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In this paper, we present a systematic robust dynamic optimization framework applied to the ben- 

zaldehyde lyase-catalyzed carboligation of propanal and benzaldehyde to produce ( R )-2-hydroxy-1-

phenylbutan-1-one (BA). First, the elementary process functions approach was used to screen between

different dosing concepts, and it was found that simultaneously dosing propanal and benzaldehyde leads

to the highest final concentration of BA. Next, we applied global sensitivity analysis and found that 10 out

of 13 kinetic parameters are relevant. Time-varying back-offs were then used to handle parametric un- 

certainties due to these 10 parameters. A major contribution in our work is the use of the point estimate

method instead of Monte Carlo simulations to calculate the back-offs in an efficient and reproducible

manner. We show that this new approach is at least 10 times faster than the conventional Monte Carlo

approach while achieving low approximation errors.
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1. Introduction

The need for pharmaceutical processes that are greener, more

economical and efficient has led to the consideration of enzyme-

catalyzed processes as viable alternatives to chemocatalytic pro-

cesses ( Woodley, 2008 ). This is mainly due to the high stereose-

lectivity, and the specificity associated with biocatalytic processes;

thus, making it possible to easily and efficiently produce high-

quality active pharmaceutical ingredients (APIs) in only a few syn-

thesis steps ( Pollard and Woodley, 2007; Woodley, 2008 ). 

C-C bond-forming carboligation is an important reaction in

pharmaceutical chemistry because this reaction can be used

to prepare pharmaceutically relevant intermediates, such as 2-

hydroxy ketones ( Hildebrand et al., 2007; Stillger et al., 2006 ).

Traditionally, C-C carboligations are performed via chemocataly-

sis ( Dudding and Houk, 2004; Kokova et al., 2009 ), but this usu-

ally leads to marginal enantiomeric excesses ( Hildebrand et al.,

2007 ). Biocatalysis shows higher selectivities and can be used in-
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tead of chemocatalysis for performing C-C carboligations ( Müller

t al., 2013; Stillger et al., 2006; Zavrel et al., 2008 ). However, for

hese processes to be economically viable, high product concentra-

ion and low enzyme cost should be ensured ( Pollard and Wood-

ey, 2007 ). 

To meet these metrics, processes for enzyme-catalyzed car-

oligations need to be appropriately designed, controlled, and

ptimized. Better designed, controlled, and optimized biocat-

lytic processes, in turn, will enable environmental compliance,

ost-efficiency, and higher productivity. Mathematical models and

omputer-aided process systems engineering tools can be used to

acilitate the comparison of process variants, the control and op-

imization of processing conditions, thus reducing the cost and

ime for process development ( Begemann et al., 2016; Pollard and

oodley, 2007 ). 

However, for these models to be of added value for the pur-

oses mentioned above, the models have to be properly calibrated,

nd the model parameters have to be accurately estimated ( Ohs

t al., 2017; Schenkendorf et al., 2018; Zavrel et al., 2008 ). A ma-

or issue with the accuracy and validity of mathematical models is

he presence of uncertainty in the model parameters ( Streif et al.,

016 ). Therefore, these uncertainties should be taken into account

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2018.10.006&domain=pdf
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n the process development and design phase to avoid issues with

oorly designed processes during process operations. 

To incorporate uncertainties into the design of enzyme-

atalyzed processes, Sin et al. (2009) advocated the use of uncer-

ainty and sensitivity analysis as good modeling practice for biocat-

lytic processes. In their work, Monte Carlo simulations were used

or uncertainty analysis and propagation. For sensitivity analysis,

hey advised that the local differential sensitivity analysis method

hould be used for detailed sensitivity analysis, while the global

tandardized Regression Coefficients (SRC) method should be used

or checking the effect of input parameters on the model outputs.

hey also suggested that the so-called Morris screening method

hould be used only when the SRC results are not reliable. 

By using the framework proposed by Sin et al. (2009) ,

rice et al. (2014) developed a mechanistic kinetic model for the

nzyme-catalyzed transesterification of rapeseed oil in the pres-

nce of parametric uncertainties. Although these works ( Price

t al., 2014; Sin et al., 2009 ) have made research contributions in

ncertainty analysis, they have not addressed how these processes

an be designed to be robust to uncertainty. 

To address the latter problem, Morales-

odriguez et al. (2012) proposed a systematic model-based

ramework for optimization of bioprocesses under uncertainty.

heir approach involved applying the SRC method to identify the

lobal sensitivity of the system’s output to model parameters.

hus, a smaller subset of the model parameters is selected to

educe the computational overhead. Next, stochastic optimization

s performed by using a two-loop Monte Carlo sampling method

hich involves an outer loop where Latin hypercube sampling is

sed to determine the sample space of the operating conditions

nd an inner loop where each of the operating conditions is run

ver the parametric uncertainty by performing Monte Carlo sim-

lations. A key advantage of their work is that global sensitivity

nalysis can be used to identify key parameters that can give

nsights into how to better tune and better design enzymes for

ioprocesses. However, a possible challenge with their approach

s the high computational cost associated with the Monte Carlo

imulations and the stochastic optimization step. This high com-

utational cost makes it difficult to implement such a framework

n the context of real-time applications ( Aydin et al., 2018 ). 

Furthermore, a key component of most robust optimization

ormulations are chance constraints which have to be fulfilled

or various stochastic instances. In most cases, these chance con-

traints are transformed into deterministic expressions by using

heir means and variances ( Bergner and Kirches, 2018; Mesbah

t al., 2014 ). A common approximation that is used in this regard

s the Cantelli–Chebyshev inequality ( Kim and Braatz, 2013; Telen

t al., 2015 ). Even though such approximations have been success-

ully applied in a number of cases, they do not result in guar-

nteed bounds for highly nonlinear kinetics and ill-conditioned

odels that are typically encountered in biocatalysis ( Bergner and

irches, 2018; Paulson and Mesbah, 2017 ). An example of such

ounds is the mean-variance bound, but for a detailed discus-

ion on the bounds mentioned above, please refer to Bergner and

irches (2018) and references therein. 

In order to circumvent such issues, other strategies, such as

he back-off strategy, have been shown to be effective ( Aydin

t al., 2018; Galvanin et al., 2009; Koller et al., 2018; Shi et al.,

016; Visser et al., 20 0 0 ). The back-off strategy involves tight-

ning violated constraints and shrinking the feasible region such

hat the worst-case realization of a given process will still be

easible despite variations in the constraints ( Shi et al., 2016 ).

isser et al. (20 0 0) proposed a fast and robust cascade feedback

ontrol strategy for batch processes under uncertainty. In their

ork, the uncertainties were efficiently handled by using a back-off

trategy to calculate adequate margins for the path constraints. By
sing the back-off strategy, the authors showed that a robust cas-

ade feedback controller significantly outperforms an offline con-

rol scheme with re-optimizations. 

In Srinivasan et al. (2003) , an iterative algorithm for robustify-

ng processes by using back-off terms was proposed. This algorithm

s initialized by calculating back-off terms from the control inputs

f the nominal problem and then iteratively updating the back-offs

ntil a certain convergence criterion is fulfilled. 

Another application of the back-off strategy is in the model-

ased design of experiments (MBDoE). A key paper in this direc-

ion is Galvanin et al. (2009) where uncertainty was efficiently

andled via time-varying back-offs on relevant constraints during

he MBDoE procedure. 

Building upon the works of Visser et al. (20 0 0) and

rinivasan et al. (2003) , Shi et al. (2016) developed a multistep ap-

roach for robust optimization of grade transitions in a polyethy-

ene solution polymerization process in which uncertainties are

andled by incorporating back-off constraints. Following the suc-

essful application of the multistep back-off algorithm to a de-

ailed large-scale model of an entire flowsheet of the polyethy-

ene polymerization process ( Shi et al., 2016 ), the approach was

sed for the robust design of a nonlinear model predictive control

NMPC) algorithm for a two-phase hydroformylation semi-batch

eactor ( Aydin et al., 2018 ). 

The multistep back-off algorithm ( Shi et al., 2016 ) has also

een applied to the integrated design, control, and scheduling of

ultiproduct continuous stirred tank reactor (CSTR) systems in

he presence of stochastic process disturbances and parametric

oise ( Koller et al., 2018 ). Although previous studies have consid-

red the use of the back-off strategy for integrated design and con-

rol, the work by Koller et al. (2018) represents the first attempt to

nclude scheduling as an extra layer of complexity. In their work,

wo parameters were assumed to be uncertain, namely, the activa-

ion energy and the heat of the reaction. In addition to the uncer-

ain parameters, a time-varying stochastic uncertainty in the inlet

ow rate (disturbance) to the CSTR was considered. The specific

easons why these parameters were chosen were not mentioned. 

