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Abstract 10 

A flexible operation of the solvent-based post-combustion CO2 capture (PCC) process is of great importance to make the technology widely 11 

used in the power industry. However, in case of a wide range of operation, the presence of process nonlinearity may degrade the performance of 12 

the pre-designed linear controller. This paper gives a comprehensive analysis of the dynamic behavior and nonlinearity distribution of the PCC 13 

process. Three cases are taken into account during the investigation: 1) capture rate change; 2) flue gas flowrate change; and 3) re-boiler 14 

temperature change. The investigations show that the CO2 capture process does have strong nonlinearity; however, by selecting a suitable 15 

control target and operating range, a single linear controller is possible to control the capture system within this range. Based on the analysis 16 

results, a linear model predictive controller is designed for the CO2 capture process. Simulations of the designed controller on an MEA based 17 

PCC plant demonstrate the effectiveness of the proposed control approach. 18 

 19 
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1. Introduction 21 

Solvent-based post-combustion CO2 capture (PCC) provides the most mature and feasible technology to remove CO2 from 22 

fossil fuel fired power plant (FFPP) flue gas [1]. Many PCC pilot plants have been built and put into use in recent years; 23 

nevertheless, the huge heat consumption for lean-solvent regeneration during the operation is still the main obstacle that limits 24 

the PCC application. For this reason, extensive studies, such as equipment and solvent selection [2]-[5], system configuration 25 

changes [6]-[8], parameter settings [4], [5], and etc. have been undertaken to improve the efficiency of the process through 26 

steady-state optimizations.  27 

Recently, the idea of flexible operation has been promoted and identified as a key technique for the PCC to be widely applied 28 

in the power industry. The so called flexible operation is mainly reflected in the following two aspects: 29 

1) as the energy consumption for the CO2 capture is high, the PCC plants have to change the capture rate flexibly in a wide 30 

range, so that the tradeoff between power generation and CO2 reduction can be made rapidly;  31 

2) as the FFPPs participate in the grid power regulation frequently [9], the flue gas to be treated by the PCC process will have 32 

a large variation in mass flow rate, therefore, the PCC plants should flexibly adapt to this flue gas flow rate variation. 33 

In order to achieve a flexible operation of the PCC process, much attention has been paid on the dynamic behavior 34 

investigations and control system developments. In Lawal et al. [10], dynamic modeling and simulations on a single absorber 35 

model was performed and the results showed that the behavior of the absorber is closely related to the ratio between lean solvent 36 

flow rate and flue gas flow rate. Ziaii et al. [11] developed a model for the amine regenerative system, and investigated through 37 

simulations the influences of re-boiler heat duty and solvent flow rate on the lean solvent loading.  38 

To provide a thorough understanding of the integrated PCC process dynamics, first principle models were established using 39 

different simulation softwares, such as gPROMS [12], [13], Aspen Dynamics [14],[15], Modelica [16], Matlab [17] and gCCS 40 

[18], [19]. Bootstrap aggregated neural network model [20] and nonlinear autoregressive exogenous (NLARX) model [21] of the 41 

PCC processes were also developed through the identifications from input-output operating data. Based on these models, 42 

numerous simulations were then performed and the transient influences of flue gas flow rate/composition, rich/lean solvent flow 43 

rate, re-boiler heat duty, etc., on the CO2 capture rate and thermal energy consumption were fully analyzed. Their results provide 44 
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useful information for the control system design. 45 

However, although nonlinear differential equations or nonlinear identification approaches are used in all of these studies to 46 

approximate the dynamics of the PCC process [10]-[21], there is no quantification of the nonlinearity level of the PCC process 47 

over a wide range of operation. Important issues for controller design, such as how the nonlinearity is distributed and how the 48 

process dynamics are changed along the considered operating range are still not addressed.  49 

On the basis of the dynamic studies, many control designs have been proposed to improve the flexibility of the PCC system 50 

operation. Since the PCC process is highly nonlinear, it is a natural idea to use the nonlinear controllers to achieve a satisfactory 51 

control performance. In [22] and [23], nonlinear analytical models were developed for the integrated PCC process for the NMPC 52 

design purpose, and the models were further simplified to make the computation faster. Although a superior wide range load 53 

variation can be achieved by the NMPC, the nonlinear optimization solving a large number of differential equations lacks 54 

computational robustness and is time consuming. Moreover, an accurate nonlinear control model is difficult to be developed. For 55 

these reasons, linear control approaches attracted much attention and were extensively studied for the PCC process in recent 56 

years. 57 

Lawal et al. [12], [13] and Lin et al. [14] both proposed a PI based control structure for the PCC processes. The lean solvent 58 

flow rate and extracted steam flow rate were selected as the primary manipulated variables to control the CO2 capture rate and 59 

re-boiler temperature, respectively. Simulation verifications demonstrated that such a design can attain a quick control of the 60 

capture rate even in the presence of flue gas flow rate change and CO2 concentration change. In Lin et al. [15], another control 61 

structure was proposed, which used the lean solvent loading to control the CO2 capture rate while keeping the lean solvent flow 62 

rate constant. Such a design was shown to have better hydraulic stability in the absorber and stripper, but was not practical, 63 

because lean solvent loading cannot be used as a manipulated variable. Nittaya et al. [24] investigated the interactions among 64 

multi-variables within the PCC system through Relative Gain Array (RGA) analysis. The input-output variables which have the 65 

strongest relationship were paired in one control loop. A 6-input 6-output PI control system was then developed to control the 66 

key variables within the PCC process. In [25] to [27], energy consumption is optimized through steady-state calculation, and 67 

according to the results, the variables which are closely related to the economic performance of the PCC process were selected as 68 

controlled variables, and proper PI control loops were then designed to control these variables.  69 

