparse approximations to 

the right singular vectors of X. 

 The computed basis functions are used in the Galerkin’s projection method to obtain the 

ROM by replacing 𝑊(𝑧, 𝑡) = ∑ 𝑎𝑖(𝑡)Φ̂𝑖
𝑑
𝑖=1 (𝑧) in Eq. (19) to get 
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∑(𝑎̇𝑖Φ̂𝑖)

𝑑

𝑖=1

= 𝐶1 [3 (∑(𝑎𝑖Φ̂𝑖

𝑑

𝑖=1

))

2

((∑(𝑎𝑖Φ̂𝑖

𝑑

𝑖=1

))

′

)

2

+ (∑(𝑎𝑖Φ̂𝑖

𝑑

𝑖=1

))

3

(∑(𝑎𝑖Φ̂𝑖

𝑑

𝑖=1

))

′′

] −
𝐶2

√𝑡 − 𝜏(𝑧)
 

(22) 

where d is the number of basis functions, over dot and prime represent derivatives with respect to 

time and space, respectively, 𝐶1 and 𝐶2 are presented as follows: 

 𝐶1 =
𝐸

32µ𝐻(1 − 𝜈2)
,   𝐶2 =

8𝐶𝑙𝑒𝑎𝑘

𝜋
 (23) 

Projecting on the basis functions Φ̂𝑗 yields 

 𝑎̇(𝑡) = 𝐾−1[𝐶1(3𝑢(𝑡) + 𝑣(𝑡)) − 𝑝(𝑡)] (24) 

where 

 𝑎(𝑡) = [𝑎1(𝑡), 𝑎2(𝑡),⋯ , 𝑎𝑑(𝑡)]𝑇 

 𝑢(𝑡) = [〈(∑ (𝑎𝑖Φ̂𝑖
𝑑
𝑖=1 ))

2
((∑ (𝑎𝑖Φ̂𝑖

𝑑
𝑖=1 ))

′
)
2

, Φ̂𝑗〉] 

 𝑣(𝑡) = [〈(∑ (𝑎𝑖Φ̂𝑖
𝑑
𝑖=1 ))

3
(∑ (𝑎𝑖Φ̂𝑖

𝑑
𝑖=1 ))

′′
, Φ̂𝑗〉] 

 𝑝(𝑡) = 〈
𝐶2

√𝑡−𝜏(𝑧)
, Φ̂𝑗〉 

 𝐾𝑖𝑗 = 〈Φ̂𝑖, Φ̂𝑗〉 

 Eq. (24) represents the low-dimensional ODE system of Eq. (19), which is converted into 

a system of algebraic equations by discretizing the time coordinate via explicit Euler method, 

and the algebraic equations were solved in MATLAB to calculate the time-dependent 

coefficients. The obtained time-dependent coefficients were used to compute a low-order 

solution which approximates the full-order solution. The computational time required to solve 
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the ROM obtained by SPOD–Galerkin methodology is 8.669 seconds whereas the time required 

for solving the high-fidelity model is 406.432 seconds. Therefore, a significant reduction in the 

CPU time has been achieved. Please note that the calculations were performed on a Dell 

workstation, powered by Intel(R) Core(TM) i7- 4770 CPU@3.40GHz, running the Windows 8 

operating system. 

 Please note that the proposed approach does not provide a systematic way to determine 

the number of basis functions to develop a ROM. One rule of thumb to select the number of 

basis functions is based on their energy. In hydraulic fracturing, the first 6 basis functions 

obtained by SPOD takes 95.61% energy of the system and including more basis functions did not 

significantly increase the total energy. 

For the purpose of comparison, we also computed a ROM model using the standard 

POD-Galerkin projection methodology with 16 basis functions that account for 99.90% energy 

of the system. In this work, we refer the standard POD to the following sequential approach: (a) 

a modified spatiotemporal data matrix is constructed and (b) POD is applied to the modified 

spatiotemporal data matrix to compute basis functions. In contrast to SPOD, it does not require 

the additional step to compute sparse approximations to right singular vectors. Fig. 2 and Fig. 3 

show the fracture width profile obtained from the ROM constructed by SPOD-Galerkin and 

POD-Galerkin techniques, respectively. Fig. 4 shows the comparison between the full-order 

solution and the reduced-order solutions obtained using both of the techniques at 4 different 

locations within the fracture (𝑧 = 0 (i.e., wellbore), 𝑧 = 22.2 m, 𝑧 = 44.7 m and 𝑧 = 62.7 m 