Furthermore, Monte Carlo sampling is typically used to esti-

ate the means and variances required for calculating back-off

erms. Due to the weak law of large numbers ( Bertsekas and Tsit-

iklis, 2008 ), numerous Monte Carlo samples are typically required

o estimate accurately the true means and variances of random

ariables. Unfortunately, Monte Carlo sampling does not have a

ood scaling property and consequently, leads to high computa-

ional costs especially when dealing with complex nonlinear mod-

ls like those encountered in biocatalysis. 

In this paper, we propose to reduce this computational over-

ead by using the point estimate method ( Schenkendorf, 2014 ).

e aim to further reduce the computational time by using global

ensitivity analysis to identify the parameters that really affect

he model output and then propagate the uncertainty of these

arameters only. Here, global sensitivity analysis serves as a sci-

ntific tool for justifying the relevance of parameters and their

ncertainties. Therefore, we present a systematic, robust opti-

ization framework for the carboligation of propanal and ben-

aldehyde catalyzed by benzaldehyde lyase from Pseudomonas flu-

rescens ( Pf BAL) to produce ( R )-2-hydroxy-1-phenylbutan-1-one.

his reaction is chosen because it features both self-carboligation

nd cross-carboligation ( Hildebrand et al., 2007; Ohs et al., 2017 ).

pecifically, we aim to maximize the final concentration of ( R )-

-hydroxy-1-phenylbutan-1-one which is an important interme- 

iate for the synthesis of APIs ( Hildebrand et al., 2007; Still-

er et al., 2006 ). In Section 2 , we describe the reaction mech-

nism and kinetics of this reaction. Following this, we describe

he methodology in Section 3 . First, we screen various intensifica-

ion cases by using the elementary process functions methodology



Fig. 1. Branched reaction scheme for Pf BAL-catalyzed carboligations with benzaldehyde and propanal as substrates.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

g  

t  

(  

d  

A

r  

r  

r  

r  

r  

w  

5  

c  

t  

e

N

 

N

( Emenike et al., 2018; Freund and Sundmacher, 2008 ). Next, we

carry out a sensitivity analysis, present the point estimate method,

and then delineate the proposed back-off algorithm for robust op-

timization. In Sections 4 and 5 , we apply our systematic approach

to the Pf BAL catalyzed reaction and discuss the results. Finally, we

conclude in Section 6 . 

2. Problem description

As discussed in the introductory section, we are considering the

robust optimization of a Pf BAL-catalyzed carboligation reaction in

the presence of parametric uncertainty. The reaction mechanism

for this reaction is shown in Fig. 1 . The reactants are propanal (A)

and benzaldehyde (B) which are catalyzed by Pf BAL (E) to form ( R )-

2-hydroxy-1-phenylbutan-1-one (BA) and benzoin (BB) as the main

product and side product, respectively.

In the first step, B binds to an active site of Pf BAL (E) by

covalent bonding to form the substrate-enzyme intermediate (E-

B). Next, this intermediate branches into two reaction pathways,

namely, self-carboligation and cross-carboligation. During self-

carboligation, B binds to the E-B intermediate to eventually pro-

duce the side product BB. In the cross-carboligation pathway, A

reacts with E-B to form the main product BA. Self-carboligation

and cross-carboligation are modeled as an ordered bi-uni reaction

mechanism. 

The mathematical model used to describe these reaction path-

ways is introduced in Section 2.1 . Key elements of this model are

parameters which have to be estimated accurately to ensure that

the model is feasible for the reactor design and process develop-

ment. Unfortunately, these parameters are uncertain due to im-

perfect experimental conditions and inherent measurement errors.

Therefore, we need to determine the optimal profiles and condi-

tions that ensure that the derived reactor design is feasible despite

parametric uncertainties. 

2.1. Reaction kinetics 

In this work, we use a relatively detailed kinetic model which

consists of equations for the reaction rates for the consumption of

propanal and benzaldehyde, the formation of the main product ( R )-

2-hydroxy-1-phenylbutan-1-one and the byproduct benzoin, and

very importantly, the rate of inactivation of Pf BAL. The details of
he model, the parameters and the underlying assumptions are

iven in Ploch (2014) and Ohs et al. (2018) . From hereafter and for

he ease of notation, the reaction species propanal, benzaldehyde,

 R )-2-hydroxy-1-phenylbutan-1-one, the byproduct and Pf BAL are

enoted as A, B, BA, BB, and E, respectively. The reaction rates for

, B, BA, BB, and E are given as: 

 A = − N BA C E
D · Mwt E 

, (1)

 B = − (2 N BB + N BA ) C E
D · Mwt E 

, (2)

 BA = 

N BA C E
D · Mwt E 

, (3)

 BB = 

N BB C E
D · Mwt E 

, (4)

 E = 

(
−k deact , A C A − k deact , B C B − k deact , time 

)
C E , (5)

here Mwt E is the molecular weight of Pf BAL which is equal to

8919 g/mol, while C i and k i is the concentration and the kinetic

onstant of species i , respectively. For ease of representation, the

erms N BA , N BA , and D are defined as the following constitutive

quations: 

 BA = k 22 k 33 k 4 k 5 C A C BB 

− k 2 k 3 k 44 k 55 C B C BA

+ k 1 (k 22 + k 3 ) k 4 k 5 C A C B

− k 11 (k 22 + k 3 ) k 44 k 55 C BA , (6)

 BB = k 2 k 3 k 44 k 55 C B C BA 

− k 22 k 33 k 4 k 5 C A C BB

+ k 1 k 2 k 3 (k 44 + k 5 ) C 
2
B

− k 11 k 22 k 33 (k 44 + k 5 ) C BB , (7)



Table 1

Reaction kinetic rate parameters ( Ploch, 2014 ).

Rate constant Value Unit

k 1 597257.2 mmol −1 L min −1 

k 11 529,695 min −1 

k 2 1,442,733 mmol −1 L min −1 

k 22 22933.2 min −1 

k 3 1264217.4 min −1 

k 33 1988614.8 mmol −1 L min −1 

k 4 3273.6 mmol −1 L min −1 

k 44 13.8 min −1 

k 5 568.8 min −1 

k 55 56886.6 mmol −1 L min −1 

k deact, A 0.002448 mmol −1 L min −1 

k deact, B 0.001632 mmol −1 L min −1 

k deact, time 0.0 0 0112 min −1 

D

A

3

 

o  

m  

p  

t  

a  

t  

i  

t  

t  

(  

s  

t  

t

 

r  

s  

i

s  

m  

l  

A  

d  

w  

t  

p

Fig. 2. Workflow of the robust optimization strategy.
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 = k 11 (k 22 + k 3 )(k 44 + k 5 ) 

+ k 1 (k 22 + k 3 ) k 4 C A C B

+ (k 22 + k 3 ) k 4 k 55 C A C BA

+ k 33 k 4 (k 22 + k 5 ) C A C BB

+ k 1 k 2 (k 44 + k 5 ) C 
2
B

+ k 2 (k 3 + k 44 ) k 55 C B C BA

+ k 2 k 33 (k 44 + k 5 ) C B C BB

+ (k 22 + k 3 ) k 4 k 5 C A

+ k 1 (k 22 + k 3 )(k 44 + k 5 ) C B

+ k 2 k 3 (k 44 + k 5 ) C B

+ (k 11 + k 44 )(k 22 + k 3 ) k 55 C BA

+ (k 11 + k 22 ) k 33 (k 44 + k 5 ) C BB . (8) 

ll kinetic parameters in Eqs. (6) –(8) are summarized in Table 1 . 

. Methodology

In this section, we introduce and describe the key components

f our robust optimization framework which is graphically sum-

arized in Fig. 2 . First, the elementary process function (EPF) ap-

roach is introduced as a method to determine the optimal reac-

ion route by considering different intensification cases. The EPF

pproach inherently leads to a dynamic optimization problem, and

hus, the dynamic optimization solution technique that we employ

s also described. The best intensification case from the EPF step is

hen selected and analyzed in more detail. Next, forward realiza-

ions of the best intensification case are performed at Monte Carlo

parameter) sample points. This is done to determine which con-

traints are violated for the different parameter realizations. Once

hese constraints are determined, we then focus on robustifying

hese constraints ( Puschke et al., 2017 ). 

