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Highlights 
 A novel hybrid multiscale model is developed to simulate thin film deposition 

 Continuum models and stochastic PDE used to capture deposition multiscale behaviour 

 Artificial neural networks used to predict SPDE’s model parameters 

 Hybrid multiscale model validated using kinetic Monte Carlo based thin film model 

 Hybrid multiscale model used to perform optimization & control on thin film growth 
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ABSTRACT  

This work details the construction and evaluation of a low computational cost hybrid multiscale 

thin film deposition model that couples artificial neural networks (ANNs) with a mechanistic 

(first-principles) multiscale model. The multiscale model combines continuum differential 

equations, which describe the transport of the precursor gas phase, with a stochastic partial 

differential equation (SPDE) that predicts the evolution of the thin film surface. In order to allow 

the SPDE to accurately predict the thin film growth over a range of system parameters, an ANN 

is developed and trained to predict the values of the SPDE coefficients. The fully-assembled 

hybrid multiscale model is validated through comparison against a kinetic Monte Carlo-based 

thin film multiscale model. The model is subsequently applied to a series of optimization and 

control studies to test its performance under different scenarios. These studies illustrate the 

computational efficiency of the proposed hybrid multiscale model for optimization and control 

applications. 

Keywords: Artificial Neural Networks; Multiscale Modelling; Thin Film Deposition; Hybrid 

Modelling; Stochastic Partial Differential Equations.  
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1. Introduction 

The thin-film deposition process is crucial to the fabrication and manufacture of semiconductors and microelectronic 

components (Baumann et al., 2001; Seshan and Schepis, 2012). This has driven the development of model-based 

optimization and control schemes to improve the quality of the thin films and minimize the deposition cost 

(Theodoropoulou et al., 1998; Lou and Christofides, 2003; Middlebrooks and Rawlings, 2007). The behaviour of a 

thin-film growth process is governed by the deposition, desorption, and migration of the film precursor species on a 

molecular level, which are themselves dependent upon macroscale processes such as mass, energy, and momentum 

transport. Accordingly, optimal thin film process improvement studies require control of the molecular-level events 

through manipulation of the system’s macroscopic inputs (Ulissi et al., 2013). Consequently, process improvement 

studies for thin film growth are most readily performed using multiscale modelling techniques that capture the 

relevant molecular and bulk phenomena on the scales in which they occur (Vlachos, 2005). Multiscale models for 

thin film growth typically combine continuum partial differential equations (PDEs), which describe the macroscopic 

behaviour of the gas-phase precursor species, with kinetic Monte Carlo (kMC) simulations that capture the 

microscopic kinetic events responsible for the thin film growth (Lam and Vlachos, 2001). This multiscale approach 

has been previously applied to perform a number of different optimization and control studies for thin film 

deposition (Rasoulian and Ricardez-Sandoval, 2015a, 2015b, 2016; Christofides and Armaou, 2006; Christofides et 

al., 2009). Similar multiscale methodologies have been used to model a variety of different processes, such as 

plasma-enhanced chemical vapour deposition (Crose et al., 2015, 2017), atomic layer deposition (Dwivedi and 

Adomaitis, 2009; Adomaitis, 2010), polymer branch growth (Rawlston et al., 2011, 2010), and catalytic reactor 

systems (Chaffart et al., 2016; Chaffart and Ricardez-Sandoval, 2018). However, this PDE/kMC-based multiscale 

approach is limited in its application for process improvement studies, as the kMC model is not of closed form and 

results in prohibitive computational costs (Ricardez-Sandoval, 2011). Consequently, there is a need to develop 

techniques and tools to decrease the computational cost of process improvement studies for thin film deposition and 

other multiscale systems. One method is to develop efficient optimization and control policies in order to decrease 

the computational burden of process improvement in thin film deposition systems. For example, approximate 

dynamic programming techniques can be considered as a promising option to perform process control at reduced 

computational costs and in the presence of uncertainty (Lee and Lee, 2005, 2009; Lee and Wong, 2010). Another 

approach is to develop reduced-order and data-driven models that predict the values of key system observables as a 

function of designated control parameters. This approach has been previously used to perform efficient process 

improvement studies for systems with computationally-prohibitive dynamic models such as hydraulic fracturing 

(Siddhamshetty et al., 2018a, 2018b), copper electrodeposition (Rusli et al., 2006), and thin film deposition 

(Rasoulian and Ricardez-Sandoval, 2015a, 2015b). These reduced-order modelling techniques are useful as they can 

simulate the underlying multiscale models at reduced computational costs with minimal loss in the model accuracy, 

and they can be readily incorporated into existing optimization and control schemes. However, these low-order 

models are limited to predicting key properties and may be unable to capture detailed fine-scale information about 
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the system that are readily available from kMC simulations, such as the temporal and spatial evolution of the 

microscopic structure of a thin film surface in thin film deposition models. 

Stochastic partial differential equations (SPDEs) provide an alternative approach that can be used to efficiently 

simulate the surface growth in a thin film system. SPDEs use partial differential equations to capture the spatial and 

transient evolution of the system, and they include random terms to simulate stochastic process changes (Walsh, 

1986). SPDEs are closed-form models, and thus they are computationally efficient compared to kMC-based models 

(Ni and Christofides, 2005a, 2005b). In addition, SPDEs are able to capture detailed information about the 

multiscale system, such as the microscopic thin film surface evolution, that may be extremely difficult to predict 

using reduced-order and data-driven models. Consequently, a number of SPDEs have been developed to describe the 

growth and evolution of thin film surfaces. Examples of this include the Edwards-Wilkinson equation developed to 

model surface height fluctuations (Edwards et al., 1982; Vvedensky, 2003), the Kardar-Parisi-Zhang equation 

developed to simulate randomly-growing interfaces (Kardar et al., 1986; Bertini and Giacomin, 1997), and a fourth-

order SPDE model developed to predict the morphological evolution of epitaxial film growth (Vvedensky et al., 

1993). SPDEs have additionally been incorporated into several optimization and control policies for thin film 

deposition processes. For example, Lou and Christofides (2004) adapted the Edwards-Wilkinson equation to 

perform feedback control on the surface roughness during thin film growth. Similarly, Ni and Christofides (2005a, 

2005b) developed a methodology to construct linear SPDEs that were used to perform feedback control and 

multivariable predictive control on the film thickness and surface roughness of a thin film deposition process. 