Besides the aforementioned linear PI control loops, linear MPCs have also been applied in the PCC process to achieve a better 70 

flexible control performance. In Bedelbayev, Greer and Lie [28], a linear MPC was designed for the standalone absorber column. 71 

The model was established through linearizing the nonlinear analytical model at a given operating point.  Simulation results 72 

show that the MPC can attain a smooth capture rate tracking and quick response to the flue gas flow rate variation.  In [29], two 73 

linear MPCs were devised in a double-layer optimal solvent regeneration control system to achieve a fast track of the optimal 74 

re-boiler pressure, the level of solvent in the re-boiler and CO2 molar flow rate set-points. In [30]-[33] multivariable linear MPCs 75 

were developed to control the key variables of the integrated PCC process. Owing to the outstanding advantages of MPC in 76 

handling strong coupling, slow response and constraint issues, their results all showed that superior performance can be attained 77 

by these linear MPCs compared to the PI/PID based control configurations. 78 

However, because the PCC process has a strong nonlinearity along the whole operating range, the system dynamics between 79 

the operating point and the design point may have huge difference. In this case, the presence of nonlinearity will degrade the 80 

performance of designed linear controller severely or even cause the closed-loop system unstable. Although the robustness of the 81 

controllers is tested in some regards, without understanding the nonlinearity level and its distribution along the considered 82 

operating range, the applicable range for the linear controllers is still not clear. Therefore, these linear controllers can only be 83 

used in a small range around the design point and cannot meet the requirement of wide range load variation.   84 

In Wu et al. [34], a multi-model predictive controller was designed for the PCC system. Three linear MPCs developed at 50%, 85 

80% and 95% capture rates were combined together to overcome the nonlinearity issue and achieve a wide range capture rate 86 

change control. The flue gas flow rate was considered as an additional measured disturbance in the local model identification, so 87 

that a fast response can be made by the predictive control system in the presence of flue gas flow rate change. Although the 88 

nonlinearity level of the PCC process along the CO2 capture rate side and flue gas flow rate side was investigated, the 89 

nonlinearity caused by the re-boiler temperature change was not studied. In addition, how the PCC system dynamic changes 90 

under the variation of main parameters and how to effectively avoid the dynamic changes during the operation are not analyzed.  91 



Given these reasons, this paper gives a thorough investigation of the dynamic behavior and nonlinearity distributions of the 92 

PCC process. Step response tests are performed at different operating points to illustrate the dynamic variations of the PCC 93 

process qualitatively. The method of gap-metric [35]-[40], which is a measurement for the distance between two local linear 94 

models is then used to present the nonlinearity level of the PCC system quantitatively. The variations of three main variables 95 

along the desired operating range are taken into account: the CO2 capture rate, the flue gas flow rate and the re-boiler temperature. 96 

These three variables are the most important ones closely related to the flexible and efficient operation of the PCC system. It will 97 

be shown that, according to the investigation results, the PCC process does have very strong nonlinearity; however, by selecting 98 

a suitable control target and operating range, a single linear controller is possible to control the capture system within this range.  99 

Based on the dynamic behavior and nonlinearity analysis results, a linear model predictive controller (MPC) is designed to 100 

achieve a flexible operation of the CO2 capture process. The linear MPC can track the desired CO2 capture rate quickly and 101 

smoothly in a wide range while maintaining the re-boiler temperature tightly around the given point. Moreover, by considering 102 

the power plant flue gas flow rate as a measured disturbance in the model development, the proposed MPC can alleviate the 103 

impact of flue gas flow rate variation effectively. Simulations on an monoethanolamine (MEA) based post combustion CO2 plant 104 

developed on gCCS demonstrate the conclusions of this paper.  105 

2. System Description 106 

 107 

Fig. 1. Schematic diagram of solvent-based PCC process developed on the gCCS platform [18]. 108 

The PCC process under consideration is matched with a 1MWe coal-fired power plant, which can produce 0.13 kg/s flue gas 109 

(CO2 concentration: 25.2 wt%) at full load condition. After going through some pre-treatment units, the flue gas is fed into the 110 

bottom of the packed-bed absorber column and contact with the chemical solvent counter currently. In this process, CO2 is 111 

absorbed chemically by the solvent and the exited gas is released into the atmosphere from the top side of absorber. Next, the 112 

