
MIT Open Access Articles

Locality Preserving Discriminative Canonical 
Variate Analysis for Fault Diagnosis

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1016/J.COMPCHEMENG.2018.06.017

Publisher: Elsevier BV

Persistent URL: https://hdl.handle.net/1721.1/135826

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/135826
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 
 

Locality Preserving Discriminative Canonical Variate Analysis for 
Fault Diagnosis 

Qiugang Lua,b, Benben Jiangb,c, R. Bhushan Gopalunia, Philip D. Loewend, and Richard D. Braatzb,1 

a Dept. of Chemical and Biological Engineering, The University of British Columbia,  

Vancouver, BC, V6T 1Z3, Canada 
b Dept. of Chemical Engineering, Massachusetts Institute of Technology, 

 Cambridge, MA 02139, USA 
c Dept. of Automation, Beijing University of Chemical Technology, Beijing 100029, China 

d Dept. of Mathematics, The University of British Columbia,  

Vancouver, BC, V6T 1Z3, Canada 

Abstract 

This paper proposes a locality preserving discriminative canonical variate analysis (LP-DCVA) 

scheme for fault diagnosis. The LP-DCVA method provides a set of optimal projection vectors that 

simultaneously maximizes the within-class mutual canonical correlations, minimizes the between-class 

mutual canonical correlations, and preserves the local structures present in the data. This method inherits 

the strength of canonical variate analysis (CVA) in handling high-dimensional data with serial 

correlations and the advantages of Fisher discriminant analysis (FDA) in pattern classification. Moreover, 

the incorporation of locality preserving projection (LPP) in this method makes it suitable for dealing with 

nonlinearities in the form of local manifolds in the data. The solution to the proposed approach is 

formulated as a generalized eigenvalue problem. The effectiveness of the proposed approach for fault 

classification is verified by the Tennessee Eastman process. Simulation results show that the LP-DCVA 

method outperforms the FDA, dynamic FDA (DFDA), CVA-FDA, and localized DFDA (L-DFDA) 

approaches in fault diagnosis.   

                                                             
1 Corresponding author: R. D. Braatz. Telephone: +1-617-253-3112; fax: +1-617-258-0546; email: braatz@mit.edu. 
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1. Introduction 

Data-driven process monitoring has shown high value in promoting informed decision-making and 

enhancing efficient and safe operations of industrial processes (e.g., for reviews and to gain a thorough 

perspective on the history of the field, see reviews [3] [4] [5] [6] [7] [8] [35] [36] and citations therein). 

The objective of most industrial process monitoring systems is the detection of faults, which are defined 

as abnormal process operations. Examples of data-driven fault detection methods include principal 

component analysis and partial least squares, which are multivariate statistical methods that are widely 

applied in industry, and state-space identification methods that have been widely studied in the academic 

literature, e.g., [1] [2]. Another objective of interest in process monitoring described in the above reviews 

is fault diagnosis – determining the type and root cause of faults – which can be challenging for modern 

industrial processes containing a large number of process variables and complicated correlations among 

variables due to process dynamics and controllers. 

Among various methods for fault diagnosis, FDA has received extensive attention due to its 

efficiency and simplicity in fault classification [9]. Given labeled data sets from several faults, FDA 

provides projection vectors to map the original data into a lower-dimensional space in which the between-

class scatter matrix is maximized while minimizing the within-class scatter matrix. FDA is particularly 

effective for data that are free of serial correlations [7]. Nevertheless, most industrial processes are slow 

in dynamics and equipped with fast-sampling sensors. To handle the serial correlations, dynamic FDA 

(DFDA) has been put forward to augment the observation with its lagged values to capture the dynamic 

information [3].  Incorporating time lags into auto-correlated data can attenuate the overlapping between 

different classes of augmented data, leading to improved fault classification [10]. However, similar to 

dynamic partial least-squares (PLS) and dynamic PCA [11], the performance of DFDA is limited by its 

implicit assumption of a restrictive noise structure [1]. 
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On the other hand, the last decade has witnessed growing attention on CVA methods [3] [12]. In 

contrast to PCA and PLS, CVA constructs a more accurate and parsimonious state-space model that 

allows a general noise structure. CVA relies on maximizing the correlations between combinations of past 

and future data vectors, which can be transformed into a singular value decomposition (SVD) problem 

[13] [14]. CVA is mainly employed to estimate the canonical states of the process, which are further 

utilized to develop a state-space model from the process data. As CVA does not take account of the label 

information associated with data sets, the application of CVA to fault classification remains rare and is 

usually combined with FDA [1]. In addition, the potential loss of discriminative information in the CVA 

model requires extra attention since the CVA criterion may not be compatible with that of FDA [15]. 

However, the superiority of CVA in modeling dynamic relations in the data supplies a valuable resource 

to enhance the performance of current techniques for discriminant analysis with large-scale dynamic data.  