Despite the computational advantages of SPDEs, there still remain a number of challenges that impede the 

implementation of SPDE-based process improvement studies in thin film deposition systems. SPDE models are 

typically developed to capture the kinetic growth of the thin film surface, and thus they are incapable of predicting 

the macroscopic precursor gas behaviour. Hence, SPDEs need to be coupled with continuum transport models in 

order to capture the full multiscale nature of thin film growth. To the authors’ knowledge, however, SPDEs have not 

been previously incorporated into multiscale thin film models. Another key issue is that it can be difficult to 

determine SPDE models that can adequately capture the microscopic surface growth subject to changes in the 

system parameters (Ni and Christofides, 2005b). This is most readily overcome through the determination of models 

that can predict the values of key SPDE model coefficients as a function of relevant process parameters. These 

models can either be constructed directly from microscopic process rules (Vvedensky et al., 1993), or by using data 

from kMC-driven thin film simulations (Ni and Christofides, 2005a). Another viable approach is to develop lookup 

tables of known SPDE coefficient values that can be combined with interpolation techniques to predict the SPDE 

coefficients at specific operating conditions. However, the relationship between the SPDE coefficients and the 

relevant system parameters can be nonlinear and subject to substantial noise, and it can therefore be difficult to 

predict the coefficient values through interpolation or low-order modelling approaches. 

Artificial neural networks (ANNs) are an alternative approach that can be used to correlate the SPDE coefficients to 

changes in the multiscale system, as they are known to be able to determine relationships and predict data in highly 

nonlinear and noisy systems (Lapedes and Farber, 1987; Venkatasubramanian and Vaidyanathan, 1992). ANNs 
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utilize robust mathematical models referred to as neurons in order to simulate the pattern-learning capabilities of the 

biological neural networks in a human brain (Dayhoff and DeLeo, 2001; Yegnanarayana, 2009). The neurons are 

assembled into an interconnected network of models that approximate the relationship between the network inputs 

(i.e. the process parameters) and its outputs (i.e. the SPDE coefficients). The network is trained using provided 

input-output data (i.e. specific process parameters and their corresponding SPDE coefficients), which is used to 

update the weights and biases of each neuron model to improve the overall network performance (Fine, 2006; Svozil 

et al., 1997). These ANNs, when coupled with an SPDE, form a hybrid model in order to capture the thin film 

surface growth subject to changes in the process parameters. This notion of hybrid modelling is attractive when 

simulating complex systems that cannot be readily described using mechanistic knowledge-based modelling 

approaches. The key idea in these models is to couple physically-relevant system knowledge with data-driven 

machine learning approaches such as ANNs to capture nonlinear, noisy, and otherwise convoluted process 

relationships (Venkatasubramanian, 2009; Oliveira, 2004). Accordingly, hybrid models have been developed for a 

number of complex applications, such as pharmaceutical milling (Akkisetty et al., 2010), bioreactor systems 

(Oliveira, 2004), and fuel additive design (Sundaram et al., 2001; Achenie et al., 2002). In principle, hybrid models 

provide a means to accurately and efficiently simulate the surface growth of thin film deposition processes. 

However, to the author’s knowledge, such an approach has yet to be implemented for that process. 

Motivated by this, the objective of this work is to present a novel hybrid multiscale model that combines SPDEs, 

ANNs, and continuum PDEs to simulate the evolution of a thin film deposition process. This model utilizes 

continuum transport equations to describe the behaviour of the precursor gas phase, coupled with an SPDE to 

capture the microscale thin film surface growth. The model additionally contains a feedforward ANN to predict key 

SPDE coefficients as a function of the substrate temperature and the surface mole precursor fraction; this hybrid 

model structure was implemented due to the noisy and nonlinear relationship between the SPDE coefficients and the 

relevant system parameters, which cannot be readily captured using mechanistic models. The proposed hybrid 

multiscale model is demonstrated to be able to simulate the thin film deposition process with similar accuracy to 

traditional kMC/PDE multiscale modelling techniques, and at a fraction of the computational cost. Furthermore, the 

hybrid multiscale model features are illustrated by implementing the model into a series of process improvement 

studies that seek to improve the quality of a deposited thin film.  

This paper is organized as follows. Section 2 describes the continuum PDEs, the SPDE, and the ANN implemented 

in this work and the coupling scheme used to form a hybrid multiscale model that captures a thin film deposition 

process. In Section 3, the fully-assembled hybrid multiscale model is compared against a kMC-based thin film 

multiscale model in order to validate the model performance and demonstrate its computational superiority. Section 

4 subsequently details two separate case studies in which the hybrid multiscale model is subjected to different 

optimization and control applications. As described in Section 4.1, the model is implemented into a bi-objective 

optimization formulation that seeks to determine the optimal temperature profile which will maximize the film’s 

growth rate while simultaneously minimizing the final film roughness. In the case study described in Section 4.2, the 

hybrid multiscale model is coupled with a PI controller to control the surface roughness of the thin film deposition 

process. Concluding remarks are provided at the end. 
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2. Hybrid multiscale model development 

This work considers the epitaxial thin film growth of a gaseous precursor species onto a 1-dimensional substrate 

within a deposition chamber. The precursor species flow into the deposition chamber and form a boundary layer 

along the surface of the substrate. It is assumed for simplicity that the gaseous precursor species are evenly 

distributed along the axis parallel to the substrate surface, such that the precursor species concentration remains 

uniform across the entire substrate. As shown in Fig. 1, molecules within the boundary layer can adsorb onto the 

substrate to form the thin film. Adsorbed molecules can subsequently desorb back into the gas phase or migrate to 

another site on the film surface. This thin film deposition process is modelled using a multiscale approach that 

subdivides these phenomena into the macroscopic gas phase domain, which describes the macroscopic transport of 

the gas-phase precursor species to the thin film surface, and the microscopic thin film surface domain, which 

describes the kinetic events that control the evolution and growth of the deposited thin film. The subsequent sections 

will describe each of these domains and the modelling techniques used to simulate them. 

 

2.1 Gas phase model 

The gas phase domain of the thin film deposition process can be described using continuum transport equations as 

follows (Lam and Vlachos, 2001): 

Momentum Transport: 
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The boundary conditions for these equations are: 
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where   and       denote the dimensionless distance to the substrate surface and the dimensionless time 

respectively;   denotes the dimensionless stream function;   is the gas density;   is the local temperature;    is the 

Prandtl number;   is the mole fraction of the precursor gas;    is the precursor species Schmidt number; and   

denotes the hydrodynamic strain rate. Similarly,      ,      ,      , and       denote the density, temperature, mole 
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precursor fraction, and viscosity in the bulk phase; whereas    denotes the temperature of the substrate and    

denotes the mole precursor fraction at the film surface, as depicted in Fig. 1. Furthermore, the terms    and    

represent the rates of adsorption and desorption on the thin film surface, respectively, and therefore the surface 

boundary condition in Eq. (6) defines the net flux in   as the difference between the rates of adsorption and 

desorption (Lam and Vlachos, 2001). Note that    and    are dependent on the behaviour of the thin film surface; 

as a result, the mass transport equation in Eq. (3) cannot be solved without additional knowledge from the film 

surface model. 

