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Abstract

Mathematical models for chemically reacting systems have high degrees of free-
dom (very large) and are computationally expensive to analyse. In this discussion,
we present and analyse a model reduction method that is based on stoichiometry and
mass balances. This method can significantly reduce the high degrees of freedom
of such systems. Numerical simulations are undertaken to validate and establish
efficiency of the method. A practical example of acid mine drainage is used as a
test case to demonstrate the efficacy of the procedure. Analytical results show that
the stoichiometrically-reduced model is consistent with the original large model, and
numerical simulations demonstrate that the method can accelerate convergence of
the numerical schemes in some cases.
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1 Introduction

Acidic mine effluents with high concentrations of corrosive/toxic hydrogen ions, non-
metals, dissolved metals metalloids and precipitates pose a major environmental concern.
Thus acidic effluents must be treated to reduce or remove the corrosive/toxic species in
the waste water. Mathematical models provide quantitative information for understand-
ing the effluent generation and dispersion processes, and also for assessing the impact of
the effluents in receiving environments (e.g water quality). This quantitative informa-
tion enhances the design and implementation of remediation/treatment processes for the
effluents [1, 2, 3, 4].

However, such acidic effluents and many other chemical systems are complicated,
difficult to model and computationally expensive to simulate. The complications result
from the fact that many kinetic systems contain many species that engage in large reaction
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mechanisms at varying time-scales. Thus, mathematical models for such systems are
characteristically non-linear, stiff and very large (have high degrees of freedom). While
non-linear models that can not be analysed explicitly may be simulated, stiffness issues
pose a problem for some numerical procedures [1, 2, 3, 4].

Large models (models with high degrees of freedom) are computationally expensive
to simulate. Therefore, methods have been presented in the literature to reduce these
systems. Such approaches include: the Steady-State-Approximations (SSA), Partial-
Equilibrium-Approximations (PEA) and Asymptotic-Approximations which are based on
decoupling [5, 6, 7, 8]. It is also imperative that the reduced models must preserve the
essential features of the original large model with significant reduction in computational
costs.

The SSA assumes that some species in the system are in quasi-equilibrium, thus differ-
ential equations (that describe the evolution of such species) become algebraic equations.
Thus the species in quasi-steady state are decoupled from the other species, hence, re-
ducing the model’s degrees of freedom. Similarly, the PEA decouples the reactions in the
system into fast, medium and slow groups. The fast group is assumed to approach equilib-
rium and the slow group is discarded, hence, reducing the degrees of freedom of the overall
model. These two classes of decoupling approaches require a skillful and knowledgeable
chemist to identify the quasi-steady species or fast and slow reactions [5, 6, 7, 8].

Further, sensitivity analysis which involves perturbation of parameters and concentra-
tions, has been performed on some systems to identify fast or slow reactions. In many
cases, some researchers report that the approach is successful [5, 9, 10, 11]. However, this
approach provides only responses of the original system when the system is subjected to
parameter-perturbations, but does not provide enough information about the sensitivity
of other closely related systems that contain a common parameter [5, 12, 13, 14].

Other decoupling approaches are the Computational Singular Perturbation (CSP)
and the slow manifold methods. The CSP procedure involves analysis of an eigen-
decomposition of the original system in order to determine and distinguish fast reactions
from slow or dormant reactions [5, 15, 16]. In the slow manifold procedure, a local lin-
earised system is obtained and an analysis of the eigenvalues and eigenvectors is applied
to the local linearised system to differentiate the fast reactions from the slow modes in
order to obtain a reduced system. This approach is different from other reduction mech-
anisms because it does not provide single or simple expressions for the chemical kinetics
[5, 17, 18, 19, 20].

Furthermore, in a case where non-linear effects cannot be ignored, the methods that
are based on linear methodologies can not automatically and sufficiently handle the non-
linearities. Thus some global approaches that are capable of handling even non-linearities
have also been considered. The challenge with the global approaches is that, when these
are employed, they require knowledgeable investigators to monitor the system for possible
secondary non-linear effects which can lead to parameter interactions [5, 18].

The stoichiometric method presented and analysed in this discussion maintains key
features of the original system and has a remarkable accuracy when applied to chemical
kinetic systems. It does not require the detailed input of an expert or specialist apart
from the initial modelling process. In this procedure, the species that are of interest to the
researcher are decoupled by means of mass balances and stoichiometric ratios. One other
advantage of this procedure is that it can be used in conjunction with the procedures
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mentioned above to further reduce their degrees of freedom. With this approach, for
species under consideration the only data required from the other species, in order to
determine the rate profiles of the species of interest, is the set of initial conditions. The
reduced model is characteristically nonlinear, stiff and must be positivity preserving.
Thus, we will analyse the method by numerical simulation to show its accuracy and
efficiency. A practical example from acidic mine effluent treatment will be used as a test
case.

The rest of the discussion is organized as follows. A mathematical problem will be
formulated in Section 2 and decoupling procedures will be presented in Section 3. Thirdly,
we will apply the stoichiometric procedure in Section 4, to acidic effluent kinetics to
reduce four and six degrees of freedom to one. Using analytical results, we will also show
in Section 4, that the procedure maintains the essential features of the original system.
Fourthly, we present in Section 5, numerical schemes (both high and low order consistent)
that can resolve stiffness, are positivity-preserving and are conservative. Fifthly, the
accuracy and convergence of the numerical schemes will be presented in Sections 6.1.
Accuracy and compatibility results for the decoupling methods will be discussed in Section
6.2. Sixthly, we present results for simulation cost in Section 6.3. Finally, we conclude
the discussion in Section 7.

2 Chemical kinetic modelling

Chemical kinetics generally involve a mechanism (that enumerates all the elementary
steps involved in a reaction problem) and rate data quantifying the speed with which
the reaction proceeds [21, 22, 23]. Mechanisms are described by a set of balanced stoi-
chiometric equations and rate information is quantified by polynomials called rate laws.
In this section, we present mathematical models for single and systems of stoichiometric
reactions.

2.1 Single reaction mechanism

We begin the discussion here with single stoichiometric reactions and then proceed to
systems. The features of reversible reactions also capture those of the irreversible re-
actions, thus, we consider a hypothetical reversible stoichiometric equation that has Nf

species to the left and Nb species to the right (as in Reaction (1) below) making a total
of N = Nf + Nb species being involved in the reaction since the species on the left hand
of a chemical reaction are distinct from species on the right hand:

Nf∑
i=1

aiAi 

Nb∑
j=1

bjBj, (1)

where ai and bj are stoichiometric coefficients with respect to the species Ai and Bj,
respectively.

Denote a vector of all the species in Reaction (1) by C = (A1, A2, . . . ANf
, B1, B2, . . . BNb

)
(i.e left hand side species followed by right hand side species). Let their current concen-
trations be denoted by U = ([A]1, [A]2, . . . [A]Nf

, [B]1, [B]2, . . . [B]Nb
), their orders by α =

(α1, α,2, . . . αNf
, β1, β2, . . . βNb

), and their stoichiometric coefficients by σ = (a1, a2, . . . , aNf
,
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b1, b2, . . . , bNb
). Then the rate at which the Reaction (1) proceeds can be expressed as fol-

lows:

R(U) = Kf

Nf∏
i=1

Uαi
i −Kb

N∏
j=Nf+1

U
αj

j , (2)

where Kf , Kb are the forward and backward reaction constants, respectively.
Now the rate at which any species Ck (whether left or right of Reaction (1)) evolves

can then be expressed as follows:

1

σk

dUk
dt

= Kf

Nf∏
i=1

Uαi
i −Kb

N∏
j=Nf+1

U
αj

j , k ∈ {1, . . . , N}. (3)

The right hand side of Equation (3) is a polynomial in N variables (i.e concentrations
of all the species). Thus Equation (3) is a system of N ordinary differential equations
(ODEs) to be solved simultaneously.