CVA has a close link with canonical correlation analysis (CCA) [16]. The usage of CCA for 

discriminant analysis has been reported in the computer vision area. A technique known as discriminant 

CCA (DCCA) [17] incorporates the class label information into CCA to extract more discriminative 

features. In DCCA, for data sets with two views, a set of optimal projection vectors are obtained that 

maximize the canonical correlations between two views of within-class data and minimize those of 

between-class data, in an analogy to the idea of FDA. Other variants of DCCA have been presented in [18] 

[19]. It is shown that DCCA yields a better discriminant performance than CCA and PLS for feature 

recognition [20]. However, to the best of the authors’ knowledge, including class label information into 

CVA as a discriminative CVA (DCVA) method to address the fault diagnosis problem has not been 

reported in the literature. Note that a critical distinction between DCVA and DCCA is that the data for 

DCVA usually involve serial (predictive) correlations due to the utilization of past and future data vectors, 

in addition to the spatial correlations, whereas DCCA only considers the spatial correlations between 

variables. Besides, DCVA differs from CVA-FDA [1] in that the goal of DCVA is not estimating the 

canonical states for a state-space model, but rather directly exploring the discriminant features by 

examining the relations between data sets from different classes.  
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All aforementioned methods only use the global structure information. To better mine the information 

hidden in the data, locality preserving methods have been proposed to handle nonlinearities in the form of 

local structures such as multi-modality [21]. Locality preserving projection (LPP) [22] paves the way for 

the research on local structure exploration in data analysis. LPP is a linear dimensionality reduction 

method that preserves local manifold structures of the original data in the lower-dimensional space after 

projection. Essentially, LPP decomposes nonlinear dimensionality reduction into a set of linear local 

dimensionality reductions. The combination of LPP and CCA has been explored in [23] [24]. In the realm 

of fault diagnosis, locality preserving methods have been merged with discriminant analysis methods 

such as FDA and kernel FDA to boost the fault classification performance [25] [26] [27]. In this article, 

we present a locality preserving discriminant CVA method, known as LP-DCVA, for fault diagnosis. This 

method extends the discriminant CCA idea in computer vision and image recognition to the field of fault 

classification. Specifically, we combine the strengths of CVA and FDA into DCVA to better handle the 

dynamic data with highly serial correlations. Besides, we present a way to integrate the objectives of 

DCVA and LPP together to explore local structures in the data to further improve the performance of 

fault classification.  

The rest of this article is organized as follows. Section 2 briefly revisits CVA, FDA, and LPP. The 

proposed DCVA and LP-DCVA approaches are presented in Section 3. The effectiveness of the proposed 

approaches is demonstrated in the Tennessee Eastman process in Section 4, followed by conclusions in 

Section 5. 

2. Review of CVA, FDA, and LPP  

2.1. CVA 

CVA is a well-known multivariate dimensionality reduction method that maximizes the correlation 

between two set of variables. CVA was first proposed by Hotelling [28] and then employed as a system 

identification approach to develop ARMA [29] or state-space models [12]. Suppose that the input data 

𝒖(𝑡) ∈ 𝑅'(  and output data  𝒚(𝑡) ∈ 𝑅'* are generated according to a linear state-space model  

 𝒙(𝑡 + 1) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡) + 𝒗(𝑡), (1) 
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 𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝒖(𝑡) + 𝑬𝒗(𝑡) + 𝒘(𝑡), (2)  

where 𝒙(𝑡) ∈ 𝑅7  is the state vector;  𝑨, 𝑩, 𝑪, 𝑫, and	𝑬 are system matrices with compatible dimensions; 

and 𝒗(𝑡) and 𝒘(𝑡) are respectively the sequences of state and measurement noises with zero mean and 

constant covariances. A feature associated with the CVA approach is the separation of collected input-

output data into past and future information vectors. The state is estimated by maximizing the predictive 

correlations between the past and future data with the CVA algorithm. Specifically, for a time instant 𝑡 

within the interval 1 ≤ 𝑡 ≤ 𝑛, where 𝑛 is the number of samples, the past information vector	𝒑(𝑡) 

consists of a window of past input and output data up to time 𝑡 − 1, i.e.,  

 𝒑(𝑡) = [𝒚>(𝑡 − 1),… , 𝒚>(𝑡 − ℎ),𝒖>(𝑡 − 1),… , 𝒖>(𝑡 − ℎ)]>, (3) 

and 𝒇(𝑡) contains a window of current and future outputs with the form 

 𝒇(𝑡) = 	 [𝒚>(𝑡), 𝒚>(𝑡 + 2),… , 𝒚>(𝑡 + 𝑙 − 1)]>. (4) 

where ℎ and 𝑙 represent the lags for the past and future vectors. 

Assume that the state order is 𝑘. For the CVA algorithm, a projection matrix 𝑱G is computed to 

linearly map the past 𝒑(𝑡) into the “memory” vector 𝒎(𝑡) with the form 

 𝒎(𝑡) = 𝑱G𝒑(𝑡). (5) 

The 𝒎(𝑡) is referred to as the memory vector instead of the state vector since in practice it may not 

necessarily contain all the information in the past and thus is regarded as an approximation of the state. 