Subsequently, global sensitivity analysis is applied to select the

elevant parameters that affect the states associated with the con-

traints which were violated in the previous step. Next, the best

ntensification case is robustified by using a time-varying back-off

trategy. A major novelty in our work is the use of the point esti-

ate method (PEM) instead of Monte Carlo simulations to calcu-

ate the statistical moments required for the back-off calculations.

s a result, the PEM is briefly described and then followed by a

etailed explanation of the PEM-based back-off algorithm. Finally,

e describe how we compare the accuracy of our approach with

he Monte Carlo–based approach by using the root-mean-square

rediction error. 
.1. Optimal reaction route selection: elementary process functions 

The EPF methodology proposed by Freund and Sund-

acher (2008) differentiates itself from the conventional unit

peration approach in process design that is based on and there-

ore limited to “off-the-shelf” processing units. Within the EPF

ramework, these units are replaced by functional modules in

hich the states of a passing fluid element are changed by fluxes,

uch as heat, mass, component dosing, and diffusion fluxes.

athematically, the fluid element is represented as ( Freund and

undmacher, 2008 ): 

d x 

d t 
= 

J ∑ 

k =1

j �k (x ) · e k , (9)

here x is a state vector (e.g., mass, energy, concentration), j �
k

is

he flux k of the functional module �, e k is the EPF of flux k (i.e.,

 basis vector in thermodynamic state space), and J is the total

umber of fluxes of the functional module �. The EPF e k repre-

ents a specific direction of flux k in thermodynamic state space,

nd the combined effect of the EPFs determines the region in ther-

odynamic state space that is attainable by the fluid element (see

reund and Sundmacher (2008) for details). 

The fluid element traveling through the functional modules

s then tracked to find the optimal route in state space. Next,

he optimal route is technically realized by using existing process

nits or by designing new apparatuses ( Peschel et al., 2010 ). In
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this work, we consider only the first level of EPF as described in

Peschel et al. (2010) . 

3.2. Dynamic optimization 

The design problem within the EPF framework translates into

a dynamic optimization problem where fluxes flowing in and out

of the fluid element are optimized as the fluid element is tracked

in thermodynamic state space. In this work, we focus on a Mayer-

type problem ( Biegler, 2010 ) with the following general form: 

minimize 
x (·) , u (·) , z (·)

�(x (t f ))

subject to 

˙ x (t) = f (x (t ) , z (t ) , u (t ) , θ) , ∀ t ∈ T ,
g (x (t) , z (t) , u (t) , θ) = 0 , ∀ t ∈ T ,
h (x (t) , z (t) , u (t) , θ) ≤ 0 , ∀ t ∈ T ,
x (t 0 ) = x 0 , 

u (t) ∈ U ,

(10)

on the time horizon T := [ t 0 , t f ] ⊂ R of the enzyme catalytic reac-

tion, where t 0 and t f are the initial and final time points, respec-

tively. The control vector u ∈ R 

n u is an element of the admissible

set of controls U; �( x ( t f )) is an objective function which is to be

minimized (or maximized), e.g., final product concentration, space

time yield, or total enzyme turnover number; x (t) ∈ R 

n x is a vector

of state variables which, in this case, are species amounts or con-

centrations; z (t) ∈ R 

n z is a vector of algebraic variables, such as the

reaction rates; θ ∈ R 

n θ is a vector of time-independent parameters;

f : T × R 

n x × R 

n u × R 

n z × R 

n θ → R 

n x is a function vector that de-

fines the derivatives of the states; g : T × R 

n x × R 

n u × R 

n z × R 

n θ →
R 

n g is a function vector that defines the equality constraints; h :

T × R 

n x × R 

n u × R 

n z × R 

n θ → R 

n h is the inequality (path) constraint

function vector; and x 0 is a vector of the initial conditions of the

states at initial time t 0 which could also be decision variables. 

3.3. Dynamic optimization solution strategy: direct collocation 

To solve the infinite dimensional dynamic optimization prob-

lem (10) , we employ the simultaneous approach where we dis-

cretize the states and controls of the problem (10) to get a finite-

dimensional nonlinear programming (NLP) problem ( Biegler, 1984;

Cuthrell and Biegler, 1987 ). The simultaneous approach was se-

lected because of its ability to handle numerical instabilities and

path constraints efficiently ( Biegler, 2007; 2010 ). In particular, we

use a direct collocation method where the time horizon is dis-

cretized into finite elements N with each element containing K

collocation points. Here, the states and algebraic variables are dis-

cretized on the finite elements and the collocation points by pa-

rameterizing them with orthogonal polynomials on Radau collo-

cation points, while the controls are discretized on only the fi-

nite elements by using a piecewise constant parameterization. We

first define an ordered set of indices for the finite elements as

F = { 1 , . . . , N} and that of the collocation points as C = { 1 , . . . , K}
and then present the discretized form of problem (10) as the fol-

lowing NLP problem: 

minimize 
ˆ x , ̂ u , ̂z

�(x N ) (11a)

subject to 

˙ x i, j = f (x i, j , z i, j , u i , θ) , ∀ i ∈ F, j ∈ C (11b)

x i, j = x i + 

K ∑ 

k =1

�k, j ̇ x i, j , ∀ i ∈ F, j ∈ C (11c)

g (x i, j , z i, j , u i , θ) = 0 , ∀ i ∈ F, j ∈ C (11d)

h (x i, j , z i, j , u i , θ) ≤ 0 , ∀ i ∈ F, j ∈ C (11e)
x 1 = x 0 (11f)

x i +1 = x i,K , ∀ i ∈ F\{ N} . (11g)

For the sake of a compact representation of the decision vari-

bles, the discretized states, algebraic variables, and controls are

ollected into separate vectors: 

ˆ 
 := 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

x 1 

x 1 , 1 

.. . 
x N,K−1 

x N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, ˆ z := 

⎡ 

⎢ ⎢ ⎣ 

z 1 , 1 
.. . 

z N,K−1 

z N,K

⎤ 

⎥ ⎥ ⎦ 

, ˆ u := 

⎡ 

⎣ 

u 1

.. . 
u N

⎤ 

⎦ ,

ith x i , x i, j ∈ R 

n x , z i, j ∈ R 

n z , and u i ∈ R 

n u . The discretized form

f the Mayer-type objective function (11a) is now defined at

he last finite element N and collocation point K as �( x N ), and

q. (11b) represents the discretized differential states. Furthermore,

he collocation equations over the finite elements i ∈ F and collo-

ation points j ∈ C are defined by Eq. (11c) . These equations utilize

arameters from the collocation matrix � which is derived from

n orthogonal polynomial of order K with roots at Radau colloca-

ion points ( Biegler, 2010 ). Eqs. (11d) and (11e) define the equality

onstraints and path constraints over i ∈ F and j ∈ C, respectively.

inally, Eq. (11f) defines the initial point, while Eq. (11g) enforces

he continuity of the differential profiles. 

.4. Sensitivity analysis 

Global sensitivity analysis (GSA) is a useful technique for ana-

yzing processes and has been applied in various studies. Although

ot mandatory for the robust optimization framework, GSA enables

s to gain knowledge about the relations between parameters and

he model output, especially the impact of parameter uncertainties

n the variation of the model output. GSA assists us in figuring out

he most relevant parameters and which parameter uncertainties

ust be considered for the robust optimization. While focusing on

he relevant parameters and neglecting the irrelevant one, we can

educe the complexity of the robust optimization problem consid-

rably. 