CO2-enriched solvent is pumped into the stripper across a lean/rich heat exchanger, where it is heated by steam extracted from 113 

the medium/low-pressure turbine of power plant to release the CO2. A condenser is then used to recollect the fugitive steam and 114 

MEA, the remaining high purity CO2 is compressed and transported to storage. 115 

The 30 wt% MEA solvent is used as the CO2 sorbent in this work. The specifications of the main equipments, such as absorber, 116 

stripper, re-boiler, condenser and cross heat exchanger are selected according to the model developed in [13], which has been 117 

validated through operating data of a pilot capture plant. To provide a high-fidelity description of the PCC process, the model of 118 

these devices are developed from the first-principles and then connected based on the working process of CO2 capture using the 119 

gCCS toolkit [18], [19]. The process topology of the PCC model developed in gCCS is presented in Fig. 1. 120 

Within the PCC system, two variables are of the highest importance, the CO2 capture rate and the reboiler temperature. The 121 

CO2 capture rate is defined as 122 
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The capture rate indicates whether the capture system can fulfill the carbon capture task according to the environmental 124 

protection requirements. The re-boiler temperature is closely related to the lean solvent loading, which determines the CO2 125 

absorption ability of the solvent, and an excessively high temperature will cause a solvent degradation. For these reasons, these 126 

two variables need to be tightly controlled [12]-[14], [30]-[34]. The lean solvent flowrate and turbine extracted steam flow rate 127 

are usually chosen to control them. 128 

For the flexible operation of the PCC plant, a wide range change of the CO2 capture rate and a satisfactory adaptation to the 129 

power plant flue gas flow rate variation are two basic requirements. Meanwhile, during the dynamic regulation, significant 130 

variation of the re-boiler temperature may also have occurred, bringing great influence on the system operation. Therefore, to 131 

provide a guidance for the flexible operation of the PCC process, the following operating range is taken into account and 132 

nonlinearity level and dynamic behavior variation within this range is analyzed: 1) the CO2 capture rate is changed between 133 

50%-95%; 2) the flue gas flow rate is changed between 0.07kg/s-0.15kg/s; and 3) the re-boiler temperature is changed between 134 

383K-388K.  135 

For all other variables within the system, such as sump tank level, re-boiler/condenser pressure, and so on, the conventional PI 136 

controllers are designed to maintain them closely around their given set-points. 137 

3. Nonlinear Dynamic Analysis for the PCC process 138 

To give a comprehensive analysis for the nonlinear dynamics of the solvent-based post-combustion CO2 capture process, two 139 

approaches are used in this section. Firstly, open-loop step response tests are performed at different operating points to show the 140 

variation of dynamic behavior and give a qualitative analysis for the nonlinearity distribution; secondly, the approach of gap 141 

metric is used to measure the difference in dynamics between two operating points and thus, a quantitative description for the 142 

nonlinearity distribution of the PCC process can be obtained.  143 

3.1. Investigation for the dynamic behavior variation of the PCC process 144 

Open-loop step response tests are carried out at different operating points over a wide range of operation to show the variations 145 

in dynamic behavior of the PCC process qualitatively. During each step response test, the control loops of capture rate-lean 146 

solvent flow rate and re-boiler temperature-steam flow rate are kept open. The other control loops within the gCCS simulator are 147 

remained closed to make sure that the PCC plant is operating normally. 148 

To put all the step response curves in the same benchmark for clear comparison, at different operating points, step signals in 149 

magnitude of +5% of the respective steady-state values are added to the lean solvent flow rate, steam flow rate and flue gas flow 150 

rate channels. To prevent the system from deviating too far away from the investigated point, the magnitude of the step change 151 

cannot be too large. The relative changes of capture rate and re-boiler temperature based on their initial steady-state values are 152 

then calculated and plotted. The experiments can be divided into three groups: i) investigate the dynamics of PCC system under 153 

different capture rates at given flue gas flow rate and re-boiler temperature operating points; ii) investigate the dynamics of PCC 154 

system under different flue gas flow rates at given capture rate and re-boiler temperature operating points; and iii) investigate the 155 

dynamics of PCC system under different re-boiler temperatures at given capture rate and flue gas flow rate operating points.  156 

Some results are shown in Figs. 2-4.  157 
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Fig. 2. Responses of the PCC process at different CO2 capture rates corresponding to steam flow rate step input. 159 
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Fig. 3. Responses of the PCC process at different flue gas flow rates corresponding to lean solvent flow rate step input. 161 
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Fig. 4. Responses of the PCC process at different re-boiler temperature corresponding to lean solvent flow rate step input. 163 

 164 

Fig. 2 shows the responses of the PCC process at different CO2 capture rates corresponding to steam flow rate step input (For 165 

all tests, the flue gas flow rate is fixed at 0.13kg/s and the re-boiler temperature is set as 386K initially). The change of extracted 166 

steam flow rate from turbine will change the re-boiler temperature first, and then change the lean solvent loading which 167 

determines the CO2 absorption ability of the lean solvent. As a result, the CO2 capture rate will be changed eventually. We can 168 

find from the figure that, the influences of the steam flow rate on the re-boiler temperature and capture rate are very slow, which 169 

brings difficulties for the flexible operation of the PCC system.  170 

The step response tests also show the variation of dynamic behavior of the PCC system at different CO2 capture rates. Within 171 