With the memory vector, a state-space model is obtained by establishing the optimal prediction of the 

future based on the current memory. In other words, the goal of the CVA algorithm is seeking the optimal 

project matrix 𝑱G to minimize the averaged prediction error [16] 

 𝔼 JK𝒇(𝑡) − 𝒇L(𝑡)M
>
ΛOK𝒇(𝑡) − 𝒇L(𝑡)MP, (6) 

where 𝒇L(𝑡) is the linear optimal forecast of 𝒇(𝑡) based on the current memory, i.e., 𝒇L(𝑡) = 𝚺RS𝚺SSTU 𝒎(𝑡), 

where 𝚺RS  is the covariance between 𝒇(𝑡)  and 𝒎(𝑡)  and 𝚺SS  is defined similarly. The positive 

semidefinite weighting matrix Λ reflects the relative importance among output variables. With the CVA 
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algorithm, the optimal projection can be obtained by solving the singular value decomposition (SVD) 

problem 

 𝚺VV
TU/X𝚺VR𝚺RR

TU/X = 𝑼Σ𝑽\, (7) 

where 𝑼 and 𝑽 are respectively the left and right singular vectors, Σ contains the singular values along its 

diagonal, and the projection matrix 𝑱G (solution to (6)) is calculated as 

 𝑱G = 𝑼G>𝚺VV
TU/X, (8) 

where 𝑼G stands for the first 𝑘 columns of the orthonormal matrix 𝑼. 

2.2. FDA 

Process data collected under different faults are categorized into classes in which each class of data 

represents a particular fault. FDA is a classical pattern classification method that maximizes the 

separation among classes of data from different faults. This goal is achieved by finding linear 

transformation vectors to maximize the scatter between classes while minimizing the scatter within 

classes. Given 𝑛 samples of 𝑚-dimensional observations from 𝑐 classes stacked into a data matrix 𝑿 ∈

ℝS×', the element 𝒙b
(c) ∈ ℝS , 𝑖 = 1,… , 𝑛c , 𝑗 = 1,… , 𝑐, of 𝑿 refers to the 𝑖-th sample from class 𝑗, where 

𝑛c  is the number of observations for the 𝑗th class. The total scatter matrix 𝑺g is defined as  

 𝑺g = ∑ ∑ i𝒙b
(c) − 𝒙jki𝒙b

(c) − 𝒙jk
\'l

bmU
n
cmU , (9) 

where 𝒙j is the total mean of 𝑿. The within-class scatter matrix is expressed as 

 𝑺o = ∑ ∑ i𝒙b
(c) − 𝒙jck i𝒙b

(c) − 𝒙jck
\'l

bmU
n
cmU , (10) 

where 𝒙jc is the mean vector of class 𝑗. Similarly, the between-class scatter matrix is formulated as  

 𝑺p = ∑ 𝑛cq𝒙jc − 𝒙jrq𝒙jc − 𝒙jr
\n

cmU . (11) 

Note that the total scatter matrix is the sum of the within- and between-class scatter matrices,  𝑺g = 𝑺o +

𝑺p.  

The objective of FDA is to supply a set of projection vectors, 𝑾, to maximize the criterion 
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 max
𝑾wx

𝑾y𝑺z𝑾
𝑾y𝑺{𝑾

. (12) 

It is shown that this optimization is equivalent to a generalized eigenvalue problem, 

 𝑺p𝒘G = 𝜆G𝑺o𝒘G, (13)  

where 𝒘G is the 𝑘th column of 𝑾, and a larger eigenvalue 𝜆G indicates better separability among all 

classes by projecting the data onto 𝒘G. Note that the rank of 𝑺p is less than 𝑐, thus there are at most 𝑐 − 1 

nonzero eigenvalues and only the eigenvectors corresponding to nonzero eigenvalues are useful for 

separating these classes of data.  

With the obtained projection vectors, the data in the (𝑐 − 1)-dimensional space is represented as 

 𝒛b = 𝑾�
\𝒙b, (14) 

where 𝒙b is the 𝑖th observation of 𝑿, and 𝑾� represents the first 𝑎 columns of 𝑾. To address the serial 

correlation in the dynamic data, DFDA has been proposed and widely used in fault diagnosis. The idea of 

DFDA is to append the data at time 𝑡 with its past values and then apply FDA to this augmented data 

matrix. Defining the selected lags of past data as ℎ, the augmented data matrix is  

 𝑿(ℎ) = �
𝒙g … 𝒙g��T'
⋮ ⋱ ⋮⋮

𝒙gT� … 𝒙gT'
�. (15) 

The augmented vector provides richer information than a single observation and is effective to uncover 

the dynamic patterns in the process data. Thus, the DFDA can in general lead to better classification 

performance than traditional FDA when extensive serial correlations are present.  