 

2.2 Thin film surface model 

The thin film surface model details the morphological evolution of the deposited epitaxial film subject to the kinetic 

events (adsorption, desorption, and migration) that control the thin film growth. Simulating the kinetic events across 

an entire substrate is computationally prohibitive due to the large number of surface sites. However, due to the 

uniform boundary layer assumption described at the beginning of Section 2, the thin film growth across an entire 

substrate can be approximated using a small patch with a limited number of surface sites. This substrate patch can be 

located anywhere along the surface of the wafer, and its properties can be used to approximate the thin film 

properties over the entire substrate. Note that if a uniform precursor species boundary layer cannot be assumed 

across the substrate surface, then spatial coarse-graining techniques such as the gap-tooth model can be alternatively 

used to reduce the computational cost of simulating the spatially-varying film growth across the full substrate 

(Chaffart et al., 2016; Gear et al., 2003). 

The microscopic evolution of the film growth on a 1-dimensional substrate patch can be described using the 

following SPDE (Vvedensky et al., 1993): 
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In this equation,  (   ) denotes the height of the epitaxial film at time   and a position   along the surface of the 

substrate patch, where   is defined such that every integer of   corresponds to a site on the substrate, and every 

discretized point in   is a whole number. In addition, the terms  ,  ,  , and   in Eq. (7) are SPDE coefficients that 

are problem-specific; whereas  (   ) is a random Gaussian variable with mean   and a shot noise covariance 

matrix: 

〈 (   ) (     )〉    (    ) (    ),        (8) 

where  ( ) is the dirac delta function. The SPDE in Eq. (7) has the following initial condition and periodic boundary 

conditions: 

 (   )   (   ),           (9) 
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 (   )   ,           (11) 

where   denotes the length of the substrate patch in terms of the number of surface sites. Note that the SPDE was 

limited to one spatial dimension for simplicity; however, it can be extended to capture thin film growth on higher 

dimensional substrates (Vvedensky et al., 1993). 

In Eq. (7), the stochastic variable   depicts the net deposition flux of the thin film, as dictated by the rates of 

adsorption and desorption. In addition, the PDE terms controlled by   and   are generally associated with regulating 

the desorption of deposited thin film molecules, whereas the terms controlled by   and   are generally associated 

with regulating the surface migration events. Note that the surface desorption and migration behaviour is 

predominantly captured by the PDE terms associated with   and  , respectively. Although the PDE terms 

proportional to   and   also describe the desorption and migration surface events, their contributions to the overall 

film surface evolution are minor compared to the terms proportional to   and  , as illustrated in the derivation of the 

SPDE from the kinetic surface events (Vvedensky et al., 1993). The coefficients  ,  ,  ,  ,  , and   in Eqs. (7)-(8) 

are model parameters that enable the SPDE to capture the evolution of the film surface. Consequently, the values of 

these SPDE coefficients are affected by process parameters that influence the surface growth, such as the substrate 

temperature,   , and the precursor mole fraction at the film surface,   . Note that for process optimization and 

control,    is required to change in time in order to improve the process performance. In addition,    is a multiscale 

parameter that varies in time depending on the mass transport behaviour within the system. Consequently, it is 

necessary to adjust the SPDE coefficients subject to the transient changes in these process conditions. The SPDE 

coefficients can be determined for given sets of    and    by fitting the SPDE model to data obtained from kMC 

simulations. This data can be used to develop low-order models to predict the coefficient values over a range of key 

process parameters (Ni and Christofides, 2005a). However, low-order models can be difficult to develop, as the 

relationship between the SPDE coefficients and the system parameters can be noisy and highly nonlinear. In this 

work, the process coefficient data can be used to train a supervised feedforward ANN to predict the SPDE 

coefficients for a set of process parameter values. Thus, the microscopic evolution of the thin film surface can be 

captured by a hybrid model in which an ANN is coupled with the aforementioned SPDE. The following two sections 

describe in detail the ANN approach implemented in this work. The next section provides a brief overview of the 

feedforward ANN architecture used in this work, whereas the following section details the ANN training and 

implementation. 

 

2.2.1 Feedforward artificial neural network overview 

The ANN algorithm implemented in this work utilizes separate, independent sub-networks to predict each SPDE 

coefficient individually as a function of the relevant system parameters. In each of these sub-networks, the neurons 

are subdivided into a two-layer structure consisting of a single hidden layer and an output layer, as illustrated in Fig. 

2. Note that in this figure,    denotes the linear weighted function that categorizes the relationship between the  th 

neuron in each layer and its  th inputs, whereas   denotes the transfer function. The hidden layer transfer function in 
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each of the sub-networks consists of a tan-sigmoid function that maps    onto a nonlinear curve, whereas a linear 

transfer function was selected for the output layer to map    onto the range of the output parameters. This ANN 

methodology has been successfully implemented for parameter approximation applications in previous studies 

(Bashir and El-Hawary, 2009; Ozkaya et al., 2007); further details concerning the general ANN structure can be 

found elsewhere (Svozil et al., 1997). 

The values of the weight and bias terms      and    in    (see Fig. 2) for each sub-network are initially randomly 

generated from a uniform distribution. These values are subsequently adjusted through backpropagation using sets 

of input data with known output parameter values. The sub-networks implemented in this work use the Levenberg-

Marquardt algorithm to adjust      and    and thus improve the network performance; further details can be found in 

(Hagan and Menhaj, 1994). In order to avoid overfitting and achieve good generalization in each sub-network, the 

implemented ANN training algorithm utilizes an early stopping approach that subdivides the input-output data into 

three sets: the training set, validation set, and testing set. The training set is used to improve the network fitting 

through backpropagation. After each epoch of training, the sub-network is presented with the validation set input 

data and tasked with predicting the corresponding outputs. The network-predicted outputs are compared with the 

known validation outputs in order to calculate the validation error. The sub-network is subsequently re-trained for 

another epoch using the training set. This cycle is repeated until it has been determined that further training will 

result in a loss of generalization in the sub-network, i.e. once the validation error fails to decrease over six 

consecutive epochs (Bashir and El-Hawary, 2009). After the training is completed, the ANN framework is assessed 

by passing the testing data through the network. If the errors in the testing or validation steps are insufficiently large, 

then the input-output data is redistributed between the three sets and the network is re-trained until the validation 

and testing errors are all below a user-defined criterion. 

 

2.2.2 Artificial neural network implementation 

The feedforward ANN algorithm described above was used to develop a neural network to predict the SPDE 

parameters  ,  ,  , and   as a function of two primary system parameters that significantly affect the thin film 

growth: the surface mole precursor fraction,   , which varies due to the multiscale nature of the system; and the 

surface temperature,   , which is used to control the thin film growth process. Note that the ANN was not developed 

to predict the remaining two SPDE parameters   and   as these were observed from open-loop simulation data to 

not be significantly affected by    and   . These parameters were therefore held constant and their values (listed in 

Table 1) were determined by least squares fitting. 