2.2 System of stoichiometric reactions

Let Nf,r and Nb,r be total species numbers in the forward and backward reactions of an rth

elementary reaction, respectively. The mechanism for a system of M elementary reactions
involving N species is generally written as:

Nf,r∑
i=1

ar,iAr,i 


Nb,r∑
j=1

br,jBr,j, r = 1, . . . ,M. (4)

where ar,i and br,j are stoichiometric coefficients for the species Ar,i and Br,j in the rth

elementary reaction, respectively. In general,
M∑
r=1

(Nf,r +Nb,r) 6= N due to the presence of

networking species (i.e., species engaged in more than one elementary reaction).
Similar to the above discussion, denote

C = (A1, A2, . . . AN) and U = ([A]1, [A]2, . . . [A]N),

as vectors of all species and their concentrations, respectively. Let a subset of the above
species participating in an rth elementary reaction with Nf,r and Nb,r being the total
number of species participating in the reactions on the left and right side, respectively,
be denoted as:

Cr = (Ar,1, Ar,2, . . . Ar,Nf,r
, Br,1, Br,2, . . . Br,Nb,r

)

= (Cr,1, Cr,2, . . . Cr,Nf,r
, Cr,Nf,r+1

, Cr,Nf,r+2
, . . . Cr,Nr)

where Nr = Nf,r +Nb,r. Similarly, let

Ur = ([A]r,1, [A]r,2, . . . [A]r,Nf,r
, [B]r,1, [B]r,2, . . . [B]r,Nb,r

),

= (Ur,1, Ur,2, . . . Ur,Nf,r
, Ur,Nf,r+1

, Ur,Nf,r+2
, . . . Ur,Nr)
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for r = 1, 2, . . . ,M . Further, we define

αr = (αr,1, αr,2, . . . , αr,Nr)

as the respective orders of the species in Cr and

σr = (σr,1, σr,2, . . . , σr,Nr)

as their respective stoichiometric coefficients.
The rate at which the rth elementary Reaction (4) proceeds can in general, be expressed

as follows:

Rr(U) = Kfr

Nf,r∏
i=1

U
αr,i

r,i −Kb,r

Nr∏
j=Nf,r+1

U
αr,j

r,j , r = 1, . . . ,M (5)

where Kf,r, Kb,r are the forward and backward reaction constants, respectively. From
Equation (5), we obtain the rate at which any species Ck evolves as:

dUk
dt

=
M∑
r=1

σkrRr,

=
M∑
r=1

σkr

(
Kfr

Nf,r∏
i=1

U
αr,i

r,i −Kb,r

Nr∏
j=Nf,r+1

U
αr,j

r,j

)
, k = 1, . . . , N. (6)

Observe in Equation (6) that the right hand side is a polynomial in N variables (i.e
concentrations of all the species). Thus Equation (6) is a system of N ordinary differential
equations (ODEs) to be solved simultaneously.

However, mechanisms for many reactions are very large (i.e M is large), contain many
species (N is large), and corresponding rate law polynomials are very complicated. In
many experimental and modelling studies, very few of the species are of interest to the
researcher, however, due to networking with other species, the species of interest can not
be treated in isolation without first decoupling. In Sections 3, we propose decoupling
methods used to surmount such challenges.

3 Model reduction methods

Solving the system of N ordinary differential equations (ODEs) in (3) simultaneously
might not be necessary especially if not all the species concentration profiles are required.
As an alternative, we propose a decoupling method that will enable only a few species of
interest to be solved. In such an approach one can solve for a single species. The single
variable rate functions will be functions of current concentration of the species of interest
and initial/source data for the other species, as a result, the ODEs will be completely
decoupled. For comparison, we also present other decoupling methods that have been
used in the literature.
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3.1 Stoichiometric decoupling

Denote the initial concentration by U0, the concentration due to some source/sink by
US, the transformed concentration by UT as the reaction proceeds. Using the concept of
mass balance which ensures mass conservation in a given volume (see for example [24, 25]
for mass conservation details), we obtain:

U = U0 + US + UT . (7)

In a mass balance expression, transformed concentrations assume positive values if
their corresponding species are reaction products and negative otherwise. If the extent of
reaction (denoted by χ) is known, then the transformed concentration of a species, is the
product of the stoichiometric number and the extent of reaction [22]. This enables us to
write the mass balance expressions for any species i, as follows:

Ui = U0i + σiχ+ USi
, i = 1, 2, . . . , N. (8)

Assuming that the sources are independent of time, and some algebraic manipulation of
Equation (3) using Equation (8) will give:

dχ

dt
= Kf

Nf∏
i=1

(
U0i + σiχ+ USi

)αi

−Kb

N∏
j=Nf+1

(
U0j + σjχ+ USj

)αj

. (9)

Thus χ is the only unknown variable in Equation (9) to be solved for, once χ is known,
Equation (8) is used to account for all the species profiles. Depending on how complex
Equation (9) is, χ(t) can be found analytically or numerically, for some rate laws.

In general, if USk
is time-dependent Equation (8) is re-arranged as follows:

χ = − 1

σk

(
U0k + USk

)
+

1

σk
Uk, k ∈ {1, . . . , N}. (10)

By substituting Equation (10) into Equation (8), we obtain:

Ui = U0i −
σi
σk

(
U0k + USk

)
+
σi
σk
Uk + USi

,

= di +
σi
σk
Uk, i = 1, 2, . . . , N, k ∈ {1, . . . , N}, k 6= i, (11)

where
di = U0i + USi

− σi
σk

(
U0k + USk

)
.

Applying Equation (11) in the ODE given in Equation (3) for the species of interest,
we obtain:

1

σk

dUk
dt

= Kf

Nf∏
i=1

(
di +

σi
σk
Uk

)αi

−Kb

N∏
j=Nf+1

(
dj +

σj
σk
Uk

)αj

, k ∈ {1, . . . , N}, (12)
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whose right hand side is a polynomial of Uk only. Thus for ODE problems that result from
a single stoichiometric Reaction (1), one has to solve for one unknown using Equation
(12), and then account for the other unknowns using Equation (11).

Furthermore, the stoichiometric procedure can be easily extended to systems of stoi-
chiometric reactions. Similar to the single reaction case, the mass balance expressions for
the species in the rth elementary reaction may be written as:

Ur,i = U0r,i + σr,i χr + USr,i
, i = 1, 2, . . . , Nr, r = 1, . . . ,M (13)

where U0r,i , USr,i
are initial data and sources for the ith species in the rth reaction, and χr

is the extent of reaction. If the species of interest corresponds to the nth element in the
subset Ur, then its mass balance expression may be written as:

χr = − 1

σr,n

(
U0r,n + USr,n

)
+

1

σr,n
Ur,n, n ∈ {1, . . . , Nr}. (14)

Substituting Equation (14) into Equation (13), we obtain:

Ur,i = U0r,i −
σr,i
σr,n

(
U0r,n + USr,n

)
+
σr,i
σr,n

Ur,n + USr,i
,

= dr,i +
σr,i
σr,n

Ur,n, i = 1, . . . , Nr, r = 1, . . . ,M, n ∈ {1, . . . , Nr} (15)

where
dr,i = U0r,i + USr,i

− σr,i
σr,n

(
U0r,n + USr,n

)
.