2.3. LPP 

The LPP method is particularly useful for discovering local manifold structures in the original sample 

space and preserves such structures in the lower-dimensional space. Therefore, LPP can assist in 

decomposing the global problem into small local linear sub-problems. Define the data samples in the 

original space as 𝑿 = [𝒙U		𝒙X …	𝒙'], where 𝑛 is the number of samples. We use 𝒘�  as the projection 

vector that preserves the manifold in the data set. The data after projection are denoted as 𝒛 =

[𝑧U		𝑧X …	𝑧'], where 𝑧b = 𝒘�
>𝒙b, 𝑖 = 1,… , 𝑛. The objective of LPP is to minimize the criterion  
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 𝐿 = ∑ ∑ q𝑧b − 𝑧cr
X
𝑆bc�'

cmU
'
bmU   

 																																				= ∑ ∑ 𝒘�
>q𝒙b − 𝒙cr𝑆bc� q𝒙b − 𝒙cr

>
𝒘�

'
cmU

'
bmU , (16) 

where 𝑆bc�  is the element of weighting matrix 𝑺𝒙 in the 𝑖th row and 𝑗th column. A widely employed 

weighting function is the heat kernel, defined by [24]: 

 𝑆bc� = �exp�−
�𝒙�T𝒙l�

�

�
� ,				if	𝒙b ∈ 𝒩�q𝒙cr	or		𝒙c ∈ 𝒩�(𝒙b),

0,																								otherwise,
 (17) 

where 𝒩�(𝒙c) stands for the 𝑘-nearest neighbors of 𝒙c. Consider the case that 𝒙b and 𝒙c are within the 𝑘-

nearest neighbors of either of them such that 𝑆bc� ≠ 0. In such scenario, if 𝒙b and 𝒙c are close to each other, 

then 𝑆bc�  will be relatively large and the “distance” between 𝑧b and 𝑧c  will be heavily penalized. As a result, 

the obtained projection vectors 𝒘�  are those that keep 𝑧b and 𝑧c  close. On the other hand, if 𝒙b is not 

within the 𝑘-nearest neighbors of 𝒙c (or vice versa), then 𝑆bc� = 0 and the criterion (16) does not preserve 

any structure between 𝒙b and 𝒙c. With this idea, LPP is able to extract and keep the local structures among 

points in the data.  

The objective function of LPP in (16) can be equivalently formulated as 

 𝐿 = 𝒘�
>𝑿𝑺��𝑿>𝒘�, (18) 

where 𝑺�� = 𝑫�� − 𝑺𝒙 with 𝑫��  being a diagonal matrix, known as the Laplacian matrix, with each term 

representing the sum of the corresponding column (or row since 𝑺𝒙 is symmetric) [23]. LPP is used in this 

paper to discover the local structures and enhance the discriminative features for data from different faults.  

3. The Proposed Locality Preserving Discriminative Canonical Variate Analysis for Fault Diagnosis 

3.1. Discriminative canonical variate analysis (DCVA) method 

CVA is an efficient way to construct state-space models to capture the dynamic relationships among 

process variables. However, CVA does not take into account the class information associated with the 

data, and thus is not able to explore the discriminative patterns in the data for fault classification. In fact, 

applying CVA to the data from several classes may discard valuable information that characterizes the 
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distinctions between different classes and consequently make the data from different faults less 

distinguishable after processing [15].  In this section, we present a variant of the traditional CVA method, 

named discriminative CVA (DCVA), which incorporates the ideas of FDA with CVA and accounts for 

the label information associated with the data samples.  

Consider collected input and output data from 𝑝 classes. Similar to CVA, at time instant 𝑡, 𝒑g
(G) 

represents the past vector from class 𝑘 , 𝑘 = 1,… , 𝑐 . Denote 𝑛G  as the number of samples of past 

information vector for class 𝑘, and 𝑛 = ∑ 𝑛Gn
GmU . Note that 

 𝒑g
(G) = 	 [𝒚gTU

(G)>, … , 𝒚gT�
(G)>, 𝒖gTU

(G)>, … , 𝒖gT�
(G)>]>, (19) 

where ℎ is the selected lags of past input and output. In an analogous way, at time 𝑡, the future 

information vector 𝒇g
(G) for class 𝑘 is defined as  

 𝒇g
(G) = 	 [𝒚g

(G)>, 𝒚g�U
(G)>, … , 𝒚g�¡

(G)>]>, (20) 

where 𝑙 is the selected lags of future output. The past information matrix 𝑷 and future information matrix 

𝑭 are respectively defined as  

𝑷 = ¤𝒑U
(U), 𝒑X

(U),… , 𝒑'¥
(U), 𝒑U

(X),… , 𝒑'�
(X),… , 𝒑'¦

(n)§, 

𝑭 = ¤𝒇U
(U), 𝒇X

(U), … , 𝒇'¥
(U), 𝒇U

(X), … , 𝒇'�
(X), … , 𝒇'¦

(n)§. 

Notice that traditional CVA maximizes the predictive relationship between pairwise 𝒑g
(G) and 𝒇g

(G), 

i.e., there exists a temporal one-to-one correspondence between past and future vectors at each time 

instant. This correspondence is essential for developing state estimates and process models. However, for 

DCVA, instead of seeking such relationships (since the objective of DCVA is not estimating the states), 

the interest is in discovering discriminative traits among classes. More formally, the goal of DCVA is 

maximizing the mutual correlations of past and future vectors within the class while minimizing the 

mutual correlations of those in different classes. The mutual correlation refers to the correlation between 

any past and future vectors without considering the temporal correspondence. It is apparent that using the 
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mutual correlations can thoroughly reveal the information in the data and thus facilitate the discovery of 

discriminative patterns for fault diagnosis.  