In order to improve the performance of the ANN, physical insights about the thin film deposition system and 

behaviour of the SPDE coefficients were considered when designing and implementing the network into the hybrid 

surface model. For example, the behaviour of  ,  ,  , and   with respect to    and    was observed to differ 

significantly between each SPDE coefficient. In order to simplify the network training and improve upon the ANN 

performance, an independent sub-network was developed in order to predict each SPDE coefficient individually, as 
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illustrated in Fig. 3. An additional observation was that the behaviour of   with respect to    and    is highly 

nonlinear and difficult to predict, as opposed to the other SPDE parameters that are comparatively well-behaved. 

Therefore, the sub-networks used to predict   were designed to contain 15 neurons within their hidden layers in 

order to adequately capture this parameter’s behaviour, as shown in Fig. 3. In contrast, the sub-networks for  ,  , 

and   were implemented with 10 neurons within their hidden layers. 

Another key insight was that for a system at time     , temperature   (  ), and surface mole fraction   (  ), it 

was observed that the SPDE coefficients   and   can vary significantly depending on whether the surface 

temperature was increased from a lower temperature (  (  )    (    )) or decreased from a higher temperature 

(  (  )    (    )). Specifically, it was observed that the values of these coefficients for a set    and    differ 

from the expected results if the temperature is increased and the change in temperature is sufficiently large, or if the 

time interval between temperature changes (       ) is sufficiently small such that the transient profiles of the 

kinetic surface events have not converged to a constant value before the temperature is raised. This phenomenon is 

due to the effects of a change in temperature on the ratio of the kinetic events taking place. When the temperature is 

raised to   (  ) from a lower temperature, it results in a higher number of surface migration and desorption events 

taking place than if the temperature was lowered to the same temperature   (  ) from a higher temperature. This 

difference is more pronounced under large temperature increases and if the transient profiles of the kinetic events 

have not converged on a constant value before the temperature was raised. Consequently, the values of the 

coefficients   and   must be increased under these conditions in order to account for the higher percentages of 

desorption and migration events taking place. For the present study, it was observed that sufficiently good 

coefficient predictions could be achieved by developing and training two unique pairs of sub-networks to predict   

and   as a function of only    and    subject to the different temperature change conditions, as illustrated in Fig. 3. 

The resulting ANN design was tested in numerous validation studies as detailed in Section 3, and it was observed to 

perform well under the range of operating conditions considered in this work. 

The selection of appropriate process data is another critical factor in training the ANN to accurately predict the 

SPDE coefficients  (Li et al., 2018). Accordingly, a cumulative total of 165 values for each SPDE coefficient were 

determined over a range of process parameters in order to train the sub-networks for the proposed hybrid multiscale 

model. These coefficient samples were determined over mole equidistant precursor fraction values between 1 × 10
-6

 

and 3 × 10
-6 

and over increasing and decreasing temperature values evenly-spaced between 900 K and 1,300 K. 

These ranges cover the expected operating region for this process; in addition, the coefficient sample points were 

selected to prevent any unexplored regions within the operating search space. These SPDE coefficient values were 

determined by fitting the SPDE model to kMC data derived at each combination of    and    using least squares 

fitting. The kMC data was generated by simulating the thin film surface growth for a fixed    and    using a kMC 

model that has been previously reported (Rasoulian and Ricardez-Sandoval, 2014). The SPDE coefficients were 

subsequently determined by finding the coefficient values that minimized the sum of squared errors between key 

observables in the kMC data (i.e. the transient profiles of the thin film roughness and growth rate) and those 

generated by the SPDE. After the SPDE coefficients had been determined for each combination of    and   , the 
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coefficient data was randomly subdivided between the training, validation, and testing sets such that the training set 

contained 70% of the data, while the validation and testing sets each contained 15% of the data. These subsets were 

subsequently used to train and validate the ANN using the early stopping method described in Section 2.2.1. Note 

that the ANN would ideally be trained using larger datasets in order to ensure good network generalization; 

however, the number of sample points was practically limited by the computational cost required to determine the 

SPDE coefficients for a given set of process conditions. In order to ensure that the trained ANN and its sub-

networks were not overfitted and that they had achieved good generalization, the fully-assembled hybrid multiscale 

model was subjected to numerous validation studies, as detailed in Section 3.  

 

2.3 Thin Film Characteristics 

The thin film deposition process is characterized by a number of parameters that are critical to achieving high 

quality films. Characteristics such as the film thickness and the surface roughness are often considered good 

performance indicators of the film quality, while the film growth rate provides a metric of the deposition 

productivity (Rasoulian and Ricardez-Sandoval, 2014). Note that due to the uniform boundary layer assumption, it 

can be assumed that the thin film characteristics are uniform across the entire substrate, and thus these metrics can 

be interpreted as wafer-averaged properties. The film thickness at time      is defined as the mean film height 

over the substrate, and it can be calculated based off of the SPDE results as follows: 

      (  )  
∑  (     ) 

   

 
,          (12) 

where      denotes the  th discretized spatial point along the surface of the 1D substrate patch and   denotes the 

total number of spatial discretization points along the substrate patch. The film roughness can be characterized by 

the mean number of broken bonds at time     , as follows: 

      (  )    
∑ | (       )  (     )| | (       )  (     )| 

   

  
,      (13) 

where the number of broken bonds is calculated by summing the difference in height between each surface site and 

their neighbouring sites, and dividing by 2 to prevent double-counting. Furthermore, the film growth rate at time 

     can be calculated by calculating the slope of the film thickness over a time interval   , as follows: 

       (  )  
 (  )  (    )

  
,         (14) 

where           . Under constant operating conditions, the film thickness changes linearly in time, and 

therefore Eq. (14) is able to accurately capture the film growth rate. Note that Eqs. (12) and (13) above have been 

defined to capture the film thickness and the surface roughness of a thin film grown on a 1D substrate; however, 

these equations can be readily expanded to capture important film characteristics for higher dimensional substrates. 
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2.4 Multiscale Model Coupling and Assembly 

In the hybrid multiscale model, neither the macroscopic gas phase model nor the microscopic thin film surface 

model can be solved independently, as the processes that occur in each domain are influenced by the events that 

occur in the other domain. In the macroscopic gas phase domain, the surface boundary condition in Eq. (6) depends 

on the difference in the rates of adsorption and desorption,      , which can be calculated from the thin film 

growth rate over a time interval      as follows: 

       ( )    ( )  
  ( )

  
 

 ( )  (      )

      
,        (15) 

where      denotes the multiscale coupling time between the gas phase and film surface models. Note that the 

growth rate is a function of the film thickness, as depicted in Eq. (14), and consequently it depends on the behaviour 

of the thin film surface model. On the microscale surface domain, the thin film deposition process is significantly 

affected by the surface mole precursor fraction,   , which is determined by solving the mass transport equation as 

shown in Eq. (3). Therefore, in order to accurately capture the film growth using the hybrid multiscale model, the 

ANN was trained as described in Section 2.2.2 to predict the SPDE coefficient values as a function of   , in addition 

to the controlled operational parameter   . 