Using Equation (15) in Equation (5), a single-variable rate law for the rth elementary
reaction is obtained as follows:

Rr = Kf,r

Nf,r∏
i=1

(
dr,i +

σr,i
σr,n

Ur,n

)αr,i

−Kb,r

Nr,bf∏
j=1+Nf,r

(
dr,j +

σr,j
σr,n

Ur,n

)αr,j

, r = 1, . . . ,M.

(16)

Moreover, let Uk in the global set C be the concentration of the species of interest
that corresponds to the local concentration Ur,n in reaction r. Then the rate at which the
species Ck reacts or is produced is given by:

dUk
dt

=
M∑
r=1

σkrRr,

=
M∑
r=1

σkr

(
Kf,r

Nf,r∏
i=1

(
dr,i +

σr,i
σkr

Uk

)αr,i

−Kb,r

Nr∏
j=1+Nf,r

(
dr,j +

σr,j
σkr

Uk

)αr,j
)
, k = 1, . . . , N,

(17)

where σkr = σr,n is the stoichiometric coefficient of the species of interest in the rth

elementary reaction. Using vector notation, the decoupled system of species evolution
equations may be written as:
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dU

dt
= S R(U), U(0) = U0, t ∈ [0, T ), (18)

U = (U1, U2, . . . , UN)Tr is the current concentration vector, U0 = (U01 , U02 , . . . , U0N )Tr is
the initial concentration vector, S is an N×M matrix containing the species stoichiometric
values σkr, R(U) = (R1, R2, . . . , RM)Tr is a column vector of all the M reaction rate laws
and Tr denotes matrix transpose. For a detailed discussion on existence and uniqueness
of solutions to the system in (18), see [24, 26].

3.2 Other decoupling methods

The large coupled models in Equation (3) and Equation (6) can also be decoupled by
applying Gauss-Seidel, Gauss-Jacobi and Successive-Over-Relaxation (SOR) iterations to
the continuous-time models. These methods have been used by the authors in [27] to
reduce computational cost.

For convenience of presentation, we rewrite Equation (3) and Equation (6) in the
generalized form:

dUk
dt

= Fk(U), t ∈ [0, T ), U(0) = U0, k = 1, 2, . . . , N. (19)

The ith continuous-time iteration of system (19) using Gauss-Jacobi iteration is given
by: 

d
dt
U i+1
k = Fk(U

i
1, . . . , U

i
k−1, U

i+1
k , U i

k+1, . . . , U
i
N),

U i+1
k (0) = U0,i, k = 1, 2, . . . , N, t ∈ [0, T ), i = 0, 1, . . . .

(20)

Using Gauss-Seidel iteration, the ith continuous-time iteration of (19) states that:
d
dt
U i+1
k = Fk(U

i+1
1 , . . . , U i+1

k−1, U
i+1
k , U i

k+1, . . . , U
i
N),

U i+1
k (0) = U0,i, k = 1, 2, . . . , N, t ∈ [0, T ), i = 0, 1, . . . .

(21)

And by using Successive-Over-Relaxation (SOR) iteration, the ith continuous-time itera-
tion (19) states that:

d
dt
Ū i+1
k = Fk(U

i+1
1 , . . . , U i+1

k−1, Ū
i+1
k , U i

k+1, . . . , U
i
N),

Ū i+1
k (0) = U0,i,

U i+1
k = ωU i

k + (1− ω)Ū i+1
k , k = 1, 2, . . . , N, t ∈ [0, T ), i = 0, 1, . . . ,

(22)

where ω is the relaxation parameter. When ω = 0, the Successive-Over-Relaxation (SOR)
reduces to Gauss-Seidel.
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4 Acidic effluent generation and treatment models

Acidic mine effluents are water pollutants and environmental hazards that are generated
in abandoned mines, and impact adversely on ecological systems upon dispersion. Ef-
fluents are composed of an acid and dissolved metals with their precipitates. During
treatment of the acidic water, limestone is placed in the acidic water for the calcite in the
limestone to neutralize the acid (hydrogen ions). According to [28, 29], three reactions
occur simultaneously on the surface of the calcite:

CaCO3 +H+ 
 Ca2+ +HCO−3 , (23)

CaCO3 +H2CO3 
 Ca2+ + 2HCO−3 , (24)

CaCO3 +H2O 
 Ca2+ +HCO+
3 +OH−, (25)

which occur with an overall rate:

RCaCO3 = KH+ [H+]∗ +KH2CO3 [H2CO3]∗ +KH2O[H2O]∗

−KCa2+ [Ca2+]∗[H2CO
−
3 ]∗, (26)

where KH+ , KH2CO3 , KH2O are the forward reaction rate constants in the stoichiometric
Equations (23), (24), (25), respectively. The constant KCa2+ is the backward reaction rate
constant which depends on temperature and partial pressure of carbon dioxide, PCO2 . The
notation [C]∗, indicates activity of the chemical species C. Table 1 contains numerical
values of the reaction constants.

Table 1: Rate constants for calcite dissolution in units of cm/s given by [28].

KH+ KH2CO3 KH2O logKsp logK∗H2CO3

0.051 3.45× exp(−5) 1.19× exp(−7) −8.475 −6.351

The numerical values of the rate constants in Table 1, imply that calcite dissolution by
H2CO3 and H2O are far less in comparison to the dissolution by H+. Thus, in the present
discussion, we neglect the sum KH2CO3 [H2CO3]∗ + KH2O[H2O]∗, and express activity of
species C, [C]∗, in terms of concentration [C] (see, [30, 31, 32] for activity-concentration
conversion details). Thus we have;

RCaCO3 = F ([H+], [Ca2+], [HCO−3 ]) = Kf [H
+]−Kb[Ca

2+][HCO−3 ], (27)

ηHCO−
3
, ηCa2+ and ηH+ are the activity coefficients for HCO−3 , Ca

2+ and H+, respectively,
while as Kf = KH+ηH+ and Kb = KCa2+ηHCO−

3
ηCa2+ . At equilibrium, the rate law in

Equation (27) becomes:

Kf [H
+]−Kb[Ca

2+][HCO−3 ] = 0,

[Ca2+][HCO−3 ]

[H+]
= Keq (28)

where Keq =
Kf

Kb
is the equilibrium constant.
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In summary, the dissolution/precipitation reaction of calcite will be described by the
stoichiometric Equation (23), and its rate law is Equation (27). From the stoichiometric
Equation (23), we have the following data:

C = (CaCO3, H
+, Ca2+, HCO−3 ), U = ([CaCO3], [H+], [Ca2+], [HCO−3 ]), Nf = 2, N = 4,

U0 = ([CaCO3]0, [H+]0, [Ca2+]0, [HCO−3 ]0), US = ([CaCO3]S, [H+]S, [Ca2+]S, [HCO−3 ]S),

α = (0, 1, 1, 1), and β = (−1, −1, 1, 1). (29)

We make a simplifying assumption here that there are no sources throughout the
transient state, so that:

[CaCO3]S = 0, [H+]S = 0, [Ca2+]S = 0 and [HCO−3 ]S = 0.

Substituting data in Equation (29) into (3), with R = RCaCO3 (rate law (27)) the species
evolution equations are as follows:

−d[CaCO3]

dt
= Kf [H

+]−Kb[Ca
2+][HCO−3 ], (30)

−d[H+]

dt
= Kf [H

+]−Kb[Ca
2+][HCO−3 ], (31)

d[Ca2+]

dt
= Kf [H

+]−Kb[Ca
2+][HCO−3 ], (32)

d[HCO−3 ]

dt
= Kf [H

+]−Kb[Ca
2+][HCO−3 ]. (33)

During treatment of the acidic mine effluent water using calcite, one is only interested
in knowing whether the concentration of hydrogen ions decreases or not. Thus one only
needs to solve Equation (31), in the system of Equations (30) – (33). However, due to
coupling with other species the entire set of ordinary differential equations (ODEs (30) –
(33)) must be solved simultaneously, which is computationally expensive.