 

Figure 1. Illustration of the within-class and between-class mutual canonical correlations. 

Without loss of generality, both future and past information data are assumed to have been mean-

centered and auto-scaled. The DCVA aims at finding projection vectors 𝒘V and 𝒘R for two views 𝑷 and 

𝑭 so as to maximize the discriminative canonical correlations, i.e., maximizing within-class mutual 

canonical correlations and simultaneously minimizing between-class mutual canonical correlations. The 

idea of DCVA is illustrated in Fig. 1. The expressions for within-class and between-class canonical cross-

covariance matrices 𝑪o and 𝑪p are respectively defined as 

 𝑪o = ∑ ∑ ∑ 𝒑g
(G)𝒇¨

(G)>'©
¨mU

'©
gmU

n
GmU ,  

 𝑪p = ∑ ∑ ∑ ∑ 𝒑g
(G)𝒇¨

(V)>'ª
¨mU

'©
gmU

n
VmU,VwG

n
GmU .  

It follows that 𝑪o and 𝑪p can be simplified as  

 𝑪o = ∑ q𝑷𝑬'©rq𝑭𝑬'©r
>n

GmU = 𝑷𝑨𝑭>,  (21) 

 𝑪p = (𝑷𝟏')(𝑭𝟏')> − 𝑷𝑨𝑭> = −𝑷𝑨𝑭>, (22)  

where 𝟏' is a vector of ones with dimension 𝑛, 𝑨 = 𝑑𝑖𝑎𝑔®𝑬'¥, … , 𝑬'¦¯, and 𝑬'© = 𝟏'𝟏'>, 𝑘 = 1,… , 𝑐. 

The first term in 𝑪p vanishes since both 𝑷 and 𝑭 have been centered.  The objective function of DCVA is 

expressed as maximizing 

 
𝒘ªy𝑪°𝒘±T²𝒘ªy𝑪z𝒘±

³𝒘ªy𝑷𝑷y𝒘ª³𝒘±
y𝑭𝑭y𝒘±

=
(U�²)𝒘ªy𝑷𝑨𝑭´𝒘±

³𝒘ªy𝑷𝑷y𝒘ª³𝒘±
y𝑭𝑭y𝒘±

, (23) 
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where 𝜂  is a tuning parameter. From (23), it can be seen that the optimal projection vectors are 

independent of the tuning parameter 𝜂. Moreover, the denominator of mutual canonical correlations in (23) 

is the auto-covariance of latent variables, which is not able to reveal the local structures in the data. To 

further enhance the performance of DCVA, in the next subsection, we incorporate the idea of LPP in the 

formulation of within-class and between-class canonical correlations.  

3.2. Locality preserving DCVA (LP-DCVA) method for fault diagnosis 

Given that the past and future information data 𝑷 and 𝑭 are from 𝑝 classes, for each class, the 

objective of LPP is stated as minimizing  

𝐿V
(G) = 𝒘V

>𝑷(G)𝑺VV
(G)𝑷(G)>𝒘V,			𝐿R

(G) = 𝒘R>𝑭(G)𝑺RR
(G)𝑭(G)>𝒘R, 𝑘 = 1,… 𝑐, 

where 𝑺VV
(G) is the Laplacian matrix for the 𝑘th class 𝑷(G) and 𝑷(G) = ¤𝒑U

(G), 𝒑X
(G),… , 𝒑'©

(G)§. The term 𝐿R
(G) is 

defined analogously. Combining the objective functions of LPP for 𝑐 classes of past and future data, the 

within-class locality preserving matrices are 

 𝑺VV = 𝑷𝑑𝑖𝑎𝑔 J𝑺VV
(U),… , 𝑺VV

(n)P 𝑷>,				𝑺RR = 𝑭𝑑𝑖𝑎𝑔 J𝑺RR
(U), … , 𝑺RR

(n)P𝑭>. (24) 

where 𝑷 = K𝑷(U),𝑷(X), … , 𝑷(n)M  and 𝑭 = K𝑭(U), 𝑭(X), … , 𝑭(n)M . In the LP-DCVA method, the goal of 

locality preserving projection is integrated with that of DCVA as  

 max
𝒘ª,𝒘±

𝒘ªy𝑷𝑨𝑭´𝒘±

³𝒘ªy𝑺ªª𝒘ª∙𝒘±
y𝑺±±𝒘±

. (25) 

This optimization simultaneously maximizes the within-class mutual canonical correlations, preserves the 

local manifold in the original data after projection, and minimizes the between-class mutual canonical 

correlations. Following the standard procedures of CVA, (24) can be equivalently written as  

max
𝒘ª,𝒘±

𝒘𝑝
𝑇𝑷𝑨𝑭T𝒘𝑓 

𝑠. 𝑡.		𝒘𝑝
𝑇𝑺VV𝒘𝑝 = 1, 	𝒘𝑓

𝑇𝑺RR𝒘𝑓 = 1. 

