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Abstract

A new numerical approach for solving population balance equations (PBE)
is proposed and validated. The method employs a combination of basis
functions, defined on finite elements, to approximate the sought distribution
function. Similarly to other methods of the same family, the PBE are solved
only in a finite number of values of the internal coordinate (grid points).
The peculiarity of the method is the use of a logarithmic, shape-preserving
interpolation (LSPI) procedure to estimate the values of the distribution in
between grid points. The main advantages of the LSPI method compared to
other approaches of the same category are: i) the stability of the numerical
approach (i.e. the absence of oscillations in the distribution function occur-
ring when using “standard” cubic splines and a low number of elements),
and ii) the conceptual and implementation simplicity, as no mathematical
manipulation of the PBE is required.

Keywords: Population balance equations, Aggregation, Breakage, Finite
elements, Interpolation

Preprint submitted to Computers & Chemical Engineering June 12, 2018



1. Introduction1

The synthesis of new materials and the continuous technological progress2

allowed an impressive advancement in different fields, leading to the realiza-3

tion of new types of drugs, more efficient solar panels, electronics and plastics4

derived from renewable resources. Most of these materials are synthesized5

through an assembly process of subunits (molecules or particles) that typ-6

ically form differently sized assemblies, rather than one-sized structures.[1,7

2, 3, 4, 5, 6] To properly control and optimize these assembly processes, a8

mathematical framework is of indisputable importance. For this reason, the9

differential equation set, known as population balance equations (PBE), has10

been used extensively since its formal introduction.[7, 8]11

PBE have been employed to rationalize polymerization reactions [9, 10,12

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], colloid aggregation, [22, 23, 3, 24,13

25, 26, 27, 28] and crystallization processes[29, 30, 31, 32, 33]. This short14

list proves the versatility of the PBE, that enable the description of virtually15

any type of population, focusing on some key property such as the number of16

monomeric units in polymer chains, or the size of crystals. These properties,17

usually referred to as the internal coordinates of the PBE, define the discrete18

(e.g. the number of monomers) or continuous nature (e.g. the length of a19

crystal) of the PBE.20

Whether discrete or continuous, the PBE can be solved either with stochas-21

tic or deterministic approaches.[8] Stochastic methods are indeed very in-22

teresting and may reveal structural and topological information of the as-23

semblies, but their lengthy computational times make them unsuitable to24

be employed for process optimization.[18, 8] Deterministic approaches over-25

come this hurdle and allow the quantification of kinetic rates. An overview26

of the available deterministic strategies to solve the PBE is discussed in the27

following, considering a one dimensional distribution function in its contin-28

uous formulation. These considerations equally apply to discrete balances29

and multidimensional PBE, although the latter remain out of the scope of30

the present paper. For this general considerations, we will refer to f(x, t)dx,31

representing the number concentration of species (i.e. clusters, chains, ag-32

gregates), consisting of x to x+ dx units.33

The first class of methods to be historically proposed, is based on the34

integral properties of the distribution, the so called “moments”.[7] By fo-35

cusing only on the moments of the distribution, the method delivers results36

by integrating only a few ordinary differential equations. The price to pay is37
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threefold: i) the need of assuming a distribution shape in order to reconstruct38

the size distribution f(x, t), ii) the lack of generality (some mass-dependent39

rate equations cannot be easily employed), and iii) the necessity of often hav-40

ing to employ closure equations.[34, 35] Nevertheless, the method of moments41

has been proven very powerful in dealing with multidimensional and complex42

balances, for instance in the case of non-linear polymerizations.[11, 18]43

An improvement of the method of moments is represented by the quadra-44

ture method of moments (QMOM) and its variations.[28, 35] By solving a45

few more differential equations (usually 6-12), these approaches still suffer of46

the necessity of assuming a distribution shape when reconstructing f(x, t),47

but overcome the remaining issues of the method of moments. Providing av-48

erage properties accurately and with little computational power, enabled the49

method of moments and the QMOM to solve PBE in spatially distributed50

systems[36] and in computational fluid dynamic frameworks.[28, 35]51

When interested in obtaining the full distribution f(x, t) without making52

assumptions regarding its shape, other approaches such as i) the method of53

generating functions, ii) finite differences schemes, iii) the method of dis-54

cretized PBEs, and iv) the method of basis functions can be used.55

The generating function method[37, 38] relies on solving the PBE in the56

Laplace space and then inverting the solution to re-obtain the desired dis-57

tribution. This inversion step is numerical in most cases and represents the58

main drawback of the generating functions approach, given the related nu-59

merical complexities.[9]60

In the “finite differences” approach, both the time and the internal co-61

ordinate domain are discretized, replacing all derivatives in the PBE with62

finite differences. To this class belong also the high resolution finite vol-63

ume methods, that employ higher-order approximation of the derivatives.64

These latter methods reduce the numerical diffusion problems often encoun-65

tered by “standard” finite difference approaches in nucleation and growth66

problems.[39, 40] Nevertheless, these methods are computationally demand-67

ing when aggregation and breakage are of interest, because of the quite fine68

grids usually required to obtain accurate results.[41]69

Discretized PBE methods, or method of classes or sectional methods, rely70

on the subdivision of the internal coordinate in a number of finite, continuous,71

intervals (or bins). [42, 43, 44, 15, 45] The representative values of the internal72

coordinate within each bin are referred to as pivotal values. The PBE are re-73

written accounting for each pivotal value, imposing the preservation of one or74

more properties of the distribution.[42, 46] For example, whenever a cluster is75
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formed whose mass does not correspond to a pivotal value, it is redistributed76