4.1 Stoichiometrically decoupled calcite model

Instead of solving the system (30) – (33) which has four degrees of freedom, we will apply
the stoichiometric method (presented in Section 2) to reduce computational cost.

Substituting data (29) into Equation (12) and simplifying, we obtain the stoichiomet-
rically decoupled species evolution equations as follows:

−d[CaCO3]

dt
= −Kb[CaCO3]2 + λ1[CaCO3]− λ2, (34)

−d[H+]

dt
= −Kb[H

+]2 + λ3[H+]− λ4, (35)

d[Ca2+]

dt
= λ5 − λ6[Ca2+]−Kb[Ca

2+]2, (36)

d[HCO−3 ]

dt
= λ7 − λ8[HCO−3 ]−Kb[HCO

−
3 ]2. (37)
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where

[CaCO3]H = [H+]0 − [CaCO3]0, [CaCO3]C = [H+]0 + [CaCO3]0, [CaCO3]HC = [H+]0 + [CaCO3]0,

λ1 = Kf +Kb

(
[CaCO3]C + [CaCO3]HC

)
, λ2 = Kf [CaCO3]H −Kb

(
[CaCO3]C + [CaCO3]HC

)
λ3 = Kf +Kb

(
[H+]0 + [HCO−3 ]0

)
+Kb

(
[H+]0 + [Ca2+]0

)
, λ4 = Kb

(
[H+]0 + [HCO−3 ]0

)(
[H+]0

+ [Ca2+]0

)
, λ5 = Kf

(
[H+]0 + [Ca2+]0

)
, λ6 =

(
Kf +Kb[H

+]0 −Kb[Ca
2+]0,

)
λ7 = Kf

(
[H+]0 + [HCO−3 ]0

)
, λ8 =

(
Kf +Kb[H

+]0 −Kb[HCO
−
3 ]0

)
.

By observation, one can easily verify that the ODEs (34)-(37) are completely uncou-
pled and may be analysed/solved individually at a less cost (see Section 6.3).

4.2 Stoichiometrically decoupled pyrite oxidation model

Exposure and subsequent oxidation of pyrite (and most sulphur-containing minerals) leads
to the generation of acids. Such minerals are exposed to air and water in large quantities
during mining processes. The stoichiometry of the oxidation include [32, 35, 36]:

FeS2 + 3.5O2 +H2O −→ Fe2+ + 2SO2−
4 + 4H+, (38)

Fe2+ +H+ + 0.25O2 −→ Fe3+ + 0.5H2O, (39)

FeS2 + 14Fe3+ + 8H2O −→ 15Fe2+ + 2SO2−
4 + 16H+. (40)

The rate laws are taken as follows:

RO2 = Kf1[FeS2][O2]−Kb1[Fe2+][H+][SO2−
4 ], (41)

RFe3+ = Kf2[FeS2][Fe3+]−Kb2[Fe2+][H+][SO2−
4 ], (42)

RFe2+ = Kf3[O2][Fe2+]. (43)

The species evolution model is given by:

dU

dt
= F, (44)

where U =
(
[H+], [FeS2], [O2], [Fe2+], [SO2−

4 ], [Fe3+]
)Tr

and F =
(
2RO2 + 16RFe3+ −

RFe2+ , −RO2 − RFe3+ , −3.5RO2 − 0.25RFe2+ , RO2 + 15RFe3+ − RFe2+ , 2RO2 +

2RFe3+ , −14RFe3+ +RFe2+
)Tr
.

One can observe coupling in System (44), which implies that the entire set of ODEs
(44) must be solved simultaneously. To avoid solving the entire System (44), we apply
stoichiometric decoupling on the hydrogen equation in System (44), (with initial and

source vectors given by U0 =
(
[H+]0, [FeS2]0, [O2]0, [Fe

2+]0, [SO
2−
4 ]0, [Fe

3+]0
)Tr

and US =(
[H+]S, [FeS2]S, [O2]S, [Fe

2+]S, [SO
2−
4 ]S, [Fe

3+]S
)Tr

, respectively) to yield:

d[H+]

dt
= D1 +D2[H+] +D3[H+]2 +D4[H+]3, (45)
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where

C20S = [FeS2]0 + [FeS2]S + 0.5([H+]0 + [H+]S), C30S = [O2]0 + [O2]S +
7

4
([H+]0 + [H+]S),

C40S = [Fe2+]0 + [Fe2+]S − 0.5([H+]0 + [H+]S), C50S = [SO2−
4 ]0 + [SO2−

4 ]S − ([H+]0 + [H+]S),

C202S = [FeS2]0 + [FeS2]S +
1

16
([H+]0 + [H+]S), C404S = [Fe2+]0 + [Fe2+]S −

15

16
([H+]0 + [H+]S),

C505S = [SO2−
4 ]0 + [SO2−

4 ]S −
2

16
([H+]0 + [H+]S), C606S = [[Fe3+]0 + [[Fe3+]S +

14

16
([H+]0 + [H+]S),

C03S = [O2]0 + [O2]S − 0.25([H+]0 + [H+]S), C04S = [Fe2+]0 + [Fe2+]S − ([H+]0 + [H+]S),

D1 = 2.9Kf1C20SC30S + 23.2Kf2C202SC606S − 1.45Kf3C04SC03S

D2 = −Kf1

(7

2
C20S + C30S

)
− 2Kb1C40SC50S −Kf2

(
14C202S + C606S

)
−Kb2

(
2C404S + 15C505S

)
−Kf3

(
0.25C04S + C03S

)
D3 =

7

4
Kf1 −Kb1

(
2C40S + C50S

)
+

14

16
Kf2 −Kb2

(
2C404S + 15C505S

)
− 0.25Kf3

D4 = −Kb1 −
30

16
Kb2.

4.3 Analytical solution of the calcite rate law

The acid treatment model (calcite dissolution model) has an analytical solution which
will be derived in this section for validation purposes.

Firstly, by substituting data (29) into Equation (8), we obtain mass balance expres-
sions for the species in Equation (23) as follows:

[CaCO3] = [CaCO3]0 − χ. (46)

[H+] = [H+]0 − χ. (47)

[Ca2+] = [Ca2+]0 + χ. (48)

[HCO−3 ] = [HCO−3 ]0 + χ. (49)

Substituting expressions (46) – (49) into Equation (30) and manipulating the results, one
obtains:

dχ

dt
= µ1 + µ2χ−Kbχ

2 (50)

where

µ1 = Kf [H
+]0 −Kb[Ca

2+]0[HCO−3 ]0, µ2 = −(Kf +Kb[Ca
2+]0 +Kb[HCO

−
3 ]0)

are constants.
Equation (50) can be solved analytically (see, [37] for more details) to obtain:

χ =
Θ1Θ2

(
1− exp−Kb(Θ1−Θ2)t

)
Θ2 −Θ1 exp−Kb(Θ1−Θ2)t

. (51)
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where

Θ1 =
−µ2 −

√
µ2

2 + 4Kbµ1

−2Kb

, Θ2 =
−µ2 +

√
µ2

2 + 4Kbµ1

−2Kb

.