This problem can be readily solved by the generalized eigenvalue problem, 

 » 𝟎 𝑷𝑨𝑭T
𝑭𝑨𝑷> 𝟎

½ »
𝒘𝑝
𝒘𝑓

½ = 𝜆 ¾
𝑺VV 𝟎
𝟎 𝑺RR

¿ »
𝒘𝑝
𝒘𝑓

½. (26) 



12 
 

Similar to FDA, the eigenvectors corresponding to the first 𝑎  (where 1 ≤ 𝑎 ≤ 𝑐 − 1 ) largest 

eigenvalues are reserved as the projection vectors onto which the separation of data between classes is 

maximized. Define the set of 𝑎 projection vectors as 𝑾V = K𝒘V
U ,… ,𝒘V

�M, 𝑾R = K𝒘RU,… ,𝒘R
�M, respectively, 

for the past and future information data 𝑷 and 𝑭. The transformed data for an example [𝒑>		𝒇>]> in the 𝑎-

dimensional space is represented as 𝒛 = K𝒛V>			𝒛R>M
>

 with 

 𝒛V = 𝑾V
>𝒑,				𝒛R = 𝑾R

>𝒇. (27) 

The discriminant function [30]: 

 𝑔c(𝒙) = − U
X
q𝒙 − 𝒙jcr

>
𝑾� À

U
'lTU

𝑾�
\𝑺c𝑾�Á

\
𝑾�

\q𝒙 − 𝒙jcr −
U
X
𝑙𝑛 »𝑑𝑒𝑡 À U

'lTU
𝑾�

\𝑺c𝑾�Á½, (28) 

can be used to determine the classification of an example in the 𝑎-dimensional space, where 𝑾� =

K𝑾V	𝑾RM, 𝒙 = [𝒑>	𝒇>]> and 𝒙jc is the mean value of class 𝑗. An observation 𝒙 is classified into class 𝑗 if 

𝑔c(𝒙) > 𝑔b(𝒙), ∀𝑖 ≠ 𝑗. The algorithm of LP-DCVA is shown in Algorithm 1, where 𝑁 represents the 

number of samples of process variables. 

Algorithm 1: Locality preserving discriminant canonical variate analysis 
Input:	 Process input and output data [𝒖U	𝒖X …	𝒖Æ], [𝒚U	𝒚X … . 𝒚Æ] 

1: Given lags ℎ, 𝑙, tuning parameters 𝜎, 𝑎, 𝜅, form past data 𝑷 and future data 𝑭 
2: Compute the weighting matrices 𝑺V

(G) and 𝑺R
(G), 𝑘 = 1,… , 𝑐 

 
3: Compute the Laplacian matrices 𝑺VV

(G) and 𝑺RR
(G), 𝑘 = 1,… , 𝑐 

4: Construct 𝑨 according to (21), 𝑺VV and 𝑺RR according to (24) 
5: Solve the eigenvalue problem (26) 

Output: 𝑾V ← K𝒘V
U ,… ,𝒘V

�M, 𝑾R ← K𝒘R
U,… ,𝒘R�M 

 

The LP-DCVA algorithm involves a set of tuning parameters that can impact the classification 

performance. A summary of these tuning parameters and their suggested values are listed in Table 1.  

4. Application to the Tennessee Eastman Process  

The Tennessee Eastman Process (TEP) is a well-known platform to validate and compare various 

fault detection and diagnosis techniques. For other validation synthetic examples than TEP, the readers 

can refer to [31] [32] and the references therein. This section applies the proposed LP-DCVA method for 
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fault diagnosis to simulated data from the TEP simulator. The diagram of TEP is shown in Fig. 2. The 

TEP has five major components, namely a two-phase reactor, a condenser, a compressor, a vapor/liquid 

separator, and a stripper. Since the TEP is open-loop unstable, a controller must be in the loop to generate 

simulation data. More information regarding the TEP and control strategy is provided in [3] and in the 

references therein. The TEP has 52 process variables, consisting of 41 process measurements and 11 

manipulated variables. There are 21 pre-programed faults in the TEP simulator and a list of these faults is 

given in Table 2.  

 
Figure 2. Flow chart for the Tennessee Eastman Process [3]. 

Table 1. A summary of tuning parameters for the LP-DCVA algorithm  
Tuning parameters Note 
Lags ℎ and 𝑙 in (3) and (4) Determined by cross validation 
The parameter 𝜎 in the heat kernel (17) Suggested value ∑ ∑ �𝒙b − 𝒙c�

X'
cmU

'
bmU /(𝑛X − 𝑛) [23] 

The # of nearest neighbors 𝜅 in (17) Determined by cross-validation 
The # of projection vectors 𝑎  Suggested value (𝑐 − 1), where 𝑐 is the # of classes 

For each fault, there are three types of data: training data, validation data, and test data. Each training 

dataset contains 480 observations and is used to build statistical models for fault diagnosis. Each 
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validation dataset contains 480 observations and is used to cross-verify the performance of the trained 

models and determine the values of the tuning parameters. The testing dataset contains 800 observations 

to test the performance of the fault diagnosis techniques. The sampling interval is 3 minutes. In this 

section, two examples are provided to compare the fault classification performance of FDA, DFDA, 

CVA-FDA, L-DFDA [26], and LP-DCVA. 