The fully-assembled hybrid multiscale model combines the macroscopic continuum PDEs, the microscopic SPDE 

model, and the coefficient-predicting ANN in order to adequately simulate the transient thin film deposition process, 

as illustrated in Fig. 4. Each of these models are coupled such that the relevant parameter information can be 

smoothly passed from one model to another. In the macroscopic gas phase, the continuum PDEs are solved in order 

to determine the transient behaviour of the precursor gas species within the deposition chamber over the multiscale 

coupling time interval     . Subsequently, the surface mole precursor fraction obtained from the solution of the 

PDE model,   , is passed to the ANN, along with the substrate temperature   , in order to determine the model 

coefficient values that enable the SPDE to adequately describe the thin film growth subject to those surface 

conditions. The coefficients are then passed to the SPDE model, which simulates the evolution of the thin film 

surface for     . These results are then used to calculate the difference in the rates of adsorption and desorption, 

     , based on the film growth rate according to Eq. (15). As shown in Fig. 4, the value of       is passed 

back to the continuum PDEs, where it is used to update the surface boundary condition of the mass transport 

equation. The gas phase PDEs are subsequently re-evaluated for another interval     . This cycle is repeated until 

the final thin film deposition time    has been reached. Note that the multiscale coupling time interval,     , can be 

increased in order to reduce the computational cost of the hybrid multiscale model; however, sufficiently large 

values of      can result in instabilities in the multiscale model coupling in addition to loss of information in the 

thin film properties. Consequently, the value of      used in this work was determined a priori from trial-and-error 

simulations in order to best address this trade-off. The parameter values for the deposition process implemented in 
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this work are listed in Table 1. The kinetic models and their parameters used to determine the SPDE coefficients are 

not shown here for brevity but they can be found elsewhere (Rasoulian and Ricardez-Sandoval, 2014). 

 

3. Validation of the Hybrid Multiscale Model  

The objective of this section is to test and validate the performance of the hybrid multiscale model described in 

Section 2. The model performance was evaluated with respect to a continuum modelling/kMC-based multiscale thin 

film model that has been previously reported (Rasoulian and Ricardez-Sandoval, 2014). For this comparison, both 

the hybrid multiscale model and the kMC-based multiscale model were used to simulate the behaviour of an 

epitaxial deposition process subject to transient changes in the relevant process parameters. Note that the accuracy of 

the hybrid multiscale model is dependent on the predictive capabilities of the trained ANN; therefore, the hybrid 

multiscale model performance was validated subject to changes in the network input parameters, i.e. the substrate 

temperature    and the surface mole precursor fraction   . These parameters were allowed to vary every 200 s in this 

validation study, for a total thin film deposition time of 2,400 s. The substrate temperature is a controlled operational 

parameter that can be readily adjusted online. On the other hand,    is a system parameter determined by the gas 

phase mass transport equation and thus it cannot be controlled directly. However,    is affected by the state of the 

thin film surface due to the multiscale nature of the system, and hence it is influenced by other process parameters 

that affect the film deposition, such as   , the bulk mole precursor concentration      , and the precursor gas density 

in the bulk      . Therefore, in the context of this validation study,    was allowed to vary according to the changes 

made by the multiscale system. Another key consideration is that in order to ensure good generalization in the 

hybrid multiscale model results, it is necessary to validate the model using values of    and    that have not been 

previously considered during the network training. To comply with this requirement, the temperatures used to 

validate the model performance were randomly generated from a uniform distribution bounded by 900 K      

1,300 K, as shown in Fig. 5a. These temperatures were subsequently inspected to ensure they differed sufficiently 

from those used to train the ANN and its sub-networks in Section 2.2.2. In addition, the surface mole precursor 

fraction was allowed to evolve based on the changes introduced in the multiscale model that impact the mass 

transport of the gas precursor species; the values of    were inspected a posteriori to verify that they were 

sufficiently different from the values used during training, as illustrated in Fig. 5b. Note that the temperature profile 

illustrated in Fig. 5a was generated solely with the intent of validating the hybrid multiscale model and to show that 

it is able to capture the actual phenomena at a wide range of operating conditions; i.e. it is not intended to convey an 

actual temperature profile that could be implemented in practice. 

The performance of both the hybrid multiscale model and the kMC-based multiscale model were assessed through 

the evolution of the thin film roughness and film growth rate over the course of the deposition process, as illustrated 

in Figs. 5c and 5d respectively. In addition, Table 2 displays the sum of squared errors between the results of the 

hybrid multiscale model and the kMC-based multiscale model for each interval of different    and    values. These 

results show that the hybrid multiscale model is able to adequately capture the transient thin film behaviour, and that 
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the ANN in the hybrid model has good generalization and is not subject to overfitting. As shown in Fig. 5, the 

roughness and growth rate profiles determined using the hybrid multiscale model match those determined using the 

kMC-based multiscale model. Furthermore, Table 2 shows that the errors in the hybrid multiscale model 

performance remain sufficiently low (i.e. < 0.1 for the roughness profiles, and < 1 for most of the film growth rate 

profiles). Note that the sum of squared errors in the growth rate profiles are notably larger than the errors of the 

roughness profiles; this is due to the short-term fluctuations in the growth rate that occur following changes in    

and   . In both multiscale models, these fluctuations arise due to the coupling between the film growth rate and the 

surface mole precursor fraction in the microscopic and macroscopic domains, as both parameters will continuously 

change and affect each other following a disturbance until they reach a new steady state, as shown in Figs. 5b and 

5d. The magnitude of the fluctuations can vary significantly between the two multiscale modelling approaches, 

resulting in large sum of squared errors in the hybrid multiscale model growth rate. However, these growth rate 

errors decrease significantly as the fluctuations decay and the growth rate approaches steady state, as illustrated 

visually in Fig. 5d. With regards to the computational costs, the kMC-based multiscale model and the hybrid 

multiscale model required 3,540 s and 78.4 s of CPU time, respectively, in order to simulate the thin film growth 

process (3.4GHz Intel i7-4770 processor). This shows that the hybrid multiscale model is approximately 45 times 

faster than the kMC-based multiscale model, requiring only 2.2% of the computational time that would be required 

by the kMC-based multiscale model to run a single simulation. This demonstrates the computational efficiency of 

the hybrid multiscale model over the traditionally-used kMC-based multiscale model. Overall, this comparison study 

illustrates that the hybrid multiscale model is capable of simulating the thin film deposition process with sufficient 

accuracy, and at significantly lower computational costs. Note that in order to further explore the performance of the 

hybrid multiscale model, additional validation tests were performed under different operating conditions with 

similar performance results to the validation study showcased above; these studies are not shown here for brevity.  