50%- 90% capture rate, we find that the dynamic variation of the system is quite small, the time constants of the system are 172 

similar and the steady-state gains only have slight increases as the capture rate increases. Nevertheless, the system dynamics at 173 

95% capture rate is much different from other capture rates. The reason is that: as most of the CO2 in the flue gas has been 174 

gradually captured, it becomes much more difficult for the solvent to absorb the remaining CO2, compared with the conditions of 175 

other capture rates. The change of rich solvent loading is therefore limited, resulting in a more increase of re-boiler temperature.  176 

The lean solvent flow rate step responses of the PCC process under different flue gas flow rates are then shown in Fig. 3 (For 177 

all tests, the CO2 capture rate and the re-boiler temperature are set as 80%, 386K initially). Because more solvent is sent into the 178 

absorber, the increase of lean solvent flow rate can quickly increase the CO2 capture rate. However, since the steam supplied to 179 

the re-boiler does not change, the re-boiler temperature will then drop, as a result, less CO2 will be stripped off from the solvent 180 

and the loading of the lean solvent to the absorber will rise. Finally, the CO2 capture rate will drop after a while. Although 181 

temporary, the quick influence of lean solvent flow rate makes it useful to improve the flexible operation of PCC process. 182 

Meanwhile, the non-minimum phase behavior of the lean solvent flow rate-CO2 capture rate loop may also bring in challenges 183 

for the conventional PI control design.  184 

From Fig. 3, we can find that under different flue gas flow rate, the dynamic behavior of the PCC process is also different. 185 

This is mainly shown on the steady state gains of the step responses, which is slightly increased as the flue rate flow rate 186 

increases. The time constants of the system under different flue gas flow rate are very similar. 187 

Then we show Fig. 4 to illustrate the variation of dynamic behavior of the PCC system at different re-boiler temperatures (For 188 

all tests, the CO2 capture rate is set as 80% initially and the flue gas flow rate is fixed at 0.13kg/s). For the responses of CO2 189 



capture rate, the test results show that within 383K-385K operating range, the dynamic variation of the PCC system is limited in 190 

terms of steady-state gain and time constant. However, when the temperature rises above 386K, the dynamics of the system 191 

become quite different. For a step increase of the lean solvent flow rate, the capture rate no longer drops to a lower level, but 192 

returns to the previous level ultimately at 386K operating point, then rises to a higher level at 387K and 388K operating points. 193 

For the re-boiler temperature responses, the variation of steady-state gain is also relatively bigger. 194 

At other operating points, the influence of these three variables on the PCC system dynamics is similar to the above results, 195 

and thus is not shown here. We can have the following conclusions for the system nonlinearity through these tests: 196 

1) For an individual change of CO2 capture rate, the system nonlinearity is weak within 50-90% capture rate, but around 95% 197 

capture rate, the system nonlinearity is very strong; 198 

2) The system nonlinearity is weak for an individual change of flue gas flow rate; and 199 

3) For an individual change of re-boiler temperature, the system nonlinearity is weak within 383K-385K and 387K-388K 200 

operating ranges, however, within 385K-387K operating range the system nonlinearity is strong. (It should be noted that, 201 

385K-387K is a suitable range for the efficient operation of the PCC system according to the steady-state calculation results, and 202 

386K is the optimal re-boiler temperature.) 203 

3.2. Nonlinearity analysis of the PCC process via gap-metric 204 

The step response tests show the variations in the dynamic behavior of the PCC system and give a qualitative analysis for its 205 

nonlinearity distribution. In order to investigate the level of nonlinearity of the system more concretely and systematically, a 206 

quantitative approach, the gap-metric, is proposed to analyze nonlinearity distribution of the PCC process over the operating 207 

range.  208 

The gap metric was first introduced to analyze the robust stability of closed-loop uncertain systems [35], [36] and was then 209 

extended by Anderson et al. [37] to determine an appropriate model set on which a set of controllers were designed for a multiple 210 

model adaptive control. The gap metric method has been successfully applied in multi-model modeling/control of power plant 211 

boiler-turbine unit [38], [39] and spacecraft attitude control [40], providing directions for operating region division and local 212 

model selection, so that a least number of linear models can be used to approximate the nonlinear behavior of the plant. Most 213 

recently, the gap metric was used to quantify the nonlinearity of PCC system along CO2 capture rate side and flue gas flow rate 214 

side using [34]. As an extension to this work, in this paper, the nonlinearity distribution along the re-boiler temperature side is 215 

also studied, since the re-boiler temperature is a key variable and may also be changed during the flexible operation of PCC 216 

process. Moreover, the nonlinearity caused by the combined variation of these variables is investigated.  217 

The gap metric is essentially a measure of the "distance" between two linear systems, which can be defined as follows: 218 