Table 2. The process faults involved in the simulation [20]. 

Variables Description Type 
Case study 1:   
IDV(3) D Feed Temperature (Stream 2) Step 
IDV(4) Reactor Cooling Water Inlet Temperature Step 
IDV(11) Reactor Cooling Water Inlet Temperature Random variation 
Case study 2:   
IDV(2) B Composition, A/C Ratio Constant (Stream 4) Step 
IDV(5) Condenser Cooling Water Inlet Temperature  Step 
IDV(8) A, B, C Feed Composition (Stream 4) Random variation 
IDV(12) Condenser Cooling Water Inlet Temperature Random variation 
IDV(13) Reaction Kinetics Slow drift 
IDV(14) Reactor Cooling Water Valve Sticking 

 

4.1 Case study 1: Faults 3, 4 and 11 

Faults 3, 4, and 11 have significant overlap since both Faults 4 and 11 are associated with reactor 

cooling water inlet temperature. For the training data from the three faults, FDA, DFDA, CVA-FDA, L-

DFDA, and LP-DCVA are applied to establish the fault diagnosis models. The validation data are used to 

specify the best tuning parameters. For simplicity, we set the lags ℎ and 𝑙 to be equal. The optimal values 

of lags for DFDA in this case study are shown to be ℎ = 𝑙 = 9 from cross-validation. The lags for CVA-

FDA, L-DFDA and LP-DCVA are chosen to be the same as for DFDA. The optimal number 𝜅 = 6 of 

nearest neighbors for LP-DCVA was determined by cross-validation. The heat kernel parameter for LP-

DCVA and the reserved number of projection vectors for these methods are chosen according to Table 1. 

The kernel parameter 𝜎 = 335 for L-DFDA was chosen from cross-validation. 

With the selected tuning parameters, Fig. 3a-e demonstrate the scores on the first two projected 

vectors based on FDA, DFDA, CVA-FDA, L-DFDA, and LP-DCVA, respectively, for the validation data. 

The ellipse encompassing each data set indicates the 95% confidence threshold. For FDA, a large portion 



15 
 

of overlapping between Fault 4 (or Fault 3) with Fault 11 is observed in the score space. This observation 

is mainly because FDA does not take account of the serial correlations among samples, thus failing to 

extract this information from the data. Fig. 3b illustrates that the separation is improved after accounting 

for the dynamic relationship in the data with DFDA, but there still exists a large degree of overlap among 

these data sets. Fig. 3c demonstrates that CVA-FDA method can well distinguish Fault 3 and Fault 4, but 

a significant amount of overlap still exists between those faults and Fault 11. Fig. 3d shows that with L-

DFDA the intersections decline furthermore but the improvement is not large. Fig. 3e shows that, with 

LP-DCVA, the separation between these clusters becomes more distinct.  

The test data for three faults are further employed to validate the performance of these methods. The 

comparison results are shown in Fig. 4 and Table 3. As seen in Fig. 4, Fault 4 is easier to identify than the 

other two faults. Specifically, for the FDA method, Faults 3 and 11 are incorrectly classified most of the 

time. DFDA, CVA-FDA, and L-DFDA can effectively increment the classification performance for 

Faults 3 and 11 compared with FDA. The LP-DCVA method gives the best classification performance, 

which is consistent with its full exploration of local structures of the data and simultaneously 

consideration of global discriminant information.  

Table 3 shows the misclassification rates for three faults with above methods. FDA can recognize 

Fault 4 reasonably well with only 11.25% misclassification rate. However, FDA has high 

misclassification rates for Faults 3 and 11. DFDA reduces the misclassification rates for Faults 3 and 11 

but slightly increases the rate for Fault 4. CVA-FDA significantly decreases the misclassification rate for 

Fault 4 but with a degraded performance in recognizing Fault 3. A possible explanation is that, for this 

two-stage method, some critical information in distinguishing Fault 3 is lost when building the CVA 

model. L-DFDA further decreases the misclassification rate for Fault 11 compared with the former three 

methods but the performance for classifying Fault 3 has a small deterioration. In contrast, LP-DCVA 

reduces the misclassification rates for all three faults at the same time compared with the other methods. 

Note that DFDA, CVA-FDA, and L-DFDA are almost on the same level (between 25% and 28%) in the 

performance of misclassification rate, which is due to the inherent difficulty in separating these three 
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faults. However, LP-DCVA drastically improves the performance by almost 20% relative to L-DFDA. 

This example clearly shows the advantage of using LP-DCVA for fault diagnosis.  

 

 

                                               (a)             (b) 

            

                                             (c)              (d) 
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(e) 

Figure 3. Classification results with three methods on the validation data. 