The frequently used Sobol’ indices approach, which is a

ariance-based method, is implemented in this study. Sobol’ in-

ices are used because they provide a more comprehensive defi-

ition of the sensitivities of model outputs to parameters and the

nteractions between these parameters. Please note that the sum of

ll the Sobol’ indices is equal to unity. The Sobol’ indices were first

roposed in Sobol (1993) and have been applied in various stud-

es in different disciplines ( Boukouvala et al., 2012; Ciriello et al.,

013; Kiparissides et al., 2009; Lin et al., 2018; Rehrl et al., 2017;

altelli et al., 20 0 0; Schenkendorf et al., 2018; Wang and Ierapetri-

ou, 2018 ). Three sensitivity indices are introduced to characterize

he effect of parameters on the model output, which are the first-

rder sensitivity indices S i , the interaction sensitivity indices S i, j, ... ,

nd total sensitivity indices S T i . The first-order and interaction sen-

itivity indices give quantitative information about the effect of a

ingle parameter i and the effect of interactions among parameters

, j, . . . on the model output, respectively, while the total sensitivity

ndices give quantitative information about the overall effect of a

arameter i on the model output, including parameter interactions.

he total sensitivity indices are equal to the sum of its first-order

ensitivity indices and all other interaction sensitivities where it

s included. Therefore, only the first-order and total sensitivity in-

ices are calculated in this work to screen for relevant parameters.

or details regarding procedures and formulas used to calculate the



Fig. 3. Illustration of the PEM for a nonlinear function y = k (ξ) which has two ran- 

dom inputs ξ 1 , ξ 2 and two random outputs y 1 , y 2 ( Julier and Uhlmann, 1996 ).
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ensitivities, please refer to Lin et al. (2018) and Xie et al. (2018b) .

he sensitivity indices have been calculated with UQLAB developed

t ETH Zürich ( Marelli and Sudret, 2014 ). 

.5. Point estimate method 

Before demonstrating the robust optimization approach, we in-

roduce the point estimate method (PEM) which we use instead

f Monte Carlo simulations to estimate the means (expected val-

es) and variances required to calculate the time-varying back-offs

 c ( t ). The PEM approximates the statistical moments of a random

ariable based on a reasonable number of deterministic sample

oints ( Lerner, 2002; Schenkendorf, 2014; Xie et al., 2018a ). The

asic principle of the PEM is illustrated in Fig. 3 . Specially picked

oints for random parameters are transferred through a nonlinear

unction, and the integral of the output can be then approximated

y a weighted superposition of the realizations as: 

 

I ξ

k (ξ) f (ξ) dξ ≈
n p ∑ 

i =1

w i k (ξs 
i ) , n p = 2 n 

2 
ξ + 1 , (12)

here k ( · ) presents the nonlinear function, f ( ξ) is the probability

ensity function of the random parameter vector ξ, ξs 
i 

are the de-

erministic sample points which has a number of n p , and w i are

he weights that depend on the distribution we have for the ran-

om parameters. In order to establish Eq. 12 , the distribution of

he parameters has to be symmetric over 0, and thus, the standard

ormal distribution is typically assumed and used to compute the

eights. However, it can also be extended to any arbitrary or even

orrelated distribution by using an isoprobabilistic transformation

pproach ( Xie et al., 2018a ). 

The PEM-generator function GF[ ·] defined in Lerner (2002) is

sed to generate deterministic sample points for a standard normal

istribution, which also determines the overall number of sample

oints, i.e., 2 n 2 
ξ

+ 1 . For all combinatorial realizations, the generator

unction substitutes zero, one, and two elements of a given random

arameter vector with GF[0], GF[ ± ϑ], and GF[ ± ϑ, ± ϑ], respec-

ively, where ϑ controls the spread of the permutation. For more

etails concerning the generator function, the interested reader is

eferred to Lerner (2002) and references therein. In robust process

esign, we are interested in the first and second statistical mo-

ents which correspond to the expected value and the variance,

espectively. Therefore, by using the PEM we obtain the expected

alue of the function k ( ξ) by rewriting Eq. 12 as: 

 [ k (ξ)] = 

∫ 
I ξ

k (ξ) f (ξ) dξ ≈ w 0 k (GF [0]) + w 1 

∑ 

k (GF [ ±ϑ]) 

+ w 2

∑ 

k (GF [ ±ϑ, ±ϑ]) , (13) 

here the position parameter and weight factors are ϑ = 

√ 

3 , w 0 =
 + 

d 2 −7 d , w 1 = 

4 −d , w 2 = 

1 . In the same vein, the variance can
18 18 36 
e estimated with the following equation: 

ar [ k (ξ)] = 

∫ 
I ξ

(k (ξ) − E [ k (ξ)]) 2 f (ξ) dξ ≈ w 0 (k (GF [0]) 

− E [ k (ξ)]) 2 + w 1

∑ 

(k (GF [ ±ϑ]) − E [ k (ξ)]) 2 

+ w 2

∑ 

(k (GF [ ±ϑ , ±ϑ ]) − E [ k (ξ)]) 2 , (14) 

.6. Robust dynamic optimization 

As already discussed, the typical robust optimization is more

hallenging to apply for reactor design problems involving

nzyme-catalyzed reactions. This is due to the complex kinetic

quations and possible ill-conditioned model equations. As such,

e adopt the concept of back-off constraints to handle parametric

ncertainties ( Shi et al., 2016; Srinivasan et al., 2003 ). 

For the back-off strategy, we first consider the inequality (path)

onstraints defined in problem (10) : 

 (x (t) , z (t) , u (t) , θ) ≤ 0 . (15)

econd, we ensure that the path constraints are fulfilled in the

resence of uncertainties by introducing time-varying back-off

erms to the constraints at the nominal parameter vector θ̄. 

Please note that constant back-off terms could also be used.

n such a case, the value of the constant back-off terms will be

et to the maximum variability (margin) across the time domain.

e are in favor of time-varying back-offs as they lead to less con-

ervative robust solutions than when constant back-off terms are

sed ( Koller et al., 2018; Shi et al., 2016 ). Therefore, the modified

ath constraints with time-varying back-offs b c ( t ) ≥ 0 read as: 

 (x (t) , z (t) , u (t) , θ̄) + b c (t) ≤ 0 . (16)

ext, the original path constraints (15) are replaced with

q. (16) to give a modified dynamic optimization problem with

ime-varying back-offs as shown below: 

minimize 
x (·) , u (·) , z (·)

�(x (t f ))

subject to 

˙ x (t) = f (x (t ) , z (t ) , u (t ) , θ̄) , ∀ t ∈ T ,

g (x (t) , z (t) , u (t) , θ̄) = 0 , ∀ t ∈ T ,

h (x (t) , z (t) , u (t) , θ̄) + b c (t) ≤ 0 , ∀ t ∈ T ,
x (t 0 ) = x 0 , 

u (t) ∈ U ,

(17) 

n the time horizon T := [ t 0 , t f ] ⊂ R . 

Here, the subscript c ∈ [0, 1] in the back-offs terms b c ( t ) defines

he confidence level of the robust solution as the probability that

he j th inequality constraint h j is satisfied in the presence of uncer-

ainty, c = P [ h j (x (t) , z (t) , u (t) , θ) ≤ 0] . For example, a confidence

evel of c = 0 . 99 implies that the constraint h j should be fulfilled

or 99% of the scenarios. 

Furthermore, we assume that back-off terms b c ( t ) are insen-

itive to the decision variables ( Shi et al., 2016 ). In our study,

his assumption is justified as the back-off algorithm presented in

ection 3.7 terminates after one iteration. Under this assumption, it

as been proven by Shi et al. (2016) that the back-off formulation

17) is equivalent to a multi-scenario problem ( Diehl et al., 2006 )

ith the Karush-Kuhn-Tucker (KKT) conditions defined at a set of

ritical uncertainty points where path constraints are active. Please

ee Shi et al. (2016) for more details.

.7. PEM-based back-off algorithm 

The PEM-based back-off algorithm is presented in Algorithm 1 .

The main steps of the algorithm are explained as follows: 



Algorithm 1: Back-off algorithm for robust optimization. (Ref- 

erence ( Schenkendorf, 2014 ) is cited in algorithm body part.) 