Therefore, using (51) in (46) –(49) yields the following species concentration profiles:

[CaCO3] = [CaCO3]0 −
Θ1Θ2

(
1− exp−Kb(Θ1−Θ2)t

)
Θ2 −Θ1 exp−Kb(Θ1−Θ2)t

, (52)

[H+] = [H+]0 −
Θ1Θ2

(
1− exp−Kb(Θ1−Θ2)t

)
Θ2 −Θ1 exp−Kb(Θ1−Θ2)t

, (53)

[Ca2+] = [Ca2+]0 +
Θ1Θ2

(
1− exp−Kb(Θ1−Θ2)t

)
Θ2 −Θ1 exp−Kb(Θ1−Θ2)t

, (54)

[HCO−3 ] = [HCO−3 ]0 +
Θ1Θ2

(
1− exp−Kb(Θ1−Θ2)t

)
Θ2 −Θ1 exp−Kb(Θ1−Θ2)t

. (55)

Concentration and rate profiles for the species are given by Figure 1. Data from [31]
was applied.

(a) Concentration profiles of species (b) Rate of reaction profiles

Figure 1: Species concentration and rate profiles for Reaction (23).

Figure (1a) shows the changes in species concentration with time. The data used for
generating the profiles contain a high concentration of hydrogen ions. It can be observed
that while the concentration of H+ (a reactant) decreases with time, the concentration
of Ca2+ increases with time until equilibrium is reached.

Figure (1b) presents the evolution of the forward, backward and net rate profiles of
calcite versus time. It can be observed that the expected profiles are reproduced: while
the rate of dissolution is highest at the beginning of the reaction, the rate of precipitation
is lowest at the beginning of the reaction. It can also be observed that while the rate
of forward reaction decreases until equilibrium is achieved the rate of backward reaction
increases with time until equilibrium is achieved. One more observation is that the net
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rate of reaction is highest at the beginning but decreases to zero when equilibrium is
reached. These observations conform with Le Chatelier’s principle, and therefore, confirm
the consistency of our analytical solution with the chemistry of the problem.

To test the accuracy of the stoichiometric decoupling method at the ordinary differ-
ential equation (ODE) level, we calculated the transient concentrations of the species
H+, Ca2+ and HCO−3 , and with these values, we plotted rate against time, to obtain the
rate profiles for both the single-variable ODEs and the original ODE.

In Figure 2c, we compare the transformed one-variable rate functions given by Equa-
tions (35), (36) and (37) to the original three variable ODE given by Equation (27).

From Figure 2c, it can be observed that the single-variable (stoichiometrically decou-
pled) ODEs given by Equations (35), (36) and (37) are the same as the original coupled
ODE (27). We would like to point out that, each one of the modified ODEs (35), (36)
and (37) depends on one variable only, thus we have a set of independent equations that
represent the rate at which each species progresses in the calcite kinetics.

4.4 Other approximations for calcite kinetics

According to [33], the rate of calcite precipitation (backward reaction rate) can be ap-
proximated as follows:

Kb[Ca
2+][HCO−3 ] ≈ 2Kb

(
[Ca2+]

)2
, (56)

or

Kb[Ca
2+][HCO−3 ] ≈ 2Kb

(
[HCO−3 ]

)2
. (57)

The approximations (56) and (57) have been verified in experiments involving pure wa-
ter and calcite. By substituting Equation (56) into Equation (27), the calcite dissolution
rate law becomes:

RCaCO3 = Kf [H
+]− 2Kb

(
[Ca2+]

)2
. (58)

Similarly, substituting Equation (57) into Equation (27), the calcite dissolution rate law
becomes:

RCaCO3 = Kf [H
+]− 2Kb

(
[HCO−3 ]

)2
. (59)

It is important to note here that, in the case of pure water-calcite kinetics, the rate
law (27) with a three-variable rate function can be approximated by rate law (58) or (59)
with two-variable rate functions. To investigate the accuracy of approximations (58) and
(59), we compared their profiles with the original rate law (27) in Figure 2a.

From Figure 2a, one can observe that the approximations are reasonably accurate.
However, further investigations revealed that the error depends on the ratio of input data
(see Figure 2d or Table 2). We introduced a scalar ratio αsca, such that:

[HCO−3 ]0 + [Ca2+]0 = αsca[H+]0. (60)
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(a) Two-variable rate function (b) Improved two-variable rate function

(c) One-variable rate function (d) Error profile for two-variable rate function

Figure 2: Profiles for the two-variable rate function (58) or (59), improved two-variable
rate function (58) or (59), one-variable rate function (35) or (36) or (37) and errors of
the two-variable rate functions, all profiles compared with the three-variable rate function
(27).

Table 2: Error values for varying values of products and reactants input data.

Ratio of input data (αsca) Maximum relative error
0.10000 0.1308
0.01000 0.0780
0.00100 0.1000
0.00010 0.1019
0.00001 0.01021

The ratio αsca and maximum relative error was calculated from different input data values
of [HCO−3 ]0, [H+]0, and [Ca2+]0. Table 2, contains the calculated values for αsca and the
maximum relative error measured. In Figure 2b where αsca = 0.03, one can observe more
accuracy than in Figure 2a where αsca = 0.1.
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However, calcite dissolution and precipitation occurs naturally and one can not control
the input data or ensure that reaction occurs in pure water. Besides, the approximations
are two-variable functions, which lead to coupling. Thus the models given by rate laws
(58) and (59), will not always be useful as compared with the stoichiometrically decoupled
model given by rate function (35) especially in modelling studies.

5 Numerical schemes

Notable challenges with stoichiometrically decoupled models is non-linearity that makes
exact solutions infeasible. In this Section, we discuss some numerical schemes that will
be used to analyse the stoichiometrically decoupled models. We present low and high
order implicit one-step (Runge-Kutta and Rosenbrock) schemes that are suitable for stiff
problems. We also present positivity-preserving schemes that are conservative and suitable
for chemical kinetic problems.

After applying the model reduction methods discussed in Section 3, the resulting
models satisfy the general form:

dUk
dt

= Fk(t, Uk), t ∈ [0, T ), U(0) = U0, k = 1, 2, . . . , N. (61)

where Uk is current concentration of species k, Fk(t, Uk) is the rate function of species k,
and U0 is initial data of all the species. In Equation (61) we made Fk a function of time,
for the sake of completeness in our presentation of Runge-Kutta schemes.

5.1 Runge-Kutta schemes

A generalized Runge-Kutta scheme for the initial-value problem (61), states that [26]:

Un+1
k = Un

k + ∆t
m∑
i=1

qiFk(tn + ri∆t, Uni), (62)

(63)

Uni = Un
k + ∆t

m∑
j=1

αijFk(tn + ri∆t, Uni), i = 1, 2, . . . ,m,

where m is the number of stages, ∆t = T
Nt

is the time step size, Nt is total number of

time steps and tn = n∆t is the nth time point in the discrete time interval, Un
k = Uk(tn)

and Un+1
k = Uk(tn+1). Specifying the coefficients αij, qi will define a particular method.

The coefficients ri =
m∑
j=1

αij, for i = 1, 2, . . . ,m. It is convenient to represent a particular

Runge-Kutta method in a compact/tabular form, called Butcher’s array (see Table 3a for
the tabular form of general Runge-Kutta method).

We will now apply three implicit Runge-Kutta schemes to solve ODE (35) where
Uk = [H+] and Fk(t, Uk) = −KbU

2
k + λ3Uk − λ4. The first particular scheme that will be

applied is called Backward Euler or implicit Euler. It is one-stage (m = 1), unconditionally
stable, first-order consistent and has the following Butcher’s array [26] given by Table 3b.
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Table 3: Butcher arrays for Runge-Kutta methods

r1 α11 · · · αim
...

...
...