among the nearest pivots in order to preserve the first two moments of the77

distribution. The discretized PBE are one of the most applied methods,78

especially since the formulation due to Kumar and Ramkrishna.[42] Despite79

the constant improvement throughout the years,[46, 47, 45] the method may80

suffer of some inaccuracies in predicting higher order moments when a low81

number of pivots is used, and it is not of straightforward use because of the82

rather complex mathematical treatment necessary to implement and apply83

the methodology.84

Another class of methods approximates the unknown distribution f(x, t)85

using a set of known basis functions φi(x) multiplied by weighting coefficients86

ai(t), where i = 1, 2, ...N , with N being the total number of basis functions87

employed. Within this category different sub-methods can be distinguished,88

according to a) the domain in which the basis functions φi(x) are defined, b)89

the specific form of the selected basis functions φi(x), and c) the way the co-90

efficients ai(t) are determined. When the basis functions φi(x) are defined on91

intervals (e.g. when piecewise polynomials are used to approximate f(x, t))92

one speaks of basis function on finite elements,[48, 49, 50] otherwise, one93

refers to spectral basis functions.[51, 52] The choice of the basis function is key94

in this method, as it determines its stability and accuracy.[49] Many different95

functions have been tested to this end, ranging from linear functions,[49] to96

different cubic polynomials,[48, 53, 43] or Gaussian functions.[52] A further97

distinction among these methods is related to how the unknown coefficients98

(or weights) ai(t) are determined.[54] The “method of the weighted residuals”99

is one of the most popular for determining such coefficients.[48, 53, 51, 54]100

Here, the approximated form of the solution is substituted in the PBE thus101

giving a formulation of the residual function, which needs to be minimized.102

Depending on the minimization strategy, one obtains different formulations103

of the weighted residual method, such as the Galerkin or the collocation104

method. In a few other cases, no minimization of the residual is performed,105

and the coefficients are obtained “directly” by using C2 cubic splines,[55] by106

solving an algebraic[48] or a differential equation system.[52]107

In this frame, the present work introduces a new numerical approach108

that falls in the category of the basis functions method on finite elements109

(i.e. the basis functions are defined on intervals). Instead of considering110

f(x, t), we approximate its natural logarithm, ln(f(x, t)), using a cubic poly-111

nomial: ln(f(x, t)) ≈ ai(t)x
3 + bi(t)x

2 + ci(t)x+ di(t), where i represents the112

ith interval considered. This implies that the f(x, t) is approximated in each113
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interval i with an exponential function: f(x, t) ≈ eai(t)x
3+bi(t)x

2+ci(t)x+di(t).114

Notably, Hermite shape-preserving cubics are considered to approximate the115

ln(f(x, t)), implying that the determination of the time-dependent coeffi-116

cients (ai, bi, ci, di) is direct and bypasses the calculation of a residual. The117

main advantages of the logarithmic shape preserving interpolation (LSPI)118

method are i) that no mathematical manipulation of the original PBEs is119

required, resulting in a simple numerical implementation when compared to120

other approaches,[54, 42, 40] and ii) the stability and accuracy of the method121

even when using a low number of elements compared to similar approaches122

relying on low-order polynomials.[48, 49] By using a shape preserving interpo-123

lation, in fact, the oscillations often encountered when applying polynomial124

interpolations on sparse grids [56] are automatically avoided.125

The work is structured as follows. First the LSPI method is presented126

and then validated employing aggregation and breakage mechanisms, using127

both discrete and continuous PBE. Initially, a purely aggregating system128

is considered and the LSPI predictions are compared with analytical solu-129

tions of the PBE using three different kernels (constant, sum, and prod-130

uct). Then a comparison with an accepted literature approach relying on131

Gaussian basis functions,[52] is carried out to validate the LSPI approach132

with diffusion-limited, and reaction-limited aggregation. Finally, the LSPI133

method is validated in the frame of aggregating-breaking systems. To this134

end, a random breakage kernel resulting in an analytical solution was em-135

ployed. To test the LSPI approach also with non-analytical breakage prob-136

lems, mass- and position-dependent breakage kernels have been selected and137

the LSPI solutions were compared with the aforementioned literature numer-138

ical approach.[52]139

2. Logarithmic shape-preserving interpolation - numerical and math-140

ematical aspects141

The logarithmic shape-preserving interpolation (LSPI) method is pre-142

sented in this section. For the sake of clarity, the method is introduced for143

systems undergoing aggregation only, for both the continuous (Section 2.1)144

and the discrete (Section 2.2) formulations of the PBE. The straightforward145

generalization to the case of aggregation/breakage is shortly discussed in Sec-146

tion 3, while a complete list of symbols is provided in the appendix in Tables147

4 and 5.148
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2.1. Logarithmic shape-preserving interpolation - continuous PBE149

To illustrate the method, let us first consider the PBE for a system un-150

dergoing aggregation only:151

∂f(x, t)

∂t
=− f(x, t)

∫ ∞
0

β(x, y)f(y, t)dy

+

∫ x/2

0

β(x− y, y)f(x− y, t)f(y, t)dy

(1)

where f(x, t) is the population density (or distribution function), and f(x, t)dx152

represents the number concentration of clusters at time t with size comprised153

between x and x+dx. β(x, y) is the aggregation kernel, describing the rate of154

combination of two clusters, of sizes x and y. Note that x and y will be used155

along the text to indicate the sizes or masses of the clusters, hence they do156

refer to the same internal coordinate of the distribution function. The first157

term in equation 1 represents the rate of disappearance of the clusters of size158

x due to their aggregation with other clusters (of any size). The second term,159

i.e. the convolution integral, represents the formation rate of an aggregate160

of size x from the aggregation of smaller clusters.161

The LSPI approach provides a solution for the PBE (equation 1) employ-162

ing a 4-step procedure:163

(i) The continuous PBE is written for a number I of grid points xi, where164

i = 1, 2, . . . , I, obtaining the corresponding I ordinary differential equa-165

tions:166

df(xi, t)

dt
=− f(xi, t)

∫ xmax

xmin

β(xi, y)f(y, t)dy

+

∫ xi/2

xmin

β(xi − y, y)f(xi − y, t)f(y, t)dy

(2)