Suppose P1 and P2 are two linear systems, the gap metric between P1 and P2 is calculated as: 219 

 1 2 2 1

1 2

1 2 2 1
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 (2) 220 

where (N1, M1), (N2, M2) are the elements of the normalized right coprime factorization of P1 and P2 as: 221 

1 1

1 1 1 2 2 2
,P N M P N M

 
  . 222 

The gap metric value is bounded between 0 and 1, and a large value represents a major difference between the dynamics of 223 

two linear models, thus reflects a strong nonlinearity between these two systems. 224 

To give a comprehensive understanding for the nonlinearity distribution of the PCC process over an operating range (CO2 225 

capture rate: 50%-95%; flue gas flow rate: 0.07kg/s-0.15kg/s; re-boiler temperature: 383K-388K), local linear models at 226 

specified operating points are developed first for gap metric calculation.  227 

At each operating point, random identification signal within ±2% variation of the steady-state value is applied on the lean 228 

solvent flow rate and steam flow rate paths, generating the corresponding output signals. Because the identification signal is 229 

closely bounded around their steady-state values, the output variations of CO2 capture rate and re-boiler temperature can be 230 

limited within ±5% and ±0.5K, respectively, around the operating point. Thus the linear model for a given operating point can 231 
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be identified from the input-output data. System identification tool box in MATLAB  is then used for the local model 232 

identification. 233 

We first show Figs. 5-7 to illustrate the nonlinear distribution of the PCC system along the independent variation range of CO2 234 

capture rate, flue gas flow rate and re-boiler temperature. Gap metric values between adjacent linear models are calculated to 235 

indicate the nonlinearity level along the corresponding region. 236 

To analyze the nonlinearity distribution of the PCC process under the CO2 capture rate variation. During the local model 237 

identification experiment, we fix the flue gas flow rate at 0.13kg/s and keep the re-boiler temperature around 386K to avoid their 238 

influences. Linear models around 50%, 60%, 70%, 80%, 90% and 95% capture rates are then identified. The gap metric values 239 

calculated between the adjacent linear models are shown in Fig. 5. The results show that within 50%-90% CO2 capture rate 240 

variation range, the system nonlinearity is weak, however, when the capture rate rises to 95%, the nonlinearity of the PCC 241 

process becomes extremely strong. 242 

The nonlinearity distribution of the PCC process under the flue gas flow rate variation is then investigated. During the local 243 

model identification experiment, the CO2 capture rate and re-boiler temperature are kept around 80% and 386K, respectively, to 244 

avoid their influences. Linear models at 0.07kg/s, 0.10kg/s, 0.13kg/s and 0.15kg/s flue gas flow rate are then identified. The gap 245 

metric values calculated between the adjacent linear models are shown in Fig. 6. The results show that along 0.07kg/s-0.15kg/s 246 

flue gas flowrate variation, the system nonlinearity is weak.  247 

For the re-boiler temperature variation, we keep the CO2 capture rate around 80% and fix the flue gas flow rate at 0.13kg/s 248 

during the local model identification experiment to avoid their influences. Linear models at 383K, 384K, 385K, 386K, 387K, and 249 

388K points are then identified. The gap metric values calculated between the adjacent linear models are shown in Fig. 7. The 250 

results show that between 383K-385K, 387K-388K re-boiler temperature variation ranges, the system nonlinearity is weak; 251 

however, between 385K-387K operating range, the nonlinearity of the PCC process becomes very strong. 252 

The nonlinearity analysis results are in strong agreement with the step-response tests results as shown in Section 3.1.  253 
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Fig. 5. Nonlinearity distribution of the PCC process under the CO2 capture rate variation. 255 
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Fig. 6. Nonlinearity distribution of the PCC process under the flue gas flowrate variation. 257 
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Fig. 7. Nonlinearity distribution of the PCC process under the re-boiler temperature variation. 259 

 260 

During the operation of the PCC plant, the CO2 capture rate, re-boiler temperature and upstream power plant flue gas flowrate 261 

may change together. Therefore, it is necessary to investigate the nonlinearity of the PCC system under the combined change of 262 

these variables. However, doing this will result in 144 (6×6×4) local models to be identified, which will take a lot of time in 263 

excitation signal design and data generation. Moreover, since there are three independent variables and one dependent variable, 264 

the nonlinearity strength under the influences of the three variables cannot be displayed intuitively by figures. For this reason, the 265 

following two cases are considered to analyze the nonlinearity level of the PCC process: 266 

1) The flue gas flowrate is fixed at 0.13kg/s, the CO2 capture rate varies between 50%-95%, the re-boiler temperature varies 267 

between 383K-388 K;  268 

2) The re-boiler temperature is fixed at 386K, the CO2 capture rate varies between 50%-95%, the flue gas flow rate varies 269 

between 0.07kg/s-0.15kg/s.  270 
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Fig. 8. Nonlinearity distribution of the PCC process under the variations of CO2 capture rate and re-boiler temperature.  272 
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Fig. 9. Nonlinearity distribution of the PCC process under the variations of CO2 capture rate and flue gas flow rate.  274 