...
rm αm1 · · · αmm

q1 · · · qm
(a)
Butcher
array

1 1
1

(b) Euler

1
3

5
12
− 1

12

1 3
4

1
4

3
4

1
4

(c)
Radau

1
2
− 1

6

√
3 1

4
1
4
− 1

6

√
3

1
2

+ 1
6

√
3 1

4
+ 1

6

√
3 1

4

1
2

1
2

(d)
Gauss

The second scheme that will be applied is the two-stage Gauss quadrature scheme. It
is unconditionally stable, fourth-order consistent and has the following Butcher’s array
[26] given by Table 3d:

The third implicit Runge-Kutta scheme applied is the two-stage Radau quadrature
scheme. It is unconditionally stable, third-order consistent and has the following Butcher’s
array [26] given by Table 3c:

5.2 Rosenbrock schemes

A generalized Rosenbrock scheme of any order, for the autonomous case of the initial-value
problem (61) states that [26]:

Un+1
k = Un

k +
m∑
i=1

qiUni, (64)

(65)

Uni = ∆t Fk(U
n
k +

i−1∑
j=1

αijUnj) + ∆t F ′k(U
n
k )

i∑
j=1

γijUnj, i = 1, 2, . . . ,m,

where F ′k(V
n) is the Jacobian of Fk(U

n
k ), and the coefficients qi, αij, γij determine the

order of consistency and stability of a particular Rosenbrock method.
In this discussion, we only consider three particular Rosenbrock schemes. The first

scheme (code named Rose1 ) is one stage, first order consistent (with γ11 = 1) and
L−stable given by [26]:

Un+1
k = Un

k + Un1, (66)

Un1 = ∆t Fk(U
n
k ) + ∆t F ′k(U

n
k )γ11Un1. (67)

The second scheme (code named Rose2 ) has two stages, is second order consistent
and L−stable (with γ11 = γ22 = 1 + 0.5

√
2) given by [26]:

Un+1
k = Un

k + 0.5Un1 + 0.5Un2, (68)

Un1 = ∆t Fk(U
n
k ) + ∆t F ′k(U

n
k )γ11Un1, (69)

Un2 = ∆t Fk(U
n
k + Un1)− 2∆t F ′k(U

n
k )γ11Un1 + ∆t F ′k(U

n
k )γ22Un2. (70)
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The third scheme (code named Rose3 ) has two stages, is third order consistent and
strongly A−stable (with γ11 = γ22 = 0.5 + 1

6

√
3) given by [26]:

Un+1
k = Un

k + 0.25Un1 + 0.75Un2, (71)

Un1 = ∆t Fk(U
n
k ) + ∆t F ′k(U

n
k )γ11Un1, (72)

Un2 = ∆t Fk(U
n
k +

2

3
Un1)− 4

3
∆t F ′k(U

n
k )γ11Un1 + ∆t F ′k(U

n
k )γ22Un2. (73)

5.3 Positivity-preserving schemes

The positivity-preserving class of schemes we will consider for the autonomous case of
Equation (61) is the Theta class which states that [24]:

Un+1
k − θ∆t Fk(Un+1

k ) = Un
k + (1− θ)Fk(Un

k ), (74)

where θ is the parameter that determines specific schemes.
The first scheme in this class that will be considered in the discussion is θ = 0, called

the explicit Euler scheme. This scheme is conditionally stable, first-order consistent,
conservative and positivity-preserving.

The second scheme that we consider is θ = 1 called the implicit Euler schemes.
This scheme is unconditionally stable, first-order consistent, conservative and positivity-
preserving.

The third positivity-preserving scheme is θ = 1
2

called the Crank-Nicholson (also
referred to as Nicholson below) scheme. This scheme is unconditionally stable, second
order consistent, conservative and positivity-preserving.

For a detailed discussion on convergence, positivity, conservation and absolute stability
refer to [24, 26, 34].

6 Numerical experiments

In this Section, we present results from numerical experiments, obtained by applying the
numerical schemes (presented in Section 5) to the stoichiometrically decoupled calcite
model presented in Section 3. The goal is to quantify numerical errors in the reduced
model (which implicitly contain the stoichiometric reduction error) at the species pro-
file level, in order to validate and establish the suitability of the numerical schemes and
the compatibility of the stoichiometric decoupling/reduction method. Section 6.1 con-
tains discussion on convergence of the numerical schemes. Section 6.2 contains discussion
on accuracy of the decoupling methods and Section 6.3 contains discussion on cost of
simulation.

6.1 Convergence test for numerical schemes

The numerical solutions obtained by applying the Runge-Kutta, Rosenbrock and Theta
classes of schemes to ODE (35), have been compared with the exact solution in Figure
3. Table 4 contains error values for all the classes, these were measured across time steps
and norms. The error values are 10−7 orders of magnitude, thus are very small. From
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Figure 3 and Table 4, one can observe that errors are decreasing monotonically for all the
numerical schemes.

In summary, the errors of all the numerical schemes (Runge-Kutta, Rosenbrock and
Theta schemes) decrease monotonically across time steps, which implies that the schemes
are accurate and convergent. This further implies that the stoichiometric reduction
method does not negatively affect the performance of the numerical schemes. The results
also show that the high-order schemes (Radau, Rose3 and Crank-Nicholson) performed
better.

Table 4: Errors of the numerical schemes measured across norms and time steps. The
numerical values in this table are of order 10−7.

Runge-Kutta schemes

Error norms Numerical schemes
Time steps

Nt = 5 Nt = 10 Nt = 15 Nt = 20
Backward Euler 1.7600 0.9910 0.6841 0.5208

‖ · ‖∞ 2-stage Gauss 0.0671 0.0223 0.0107 0.0063
2-stage Radau 0.0662 0.0137 0.0056 0.0031
Backward Euler 2.7503 2.0436 1.6992 1.4856

‖ · ‖2 2-stage Gauss 0.0930 0.0421 0.0246 0.0165
2-stage Radau 0.0923 0.0271 0.0137 0.0086

Rosenbrock schemes

Error norms Numerical schemes
Time steps

Nt = 5 Nt = 10 Nt = 15 Nt = 20
Rose1 0.6962 0.6747 0.5310 0.4338

‖ · ‖∞ Rose2 0.5713 0.3515 0.2192 0.1485
Rose3 0.2267 0.0459 0.0161 0.0074
Rose1 1.0864 1.3846 1.3242 1.2356

‖ · ‖2 Rose2 0.8530 0.7160 0.5438 0.4245
Rose3 0.3011 0.0884 0.0315 0.0203

Theta schemes

Error norms Numerical schemes
Time steps

Nt = 5 Nt = 10 Nt = 15 Nt = 20
Implicit Euler 1.7600 0.9910 0.6841 0.5208

‖ · ‖∞ Explicit Euler 2.7794 1.2604 0.7965 0.5857
Crank-Nicholson 0.1823 0.0502 0.0235 0.0129
Implicit Euler 2.7503 2.0436 1.6993 1.4856

‖ · ‖2 Explicit Euler 3.6038 2.3211 1.8487 1.5824
Crank-Nicholson 0.2427 0.0863 0.0467 0.0303

6.2 Accuracy test on the decoupling methods

In this Section, we present convergence results for the stoichiometric decoupling, Gauss-
Seidel (also referred to as G. Seidel below), Gauss-Jacobi (also referred to as G. Jacobi
below) and Successive-Over-Relaxation (SOR) decoupling methods discussed earlier in
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Section 3. The goal is to compare the performance of the stoichiometric method with the
other methods.

When ω = 0, the Successive-Over-Relaxation (SOR) reduces to Gauss-Seidel. Results
from our experiments (see Table 5) show that when ω = 0.1 the SOR approach performs
well.