The results in Figs. 5c and 5d additionally illustrate the response of the surface roughness and the film growth rate to 

changes in the substrate temperature. According to the figures, the roughness and the growth rate both decrease 

when    is raised and increase when    is lowered over the temperature ranges considered in this work. This 

behaviour is due to the effects of the temperature on the ratio of the kinetic events taking place during thin film 

deposition. Increases in the surface temperature result in a higher percentage of migration and desorption events 

taking place because of their Arrhenius relationship with    (Lam and Vlachos, 2001). Consequently, the film 

surface roughness diminishes due to the increase in the number of migration events taking place, whereas the higher 

percentage of desorption events results in a decrease in the overall film growth rate. Note that this behaviour has 

been previously described in the literature (Aarik et al., 1999; Ott et al., 1997; Lam and Vlachos, 2001; Rasoulian 

and Ricardez-Sandoval, 2015b). 

 

4. Optimization and Control Studies 
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The aim of this section is to present a series of process improvement studies that demonstrate the computational 

advantages of the hybrid multiscale thin film growth model in an optimization or control setting. In the first case 

study, the hybrid multiscale model is implemented into a bi-objective optimization scheme that seeks the optimal 

compromise between two conflicting objectives in the thin film deposition process. In the second study, the hybrid 

multiscale model is coupled with a PI controller to control the thin film roughness and achieve targeted set-points.  

 

4.1 Dynamic Optimization 

The manufacturing of microelectronic and semiconductor devices requires the deposition of thin films that meet or 

exceed a targeted thickness    with minimal surface roughness, i.e.     (  ), where    is the thin film deposition 

time. In addition, it is desirable to optimize process productivity by maximizing the overall growth rate, i.e. 

   ∫   ( )  
  
 

. However, there exists a trade-off between these optimization objectives, as high temperatures are 

required to minimize roughness whereas low temperatures are required to maximize the growth rate (Rasoulian and 

Ricardez-Sandoval, 2014). This trade-off can be addressed with a 1-norm bi-objective optimization scheme, which 

seeks to find the point within the feasible search space that is closest to the infeasible point that satisfies both 

conflicting objectives, i.e. the utopia point (Grossmann et al., 1982). Motivated by this, the objective of this section 

is to use the hybrid multiscale model to perform a bi-objective optimization in order to identify the optimal substrate 

temperature profile that simultaneously minimizes the surface roughness and maximizes the deposition rate of the 

epitaxial thin film. Note that the substrate temperature is the only controlled parameter considered within this 

optimization study; all other parameters are either held constant at their nominal values as listed in Table 1 or 

determined from the solution of the mass transport PDE, e.g.   . The bi-objective algorithm implemented in this 

work initially performed a pair of optimization studies, one with respect to each optimization objective, as shown 

below. 

Minimization of Roughness (minR): 

             
 (  ),          

 (16) 

     subject to: 

          Hybrid Multiscale Model (PDE-ANN-SPDE Model), Eqs. (1)-(15)     (17) 

              K          K         (18) 

                (   )     (     )          (19) 

            (     )    ((    )   )     K        (20) 

                             (21) 

           (  )              (22) 
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Maximization of Growth Rate (maxGr):  

             
   (  ),          

 (23) 

     subject to: 

          Constraints, Eq. (17)-(22). 

In the above expressions,     denotes the temperature change interval,    denotes the number of temperature 

changes considered in the optimization problem, and    (  )  ∫   ( )  
  
 

 denotes the overall growth rate over 

the time interval   [    ]. For each optimization study, the system was initialized at a constant temperature 

  ( )   1,000 K, and the substrate temperature was not allowed to vary by more than 50 K over a single 

temperature change to avoid any infeasibly-large temperature changes in the system. Furthermore, the total 

deposition time was set to     1,560 s, the targeted minimum film thickness was set to     2,000 layers, and the 

temperature was allowed to change every 120 s, such that     13. 

The results from problems minR and maxGr are shown in Table 3 and Fig. 6, whereas the optimal temperature 

profiles are illustrated in Fig. 7. These results show that the surface roughness can be minimized by step-increasing 

the temperature to 1,300 K (i.e. the maximum allowed temperature) whereas the growth rate can be maximized by 

step-decreasing the temperature to its lower bound of 900 K, as would be expected. These results motivate the 

development of the multi-objective optimization problem (Multi-obj) that aims to find the optimal compromise 

between these two conflicting objectives, i.e. minimization of surface roughness and maximization of film growth 

rate. This can be accomplished by minimizing the 1-norm distance between the compromise point and the utopia 

point as follows: 

             

 (  )   

      (  
   (  )    

 

   
     

 ),        (24) 

     subject to: 

          Constraints, Eq. (17)-(22). 

The results from minR and maxGr presented in Table 3 and Fig. 6 provide upper and lower bounds on the roughness 

(   and   ) and total growth rate (   
  and    

 ), which can be used to define the utopia point (      
 ) within the 

objective search space. Once the objective bounds have been defined, they can be used to determine the optimal 

compromise point within the feasible objective search space. The results of this optimization study (Multi-obj) are 

listed in Table 3, and the optimal temperature profile is illustrated in Fig. 7. In addition, Fig. 8 depicts the transient 

variation in the surface roughness and film growth rate generated using the optimal temperature profile. Fig. 8 also 

compares the roughness and growth rate profiles obtained using the hybrid multiscale model with those obtained by 

operating the kMC-based multiscale model under the same temperature profile, which further validates the hybrid 

multiscale model performance. Figs. 7 and 8 illustrate that the optimal trade-off was achieved by keeping the 

substrate temperature predominantly low throughout the film deposition in order to maximize the overall growth 
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rate, while increasing the system temperature toward the end of the deposition process to minimize the final surface 

roughness. At the beginning of the process, the system temperature was lowered to 900 K to maximize the initial 

growth rate. After 720 s, the temperature was slightly increased in order to marginally decrease the overall film 

roughness. This was observed to minimize the time required to smoothen the surface during the final deposition 

stages, which contributed toward a lower final roughness and a higher overall growth rate than would have been 

obtained otherwise. At 1080 s, the system temperature was gradually raised to 1,094 K in order to minimize the final 

roughness of the thin film surface. 

Fig. 9 illustrates the Pareto front formed by the trade-off between the final surface roughness and the overall growth 

rate, which serves as the boundary of the feasible search space accessible by the thin film deposition process. This 

figure additionally depicts the locations of the optimal trade-off point and the utopia point within the objective 

space. The Pareto front points were obtained by solving the following optimization problem (Gembicki and Haimes, 

1975): 

                ,           (25) 

     subject to: 

           (  )                  (26) 

             (  )  (   )     
          (27) 

          Constraints, Eq. (17)-(22). 

In the expression above,   is a slack variable that is used to minimize  (  ) and maximize    (  ) simultaneously 

subject to a weight term  , whose value is adjusted from 0 to 1 in order to obtain each of the points in the Pareto 

front shown in Fig. 9. The optimization problem in Eq. (25) required on average a CPU time of 300 min for each 

point considered in the Pareto front, whereas the optimal trade-off point determined from Eq. (24) required 40 min 

of computational time. This highlights the computational advantage of the 1-norm bi-objective approach for solving 

optimization problems with conflicting objectives. Note that the higher computational demands of the Pareto front 

optimization problem in Eq. (25) is because this optimization problem requires significantly more iterations to 

converge compared to the bi-objective optimization problem (i.e. Eq. (24)). This is due to the parameter   in Eq. 