 275 

In both two cases, the linear models identified at (80% capture rate, 0.13kg/s flue gas flow rate, 386K re-boiler temperature) 276 

operating point is set as a benchmark. Gap metric values between other local models and the benchmark model are then 277 

calculated as shown in Figs. 8 and 9 to display the nonlinearity level of the PCC process. 278 

The results show that the PCC process does have very strong nonlinearity; when the operating point deviates far away from 279 

the benchmark point, the gap metric value keeps increasing. As shown in Fig. 8, within 50%-95% capture rate, 385-387K 280 

re-boiler temperature range (efficient operating range of the plant), the gap-metric value of the PCC system changes drastically 281 

as the re-boiler temperature changes, indicating that the system nonlinearity is strong within this range for an independent 282 

variation of re-boiler temperature. The change of CO2 capture rate will further increase the nonlinearity to a higher level, 283 

however, when the capture rate is varied within 50%-90% range, its impact on the system nonlinearity is limited. On the other 284 

hand, Fig. 9 shows that within 50%-90% capture rate, 0.07kg/s-0.15kg/s flue gas flow rate operating range, the gap-metric value 285 

of the PCC system changes quite smoothly. This means a combined variation of CO2 capture rate and flue gas flow rate will not 286 

bring too much nonlinearity to the PCC system within this range. The nonlinearity analysis results provide a useful information 287 

that, if the re-boiler temperature can be tightly controlled around the given operating point, a linear controller may be possible to 288 

achieve a satisfactory performance for the flexible operation of PCC process.  289 

4. Linear Control Design for the Flexible Operation of the PCC process 290 

For the nonlinear PCC process, it is a natural idea to design a nonlinear controller to attain a whole operating range control of 291 



the PCC system. However, solving the nonlinear control algorithm is complex. The computational process is time-consuming 292 

and the calculation results are poor in robustness. For this reason, linear controller is still the first choice in process control 293 

design. As depicted in Section 3, the PCC process do have very strong nonlinearity; nevertheless, if the re-boiler temperature is 294 

well controlled around a given set-point, the nonlinearity of the process will become much weaker, thus a linear controller may 295 

become possible to regulate the PCC process within 50%-90% CO2 capture rate range.  296 

To overcome the difficulties of the PCC process operation, such as large inertial behavior and strong couplings among 297 

multi-variables, a linear model predictive controller is developed for the flexible operation of the PCC plant. A linear state-space 298 

model around 70% CO2 capture rate, 386K re-boiler temperature operating point is identified as the prediction model, thus by 299 

solving a simple quadratic programming (QP), the constrained control action can be quickly calculated. To further intensify the 300 

adaptation ability of the PCC system to the variation of flue gas flowrate, the flue gas flowrate is considered as a measured 301 

disturbance in the prediction model. Thus its influence on the PCC process can be quickly alleviated. The prediction model used 302 

in the MPC design is shown as 303 

1k k k k

k k k k

x Ax Bu E d

y C x D u F d

   


  
 (3) 304 

where  1 2

T

k k k
u u u is the input vector composed by the lean solvent flowrate u1 and turbine extracted steam flowrate u2, 305 

 1 2

T

k k k
y y y is the output vector composed by the CO2 capture rate and re-boiler temperature, dk is the flue gas flowrate, xk is 306 

the state vector; A, B, C, D, E, F are the model matrices identified from operation data, which are listed in the Appendix. 307 

Because the control objective is to track the CO2 capture rate to the desired point, maintain the re-boiler temperature at a given 308 

set-point and meanwhile keep the control actions as smooth as possible. The following dynamic objective function is considered: 309 

ˆ ˆ( ) ( )
T T

f f f f f f f f
J y r Q y r u R u       (4) 310 

where 
1 2

ˆ ˆ ˆ ˆ
y

T
T T T

f k k k N
y y y y  

 
 

is the prediction of future output within the predictive horizon Ny, which can be expressed 311 

by the future input sequence by stacking up the predictive model (3); 
1 2 y

T
T T T

f k k k N
r r r r  

 
 

is the desired output 312 

set-points; ∆uf is the increment of future control input sequence 
1 2 u

T
T T T

f k k k N
u u u u  

     on the control horizon Nu; 313 

0 0
,

f uf N f N
Q I Q R I R    , presents the Kronecker product, are the weighting matrices of output and input, respectively,. 314 

At each sampling time, minimizing the control objective function (4) subject to some input magnitude and rate constraints, the 315 

optimal future control sequence uf can be calculated. The first element in uf, uk+1, can then be implemented on the PCC system 316 

[35]. The schematic diagram of the proposed MPC is shown in Fig. 10. 317 
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Fig.10. Schematic diagram of the proposed MPC for the solvent-based post-combustion CO2 capture system. 319 