All the numerical schemes (Runge-Kutta, Rosenbrock and Theta schemes) discussed
in Section 6 were applied to all the models resulting from all the decoupling methods
(discussed in Section 3) to obtain corresponding discrete versions. However, we only
present results for Radau, Rose3 and Crank-Nicholson schemes, since they performed
better than the other schemes.

The errors of the numerical schemes (applied on the stoichiometrically decoupled model
(35) and the Gauss-Seidel, Gauss-Jacobi and Successive-Over-Relaxation (SOR) decou-
pling of (31)-(33)) were measured relative to the analytical solution in Equation (53).
Table 6 contains errors of the numerical schemes (Radau, Rose3 and Crank-Nicholson
schemes) measured across increasing time steps. Figure 4 shows the error profiles of the
Radau, Rose3 and Crank-Nicholson schemes applied on all the decoupled models. It can
be observed in Figure 4 and Table 6, that all the numerical schemes had minimal errors
when applied to the stoichiometrically decoupled model. Relative to Gauss-Seidel and
SOR decoupling, the Gauss-Jacobi decoupling method performed better.

Table 5: Errors (‖ · ‖∞) of the Radau, Rose3, and Crank-Nicholson schemes, applied to
the SOR decoupling of the large model (31)-(33), using different values of the parameter
ω,Nt = 15 and all other model parameters held constant.

ω 0.9 0.5 0.2 0.1 0.01 0.001 0.0001
Radau 13.1470 5.3289 2.3859 2.0054 2.2302 2.2545 2.2570
Rose3 13.1387 5.3035 2.3397 1.7912 1.8433 1.8674 1.8698

Crank-Nicholson 13.1384 5.3056 2.3463 1.8111 1.8619 1.8803 1.8821

6.3 Experiments on cost of simulation

In the Section, we present and discuss results on cost of simulation, using two chemical
kinetic models. The first model is the calcite (acid neutralization) model presented in
Section 4.1, and the second model is pyrite oxidation (acid generation) model presented
in Section 4.2. The experiments were performed using Radau, Rose3 and Crank-Nicholson
discretizations for the two models. CPU time, CPU time differences and relative CPU time
were obtained for all the decoupling methods, using grid refinement tests. Throughout
this Section, we define CPU time differences and relative CPU time as follows:

CPU time difference = CPUC − CPUS (75)

and

Relative CPU time =
CPUC − CPUS

CPUC

(76)
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Table 6: Errors of the large linear model (30)-(33) and reduced non-linear model (35),
computed across numerical schemes, norms and time steps. The numerical values in this
table are of order 10−7.

Scheme Norms Method
Time steps

Nt = 15 Nt = 20 Nt = 30 Nt = 50
Gauss-Jacobi 0.6317 0.4761 0.3181 0.1910

‖ · ‖∞ Gauss-Seidel 2.2572 1.6771 1.1078 0.6599
SOR (ω = 0.1) 2.0054 1.5405 1.2316 1.0266

2-stage Radau Stoichiometric 0.0056 0.0031 0.0013 0.0005
Gauss-Jacobi 1.5754 1.3861 1.1499 0.9020

‖ · ‖2 Gauss-Seidel 6.4410 5.4760 4.3879 3.3509
SOR (ω = 0.1) 6.7605 6.2086 5.7473 5.6304
Stoichiometric 0.0137 0.0086 0.0045 0.0020

Gauss-Jacobi 0.6878 0.5187 0.3478 0.2097
‖ · ‖∞ Gauss-Seidel 1.8701 1.3936 0.9233 0.5513

SOR (ω = 0.1) 1.7912 1.4859 1.2055 1.0128
Rose3 Stoichiometric 0.0161 0.0074 0.0024 0.0006

Gauss-Jacobi 1.9798 1.7500 1.4567 1.1449
‖ · ‖2 Gauss-Seidel 5.7238 4.8814 3.9252 3.0037

SOR (ω = 0.1) 6.1228 5.7060 5.3798 5.3854
Stoichiometric 0.0382 0.0203 0.0081 0.0024

Gauss-Jacobi 0.6867 0.5179 0.3474 0.2095
‖ · ‖∞ Gauss-Seidel 1.8823 1.4004 0.9263 0.5524

SOR (ω = 0.1) 1.8111 1.4859 1.2055 1.0392
Crank-Nicholson Stoichiometric 0.0235 0.0129 0.0059 0.0021

Gauss-Jacobi 1.9669 1.7405 1.4508 1.1419
‖ · ‖2 Gauss-Seidel 5.7530 4.8997 3.9348 3.0080

SOR (ω = 0.1) 6.2414 5.7855 5.4312 5.4137
Stoichiometric 0.0467 0.0303 0.01643 0.0076

where CPUS is the CPU time for the stoichiometric method and CPUC is the CPU time
for any of the other methods. In the experiments, we fixed the final time at T = 20 and
use a very fine grid (8000 time steps) to ensure that results are not affected much by
numerical discretization errors.

6.3.1 Acid neutralization (calcite) model

The final time was set at T = 20, Radau, Rose3 and Crank-Nicholson discretization
schemes were applied to the calcite model, CPU time for all the decoupling techniques
were obtained by varying the grid resolution. Figures 5a, 5c and 5e show plots of CPU time
against time steps, obtained in the Radau, Rose3 and Crank-Nicholson discretizations,
for all the decoupling techniques. In all the discretizations, the CPU time for all the
decoupling techniques generally increased with increasing time steps, however, the CPU
time for the stoichiometric technique recorded the least CPU time. Another observation is
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that, the CPU time difference between the stoichiometric method and the other methods
increased with increasing time steps, in all the discretization schemes. This observation
can be seen clearly in Figures 5b, 5d and 5f. One other observation is that, the CPU
time and differences vary across the numerical discretizations, this is because the number
of terms to evaluate and the number of iterations to converge vary across discretizations,
but greatly influence simulation time.

6.3.2 Pyrite oxidation model

It is not trivial to obtain an analytical solution of this system (presented in Section 4.2) and
solving it numerically without applying model reduction methods would be impractical.
Thus Gauss-Seidel, Gauss-Jacobi and SOR methods are applied to decouple Equation
(44) before solving numerically. We compare results for the stoichiometric method with
the results of Gauss-Seidel, Gauss-Jacobi and SOR methods. The following input data
was used in simulating the pyrite model:

Kf1 = 0.7, Kb1 = 0.007, Kf2 = 0.03, Kb2 = 0.007, Kf3 = 0.02

U0 = (0.000001, 1, 0.02, 0.002, 0.00001, 0.003)Tr and

US = (0., 0., 0., 0., 0., 0.)Tr. (77)

During oxidation, the concentration of the hydrogen ion is expected to rise until equi-
librium, where the concentration profile becomes independent of time and time-grid res-
olutions. Figures 6a and 6b show expected transient and equilibrium concentration pro-
files in the Crank-Nicholson and Rose3 discretizations, for all the decoupling methods.
However, the equilibrium concentration predicted by the stoichiometric method remained
constant with grid-refinement, while the equilibrium concentration predicted by the other
decoupling methods varied with grid resolution, see Figure 6. Moreover, the equilibrium
values predicted by the other methods eventually converge (using 8000 time steps and
above) to the value predicted by the stoichiometric method (see Figures 6e and 6f). This
observation supports our earlier results that the stoichiometric method is more accurate,
accelerates convergence and is compatible with numerical schemes.

Next, Radau, Rose3 and Crank-Nicholson discretization schemes were applied to the
pyrite model. The CPU time for all the decoupling methods was measured for different
time-grid resolutions. Figure 7 shows the results of the experiments. The observations
are not very different from those in the calcite model. In all the discretizations, the CPU
time (see Figures 7a, 7c and 7e) and CPU time differences (see Figures 7b, 7d and 7f) for
all the decoupling methods generally increased with increasing time steps, however, the
CPU time for the stoichiometric method recorded the least values.