1 Set counter m = 0 and m max 

2 Initialize b 

j,m 

c, pem 

← − 0

3 Choose PEM points as described in Schenkendorf (2014) 

4 Set n p from Eq. (12) 

5 Set η, ε�
tol 

, εrms 
tol 

6 Solve the nominal problem (10) at θ̄ for u 

∗(t) , x ∗(t) , z ∗(t) , 

�∗(t f )

7 Simulate ˙ x (t) = f (x (t ) , z (t ) , u (t ) , θp ) , ∀ p ∈ { 1 , . . . , n p } with

x ∗(0) , u 

∗(t) 

8 Update counter m ← − m + 1 

9 Calculate b 

j,m 

c, pem 

with the nominal results

10 Calculate εrms ← − ‖ b j,m c, pem 

(t) −b 
j,m −1 
c, pem 

(t) ‖√|T |
11 Calculate E [�(x (t f ))] m 

12 Set ε� ← − 1 

13 while ε� > ε�
tol 

and εrms > εrms 
tol 

and m < m max do 

14 Solve problem with back-offs (17) for u 

∗(t) , x ∗(t) , z ∗(t) , 

�∗(t f )

15 Simulate

˙ x (t) = f (x (t ) , z (t ) , u (t ) , θp ) , ∀ p ∈ { 1 , . . . , n p } with x ∗(0) ,

u 

∗(t)

16 Update counter m ← − m + 1 

17 Calculate b 

j,m 

c, pem 

for the next iteration

18 Calculate εrms ← − ‖ b j,m c, pem 

(t) −b 
j,m −1 
c, pem 

(t) ‖ √|T |
19 Calculate E [�(x (t f ))] m 

20 Calculate ε� ← − E [�(x (t f ))] m −E [�(x (t f ))] m −1

E [�(x (t f ))] m 

21

end while 

22 Return u 

∗(t) , x ∗(t) , �∗(t f )
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1. First, the algorithm is initialized by setting the back-offs for

constraint j at all collocation points in the finite elements to

zero; i.e., b 

j 
c , pem 

(t) = 0 . The iteration counter is set to m = 0 ,

and the maximum number of iterations m max is set. The PEM

points are selected as described in Section 3.5 , the parameter η
determining the confidence level is set, and the tolerances ε�

tol
and εrms 

tol 
for the convergence of the algorithm are set. We rec-

ommend setting both ε�
tol 

and εrms 
tol 

to a default value of 10 −2 . 

2. Next, the nominal dynamic optimization problem (10) is solved

at the nominal parameter point θ̄ to obtain the nominal optimal

controls u 

∗( t ), states x ∗( t ) , z ∗( t ), and the objective value �∗( t f ).

3. By using the nominal control trajectories and key decision vari-

ables, such as the initial condition, forward simulations of the

system are performed for each PEM point to obtain different

realizations. 

4. Next, the time-varying back-offs are calculated based on the

simulation results by using the following equations:

b 

j 
c , pem 

(t) = η ×
√

Var[ h j (t)] (18)

E [ h j (t)] = w 0 h j (t, GF [0]) + w 1 

∑ 

h j (t, GF [ ±ϑ]) 

+ w 2

∑ 

h j (t, GF [ ±ϑ, ±ϑ]) (19)

Var [ h j (t)] = w 0 (h j (t, GF [0]) − E [ h j (t)]) 2 

+ w 1

∑ 

(h j (t, GF [ ±ϑ]) − E [ h j (t)]) 2 

+ w 2

∑ 

(h j (t, GF [ ±ϑ , ±ϑ ]) − E [ h j (t)]) 2 . (20)
Note that the means and variances at each time point are ap-

proximated by using the PEM (cf. Section 3.5 ). 

5. The dynamic optimization problem with the calculated time-

varying back-offs is then solved (see Eq. (17) ).

6. Next, the counter m is updated, and the difference between

the back-offs of the constraint j at the current iteration b 

j,m 

c, pem

and the previous iteration b 

j,m −1 
c, pem 

is checked by using the root-

mean-square (RMS) prediction error εrms . These vectors (back-

offs) are of the same dimension |T | which is equal to the num-

ber of time points at which the back-off values were calculated.

In addition, the relative difference ε� between the expected

values of the objective at the current iteration and the previ-

ous iteration is determined.

7. Step 6 of the algorithm is repeated within a while loop until

the convergence conditions ε� < ε�
tol 

and εrms < εrms 
tol 

are satis-

fied or the maximum number of iteration m max is reached, and

the algorithm terminates. 

8. Lastly, the robust optimal controls and states are obtained and

validated with the Monte Carlo-based back-off approach as pre-

sented in Section 3.8 .

.8. Assessment of estimation accuracy 

To assess the accuracy of the back-offs calculated by using the

EM, we also run the back-off algorithm by using Monte Carlo sim-

lations to calculate the means and variances. Here, we use Monte

arlo simulations as a benchmark for the PEM as they are assumed

o lead to more accurate estimates of the statistical moments due

o the weak law of large numbers ( Bertsekas and Tsitsiklis, 2008 ). 

The only difference between the PEM-based back-off algorithm

nd the Monte Carlo-based back-off algorithm lies in the way that

he statistical moments are calculated. In the case of the Monte

arlo approach, the mean and variance of the j th inequality con-

traint are given by the following natural estimators: 

 [ h j (t)] = 

∑ N
i =1 h j (x (t ) , z (t ) , u (t ) , θ̄)

N 

, (21)

ar [ h j (t)] = 

∑ N
i =1 (h j (x (t) , z (t) , u (t) , θ̄) − E [ h j (t)]) 2

N − 1 

, (22)

here N is the number of Monte Carlo samples. 

Next, we compare the PEM-based back-offs to the Monte Carlo-

ased back-offs by using the RMS prediction error ( Boyd and Van-

enberghe, 2018 ): 

rms (b 

j 
c, mc (t) − b 

j 
c, pem 

(t)) = ‖ b 

j 
c, mc (t) − b 

j 
c, pem 

(t) ‖√ |T | , (23)

here b 

j 
c, mc and b 

j 
c, pem 

are the time-varying back-offs of the con-

traint j calculated from the Monte Carlo simulations and the PEM,

espectively, and ‖ · ‖ refers to the Euclidean norm. 

.9. Implementation 

The nominal and robust dynamic optimization problems were

mplemented in the Matlab API for CasADi 3.4.0, a frame-

ork for automatic differentiation and numerical optimiza-

ion ( Andersson et al., 2018 ). Furthermore, 50 finite elements and 3

adau collocation points were used to discretize the dynamic op-

imization problems as described in Section 3.3 . 

The resulting NLPs were solved by using the interior point

LP solver IPOPT ( Wächter and Biegler, 2006 ) with the MA57

inear solver ( Duff, 2004 ) from the Harwell Subroutine Li-

rary ( HSL, 2007 ). The sparsity patterns of Hessian and Jacobian

atrices are shown in Appendix B (cf. Fig. B.2 ). The sparsity and
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Table 2

Upper bounds for the nominal dynamic optimization prob- 

lem.

Symbol Value Unit

C U
A , 0

100 mmol −1 L 

C UB , 0 149.35 mmol −1 L 

C U
BA , 0

0 mmol −1 L 

C UBB , 0 0 mmol −1 L 

C UE , 0 50 mmol −1 L 

C U
A

100 mmol −1 L 

C UB 149.35 mmol −1 L 

C U
BA

10,0 0 0 mmol −1 L 

C UBB 2.78 mmol −1 L 

C UE 50 μg −1 mL 

t f 300 min
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tructure of these matrices are advantageous as the IPOPT al-

orithm is able to exploit this sparsity to solve the NLP faster.

ll computations were performed on a UNIX-based laptop with a

.7 GHz Intel Core i5 processor and 8 GB RAM. 

. Optimization strategies for Pf BAL-catalyzed carboligation

ithout uncertainties

In this section, we present the optimization formulation and re-

ults for the case study considered without uncertainties. That is,

e analyze the nominal problem first. 

.1. Model formulation 

To mathematically formulate the fluid element that is to be

racked as explained in Section 3.1 , mole balances for components

, B, BA, BB, and E are required. For this study, we transform the

ass balances from the regular EPF molar basis which is based on

ntensive properties to a concentration basis as follows: 

˙ 
 (t) = f epf (x (t ) , z (t ) , u (t ) , θ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

j A
V

− C A
V

(u A + u B ) + r A
j B
V

− C B
V

(u A + u B ) + r B 

−C BA

V
(u A + u B ) + r BA

−C BB

V
(u A + u B ) + r BB

−C E
V

(u A + u B ) + r E

u A + u B

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (24)

ith 

j A = u A · C in A , (25)

j B = u B · C in B . (26)

We perform this transformation to ensure the proper and con-

istent representation of the path constraints which will be shown

n the next section. The proper representation of these path con-

traints is important because a major aim of this work is to ensure

hat they are not violated due to parametric uncertainty. 

Eq. (24) in combination with the rate Eqs. (1) –(5) leads to a

emi-explicit differential-algebraic equation (DAE) system, where

he state vector is given as x ( t ) := [ C A , C B , C BA , C BB , C E , V ] 
 , with

 i denoting the concentration of species i . The controls are given

s u ( t ) := [ u A , u B ] 

 , where u A and u B represent the volumetric flow

ates of A and B, respectively; and z ( t ) := [ r A , r B , r BA , r BB , r E ] 

 is

 vector of the algebraic variables. C in 
A 

and C in 
B 

are the inlet feed

oncentrations of propanal and benzaldehyde, respectively. The in-

et feed concentrations of propanal and benzaldehyde are assumed

o be pure and are calculated as C in 
A 

= 

10 0 0 ×810 
58 . 08 mmol −1 L and C in 

B 
=

10 0 0 ×1040 
106 . 121 mmol −1 L, respectively. 