 320 

5.   Simulation Results 321 

This section presents simulation results which will be able to demonstrate the effectiveness of the linear MPC for the flexible 322 

operation of the PCC process. The following parameters are set for the MPC: sampling time Ts=30s, predictive horizon Ny=600s, 323 

control horizon Nu=150s; the weighting matrices are set as Q0=diag(5, 1); R0=1000×diag(3, 2). Input magnitude and rate 324 

constraints are considered:    m in m ax
0 .2 0 .0 0 5 , 1 0 .0 8

T T
u u  ;  m in

0 .0 0 7 0 .0 0 1 ,
T

u      m ax
0 .0 0 7 0 .0 0 1

T
u  due to 325 

the physical limitations of the valves and pumps.  326 

The linear MPC are devised and run in the MATLAB environment, it is communicated with the gCCS plant model through the 327 

gOMATLAB interface at each sampling time. Another decentralized PI controller which uses the lean solvent flow rate to control 328 

the CO2 capture rate and uses the steam flow rate to control the re-boiler temperature is designed for comparison purpose. The 329 

parameters are tuned at 70% capture rate, 386K re-boiler temperature operating point using the MATLAB PID Tuner toolbox.  330 

Case 1: the first simulation is used to show the effectiveness of the linear MPC in the flexible regulation of CO2 capture rate. 331 

Suppose that the PCC system is operating at 70% capture rate point initially, then at t=600s and t=9600s, the set-point of capture 332 

rate changes to 90% and 50% at the ramping rate of 0.2%/30s according to the instruction of scheduling. The re-boiler 333 

temperature set point is fixed at 386K. The simulation results are shown in Figs. 11 and 12. 334 

 335 

 336 

Fig. 11. Performance of the PCC system for a 70%-90%-50% CO2 capture rate change: output variables (solid in red: MPC; dashed in black: decentralized PI; 337 

dot-dashed in blue: reference). 338 

 339 



 340 

Fig. 12. Performance of the PCC system for a 70%-90%-50% CO2 capture rate change: manipulated variables (solid in red: MPC; dashed in black: decentralized PI). 341 

 342 

For the slow dynamics of PCC system as shown in Figs. 2-4, the results in Figs. 11 and 12 indicate that, the use of proposed 343 

MPC can greatly improve the response speed of the entire closed-loop system and achieve an excellent control performance. 344 

When the CO2 capture rate set-point changes in a wide range, the controller can quickly regulate the lean solvent flow rate, 345 

making the capture rate follow the desired set-point tightly and smoothly. At the same time, the extracted steam flow rate is 346 

optimized accordingly with the lean solvent flow rate to provide a suitable regeneration thermal energy. The re-boiler 347 

temperature is thus controlled closely around the designed point, guaranteeing an efficient operation of the PCC plant and 348 

avoiding the influence of strong nonlinearity on the model predictive control system.  349 

For the decentralized PI controller, it can also attain a satisfactory performance. It once again demonstrates that: if the re-boiler 350 

temperature can be maintained well, linear controller is capable to achieve a wide range control within 50%-90% CO2 capture 351 

rate range. However, since the decentralized PI control cannot handle the PCC behavior of slow dynamics and coupling, its 352 

control performance is worse than the MPC. The CO2 capture rate tracking speed is slower and the re-boiler temperature also has 353 

larger fluctuations.  354 

Case 2: The second simulation is designed to demonstrate the effectiveness of the linear MPC in flexible adaptation to the flue 355 

gas flow rate variation. We assume that the PCC plant is operating at 70% capture rate operating point, at t=600s and t=7500s, 356 

the flue gas flow rate changes from 0.13kg/s to 0.07kg/s and to 0.15kg/s, respectively, as shown in the upper figure of Fig. 13. 357 

The set-points for CO2 capture rate and re-boiler temperature are fixed at 70% and 386K during the simulation. 358 



 359 

Fig. 13. Performance of the PCC system in the presence of power plant flue gas variation: output variables (solid in red: MPC; dashed in black: decentralized PI; 360 

dot-dashed in blue: reference). 361 

 362 

Fig. 14. Performance of the PCC system in the presence of power plant flue gas variation: manipulated variables (solid in red: MPC; dashed in black: decentralized 363 

PI).  364 

The simulation results in Figs. 13 and 14 demonstrate that the proposed MPC can effectively handle the impact of flue gas 365 

flow rate variation. As defined in equation (1), when the flue gas flow rate changes drastically, a large deviation immediately 366 

occurred for the CO2 capture rate control. However, since the flue gas flow rate is considered in the model development, a good 367 

prediction can be made in the presence of flue gas flow rate variation. The MPC quickly adjusts the lean solvent flow rate and 368 

extracted steam flow rate, force the CO2 capture rate back to the set-point while alleviating the re-boiler temperature fluctuation 369 



as much as possible. It is also interested to note that when the flue gas decreases from 0.13 kg/s to 0.07kg/s, the control effect is 370 

worse than that the flue gas increases from 0.07 kg/s to 0.15kg/s. This is mainly due to the restriction of magnitude and rate 371 

constraints during the reduction of extracted steam flow rate.   372 

On the other hand, the performance of decentralized PI controller is much worse. The main reason is that, the completely 373 

decentralized design cannot take into account the coupling effects among the multi-variables, adjust the lean solvent flow rate 374 

and re-boiler steam flow rate coordinately. When the flue gas flow rate changes, the capture rate quickly shows a large control 375 

offset. As a result, the lean solvent flow rate changes greatly, trying to control the capture rate quickly back to the set-point. 376 