Here, x1 = xmin and xI = xmax represent the minimum and maximum167

values of the internal coordinate used for the numerical solution. Note168

that the I grid points xi define the boundaries of the I−1 finite elements169

in which the domain of x is subdivided.170

(ii) Each distribution function appearing in the integrals is interpolated on171

J knots yj, with j = 1, 2, . . . , J , covering the full integration domain.172

With reference to equation 2, this corresponds to obtaining the values173
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f(yj, t) with y1 = xmin and yJ = xmax for the first integral, as well174

as f(xi − yj, t) and f(yj, t) with y1 = xmin and yJ = xi/2 for the175

convolution integral.176

(iii) The integrals in equation 2 are numerically evaluated using the J knots177

of point ii), relying on standard quadrature approaches.178

(iv) The I time derivatives of f(xi, t) in equation 2 are calculated, and a179

time integration step is performed. Steps ii) and iii) are then repeated180

iteratively at each integration time step.181

In the following, the two key steps of the LSPI method, interpolation and182

numerical integration, will be discussed, highlighting the differences of the183

LSPI approach compared to other methods using basis functions on finite184

elements.185

2.1.1. Interpolation186

In the context of PBE, the main requirements for an effective interpolant187

are:188

(i) it approximates well the shape of the function f(x, t) over the whole189

domain of the independent variable x;190

(ii) it can be computed easily and efficiently;191

(iii) it preserves the non-negativity of f(x, t);192

(iv) it requires a low number of interpolating points.193

Hermite shape preserving cubic polynomials fulfill all the above requirements194

and do not need any a-priori knowledge of the shape of the function to be195

interpolated.[57, 58] Moreover, they are relatively straightforward to com-196

pute.197

Unlike other methods which use (non-shape preserving) C1 cubic inter-198

polants, they do not require the definition of additional points (collocation199

points) within each finite elements where the residual of the differential200

equation has to be minimized in order to determine the coefficients of the201

interpolant.[48, 53, 58, 27] In our case, the cubic coefficients are obtained202

directly from a step by step approach once the coordinates (xi, f(xi, t)) are203

known without any need to solve for large algebraic or algebraic-differential204

systems. Additionally, they are also free from the oscillations and overshoot-205

ings that may arise when using C2 cubic splines and only a few interpolation206

points.[58, 56]207

Recalling that at each time t we know the values of the distribution208

function in the I grid points xi, using a shape preserving Hermite polynomial209
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implies that (I − 1) cubic interpolants P (y, t) will be used, one for each of210

the (I − 1) elements.211

In order to limit the number of elements required to approximate f(x, t),212

it is useful recalling that for aggregating systems the population density213

f(x, t) is often of exponential nature [48, 59]. Therefore, one can infer that214

the same interpolation accuracy may be achieved with fewer grid points when215

interpolating the logarithm of the density function rather than the density216

function itself. In other words, instead of using f(xi, t), we will use the values217

ln(f(xi, t)) to carry out the interpolation.218

Employing the ln(f(xi, t)) comes with a caveat. Although the popula-219

tion density is non-negative in the whole domain by definition, numerical220

errors may arise when integrating equation 2, as in any other approximated221

approach, leading the f(xi, t) values to be negative in some points, thus222

precluding the logarithmic transformation. This may occur during the time223

integration when the population decays rapidly and has extremely low values.224

Therefore, we define a local shift factor ε:225

ε = (1 + dε)|min
{
f(xi, t) \ {0}

}
| (3)

with dε > 0. The local shift factor ε is a positive number whose value226

is larger (by a factor(1 + dε)) than the modulus of the minimum of the227

non-zero elements of f(xi, t). Accordingly, whatever the values of the pop-228

ulation density at the grid points, f(xi, t) + ε is always positive, and one229

can safely apply the shape preserving cubic splines using the known coordi-230

nates (xi, ln(f(xi, t) + ε)), from which the piecewise cubic interpolant P (y, t)231

can easily be obtained. With this in mind the sought interpolating func-232

tions, satisfying the above mentioned conditions and referring to the interval233

hi = [xi ≤ y < xi+1], will have the form:234

P (y, t) =ln(f(xi, t) + ε) + (y − xi)di
+ (y − xi)2ci + (y − xi)3bi

where xi ≤ y < xi+1

and i = 1, 2, . . . , I − 1

(4)

The parameters bi, ci and di required to obtain the shape-preserving inter-235

polant are obtained through a well-established procedure by Fritsch and236

Carlson,[58, 57] reported in the ESI (Section S1).237
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Equation 4 gives access to the value of the population density f(y, t) at238

a desired coordinate y by a simple inversion:239

f(y, t) = exp(P (y, t))− ε (5)

A synoptic view of the interpolation procedure is illustrated in Figure 1.240

From the known coordinates at time t, f(xi, t), one determines the minimum241

of the non-zero f(xi, t) values (equation 3 and Figure 1a), from which the shift242

factor ε is calculated (equation 3). This allows the calculation of ln(f(xi, t)+243