.2. Dynamic optimization formulation 

The aim of the nominal dynamic optimization problem is to

aximize the final concentration of the product BA by optimizing

he flow rates u A and u B , the initial conditions. Thus, the problem-

pecific dynamic optimization formulation is given as: 

minimize 
 A (t) , u B (t) , C A , 0 ,

C B , 0 , C E , 0 , V 0

−C BA (t f ) (27a) 

ubject to 

˙ x (t) = f epf (x (t ) , z (t ) , u (t ) , θ̄) , ∀ t ∈ [0 , t f ] (27b) 

0 ≤ x 0 ≤ x 

U 
0 (27c) 
t

0 ≤ x (t) ≤ x 

U , ∀ t ∈ [0 , t f ] (27d) 

0 ≤ u (t) ≤ u 

U , ∀ t ∈ [0 , t f ] . (27e) 

Note that in addition to the controls u A and u B , the initial

onditions of the states x 0 such as the initial volume and con-

entrations of species i are also considered decision variables.

owever, the initial concentrations of the products C BA,0 and

 BB,0 are constrained to zero since we assume that no prod-

ct is present at the onset of the reaction. As a result, C BA,0 

nd C BB,0 are eliminated as decision variables. Furthermore, x U 
0 

:=
 C U 

A , 0 
, C U 

B , 0 
, C U 

BA , 0 
, C U 

BB , 0 
, C U 

E , 0 
, V U 

0 
] 
 is a vector containing the upper

ounds for the initial conditions of the states, and the upper bound

or the state vector is defined as x U := [ C U 
A 
, C U 

B 
, C U 

BA 
, C U 

BB 
, C U 

E 
, V U ] 
 .

he actual values of x U 
0 

and x U are stated in Table 2 . Please, note

hat the upper bounds for A, B, and E at the initial conditions and

uring the operation are the same. The upper bounds for B and

B were set to their solubility limits to avoid issues with clog-

ing ( Hartman, 2012 ). The bounds for A and E are ranges at which

he kinetic experiments where performed – this is to ensure that

he reaction kinetics remain valid during the optimization proce-

ure. Finally, t f was fixed to 300 min to avoid quenching the reac-

ion before the enzyme was properly inactivated. This is important

ecause the presence of enzyme facilitates the production of BA. 

.3. Intensification cases 

In this work, different intensification cases were investigated to

scertain the best case for the maximization of the final concentra-

ion of ( R )-2-hydroxy-1-phenylbutan-1-one (BA) produced by the

f BAL-catalyzed carboligation between propanal (A) and benzalde-

yde (B). First, a reference case is presented to benchmark the per-

ormance of the other intensification cases on it. To this end, a

atch reactor was selected because it is the most common reac-

or used for enzyme-catalyzed reactions. Three intensification cases

ere considered systematically and are described in more detail

elow. 

Case 1: Dosing of propanal. In this case, the possibility of dosing

nly propanal (A) during the course of the reaction was consid-

red to see if it leads to improvements in the final concentration

f BA in comparison to the reference batch reactor. Here, the dos-

ng (volumetric) flux of A u A in Eq. (24) was dynamically optimized

nd the dosing flux of B was set to zero ( u B = 0 ). In addition to u A ,

 A,0 , C B,0 , C E,0 and V 0 required for the highest possible concentra-

ion of BA were also determined. 



Table 3

Optimal initial reactant concentrations C A,0 and C B,0 , optimal initial enzyme

concentration C E,0 and maximum final product concentration C BA ( t f ) of each

intensification case considered.

Case C A,0 C B,0 C E,0 C BA ( t f )

[mmol −1 L] [mmol −1 L] [μg −1 mL] [mmol −1 L] 

Reference (batch) 11.16 6.61 50 3.11

Case 1 3.65 6.51 50 3.18

Case 2 11.94 1.92 50 3.52

Case 3 0.83 3.09 50 3.60

Fig. 4. Nominal dynamic optimization results for the reference batch reactor case:

concentration profiles.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Nominal dynamic optimization results for the intensification case 1 involv- 

ing the dosing of propanal. Concentration profiles (states) (a); Feed rate of propanal

as a control (b).
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Case 2: Dosing of benzaldehyde. Similar to case 1, the possibil-

ity of dosing only benzaldehyde (B) along the reaction coordinate

was investigated. Here, u B , C A,0 , C B,0 , C E,0 and V 0 were optimized

with the goal of maximizing the final concentration of the target

product BA. 

Case 3: Dosing of propanal and benzaldehyde. This case marks

the most flexible setting where all tunable operating conditions

are optimized to maximize the concentration of BA. In concrete

terms, the dynamic dosing fluxes of reactants A and B ( u A and u B )

were optimized to investigate possible interactions between the re-

actants. Similar to cases 1 and 2, C A,0 , C B,0 , C E,0 and V 0 were also

optimized. 

4.4. Selecting the best intensification case 

In the following, we discuss and compare the nominal dynamic

optimization results for the various intensification cases. The op-

timal decision variables and the maximum final concentration of

BA for each intensification case are presented in Table 3 , while the

concentration and optimal control profiles are shown subsequently.

4.4.1. Results for the reference case: Batch reactor 

We focus on the concentration profiles of the batch reactor as

shown in Fig. 4 . For this case, the final concentration of the tar-

get product BA is 3.11 mmol L −1 (see Table 3 ). Here, propanal (A)

starts at a concentration of 11.16 mmol L −1 and then decreases

gradually to 8.05 mmol L −1 . Concurrently, benzaldehyde (B) starts

at 6.61 mmol L −1 and decreases at a faster rate in comparison to

reactant A to 0.55 mmol L −1 . It can be seen that the optimal ini-

tial concentration of A is higher than that of B. This is logical as

the rate equations and molar balances reveal a proportional rela-

tionship between reactant A and the target product BA. First, every

consumption of A leads to a formation of AB. Therefore, a high A

concentration maximizes AB. As B may also form BB, its rate of
onsumption is faster than for A. However, to minimize losses to

B, a lower concentration of B is chosen. This can also be seen in

he reaction scheme 1 and in the rate equations. 

Furthermore, the enzyme concentration starts at the upper

ound of 50 μg −1 mL to produce BA as fast as possible and gradu-

lly decreases to zero at about 200 min signifying the inactivation

f the enzyme. After this point, it can be seen in Fig. 4 that the

oncentration of BA and BB reaches steady state. Another key ob-

ervation is that the concentration of BA is almost maximized after

he enzyme inactivates. This is due to two reasons. First, the ben-

aldehyde self-carboligation step appears to have reached an equi-

ibrium, and the inactivity of the enzyme implies that the cross-

arboligation reaction to produce BA is inhibited. 

.4.2. Results for case 1: dosing of propanal 

With the results of the batch case delineated, we now discuss

he effect of dosing only propanal (A) along the reaction route

s shown in Fig. 5 . By dosing A, the final concentration of ( R )-2-

ydroxy-1-phenylbutan-1-one (BA) achieved is 3.18 mmol L −1 (cf.

able 3 ). This is a marginal improvement of 2.25% over the refer-

nce batch case. In Fig. 5 , we observe a non-intuitive concentration

rofile in comparison to the results of the batch reactor reference

ase. Here, reactant A starts at a concentration of 3.65 mmol L −1 

hich is lower than the initial concentration of B in this case. The

nitial concentration of B is 6.51 mmol L −1 which is very similar to

hat of the reference case. 



Fig. 6. Nominal dynamic optimization results for the intensification case 2 involv- 

ing the dosing of benzaldehyde. Concentration profiles (states) (a); Feed rate of ben- 

zaldehyde as a control (b).
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Fig. 7. Nominal dynamic optimization results for the intensification case 3 involving

the dosing of propanal and benzaldehyde. Concentration profiles (states) (a); Feed

rates of propanal (A) and benzaldehyde (B) as controls (b).
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However, we notice that the concentration of A decreases to

.96 mmol L −1 after 6 min at which point the product BB is maxi-

ized. Afterward, the dosing of A is initiated, thus leading to an

ncrease in the concentration of reactant A during the reaction.

his is a non-intuitive strategy that requires some more explana-

ion. First, reactant A has to be started at a lower concentration in

his case because the optimizer recognized that dosing A would be

equired after 6 min to maximize the formation of BA. However,

tarting A at a higher concentration similar to that of the refer-

nce case might lead to faster inactivation of the enzyme and thus

 lower final product. As a result, the optimizer detects 3.65 mmol

 

−1 as the optimal initial concentration for B. 