However, the excessive variation of lean solvent flow rate causes large fluctuations in re-boiler temperature, which will then 377 

make system dynamics change and thus further degrade the control performance. It can be seen in Fig. 14 that both the lean 378 

solvent flow rate and re-boiler steam flow rate exhibit certain degrees of vibrations, which is extremely unfavorable to the safe 379 

operation of the PCC system.   380 

The simulations fully illustrate the effectiveness of the MPC in the flexible operation of the solvent-based post- combustion 381 

CO2 capture process. They also show that, by maintaining the re-boiler temperature closely around the given set-point, a linear 382 

controller is possible to achieve a 50%-90% capture rate change for the PCC plant and adapt flexibly to the flue gas flowrate 383 

variation.   384 

6. Conclusion  385 

To provide guidance for the controller design and achieve a flexible operation of the solvent-based post-combustion CO2 386 

capture process, this paper gives a thorough investigation for the dynamic behavior variation and nonlinearity distribution of the 387 

PCC process. Three cases are taken into account during the investigation, the CO2 capture rate variation, the power plant flue gas 388 

flow rate variation and the re-boiler temperature variation. Step response tests at different operating points are performed to 389 

display the dynamic variation of the PCC system qualitatively. The gap-metric values between local models at different operating 390 

points are then calculated to show the nonlinearity distribution of the system quantitatively. 391 

The analysis results show that: 1) Within 50%-90% CO2 capture rate range, the nonlinearity level of the PCC process is weak, 392 

however, when the capture rate rises to 95%, the nonlinearity becomes strong; 2) the system nonlinearity caused by the variation 393 

of flue gas flow rate is very limited; and 3) the system nonlinearity can be extremely strong with the variation of re-boiler 394 

temperature within 385K-387K, which is the efficient operating range of the PCC system. The strong nonlinearity within this 395 

range does not mean that we must abandon the optimal operating temperature of 386K. Instead, we must avoid the severe 396 

fluctuation of the re-boiler temperature during the operation, so that the issue of nonlinearity can be overcome. 397 

Therefore, according to these results, the requirement for re-boiler temperature control should be strengthened in the controller 398 

design. If the re-boiler temperature can be well maintained around a given set-point, linear controllers are possible to well 399 

regulate the CO2 capture rate within 50% and 90% operating range, avoiding the solving issues of nonlinear controller. A linear 400 

model predictive controller is thus designed to achieve a quick regulation for the CO2 capture rate and good maintenance for the 401 

re-boiler temperature. To improve the MPC's adaptation to the flue gas flow rate variation, the flue gas flow rate is considered as 402 

a measured disturbance in the prediction model development. In this way, an accurate model prediction can be made even in the 403 

presence of flow gas flow rate change and its influence can be quickly removed by the MPC. Simulation results on an MEA 404 

based post combustion CO2 capture plant demonstrate the effectiveness of the linear control approach.  405 
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Appendix 410 

System matrices of the predictive model (identified around 70% capture rate, 386K re-boiler temperature point, sampling time: 411 

Ts=30s): 412 



1 .0 0 0 0 0 .0 0 2 6 0 .0 0 3 4 0 .0 0 0 1 0 .0 3 1 7 0 .3 8 7 4

0 .0 0 0 0 0 .9 9 7 2 0 .0 0 4 8 0 .0 4 6 2 0 .8 0 3 7 0 .4 4 0 9
, ,

0 .0 0 0 0 0 .0 0 0 9 0 .9 8 7 8 0 .0 7 7 1 1 .5 4 1 1 1 .8 3 2 4

0 .0 0 0 0 0 .0 0 7 6 0 .0 1 6 5 0 .4 2 6 1 1 1 .2 2 5 2 1 0 .6 4 4 0

0 .0 0 3 5 0 .0 6 1 8 0 .0

A B

C

    
   
    
   
   

    

 


0 4 8 0 .2 0 0 0 0 .8 8 8 5 0 .1 6 3 0
, ,

1 .7 1 2 3 0 .0 2 0 0 0 .0 2 6 6 0 .0 0 6 7 0 .0 6 3 4 0 .8 2 5 2

0 .0 1 3 4

0 .8 1 9 1 4 .0 2 4 2
, .

1 .2 1 7 0 0 .0 8 2 7

9 .6 3 4 4

D

E F

   
   

     

 
 
         

 
 

 413 

The model is stable since no eigenvalues of A matrix are located out of the unit circle. The D matrix is not null because the 414 

sampling time of data collection is selected as Ts=30s. Within the period of 30 seconds, the changes of MVs have already caused 415 

the variations of CVs (especially lean-solvent flow rate to CO2 capture rate), which can be shown in Figs. 2-4. 416 

 417 
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