ε). Then the coefficients of the cubic interpolant (bi, ci, di) are determined244

in interval hi (ESI, Section S1) for the set of points (xi, ln(f(xi, t) + ε)), as245

shown in Figure 1b). This interpolation procedure is repeated for all the246

I − 1 intervals, hence the logarithm of the shifted function can be evaluated247

at any value yj (equation 4 and Figure 1c)). Finally, the density function248

itself is obtained through equation 5 (Figure 1d)).249

2.1.2. Quadrature250

After having interpolated using the known I points and having calculated251

the distribution function in all selected knots, it is possible to numerically252

evaluate the integrals in equation 2. Since numerical integration methods253

are well-known,[60] we report the corresponding details in the ESI (Section254

S2), while the most relevant observations on the quadrature method used are255

summarized here:256

(i) the coordinates of the J knots for the quadrature are defined indepen-257

dently from the I grid points xi, decoupling the number of ordinary258

differential equations to be solved (I), from the appropriate number of259

points to perform the numerical integration;260

(ii) The same number of J knots is used for the quadrature of all the PBE261

integrals (equation 2). Although not strictly necessary, this choice limits262

to a minimum the parameters of the method;263

(iii) Logarithmic abscissas and higher order quadrature rules lead to a better264

accuracy than linear abscissas or simple trapezoidal integration (ESI,265

Section S2). Nevertheless, all quadrature methods converge to the266

same results when using a large enough number of interpolating knots,267

J ≈ 102, confirming that any quadrature approach could be used. We268

used the 4th degree Newton-Cotes formulas (Boole’s rule)[60] using a269

logarithmic scale for the integration variable, because it provided high270

accuracy with limited knots number (ESI, Section S2).271
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Figure 1: Scheme illustrating the interpolation procedure. In particular: a) find the
minimum of f(xi, t), and compute ε with equation 3; b) compute ln(f(xi, t) + ε) and the
coefficients of the shape preserving cubic spline (bi, ci, di) in the interval hi (equation 4
and ESI Section S1), repeat for all intervals I − 1; c) use the obtained coefficients and the
interpolant function P (y, t) to estimate the function at selected y values (equation 4; d)
convert the found values P (y, t) to f(y, t) using equation 5.
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2.2. Logarithmic interpolation - discrete PBE272

In the case of discrete PBE, the balance for an aggregating system be-273

comes:274

df(x, t)

dt
=− f(x, t)

∞∑
y=1

β(x, y)f(y, t)

+
1

2

x−1∑
y=1

β(x− y, y)f(x− y, t)f(x, t)

(6)

Here f(x, t) denotes the number concentration of the clusters with size x.275

Note that, in the case of discrete populations, f(x, t) does not represent276

a density distribution, but the number (or concentration) of species with277

internal coordinate x ∈ N, and f(x, t) is defined only on the points x ∈ N.278

To use the LSPI approach also for discrete PBEs, we write the PBEs for a279

finite number I of grid points xi, and replace the summations with integrals280

using the Euler-Maclaurin approximation. Combining these two steps, one281

gets:282

df(xi, t)

dt
≈− f(xi, t)

[mi(1)

2
+

∫ xmax

1

mi(y)dy +
mi(J)

2

]
+
[ni(1)

2
+

∫ bxi/2c
1

ni(y)dy + θxi
ni(yJ)

2

] (7)

The integrand functions mi(y) and ni(y) are continuous functions approxi-283

mating the sequences to be summed up in equation 6, for which the time-284

dependency has been dropped for the sake of brevity:285

mi(y) = β(xi, y)f(y, t) (8)
286

ni(y) = β(xi − y, y)f(xi − y, t)f(y, t) (9)

bxi/2c represents the floor of xi/2 and θxi = xi mod 2:

θxi =

{
1, if xi is odd

0, if xi is even
(10)

Note that equation 7 implies that the summations in equation 6 are replaced287

by integrals plus two terms for each summation which add half of the extreme288
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values of the integrals, according to the Euler-Maclaurin approximation. In289

other words, although in the discrete case f(x, t) has physical meaning only290

on the points xi ∈ N, by means of the Euler-Maclaurin approximation we can291

solve the discrete PBE in equation 6 by applying the very same methodology292

used for solving the continuous PBE to equation 7. The integrand functions293

are evaluated on J knots by interpolation of the I known distribution values294

f(xi, t), and the integrals are numerically evaluated. In the following, test295

cases are illustrated to validate the method.296

3. Validation297

In the present section the LSPI method is validated in different scenarios.298

The results are reported using the non-dimensional time τ defined as: [48, 59]299

τ = β(1, 1)µ0(t = 0)t (11)

where µ0(t = 0) =
∫∞
0
f(x, t = 0)dx is the moment of order 0, i.e. the total300

particle concentration, at time zero, and β(1, 1) is the rate of aggregation of301

two primary particles. The LSPI method was implemented in Matlab and302

the PBEs were solved on a PC with 6 cores and processor AMD Phenom303

2.7 GHz. The system of ordinary differential equations was integrated using304

standard built-in ODE solvers. Unless otherwise stated, dε = 10−3 (equation305

3) and an explicit Runge-Kutta (4,5) solver with a relative tolerance of 10−6306

and absolute tolerance of 10−20 were used.307

3.1. Continuous PBE - constant and sum kernel308

Initially, the LSPI approach is validated using continuous PBE in the309

frame of an aggregation problem using the constant and sum kernels. In310

these scenarios, analytical solutions of the PBE were available and could be311

compared with the numerical results of the LSPI method. The employed312

parameter values are reported in Table 1, and the results in Figure 2.313

In Figure 2, the continuous black lines represent the analytical solution,314

the empty red circles the I grid points employed (i.e. the number of solved315

equations), and the red dashed lines the interpolated numerical solution.316

Panel a) shows a very good superimposition between numerical and analytical317

distributions when employing the constant kernel. Notably, panel b) reports318

the very same distributions as in a), plotted on a logarithmic axis in order to319

appreciate the performance of the numerical solution, that overlaps with the320
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Parameters Constant kernel Sum kernel

β(x, y) 1 (x+ y)
[xmin, xmax] [10−3, 500] [10−3, 104]

Initial condition f(x, 0) = N0

xo
e
− x

x0 f(x, 0) = N0

xo
e
− x

x0

Simulated τ [−] [0− 10] [0− 4]
I[−] 3 15
J [−] 81 81

Table 1: Kernel and parameters for the solution of continuous PBE, Figure 2. For the
initial conditions, N0 = x0 = 1 were used. Analytical solutions are available in [48]