(25), which serves as both the objective function and an additional optimization variable for the Pareto front 

optimization problem. Fig. 9 demonstrates that the temperature profile determined by solving Eq. (24) provides an 

optimal trade-off point that is sufficiently close to the utopia point. In particular, Table 3 indicates that the optimal 

trade-off final surface roughness is at 84.79% of the utopia final roughness, whereas the overall trade-off growth rate 

is observed to be at 92.54% of the overall utopia growth rate. These results demonstrate that the optimization results 

from Eq. (24) satisfy the trade-off between the final surface roughness and the overall growth rate for the considered 

thin film deposition process in an optimal fashion. 
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4.2 Control of Thin Film Surface Roughness through Set-point Tracking 

The deposition of high-quality thin films is dependent on the online manipulation of key process parameters to 

achieve and maintain specific film properties during the deposition process, such as the surface roughness (Lou and 

Christofides, 2003). These parameters affect the microkinetic events responsible for thin film deposition, and 

consequently they can be adjusted on-line in order to control the thin film growth on a molecular level and achieve 

targeted process constraints. In this section, the hybrid multiscale model is used to perform feedback control on the 

thin film surface roughness by manipulating the substrate temperature. In this approach, the hybrid model is adopted 

as an estimator of the system states whereas a previously-developed kMC-based multiscale model is used to 

simulate the plant (Rasoulian and Ricardez-Sandoval, 2014). The hybrid multiscale model is coupled with a 

proportional integral (PI) controller to adjust    and achieve the targeted film surface roughness, as illustrated in the 

control scheme diagram in Fig. 10. Note that in this figure,    denotes the measured surface roughness at any time t, 

which is estimated using the hybrid multiscale model. 

This case study considers three different scenarios in order to demonstrate the performance of the proposed control 

scheme using the hybrid multiscale model. These scenarios used the control scheme shown in Fig. 10 to perform set-

point tracking changes on the thin film deposition process subject to nominal conditions, in the presence of 

disturbance effects in the bulk mole precursor fraction (     ), and subject to uncertainty in key model kinetic 

parameters, respectively. In all three scenarios, the PI controller used the roughness values provided by the hybrid 

multiscale model to adjust the surface temperature. The proportional gain of the controller was set to 1.7 K/mL 

whereas the integral gain was set to 7 K/(mL∙s); these values were determined a priori based on results obtained 

from preliminary simulations. 

The first scenario considers controlling a thin film deposition process subject to nominal conditions, i.e. there are no 

uncertainties or disturbances in the system. In this scenario, the hybrid multiscale model-based control scheme was 

implemented thrice to achieve three separate surface roughness values. The roughness set-points for these 

simulations were set at            mL,            mL, and             mL, respectively. The surface 

temperature control actions are depicted in Fig. 11a, whereas Fig. 11b displays the controlled thin film roughness 

trajectories as determined by the estimator (i.e. the hybrid multiscale model) and the plant (i.e. the kMC-based 

multiscale model). This figure illustrates that the hybrid multiscale model coupled with the PI controller was able to 

regulate the film roughness and achieve the targeted set-points. In addition, the hybrid multiscale model-based 

control scheme required 12.3 s of computational time to predict the entire deposition process, whereas a control 

scheme using the kMC-based multiscale model would have required 1,313.6 s. These results further highlight the 

computational efficiency of the proposed hybrid multiscale model in a control setting. 

The second scenario examines the behaviour of the proposed control scheme in the presence of disturbances in a key 

system parameter (e.g. the bulk mole precursor fraction,      ). Note that the bulk mole precursor fraction       

affects the surface mole precursor fraction    through the mass transport equation (Eq. (3)) and therefore it has a 

significant effect on the thin film growth. It was assumed in this scenario that the disturbances in       are 
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measured, and thus the parameter’s fluctuations can be tracked and taken into account by the hybrid multiscale 

model-based control scheme. The bulk mole precursor fraction was subjected to a disturbance every 60 s according 

to a normal distribution around its nominal value ( ̅      2 × 10
-6

) with a standard deviation  (     )   2.5 × 10
-7

. 

Note that the same disturbance profile was implemented for both the plant model (kMC-based multiscale model) 

and the control scheme model (hybrid multiscale model). This control study was implemented three times using the 

three roughness set-points specified for the first scenario. The resulting temperature control actions and their 

corresponding roughness profiles are illustrated in Fig. 12. Fig. 12a additionally compares the temperature control 

actions subject to disturbances with the temperature control actions determined under nominal conditions. These 

results demonstrate that the proposed control scheme is able to regulate the thin film roughness subject to measured 

disturbances in      . Following each disturbance, the PI controller adjusted the surface temperature according to 

the hybrid multiscale model predictions in order to meet the targeted specifications, as illustrated by the temperature 

profiles in Fig. 12a. These results confirm that the hybrid multiscale model is able to adequately ensure that the 

desired film roughness has been achieved despite the presence of measured disturbances in the system. 

In the third scenario, the hybrid multiscale model-based control scheme was used to perform set-point tracking 

changes on the thin film deposition process subject to parametric uncertainty. For this study, it was assumed that the 

activation energies of the kinetic thin film growth events are not known due to measurement and experimental errors 

(Evans and Ricardez-Sandoval, 2014). These include the activation energy of a single surface bond  , the activation 

energy of desorption   , and the activation energy of migration   ; further details concerning the kinetic events and 

the activation energies can be found in (Rasoulian and Ricardez-Sandoval, 2014). The uncertainty in these 

parameters was assumed to be normally-distributed with mean values of   ̅  ̅   ̅                kcal/mol, i.e. 

their nominal values according to (Rasoulian and Ricardez-Sandoval, 2014), and with a standard deviation of 0.25 

kcal/mol for each parameter. In order to demonstrate the effects of uncertainty on the thin film deposition system, 

Monte Carlo sampling was used to simulate the surface roughness control scheme subject to 12 unique uncertainty 

realizations. Fig. 13a displays the temperature control actions generated by the control scheme for the three 

roughness set-points considered in the previous scenarios. Similarly, Fig. 13b illustrates the resulting roughness 

profiles using each of the different uncertainty realizations. In this figure, each of the controller actions and 

roughness profiles generated by the hybrid multiscale model correspond to a particular realization in the uncertain 

parameters. Note that the uncertainty is unmeasured, and thus it cannot be taken into account by the hybrid 

multiscale model-based control scheme. Consequently, the controller actions and corresponding roughness profiles 

generated by the hybrid multiscale model correspond to a particular realization. The results in Fig. 13 demonstrate 

that, although the proposed control scheme is unable to precisely achieve the targeted roughness set-points in the 

plant model, the control scheme is able to maintain a level of control over the surface roughness in the presence of 

parametric uncertainty. This demonstrates the need to expand the control scheme and the hybrid multiscale model 

itself to be able to account for uncertainties and unknown disturbances in the process parameters; such approaches, 

however, were not explored within the context of this work. 
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5. CONCLUSIONS 