With regards to the decrease in A in the first 6 min, it can be

bserved that this increase coincides with the maximum concen-

ration of the side product BB (at 2.36 mmol L −1 ). Afterwards, BB

tarts to decrease due to a reverse reaction as illustrated in Fig. 1 .

his leads to a “domino effect” in which the reverse reaction to

roduce B is triggered to ensure that sufficient B is maintained in

he reaction medium to react with A to produce BA. 

Consequently, the concentration of A is increased by dosing A

o that it can continuously react with the almost constant concen-

ration of B to produce as much BA as fast as possible. Similar to

he reference case, we notice that the reaction between A and B is

alted and that the concentration of BA reaches a constant value

s soon as the enzyme is inactivated. For similar reasons, the in-

ctivation of the enzyme implies that the reaction between A and

 can no longer be catalyzed and thus, the formation of BA stops.

e also notice that the feeding of A stops at the same time the en-
yme is inactivated. This is obviously rational as there is no need

o keep feeding propanal (A) if the enzyme is not active to catalyze

ts reaction benzaldehyde (B). Unfortunately, dosing A adversely af-

ects the enzyme activity, i.e., the enzyme inactivates after approx-

mately 138 min of reaction which is shorter than the time (about

80 min) it takes for the enzyme to inactivate for the reference

ase. Overall, the final concentration of BA is slightly improved by

osing propanal. 

.4.3. Results for case 2: Dosing of benzaldehyde 

As seen in Fig. 6 (a), the case of dosing only benzaldehyde (B)

ields similar concentration profiles like the reference case. The

ptimal initial concentrations of A and B are 11.94 and 1.92 mmol

 

−1 , respectively. By dosing only B, the final BA concentration of

.52 mmol L −1 is achieved (cf. Table 3 ). This results in a 13.18%

ncrease over the reference case. It can be seen that it is more ad-

antageous to dose B in comparison to A. The reason for this in-

rease in comparison to the reference case and the case in which

nly A was dosed is primarily due to the optimal selection of the

nitial concentration and the dosing trajectories of B. 

In this case, the optimal initial concentration of B is approxi-

ately three times lower than those in the batch reference and

he intensification case 1, i.e., dosing of propanal. Here, the rate at

hich BB is formed is kept lower than the two previous cases by

nsuring that a lower amount of B is allowed to bind to the en-

yme. Despite this lower concentration, an appropriate amount of

 which ultimately leads to the maximization of C BA ( t f ) is ensured

y an optimal feed rate that starts high and gradually decreases



Fig. 8. Concentrations for 20 0 0 forward Monte Carlo simulations using the nominal control profiles for the case of dosing A and B (i.e. case 3). The dotted red line is the

solubility constraint for BB, and the gray lines the 20 0 0 Monte Carlo simulations. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Sensitivity results of 13 model parameters for the concentration of BB. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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along the reaction coordinate (cf. Fig. 6 (b)). Furthermore, the lower

amount of B present during the reaction ensures that the rate of

enzyme inactivation due to B is slower. Consequently, the presence

of a slightly higher concentration of the enzyme during the reac-

tion leads to the higher concentration of BA. 

4.4.4. Results for case 3: Dosing of propanal and benzaldehyde 

The nominal optimization results for the case in which A and

B are dosed simultaneously are shown in Fig. 7 . Here, the optimal

initial concentrations of A and B are 0.83 and 3.09 mmol L −1 , re-

spectively. It can be observed that the simultaneous dosing of A

and B is akin to the superposition of the results of dosing A and B

alone. Therefore, the reasons behind the previous results also apply

here. 

Furthermore, the enzyme concentration starts at the upper

bound of 50 μg −1 mL for similar reasons as previously discussed.

In addition, the concentration of BB eventually hits its maximum

value at the end of the reaction time to ensure that BA is maxi-

mized. 

Moreover, by dosing A and B, the final concentration of BA ob-

tained is 3.60 mmol L −1 (see Table 3 ). This is the highest final con-

centration of BA obtained among all the intensification cases con-

sidered, i.e., a 15.76% increase over the reference case. This increase
an be attributed more to the dosing of B only as it is very close

o the value of C BA ( t f ) obtained when only B was dosed. 

Nevertheless, dosing A and B simultaneously ensures that the

ighest possible final concentration of BA is obtained since the

enefits of dosing A and B are fully exploited. Therefore, this case

s selected for robustification in the subsequent sections. 



Fig. 10. Comparison of time-varying back-offs for the constraint C BB (t) − 2 . 78 ≤ 0 

calculated with the point estimate method (PEM) with those calculated with Monte

Carlo (MC) simulations. RMS error stands for the root-mean-square prediction error.

Fig. 11. Robust dynamic optimization results for the intensification case 3 involving

the dosing of propanal and benzaldehyde. Concentration profiles by using the ro- 

bust control at the nominal parameter point (a); Robust feeding profiles (controls)

for propanal (A) and benzaldehyde (B) (b).
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Fig. 12. Verification of the robust control considering all parameters with 20 0 0

Monte Carlo samples. The dotted red line is the solubility constraint for BB, and

the grey lines the 20 0 0 Monte Carlo simulation results. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)
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S  
. Optimization of Pf BAL-catalyzed carboligation under

ncertainties

.1. Forward uncertainty propagation with nominal controls 

In a first step, we performed 20 0 0 Monte Carlo simulations

ith the initial conditions and flow rates (controls) of the best in-

ensification case in which propanal and benzaldehyde were both

osed. Here, we found that 20 0 0 Monte Carlo simulations were
ufficient for estimating the statistical moments. As described in

ection 3 , Monte Carlo simulations were performed to determine

f the nominal controls led to violations of the upper bounds (see

able 2 ) in the presence of parametric uncertainty. If any of the up-

er bounds are violated then the subsequent robustification steps

cf. Fig. 2 ) are performed, else the nominal control is sufficient for

perating the process. As we can see in Fig. 8 , all the states are

ithin their upper bounds except for the concentration of benzoin

 BB where the constraint was violated 56.95% of the time. As only

 BB was violated, we then focus on robustifying C BB by using the

EM-based back-off algorithm described in Section 3.6 . 

.2. Determining the sensitive parameters 

For the sensitivity analysis, the parameters are assigned nor-

al distributions with a mean equal to their nominal values and

 standard deviation equal to 10% of their nominal values. Results

f the first-order sensitivity indices at different time points for the

oncentration of BB are given in Fig. 9 . Please note that the sensi-

ivity study revealed negligible parameter interactions, i.e., the val-

es of total sensitivity indices are similar to those of the first-order

ensitivity indices, and thus, are not shown here. Also note that the

ensitivity analysis was performed on the reference (batch reactor)

ase described in Section 4.3 . 

As we can observe from the figure, the majority of parameter

ncertainties have a distinct impact on the quantity we are in-

erested in, i.e., the concentration of BB. However, the sensitivities

or uncertainties of the parameters k 44 , k deact, B and k deact, time are

arely visible, and thus, their impact can be neglected to further

educe the complexity of our problem. In other words, only the un-

ertainties of the remaining 10 parameters were taken into account

n the following calculations. This is important because it reduces

he original number of PEM points from 2 × 13 2 + 1 = 339 to 201

oints – a 40.71% reduction in the number of PEM points. 

Uncertainties in other quantities, i.e., concentrations of A, B, BA,

nd E do not affect the result of the robust optimization, and their

ensitivity results are shown in the Appendix (see Fig. A.1 ) for the

ake of completeness. 

.3. Robust dynamic optimization formulation 

By applying the robust optimization strategy presented in

ection 3.6 , the back-off dynamic optimization formulation for the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4

Comparison of the performance of the point estimate method- 

based (Robust-PEM) with the Monte Carlo-based (Robust-MC)

back off algorithm for robust dynamic optimization.