Figure 2: Time evolution of the population density for pure aggregation: LSPI solution
(red) and analytical solution (black). Constant kernel, with a) linear and b) logarithmic
representation of the y-axis (at τ = 1, 5, 10). Sum kernel, with c) linear and d) logarithmic
representation of the y-axis (at τ = 1, 2, 4).
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analytical one for 30 orders of magnitude (odm) on the y-axis and covering 6321

odm on the x-axis. Similar considerations hold when inspecting Figure 2 c)322

and d), that show distributions obtained with the sum kernel. Once again,323

a very good overlap of the numerical and analytical solution is observed324

both when plotting the results on a linear (panel c)) and logarithmic axis325

(panel d)). The LSPI approach guarantees in both cases highly accurate326

solutions using a very low number of grid points and, therefore, of differential327

equations to be solved. In particular, I = 3 for the constant kernel and328

I = 15 for the sum kernel, while in both cases J = 81 interpolating knots329

were used to compute the integrals in equation 2. The very low number of330

grid points used with the constant kernel is consequential to the logarithmic331

interpolation strategy: starting with an exponential initial condition, the332

exponential profile is preserved as the time increases and only three grid333

points (and thus three differential equations) suffice to interpolate f(x, t)334

(Figure 2 a) and b)).335

We have further proven that the logarithmic interpolation strategy is key336

for obtaining accurate results even when using very few elements. This is337

shown for the sum kernel in the ESI (Figure S4 a) and b)) where solutions338

obtained with and without employing the logarithm of the distribution func-339

tion for the interpolation are shown. While the LSPI method superimposes340

with the analytical solution already with I = 15, the same occurs with a341

“standard” shape-preserving interpolation (SPI) only when using I = 45,342

and even then a deviation of the SPI is observed at the right tail of the343

distribution (cf. ESI, Figure S4b)).344

3.2. Discrete PBE - pure aggregation345

To test the LSPI approach in the case of discrete PBE, three further346

test cases have been considered (Table 2), using a) the product kernel, b)347

the diffusion-limited cluster aggregation (DLCA) kernel, and c) the reaction-348

limited cluster aggregation (RLCA) kernel. An analytical solution exists for349

the product kernel[59]. For the DLCA and RLCA kernels, the LSPI solution350

was compared against the numerical solution provided by the Gaussian basis351

functions (GBF) method.[52, 61, 62, 33]352

In the discrete cases, the initial population distribution typically presents353

a singularity at xi = 1. In such a case, it is therefore preferable to define354

the I grid points using a unitary spacing for the first few points, up to a355

given value Ic. Then, the usual exponential spacing can be used. In a similar356

way, the J knots are defined on a unitary spaced grid up to j = Ic and357
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Parameters Product kernel DLCA kernel RLCA kernel

β(x, y) 2xy 2kBT
3ηW

B(x, y) 2kBT
3ηW

B(x, y)P (x, y)

B(x, y) - (x
1
df + y

1
df )× (x

1
df + y

1
df )×

- (x
− 1

df + y
− 1

df ) (x
− 1

df + y
− 1

df )
P (x, y) - - (xy)0.5

[xmin, xmax] [100, 5× 106] [100, 5× 105] [100, 5× 105]
T [K] - 298.15 298.15
η [Pa s] - 8.9× 10−4 8.9× 10−4

Dp [m] - 100× 10−9 100× 10−9

φ [−] - 10−4 10−4

W [−] - 1 104

df [−] - 1.8 2.1

I.C. f(1, 0) 1 6φ
πD3

p

6φ
πD3

p

Simulated t [s] − 4200s 42000s
Simulated τ [−] 0.998 − −
Ic[−] 10 10 10
I[−] 26 26 26
J [−] 90 90 90

Table 2: Kernel and parameters for the solution of discrete PBE, Figure 3 and Figure 4.
The absolute tolerance was 10−50 when using the product kernel, and 10−20 for the DLCA
and RLCA kernels. The analytical solution for the product kernel is from reference [59].
Note that f(x > 1, 0) = 0 ∀x > 1. I indicates the total number of grid points, including
Ic.
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Figure 3: Discrete PBE solved for pure aggregation using the product kernel. a) and b)
Distribution f(x, τ) for τ = {0.2, 0.6, 0.998}, c) moments of order 0th − 3rd vs. τ . The
analytic solutions [59] are displayed using black continuous lines. Dashed blue (with I = 26
and J = 90, (a)) and red (I = 80 and J = 90 (b)) lines are the interpolated distributions,
obtained from the distribution computed at the I grid point (circles).

on an exponentially spaced grid (uniform on the logarithmic scale) until the358

upper integration limit. Accordingly, the Euler-McLaurin approximation is359

applied after the first Ic−1 terms of the summations in Equation 6, which are360

summed directly. The numerical integration using Boole’s rule on logarithmic361

abscissa coordinates was applied from y = Ic to the upper integration limit.362

Note that, given the discrete nature of the currently considered PBE, the363

I grid points xi have to be natural numbers (equation 6 and 7), while this364

limitation is not required for the J knots.365

3.2.1. Product kernel - analytical solution366

The comparisons between the results provided by the LSPI numerical367

method and the analytical solution of the product kernel are reported in368

Figure 3.369

In particular, Figure 3 a) shows the performance of the LSPI method370

using I = 26 grid points and J = 90 interpolation knots. A good overlap371

between analytical and numerical solution is observed for the distributions372

at lower times, but a slight discrepancy arises for the largest τ (Figure 3a).373