The primary contribution of this work was to construct a hybrid multiscale model that combines continuum (PDE) 

models and SPDEs with ANNs to efficiently simulate a thin film deposition process. This model was developed to 

operate at a fraction of the computational cost required by previously-implemented kMC-based thin film multiscale 

models while still capturing the film parameters with sufficient accuracy. The thin film surface was modelled using 

a fourth-order non-linear SPDE with terms that simulate each of the relevant kinetic events. In addition, an ANN 

was developed and trained to predict the values of the SPDE coefficients as a function of the surface temperature 

and the surface precursor gas fraction, such that the SPDE could capture the changes in the film growth subject to 

changes these system parameters. The SPDE-based multiscale model was observed to perform well against the 

previously-studied kMC-based multiscale model, as it was able to simulate transient variations in the thin film 

properties with sufficient accuracy yet at a fraction of the computational cost. The SPDE-based multiscale model 

was subsequently implemented into a 1-norm bi-objective optimization problem to determine the temperature profile 

that maximizes the film growth rate while minimizing the final film roughness. The results of this optimization 

showed that these conflicting objectives could be met by keeping the overall temperature profile low and by 

increasing the temperature at the end of the deposition process. Furthermore, the SPDE-based multiscale model was 

coupled with PI controllers in order to control the thin film surface roughness. The hybrid multiscale model-based 

control scheme was able to adequately regulate the surface roughness and achieve targeted set-points for thin film 

deposition processes subject to nominal conditions and measured disturbances. In addition, the hybrid multiscale 

model-based scheme was able to maintain a level of control over the surface roughness of thin film processes 

subject to parametric uncertainty. However, the control scheme was unable to ensure that the thin film surface 

roughness fell below the targeted roughness values, as would be required in the fabrication of high-quality thin 

films. This motivates the need to expand the hybrid multiscale model to be able to account for parametric 

uncertainty in future works. Overall, both case studies showcased how the hybrid multiscale model can be 

implemented to perform accurate and efficient optimization and control studies for thin film deposition systems.  
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Figure Captions 

Figure 1 Schematic of the deposition of a thin film onto a substrate 

Figure 2 The general structure of a two-layer ANN 

Figure 3 The structure of the ANN implemented to predict the SPDE coefficients, including the 

sub-ANNs used to predict   and   subject to changes in the system. Black: sub-ANNs 

used to determine coefficients independent of the direction of temperature change; blue: 

sub-ANNs used to determine coefficients subject to increasing temperature changes ≥25 

K, over temperature change time intervals ≤200 s and temperatures ≥1000 K; red: sub-

ANNs used to determine coefficients subject to all other conditions. 

Figure 4 The overall structure of the hybrid multiscale model, including the coupling between the 

continuum PDEs, the ANN, and the SPDE 

Figure 5 Hybrid multiscale model validation under random changes in the surface temperature: a) 

Temperature profile; b) Observed surface mole precursor fraction profile; c) Observed 

surface roughness profiles; d) Observed film growth rates 

Figure 6 Variation in the surface roughness and growth rates obtained using the minR and maxGr 

temperature profiles 

Figure 7 Optimal temperature profiles as determined from the minR, maxGr, and Multi-obj 

optimization studies 

Figure 8 Variation in the surface roughness and growth rates obtained using the Multi-obj optimal 

trade-off temperature profile 

Figure 9 Location of the optimal trade-off point (red) and the utopia point (blue) along the 

roughness/growth rate Pareto front (black) 

Figure 10 Block diagram of the feedback control scheme applied to the thin film deposition process 

Figure 11 Surface roughness feedback control subject to nominal conditions: a) Surface temperature 

control actions; b) film roughness trajectories from the estimator (hybrid multiscale 

model, green/yellow) and the plant (kMC-based multiscale model, blue) for each targeted 

set-point (red dashed lines) 

Figure 12 Surface roughness feedback control subject to disturbances in   : a) Surface temperature 

control actions; b) film roughness trajectories from the estimator (hybrid multiscale 

model, green/yellow) and the plant (kMC-based multiscale model, blue) for each targeted 

set-point (red dashed lines) 

Figure 13 Surface roughness feedback control subject to parametric uncertainty in the activation 

energies: a) Surface temperature control actions; b) film roughness trajectories from the 

estimator (hybrid multiscale model, green/yellow) and the plant (kMC-based multiscale 

model, blue) from 12 uncertainty realizations for each targeted set-point (red dashed 

lines)  
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Table 1. Model parameter values  

Symbol Value 

  5 s
-1

 

  10,001 sites 

   0.75 

      2 × 10
-6

 

     2 s 

  6.5 × 10
-3 

m/s 

           9 × 10
11

 

        1 

  7 × 10
-4 

m
3
/s 
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Table 2.  Sum of squared errors between the hybrid multiscale model and the kMC-based 

multiscale model results subject to random changes in the substrate temperature. 

Interval Substrate 

Temperature,    

(K) 

Mean Surface 

Mole Precursor 

Fraction,    

Sum of Squared 

Errors, Surface 

Roughness 

Sum of 

Squared 

Errors, Film 

Growth Rate 

1 1,115.7 1.231 × 10
-6

 1.128 × 10
-2 

1.806 

2 1,281.0 1.453 × 10
-6

 4.264 × 10
-2

 0.345 

3 1,040.3 1.165 × 10
-6

 5.590 × 10
-2

 0.307 

4 981.4 1.126 × 10
-6

 8.965 × 10
-2

 0.012 

5 1,010.8 1.138 × 10
-6

 3.337 × 10
-2

 0.120 

6 1,266.5 1.426 × 10
-6

 1.667 × 10
-2

 0.216 

7 1,187.8 1.312 × 10
-6

 1.761 × 10
-2

 0.074 

8 1,069.5 1.187 × 10
-6

 1.630 × 10
-2

 0.098 

9 1,203.9 1.324 × 10
-6

 4.491 × 10
-2

 0.085 

10 1,156.7 1.275 × 10
-6

 2.794 × 10
-2

 0.080 

11 973.4 1.123 × 10
-6

 6.134 × 10
-2

 0.200 

12 1,262.3 1.418 × 10
-6

 0.308 × 10
-2

 0.210 
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Table 3. Optimization study results. 

Optimization  (  ) (mL)    (  ) (mL/s) 

minR 1.17271 (  ) 939.331 (   
 ) 

maxGr 2.69693 (  ) 1,392.40 (   
 ) 

Multi-obj 1.40450 1,358.64 
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