(i.e., the fracture center)). It can be observed from Fig. 4 that the ROM developed to approximate 

a nonlinear parabolic PDE system with moving boundaries using the SPOD- Galerkin 

methodology is more accurate than the one obtained by the standard POD-Galerkin 
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methodology. Please note that the proposed methodology is not able to provide a good 

approximate solution to the fictitious spatial domain where the fracture has not propagated. It can 

be observed that at 𝑧 = 0, the approximated solutions obtained from the ROMs developed using 

both of the methodologies are very similar, but the difference between them increases as the 

distance from the wellbore increases (i.e., z increases). This is attributed to the fact that at 𝑧 = 0, 

the fracture width is always positive for 𝑡 ≥ 0, and thus, zeros are not added to this spatial point 

while transforming the time-varying spatial domain to the time-invariant one. However, as z 

increases the number of added zeros also increases as shown in Eq. (1), because of which the 

solution obtained from the ROM developed by POD-Galerkin methodology keeps on deviating 

from the high-fidelity solution. On the other hand, SPOD-Galerkin methodology is able to 

mitigate the effect of added zeros by employing the regularization techniques, and therefore, the 

solution obtained from the ROM constructed using this methodology is closer to the full-order 

solution. Fig. 5 shows the comparison between the first four basis functions computed using the 

SPOD and POD method. 
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Figure 2: Approximate width profile computed from the ROM obtained by the SPOD-Galerkin 

methodology. Reprinted from Sidhu et al. (2018). 
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Figure 3: Approximate width profile computed from the ROM obtained by the POD-Galerkin 

methodology. Reprinted from Sidhu et al. (2018). 
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Figure 4: Comparison of width profiles obtained at four different spatial locations, (a) 𝑧 = 0, (b) 

𝑧 = 22.2 m, (c) 𝑧 = 44.7 m and (d) 𝑧 = 62.7 m, from the full-order model and the ROMs 

obtained by the SPOD-Galerkin and POD-Galerkin methodology. Reprinted from Sidhu et al. 

(2018). 
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Figure 5: First four basis functions obtained by the SPOD and POD method. Reprinted from 

Sidhu et al. (2018). 
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To further demonstrate the performance of the proposed methodology, we compared the 

ROMs constructed using POD-Galerkin and SPOD-Galerkin methodology based on their relative 

error, which is calculated as follows (Armaou and Christofides, 2001b): 

 𝐸(𝑡) =
‖𝑊𝑓𝑢𝑙𝑙 − 𝑊𝑟𝑜𝑚‖

2

‖𝑊𝑓𝑢𝑙𝑙‖2

 (25) 

where ‖𝑊𝑟𝑜𝑚‖2 and ‖𝑊𝑓𝑢𝑙𝑙‖2
 are the 𝑙2 norms of the width profile generated by the ROM and 

the high-fidelity model, respectively. Fig. 6 shows the relative error profiles E(t) for the ROMs 

derived using both methodologies. It can be observed that in the beginning, the relative error is 

high in both the cases, but it decreases with time. This can be attributed to the fact that parabolic 

PDE systems are characterized by the fast initial dynamics followed by the slow dynamics 

representing the dominant spatial patterns of the system (Balas, 1979, Chen and Chang, 1992). 

The computed basis functions only capture the dominant spatial patterns after the fast dynamics 

of the system become less significant. In practice, the fast dynamics are neglected by selecting 

the basis functions with large singular values (i.e., high energy) in the Galerkin’s projection 

method, which may lead to the high initial relative error. The relative error profiles show that the 

ROM constructed using SPOD-Galerkin methodology provides a good approximation to the full-

order solution as compared to the ROM derived using POD-Galerkin methodology. The 

aforementioned results clearly illustrate that the proposed SPOD-Galerkin methodology 

performs favorably as compared to the standard POD-Galerkin methodology in terms of both 

accuracy and the number of basis functions required to capture the dominant spatial patterns of a 

nonlinear parabolic PDE system with time-varying spatial domains. This can be attributed to the 

fact that the regularization techniques used in SPOD are able to circumvent the spurious spatial 
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patterns that may arise due to the addition of zeros while transforming the time-varying spatial 

domain to the time-invariant one. 