This discrepancy vanishes as soon as the number of grid points is increased374

to I = 80, as shown in Figure 3b. It should be noted that the aforementioned375

discrepancy was observed at normalized concentrations as low as 10−20, and376

only in close proximity of the gelation point,[18] (τ = 1), while the agreement377

with the analytical solution was otherwise very good for the entire simulated378

time. To further prove this point the moments of order 0 to 3 (µ0, µ1, µ2379

and µ3) are reported against time in 3 c). In particular, the blue circles380
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represent the moments computed using I = 26 grid points, the red circles the381

solution with I = 80, and the continuous black lines the analytical solution.382

A discrepancy between the analytical solution and the LSPI method with383

I = 26 is observed only for the higher order moments at times close to the384

gelation of the system (typically identified when the 2nd and higher order385

moments diverge).[18] This further proves that even when using a very low386

number of grid points (I=26 to simulate sizes up to 5 x 106!), an accurate387

solution is actually obtained for practically the whole simulated time.388

3.2.2. DLCA and RLCA aggregation389

To verify whether the LSPI method works well also with non-analytical390

kernels, the DLCA and RLCA aggregation kernels have been considered.391

The LSPI predictions were compared with a validated literature method392

relying on Gaussian basis functions (GBF).[52, 61, 62] The parameter values393

employed for these calculations are reported in Table 2 and the results are394

displayed in Figure 4, where the dotted lines are the GBF solutions, while the395

red circles refer to the I grid points of the LSPI method. Notably, a very good396

overlap can be observed over 5 orders of magnitude on the abscissas and over397

15-20 orders of magnitude on the ordinates. When the concentrations are398

too low (≈ 100#/m3, given an initial particle concentration of ≈ 1017#/m3 )399

the GBF method starts exhibiting a ’nervousness’, as already reported when400

the method was initially derived.[52] The LSPI method does not show any401

such instability, as intrinsically the method is designed to compute f(x, t)402

between the grid points with a shape-preserving cubic spline (Section 2). To403

further prove that the two methods are indeed performing very similarly,404

and that the arising discrepancy is only due to a numerical problem arising405

at very low concentration, the first four moments (0th − 3rd) are reported406

against time for the two methods for DLCA in Figure 4 c) and for RLCA407

in Figure 4 d). Once more, the LSPI method is represented by dashed red408

lines, while dotted blue lines have been employed for the GBF method. The409

very good overlap of the predictions, confirms that the LSPI approach is410

well-suited also to deal with complex kernels, such as those involved in the411

DLCA and RLCA aggregation mechanisms, by solving a small number of412

ODE. Notably, the logarithmic shape-preserving interpolation (LSPI) has413

been proven significantly better compared to its non-logarithmic counterpart,414

the shape-preserving interpolation (SPI) (ESI, Figure S4c). With the same415

amount of grid points I = 26, only the LSPI solution overlaps with the416

reference one provided by the GBF method, while the SPI prediction does417
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Figure 4: Discrete PBE for pure aggregation solved using a) the DLCA kernel at t̄ =
{1050s, 2100s, 4200s} and b) the RLCA kernel at t̄ = {10500s, 21000s, 42000s}. The
moments of order 0th − 3rd against time are reported for c) the DLCA case, and d) the
RLCA case. The blue dotted lines were obtained using the Gaussian basis functions (GBF)
method, the red dashed lines with the Logarithmic shape-preserving interpolation (LSPI)
method.
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not (ESI, Figure S4c).418

3.3. Discrete PBE - Aggregation and Breakage419

To further prove the versatility of the proposed approach, aggregation420

and breakage problems have been considered as well. The general population421

balance accounting for aggregation and breakage reads:422

df(x, t)

dt
=− f(x, t)

∞∑
y=1

β(x, y)f(y, t)

+
1

2

x−1∑
y=1

β(x− y, y)f(x− y, t)f(x, t)

− γ(x)f(x, t) + 2
∞∑

y=x+1

Γ(x, y)γ(y)f(y, t)

(12)

Here γ(x) represents the rate of breakage for the aggregate of size x, while423

Γ(x, y) is the so-called daughter distribution function, representing the prob-424

ability that an x-sized cluster forms from the breakage of a bigger cluster425

of size y. The cases considered in this work rely on a parabolic daughter426

distribution function: [44]427

Γ(x, y) =
0.5C

y − 1
+ (1/2− C/4)

[8(3x2 − 3x+ 1)

(y − 1)3

− 12(2x− 1)

(y − 1)2
+

6

(y − 1)

] (13)

As for the case of pure aggregation, to solve the PBE with the LSPI428

method, the summations in equation 13 are transformed into integrals by429

means of the Euler-Maclaurin approximation:430

df(xi, t)

dt
=− f(xi, t)

[mi(1)

2
+

∫ xmax

1

mi(y)dy +
mi(J)

2

]
+
[ni(1)

2
+

∫ bxi/2c
1

ni(y)dy + θxi
ni(yJ)

2

]
− γ(xi)f(xi, t)

+
[pi(1)

2
+

∫ xmax

xi+1

pi(y)dy +
pi(J)

2

]
(14)
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Breakage Parameters Random Mass Erosion

β(x, y) 1 (x1/3 + y1/3)3 (x1/3 + y1/3)3

γ(x),∀x > 1 10−4(x− 1) 0.1e0.01x 2x0.5

C 2 2 0.5
[xmin, xmax] [1, 5× 103] [1, 3× 103] [1, 2× 103]
Initial condition f(1, 0) = 1 f(1, 0) = 1 f(1, 0) = 1

f(x > 1, 0) = 0 f(x > 1, 0) = 0 f(x > 1, 0) = 0
Simulated τ [−] [0− 5000] [0− 80] [0− 80]
IC [−] 10 10 15
I[−] 25 60 30
J [−] 90 90 95

Table 3: Note that γ(x) is defined only for x > 1, as primary particles are assumed not
to break. A relative tolerance of 10−4 was used for all cases. The absolute tolerance was
10−20 for the random breakage and 10−15 otherwise. In all cases, the Matlab integrator
“ode15s” has been used.I represent the total number of grid points including Ic. The
analytical solution for random breakage [63] has been reported in ESI Section S3.

where pi(y) is the integrand function, for which the time-dependency has431

been dropped for the sake of compactness:432

pi(y) = 2Γ(xi, y)γ(y)f(y, t) (15)