6.3.3 Relative cost of simulation

In order to determine the CPU time saved by using stoichiometric decoupling instead of
the other methods, the CPU time differences for the Gauss-Jacobi, Gauss-Seidel and SOR
decoupling methods (measured across the Radau, Rose3 and Crank-Nicholson discretiza-
tions of both calcite and pyrite models) were divided by the CPU time for Gauss-Jacobi,
Gauss-Seidel and SOR (i.e., using Equation (76)). Figure 8 shows the results of the
investigation.

22



In the calcite model, when stoichiometric decoupling is applied with Radau discretiza-
tion, 82 percent of the CPU time of the other decoupling methods will be saved, 84 percent
if Rose3 discretization is used, and 96 percent if Crank-Nicholson is used (see Figures 8a,
8c and 8e).

In the pyrite model, applying stoichiometric decoupling with Radau discretization will
save up to 82 percent of the CPU time for the other decoupling methods, save 88 percent
if Rose3 discretization is used, and 97 percent if Crank-Nicholson is used (see Figures
8b, 8d and 8f). The pyrite system in Equation (44) has more terms to evaluate than the
stoichiometric case in Equation (45) especially when a fine grid is used.

Another observation is that, in both calcite and pyrite models, the CPU time saved by
using Radau and Rose3 discretizations are lower compared to Crank-Nicholson discretiza-
tions. This is because the Radau and Rose3 discretizations have two stages of evaluations
that introduce extra terms into the computation (unlike Crank-Nicholson that has one
stage). Thus, applying Crank-Nicholson on the stoichiometric models result in faster
computations than the Radau and Rose3 schemes. The faster computations result in less
CPU time, larger CPU time differences (see Figures 5 and 6) and higher relative CPU
time. This explains why the CPU time saved (relative CPU time) in the Crank-Nicholson
discretization is higher in both models (see Figure 8).

7 Conclusion

Most chemical processes are complicated, difficult to model and expensive to simulate.
Such complications result from large numbers of species involved in many reactions at
varying time-scales. Efficient model reduction methods are required to reduce computa-
tional cost and still maintain high accuracy. Many researchers have developed various
reduction strategies that are based on decoupling species or reactions, but not much has
been done to address the case where the rate profiles of some of the many species are of
interest.

In this discussion, we first presented a decoupling method (see Section 3) that is based
on stoichiometry and mass balances. The method can be applied to any stoichiometric
system (where the profiles of some of the many species are of interest) to significantly
reduce computational cost and maintain high accuracy.

Secondly, we applied the method to calcite dissolution and pyrite oxidation kinetics
to reduce their degrees of freedom from four to one and six to one, respectively. The
evidence provided by the calcite model at the ODE level (see Section 4), shows that
the stoichiometric method maintains the physical and chemical essential features of the
original system. The results also show a remarkable accuracy of the method (at the ODE
level) as compared with other reduction methods.

Thirdly, we numerically simulated (at the species-concentration level) the stoichiomet-
rically decoupled models for the acidic effluent generation/treatment, in order to establish
compatibility with numerical schemes. The sum of all errors (including rounding, trun-
cation and model reduction errors) is 10−7 orders of magnitude, and generally decreases
monotonically with increasing time steps. This evidence provided in Sections 6.1 shows
that, the model reduction error does not significantly affect the overall error, which implies
that the method is compatible with the numerical schemes. This observation also implies
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that the stoichiometric decoupling method is accurate at the species-concentration level.
Fourthly, we compared the performance of the stoichiometric decoupling method with

three other methods (namely Gauss-Seidel, Gauss-Jacobi and Successive-Over-Relaxation
(SOR)), by checking the rate at which numerical schemes converged to the analytical
solution in all the decoupled models (see Section 6.2). The numerical errors in the stoi-
chiometrically decoupled model are orders of magnitude smaller than those of the other
models. The results further show that the numerical solutions of the stoichiometrically
decoupled model converges faster than the numerical solutions of the other decoupled
models. Thus stoichiometric decoupling is compatible with numerical schemes and can
accelerate convergence of the numerical scheme.

Fifthly, we presented and discussed results on cost of simulation, using two chemical
kinetic models (see Section 6.3). CPU time, CPU time differences and relative CPU time
were measured and compared for all the decoupling methods and numerical schemes. The
results showed that stoichiometric decoupling can significantly reduce cost of simulation.

Therefore, with the evidence provided above, we conclude that the stoichiometric
decoupling method is an efficient method for reducing the computational cost of chemical
kinetic models, especially when some of the many species are of interest.
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(a) Runge-Kutta/five time steps. (b) Runge-Kutta/twenty time steps.

(c) Rosenbrock/five time steps. (d) Rosenbrock/twenty time steps.

(e) Theta/five time steps. (f) Theta/twenty time steps.

Figure 3: Numerical and analytical solutions for ODE (62), where Uk = [H+], T =
20, [H+]0 = 10−5, and Fk(t, [H

+]) = −Kb[H
+]2 + λ3[H+]− λ4. The analytical solution is

Equation (53).
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(a) L2- errors, using Crank-Nicholson scheme.
(b) Max. errors, using Crank-Nicholson scheme.

(c) L2- errors, using Radau scheme. (d) Max. errors, using Radau scheme.

(e) L2- errors, using Rose3 scheme. (f) Max. errors, using Rose3 scheme.

Figure 4: Errors (max and L2) of the numerical schemes, measured across decoupled
models and time steps.
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(a) CPU time using Radau scheme. (b) CPU time difference using Radau.

(c) CPU time using Rose3 scheme. (d) CPU time difference using Rose3.

(e) CPU time using Crank-Nicholson scheme.
(f) CPU time difference using Crank-Nicholson.

Figure 5: CPU time and CPU time differences for Gauss-Jacobi, Gauss-Seidel and SOR,
using Radau, Rose3 and Crank-Nicholson, measured across time steps (in the calcite
model).
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(a) Crank-Nicholson/50 time steps. (b) Rose3/50 time steps.

(c) Crank-Nicholson/200 time steps. (d) Rose3/200 time steps.

(e) Crank-Nicholson/8000 time steps. (f) Rose3/8000 time steps.

Figure 6: Hydrogen profiles in the Gauss-Jacobi, Gauss-Seidel and SOR models using
Rose3 and Crank-Nicholson, measured across time steps (in the Pyrite model).
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(a) CPU time using Radau scheme. (b) CPU time difference using Radau scheme.

(c) CPU time using Rose3 scheme. (d) CPU time difference using Rose3 scheme.

(e) CPU time using Crank-Nicholson scheme.
(f) CPU time difference using Crank-Nicholson
scheme.

Figure 7: CPU time for the Gauss-Jacobi, Gauss-Seidel and SOR methods, using Radau,
Rose3 and Crank-Nicholson schemes, measured across time steps in both calcite and
pyrite models.
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(a) Relative CPU time/Radau/Calcite model.
(b) Relative CPU time/Radau/Pyrite model.

(c) Relative CPU time/Rose3/Calcite model. (d) Relative CPU time/Rose3/Pyrite model

(e) Relative CPU time/Crank-
Nicholson/Calcite.

(f) Relative CPU time/Crank-
Nicholson/Pyrite model.

Figure 8: Relative CPU time for Gauss-Jacobi, Gauss-Seidel and SOR, using Radau,
Rose3 and Crank-Nicholson schemes, measured across time steps in both calcite and
pyrite models.
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