 

 

Figure 6: Profiles of the relative error with time for approximate solutions constructed from the 

ROM obtained by the POD-Galerkin and SPOD-Galerkin methodology. 
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Furthermore, we compared the performance of SPOD-Galerkin methodology with 

LPOD-Galerkin methodology proposed by Narasingam et al. (2017) for MOR of nonlinear 

parabolic PDE systems with moving boundaries. In this work, we divided the temporal domain 

into 16 temporal subdomains using GOS algorithm and used 6 basis functions for each temporal 

subdomain. Fig. 7 shows the comparison between the full-order solution and the reduced-order 

solutions obtained using both of the methodologies at 𝑧 = 0 (i.e., wellbore) and 𝑧 = 62.7 m (i.e., 

the fracture center). Fig. 8 shows the relative error profiles E(t) for the ROMs derived using each 

methodology. It can be observed from Fig. 7 and Fig. 8 that the ROMs developed using both of 

the methodologies are comparable with respect to their ability to approximate the full-order 

solution. However, we would like to highlight other key features of SPOD-Galerkin 

methodology. First, it does not require partitioning of the temporal domain into subdomains and 

the computation of local basis functions for each temporal subdomain. Second, the ROM 

constructed using SPOD-Galerkin methodology provides a smooth solution profile at every 

spatial location as shown in Fig. 4 and Fig. 7. This makes it an attractive choice for the design of 

model-based feedback control systems. 

Please note that while solving the system of ODEs derived using LPOD-Galerkin 

methodology, we used the same initial condition for the high-fidelity model and the ROM for the 

first temporal subdomain. However, for the following temporal subdomains in LPOD-Galerkin 

methodology, the initial guess was obtained by using the approximated solution of the previous 

temporal subdomain.  Also, the proposed methodology does not require an analytical expression 

describing how the spatial domain changes with time, which is often difficult to obtain if we 

have to deal with a moving boundary problem defined on nontrivial geometry. Instead, such 
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information is numerically obtained as a part of the solution to be determined along with other 

in-domain solutions from the high-fidelity simulation. 

 

Figure 7: Comparison of width profiles obtained at two different spatial locations, (a) 𝑧 = 0 and 

(b) 𝑧 = 62.7 m, from the full-order model and ROMs obtained by the SPOD-Galerkin and 

LPOD-Galerkin methodology. Reprinted from Sidhu et al. (2018). 
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Figure 8: Profiles of the relative error with time for approximate solutions constructed from the 

ROM obtained by the LPOD-Galerkin and SPOD-Galerkin methodology.



*Reprinted with permission from “Model order reduction of nonlinear parabolic PDE systems with moving 

boundaries using sparse proper orthogonal decomposition: Application to hydraulic fracturing” by Sidhu, H. S., 

Narasingam, A., Siddhamshetty, P. and Kwon, J. S. I., 2017. Computers & Chemical Engineering, 112, 92-100, 

Copyright 2018 by Harwinder Singh Sidhu. 
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7. CONCLUSIONS AND FUTURE WORK 

 

In this study, SPOD-Galerkin projection methodology is presented to derive ROMs for 

nonlinear parabolic PDE systems with moving boundaries. Initially, the nonlinear system was 

solved to obtain the full-order solution by employing a high-order discretization scheme. Then, 

the proposed SPOD method was employed to generate the basis functions that effectively 

capture the dominant spatial patterns of the moving boundary system as compared to the basis 

functions generated by the standard POD method. The obtained basis functions were used in 

Galerkin’s projection method to derive a low-dimensional ODE system, which was subsequently 

solved using the finite difference scheme to compute an approximate solution to the high-fidelity 

model. The proposed methodology was successfully applied to develop a ROM for the fracture 

propagation in a hydraulic fracturing process that was characterized by nonlinear parabolic PDEs 

with the time-varying spatial domain. In this respect, we demonstrated the proposed 

methodology performed favorably as compared to the standard POD-Galerkin projection method 

in terms of both accuracy and the number of basis functions required to capture the dominant 

spatial patterns of the moving boundary system. Furthermore, we have shown that the accuracy 

of the ROM developed using the proposed methodology to approximate the high-fidelity model 

is comparable with the ROM developed using LPOD-Galerkin methodology. The proposed 

SPOD-Galerkin methodology for developing a ROM for the parabolic PDE system describing 

the fracture propagation in hydraulic fracturing can be used to design optimal pumping schedules 

to enhance the productivity of produced wells.
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