The PBE in equation 14 were solved for three different cases, a ran-433

dom breakage kernel, a mass-dependent breakage, and a mass- and position-434

dependent breakage with parabolic daughter distribution. The corresponding435

kernels are reported in the ESI, Section S3, while the values of the kinetic436

parameters employed are shown in Table 3. The results obtained with the437

LSPI method were compared with analytical solutions (where available) or438

with the numerical solution obtained with the aforementioned Gaussian basis439

function approach.[52]440

3.3.1. Random breakage441

To test the LSPI approach in a simple breakage scenario, a random break-442

age mechanism has been employed. In particular, γ(x) = 10−4(x− 1), indi-443

cates that breakage may occur in any of the x − 1 contact points with the444

same probability (assuming binary contact of primary particles). Note that445

the more complex product of Γ(x, y)γ(y) simplifies to 1 by using C = 2 and446
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Figure 5: Discrete PBE for constant aggregation and breakage using the parame-
ters reported in Table 3. Figure a) shows the distributions at non-dimensional times
τ = 1, 10, 5000 and b) the time-evolution of the moments of order 0th − 3rd. The black
lines represent the analytical solution [63], the red dashed lines and circles the results of
the logarithmic shape-preserving interpolation (LSPI) method.

the above mentioned expression for γ(y). For a constant aggregation mecha-447

nism and this simple breakage scheme an analytical solution exists.[63] Dis-448

tributed and average properties obtained with the LSPI method (red dashed449

lines and circles) have been compared with the analytical solutions (black450

solid lines) in Figure 5.451

A perfect overlap of all properties can be observed when inspecting Fig-452

ure 5. Notably, I = 25 nodes and J = 90 knots were sufficient to obtain a453

very good overlap over more than 20 orders of magnitude for the distribu-454

tions (Figure 5 a)). The transition towards a stable stationary state where455

aggregation and breakage reach an equilibrium is well-captured by the LSPI456

method, as can be seen in Figure 5 b).457
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3.3.2. Mass- and position-dependent breakage458

To test the LSPI approach with more complex breakage kernels, two lit-459

erature cases (Table 3) were selected.[44] The first considered kernel is only460

mass-dependent with γ(x) = 0.1e0.01x, i.e. larger clusters break faster than461

smaller ones. As in this first case, at C = 2, no position dependency arises462

as Γ(x, y) simplifies to 1 (equation 13 and ESI Section S3). The second ker-463

nel is instead a mass- and position-dependent breakage kernel. In this latter464

case larger clusters break easier than smaller ones (in fact γ(x) = 2x0.5), and465

breakage occurs more likely in the so-called “erosion” mode. This results466

from using C = 0.5 in equation 13 and implies that the most favored break-467

age events are those involving the “detachment” of smaller fragments (ESI,468

Section S3). Given that no analytical solution exists for the above mentioned469

kernels, a numerical comparison of the LSPI approach with the Gaussian ba-470

sis function method has been performed. Both distributed (panels a) and471

b)) and average properties (panels c) and d)) have been considered (Figure472

6).473

A perfect overlap of the two methods is observed in all cases. Despite the474

more complex shape of the breakage kernels (Table 3 and ESI, Figures in Sec-475

tion S3), the LSPI method requires some more grid points only when dealing476

with the particularly stiff mass-dependent kernel. In any case, thanks to the477

decoupling between number of elements and quadrature knots, the number478

of grid points could be increased while keeping the same amount of inter-479

polation knots as used in all other cases (Table 3). Moreover, it is worth480

mentioning that the Gaussian basis function method requires 180 bases (and481

a corresponding number of equations) in order to give satisfactory results.482

This is due to the shape of the base function: given that a very abrupt483

non-Gaussian distribution arises in the latter two cases, a high number of484

Gaussian bases are necessary to well-approximate the shape of the distribu-485

tion. The LSPI method suffers less from this problem, as it is defined on486

finite elements, and because it deals with a shape-preserving interpolation of487

the logarithm of f(x, t). As a result, it is less sensitive to the shape of the488

distribution and requires significantly less grid points and a corresponding489

number of differential equations to give comparable results in terms of system490

dynamics.491

3.4. Summary of discretized equations492

For the sake of clarity, a summary of the different terms required to solve493

the PBE involving aggregation and breakage, for the continuous and for the494
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Figure 6: Discrete PBE for aggregation and breakage solved using the mass-dependent
breakage (panels a) and c)), and the erosion breakage (panels b) and d)). Distributions
are shown for τ = {0.8, 4, 80}, and moments of order 0th − 3rd are reported. Blue dotted
lines were obtained using the Gaussian basis functions (GBF) method, the red dashed lines
and the circles are the solution of the logarithmic shape-preserving interpolation (LSPI)
method.
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discrete cases, is reported in Table 4. In both circumstances, the sum of495

the four terms is the time derivative df(xi, t)/dt at time t, which needs to496

be computed at each time integration step. It can be noticed the similarity497

between the two formulations, both involving three integrals (one for each498

grid point of coordinate xi) to be evaluated by numerical quadrature. In499

practice, by means of the Euler-Maclaurin approximation, which allows to500

approximate a series with an integral, the discrete problem is also treated as501

a pseudo-continuous one. The main difference between the two cases relies502

on the need, when dealing with discrete problems, to add to each integral the503

sum of half the values of the integrand functions evaluated at the integration504