Table 3. Misclassification rates for Faults 3, 4, and 11  

Method 
Misclassification rates for testing data 

Fault 3 Fault 4 Fault 11 Overall 
FDA 0.3738 0.1125 0.5687 0.3517 
DFDA 0.2286 0.1456 0.4687 0.2810 
CVA-FDA 0.3103 0.0421 0.4674 0.2733 
L-DFDA 0.2656 0.1507 0.3627 0.2597 
LP-DCVA 0.2259 0.0945 0.3052 0.2085 
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Figure 4. Classification results on the test data for Faults 3, 4, and 11.  

 

4.2 Case study 2: Faults 2, 5, 8, 12, 13, and 14 

This case study evaluates the fault diagnosis performance for Faults 2, 5, 8, 12, 13, and 14. Faults 2 

and 8 are associated with the faults occurred in the feed composition in Stream 4. Faults 5, 12, and 14 are 

relevant to the cooling water for the condenser and reactor. The lags are determined from cross validation 

as ℎ = 𝑙 = 3 for DFDA, CVA-FDA, L-DFDA, and LP-DCVA. The number 𝜅 of nearest neighbors is 

chosen as 10. The heat kernel parameter for LP-DCVA is specified according to the rule-of-thumb in 

Table 1 and the kernel parameter for L-DFDA is selected as 𝜎 = 100. 

Fig. 5 displays the fault classification results for these six faults with 𝑎 = 5. It is observed that Faults 

2 and 5 are correctly recognized most of the time by these methods. FDA yields a large number of false 

classifications for Faults 8, 12, and 13. DFDA slightly improves the performance by reducing the amount 

of incorrect categorizations for these three faults. The overall misclassification rate is still at a high level, 

observed from Fig. 5b. CVD-FDA further enhances the classification performance for Fault 8 and Fault 

13 but the overall performance for these six faults is only slightly better than DFDA. L-DFDA improves 

the classification performance by considering the local structures in the data, as shown in Fig. 5d. On the 

other hand, with LP-DCVA, the misclassification rate for Fault 13 is dramatically decreased. The 

obtained misclassification rates for each fault from these methods are illustrated in Table 4. LP-DCVA 
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provides a comparable performance with FDA and DFDA for Faults 2, 5, and 14 that are easy to group. 

Moreover, LP-DCVA significantly improves the classification performance for Fault 13 by reducing 

nearly 20% misclassification rates compared with the other four methods. The overall misclassification 

rate from LP-DCVA is almost 10% lower than those from FDA, DFDA, and CVA-FDA.  

Table 4. Misclassification rates for Faults 2, 5, 8, 12, 13, and 14  

Fault 
Misclassification rates for testing data 

FDA DFDA CVA-FDA L-DFDA LP-DCVA 
Fault 2 0.0238 0.0189 0.0240 0.0138 0.0377 
Fault 5 0.0225 0.0176 0.0227 0.0189 0.0201 
Fault 8 0.3350 0.3182 0.2951 0.1371 0.2000 
Fault 12 0.2500 0.1698 0.2346 0.1484 0.1484 
Fault 13 0.6687 0.5711 0.5284 0.4730 0.2503 
Fault 14 0.0813 0.1082 0.0542 0.0214 0.0239 
Overall 0.2302 0.2006 0.1931 0.1354 0.1134 

 

 

Figure 5. Classification results on the test data for Faults 2, 5, 8, 12, 13, and 14.  
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Figure 6. Misclassification rates for different orders of dimension reduction with different methods. 

Fig. 6 displays the overall misclassification rates based on five methods under different numbers of 

projection vectors. These misclassification rates decrease monotonically as the order of dimension 

reduction increases. For low reduction order, the performance of these four methods does not show 

significant distinctions. It is observed that CVA-FDA method gives almost the same performance as 

DFDA and the reason may be, as explained in previous example, due to the loss of discriminative 

information during the dimensionality reduction in obtaining the CVA model. As the reduction order 

increases, the superior performance of L-FDFA and LP-DCVA becomes evident. This observation 

verifies the advantages of using local information in the data for separating different faults. Moreover, the 

superior performance of LP-DCVA than L-DFDA further motivates the use of LP-DCVA for fault 

classification.  

 

5. Conclusions 

This article presents a locality preserving discriminative CVA approach for fault diagnosis, which 

combines the merits of CVA in handling the serial and spatial correlations in high-dimensional data and 

the merits of FDA in maximizing the separations among different classes of data. Similar to CVA, 



22 
 

collected input and output data are split into past and future information vectors in the LP-DCVA 

approach. This method simultaneously maximizes the within-class mutual canonical correlations, 

minimizes the between-class mutual canonical correlations and keeps the local manifolds in the data. It is 

shown that the LP-DCVA method can be transformed into a generalized eigenvalue problem and thus 

closed-form solutions are obtained. An algorithm is presented to implement the proposed LP-DCVA 

method. In two simulation examples on the TEP, the LP-DCVA method provides superior performance 

for fault classifications than FDA, DFDA, CVA-FDA, and L-DFDA for fault classification.  
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