C BA ( t f ) [mmol −1 L] εviol [%] CPU time [s]

Nominal 3.60 59.56 4

Robust-PEM 3.47 0.10 66

Robust-MC 3.46 0.15 714

C BA ( t f ) means the final concentration of BA which is the objective

function. εviol means the percentage of constraint violations.
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Pf BAL-catalyzed reaction reads as: 

minimize 
u A (t) , u B (t) , C A , 0 ,

C B , 0 , C E , 0 , V 0

−C BA (t f ) (28a)

subject to 

˙ x (t) = f epf (x (t ) , z (t ) , u (t ) , θ̄) , ∀ t ∈ [0 , t f ] (28b)

0 ≤ x 0 ≤ x 

U 
0 (28c)

0 ≤ C BB (t) ≤ C U BB − b c (t) , ∀ t ∈ [0 , t f ] (28d)

0 ≤ C i (t) ≤ C U i , ∀ i ∈ { A , B , BA , E } , ∀ t ∈ [0 , t f ] (28e)

0 ≤ u (t) ≤ u 

U , ∀ t ∈ [0 , t f ] . (28f)

Note that time-varying back-offs are assigned only to the

inequality constraint for C BB in problem (28). The reason for

this stems from the results of the forward simulations in

Section 5.1 which show that only C BB violates its solubility bound

and should, therefore, be robustified. The confidence level c for the

back-offs b c ( t ) in Eq. (28d) was set to 99.90% by choosing η = 3

in the back-off algorithm. The tolerances ε�
tol 

and εrms 
tol 

required for

Algorithm 1 to converge were both set to 10 −2 . 

To apply the back-off algorithm, only the 10 parameters identi-

fied by the sensitivity analysis to be critical are considered uncer-

tain. These 10 parameters are assigned normal distributions with

a mean equal to their nominal values and a standard deviation

equal to 10% of their nominal values. The remaining 3 parameters

are considered certain and are fixed to their nominal values (cf.

Table 1 ). 

5.4. Robust optimization results 

We now report the robust optimization results obtained by us-

ing the proposed PEM-based back-off algorithm. First, we investi-

gate the accuracy of the PEM in calculating the time-varying back-

offs by comparing with the back-offs calculated by Monte Carlo

simulations. As shown in Fig. 10 , the back-off increases with time

for both cases; this is attributed to increasing BB concentrations

with time, and as such to a decrease in distance to the solubility

bound C U 
BB 

. As soon as self-carboligation stops towards the end of

the reaction, the back-offs stabilize. 

Nevertheless, the back-offs calculated with the PEM are approx-

imately equal to those calculated by Monte Carlo simulations from

0 to 80 min of the reaction time (cf. Fig. 10 ). After 80 min, we

observe that the back-offs calculated by the PEM gradually become

slightly higher than those calculated by Monte Carlo simulations as

time progresses. This suggests that the PEM-based back-off strat-

egy could lead to a slightly more conservative robust design in

comparison to a Monte Carlo-based back-off strategy. Another rea-

son for this is because higher back-offs imply higher margins from

the solubility limits (path constraints) and a smaller feasible re-

gion. Nevertheless, the results show that the back-offs calculated

by the PEM are in general very close to those calculated by Monte

Carlo simulations (cf. Fig. 10 ). This is further justified by the very

small RMS prediction error of 0.0014 as shown in Fig. 10 . 

Fig. 11 (b) shows the robust feed rates (controls) for the best in-

tensification case. On a closer look at the robust controls, we see

that it follows a similar control sequence like the nominal con-

trol (cf. Fig. 7 (b)) with some subtle differences. First, the robust

propanal (A) control starts at 1.55 mL min 

−1 while the nominal

control of A starts lower at approximately 1.41 mL min 

−1 . In addi-

tion, the robust control sequence for A is coarser than its nominal
ounterpart within the first 80-min interval. In contrast, the only

ajor difference between the robust and nominal controls for ben-

aldehyde (B) is that the robust B control starts at 1.95 mL min 

−1 

hile its nominal counterpart starts at 2.0 mL min 

−1 . 

In addition to the robust controls, our preliminary studies re-

ealed that the initial concentrations of reactants A and B are cru-

ial in ensuring that a feasible solution is obtained for either the

ominal or the robust optimization case. As a result, the initial

onditions for the reactants and the enzyme were left as decision

ariables as described in Section 4.2 . In Fig. 11 (a), the concentra-

ion profiles obtained by using the robust control at the nominal

arameter point have the following optimal initial concentrations:

.07 mmol L −1 , 2.93 mmol −1 L and 50 μg mL −1 for A, B, and E,

espectively. In addition, these robust controls lead to a BA final

oncentration of 3.47 mmol L −1 while ensuring that 99.90% of the

0 0 0 Monte Carlo simulations are within the solubility limit of BB

s shown in Fig. 12 . However, this comes at the expense of C BA ( t f )

hich is 3.61% lower than that obtained for the nominal case as

hown in Section 4.4.4 and Table 4 . 

As a benchmark, we compared the robust optimization results

btained by using the PEM-based back-off strategy to the Monte

arlo-based back-off algorithm presented in Koller et al. (2018) .

s we can see in Table 4 , the 0.10% constraint violation obtained

ith our PEM back-off algorithm is very close to the 0.15% con-

traint violation obtained by using the Monte Carlo-based back-off

lgorithm. Furthermore, we observe that the final concentrations

f BA for the two approaches are almost equal (cf. Table 4 ). 

Moreover, using the PEM for the back-off is considerably faster

han using Monte Carlo simulations. Specifically, the PEM-based

obust optimization has a CPU time of 66 s while the Monte Carlo-

ased back-off algorithm takes approximately 714 s. Therefore, the

EM-based algorithm is approximately 11 times faster than the

onte Carlo-based algorithm for the application considered. This

peed-up is mainly due to the lower number of PEM sample points

 2 × 10 2 + 1 = 201 ) in comparison to the 20 0 0 Monte Carlo sam-

le points. These results demonstrate that the PEM-based back-off

trategy is very efficient and useful for the enzyme-catalyzed car-

oligation considered in this work. 

. Conclusions

A new framework for the robust optimization of enzyme-

atalyzed carboligations was presented. The framework ensures

hat the best intensification case is selected by using the elemen-

ary process functions approach and that only critical parameters

re considered in the robust optimization step by applying global

ensitivity analysis. Specifically, dosing both propanal and ben-

aldehyde is predicted to lead to a 15% increase in the final con-

entration of ( R )-2-hydroxy-1-phenylbutan-1-one when compared

o a reference batch reactor. 

Moreover, a key component of the proposed robust optimiza-

ion approach is a new point estimate-based back-off algorithm
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hich is shown to be at least an order of magnitude faster than

he conventional Monte Carlo-based back-off algorithm. Although 

he proposed approach does not consider the mean-variance for-

ulation as is typically done in robust optimization, we have

hown that the point estimate-based back-off algorithm effectively

obustifies the reactor design, while ensuring a relatively high con-

entration of BA under parametric uncertainties. 

Another important advantage of our approach is that the dy-

amic optimization problem(s) within the back-off algorithm can

e solved with the same computational complexity as the nom-

nal case. In our experience, this is easier and more computa-

ionally tractable to solve than conventional robust optimization

ormulations with chance constraints. Therefore, this implies that

he approach presented in this paper could be easily extended to

arger models involving whole (pharmaceutical) process chains. Be-

ides the enzyme-catalyzed carboligation considered in this pa-

er, the proposed robust optimization approach could be applied

o other pharmaceutical processes (and even non-pharmaceutical

rocesses) to ensure Quality by Design (QbD) standards. 
ig. A1. Sensitivity results of 13 model parameters for the active constraints, i.e., conce

gure legend, the reader is referred to the web version of this article.)
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ppendix A. Further sensitivity analysis results 

Here, further sensitivity analysis results for components A, B,

A and E are presented. The first-order sensitivity indices are plot-

ed in Fig. A.1 . It can be observed that the sensitivity results for

he concentrations of A and BA are identical. This is because their

oncentrations are directly correlated with a 1:1 ratio as shown in

he reaction scheme (see Fig. 1 ). In addition, the sensitivity result

or enzyme E is quite different from that for the other components.

his is because the reaction rate of E is directly connected to the

nactivation coefficients, and the concentration of A for the entire

eaction period is larger than 1 and much higher than that of con-

entration B. Therefore, the inactivation coefficient k deact, A domi-

ates the variation in the concentration of component E. 
ntrations of A, B, BA and E. (For interpretation of the references to colour in this
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Appendix B. Sparsity patterns 

Fig. B1. Karush–Kuhn–Tucker (KKT) sparsity patterns for discretized NLP for the

f BAL-catalyzed EPF formulation, where nz means the number of non-zeros. Jaco-

bian matrix (a); Hessian matrix (b).
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