limits, as reported in Table 4. These additional terms are a consequence of505

the Euler-Maclaurin approximation (cf. Eq.6 and Eq.7) too. Note that, in506

the integral representing the rate of formation due to aggregation, when the507

domain of integration is halved (i.e. when integrating up to xi/2 rather than508

up to xi − 1 and than halving the result), the correction term for the upper509

limit of integration needs to be carried out only if xi is odd.510

4. Conclusions511

In the present paper a new numerical approach to solve population bal-512

ance equations (PBE) has been introduced. The method relies on logarithmic513

shape-preserving interpolation (LSPI) on finite elements and falls in the so-514

called “basis functions” category. In the LSPI approach, the PBE are written515

for specific grid values and the integrals are evaluated by standard numeri-516

cal quadrature rules. Thus, the resulting system of differential equations is517

solved without further manipulation. The unknown, off-grid values of the518

distribution function required for the quadratures are calculated through in-519

terpolation from the known values at the grid points using shape-preserving520

piecewise cubic Hermite polynomials. To increase the efficiency of the in-521

terpolation, the logarithm of the distribution is interpolated rather than the522

distribution itself, given that in many cases distribution functions exhibit523

exponentially decaying tails.524

After providing the theoretical foundation of the LSPI approach, the525

method has been tested in 8 different scenarios, dealing with aggregation526

and breakage mechanisms with both continuous and discrete PBE. In all527

cases the LSPI method performed very well, whether the comparison was528

made with distributed or averaged properties. Notably, a very small num-529

ber of differential equations were required in all cases, as low as 3-30, to530
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continuous f(x, t) discrete f(x, t)

domain of f(x, t) xmin ≤ x ≤ xmax 1 ≤ x ≤ xmax
with x ∈ R ≥ 0 with x ∈ N

rate of consumption of
aggregates of size xi
due to aggregation

−f(xi, t)
∫ xmax

xmin
mi(y)dy −f(xi, t)

[
mi(1)

2
+∫ xmax

1
mi(y)dy + mi(yJ )

2

]
rate of formation of
aggregates of size xi
due to aggregation

∫ xi/2
xmin

ni(y)dy ni(1)
2

+
∫ bxi/2c
1

ni(y)dy +

θxi
ni(yJ )

2

rate of consumption of
aggregates of size xi
due to breakage

−γ(xi)f(xi, t) −γ(xi)f(xi, t)

rate of formation of
aggregates of size xi
due to breakage

∫ xmax

xi
pi(y)dy pi(1)

2
+
∫ xmax

xi+1
pi(y)dy + pi(yJ )

2

Integrand and auxiliary functions

mi(y) = β(xi, y)f(y, t)

ni(y) = β(xi − y, y)f(xi − y, t)f(y, t)

pi(y) = 2Γ(xi, y)γ(y)f(y, t)

θxi = 1 if xi is odd, θxi = 0 if xi is even

Table 4: Summary of the discretized equations for solving the PBE for the discrete and for
the continuous cases. The functions β, γ and Γ represent the aggregation kernel, the break-
age kernel and the daughter distribution function, respectively. For the sake of brevity,
the explicit time dependency of the integrand functions, mi, ni and pi, was omitted.
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cover several order of magnitudes in both coordinates, with a single excep-531

tion for a particularly stiff aggregation/breakage problem which required 60532

grid points. A detailed analysis of the computational efficiency of the method533

is outside the scope of the present work, but it is worth mentioning that all534

simulations, carried out with Matlab on a basic desktop PC, required only a535

few seconds down to fractions of a second, depending upon the problem at536

hand, demonstrating the efficiency of the method. Undeniably, the compu-537

tational power evens out many differences among methods, but a significant538

number of advantages distinguish the LSPI approach from methods of the539

same category:540

• it is easy to apply as no residual needs to be calculated and no manip-541

ulation of the original PBE is necessary;542

• it provides accurate results with a limited number of finite elements/grid543

points. This aspect is especially important in view of possible general-544

izations to multidimensional cases;545

• the number of grid points (i.e. of differential equations actually solved)546

is decoupled from the number of interpolation points used to compute547

the integrals, allowing to optimize the number of finite elements and548

the quadrature knots independently.549

Overall, several other steps will be necessary to prove the breadth and relia-550

bility of the LSPI approach, such as employing it for nucleation and growth551

problems and solving multidimensional PBE. Nevertheless, this work repre-552

sents an important step towards the development of efficient interpolation-553

based strategies to solve PBE.554
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6. Appendix - List of symbols558

Table 5: List of Latin symbols

Parameter Meaning Units

bi, ci, di interpolation parameter −
C parameter in breakage kernel −
dε shift factor parameter −
Dp particle diameter m
Eµ Error on first 4 moments %
f(x, t)dx number concentration of clusters

with mass comprised between
x and x+ ∆x # L−1

hi length of ith interval on the grid −
I number of grid points

where the PBE are discretized −
J number of grid points used

to interpolate f(x, t) and compute
the integrals of the PBE −

kB Boltzmann constant J K−1

mi(y), ni(y), pi(y) function used in quadrature −
P (y, t) sought cubic interpolant −
N0 initial particle concentration −
s dissociation rate s−1

t time s
T temperature K
x, y internal coordinate of the PBE −
x0 parameter for analytical solutions −
xi ith grid point where PBEs are solved

where i = 1, 2, . . . , I −
x vector containing xi −
xmin, xmax smallest and largest

cluster considered −
yj jth grid point used for quadratures

where j = 1, 2, . . . , J −
y vector containing yi −
wj weights used in quadrature −
W Fuchs stability factor −

27



Table 6: List of Greek symbols

Parameter Meaning Units

β(x, y) aggregation rate constant of
an x− and a y−sized cluster m3#−1s−1

γ(x) breakage rate of an x-sized cluster [s−1]
Γ(x, y) probability that an x-sized cluster

breaks in position y [−]
δi first divided difference

on the ith interval −
∆i segment width for quadratures −
ε shift factor −
η viscosity Pa s
θ parameter used for discrete PBE −
λ RLCA kernel parameter −
µi(t) ith moment of the distribution mk # L−1

µani (t) ith moment of the distribution
from analytical solutions mk # L−1

τ non-dimensional time −
φ occupied volume fraction −
ω1, ω2 parameters used in interpolation −
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