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Abstract Smart well technologies, which allow remote

control of well and production processes, make the prob-

lem of determining optimal control strategies a timely

endeavour. In this paper, we use numerical optimiza-

tion algorithms and a multiscale approach in order to

find an optimal well management strategy over the life

of the reservoir. Optimality is measured in terms of the

values of the net present value objective function. The

large number of well rates for each control step make

the optimization problem more difficult and at a high

risk of achieving a suboptimal solution. Moreover, the

optimal number of adjustments is not known a priori.

Adjusting well controls too frequently will increase un-

necessary well management and operation cost, and an

excessively low number of control adjustments may not

be enough to obtain a good yield. We investigate three
derivative-free optimization algorithms, chosen for their

robust and parallel nature, to determine optimal well

control strategies. The algorithms chosen include gener-

alized pattern search (GPS), particle swarm optimiza-
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tion (PSO) and covariance matrix adaptation evolution

strategy (CMA-ES). These three algorithms encompass

the breadth of available black–box optimization strate-

gies: deterministic local search, stochastic global search

and stochastic local search. In addition, we hybridize

the three derivative-free algorithms with a multiscale

regularization approach. Starting with a reasonably small

number of control steps, the control intervals are sub-

sequently refined during the optimization. Results for

experiments studied indicate that CMA-ES performs

best among the three algorithms in solving both small

and large scale problems. When hybridized with a mul-

tiscale regularization approach, the ability to find the

optimal solution is further enhanced, with the perfor-

mance of GPS improving the most. Topics affecting the

performance of the multiscale approach are discussed

in this paper, including the effect of control frequency

on the well control problem. The parameter settings

for GPS, PSO, and CMA-ES, within the multiscale ap-

proach are considered.

Keywords Well Control · Production Optimization ·
Derivative-Free Algorithms · Multiscale Approach

1 Introduction

Determining the well production and injection rates is

of paramount importance in modern reservoir develop-

ment. The decision is difficult since the optimal rates

depend on the heterogeneity of the rock and liquids,

the well placements and other parameters. Indeed, these

properties and input parameters are coupled in a highly

nonlinear fashion. Moreover, the optimal production

and injection rates are usually not constant throughout

the life cycle of reservoir. The oil saturation distribu-

tion changes during the well injection and production
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processes. This will then affect the optimal production

and injection rate for each well.

Well control planning can be formulated as an op-

timization problem, using economic or cumulative oil

production as the objective function. The well rates or

bottom hole pressures at different times are the opti-

mization variables. Many optimization algorithms have

been investigated to solve such problems. These algo-

rithms can be broadly placed in two categories: derivative-

based algorithms and derivative-free algorithms [25].

Derivative-based or gradient-based algorithms, take

advantage of the gradient information to guide their

search. This type of algorithm, commonly used in well

control optimization, includes steepest ascent [42], con-

jugate gradient [2], and sequential quadratic program-

ming methods [25]. Gradients of the objective function

may be calculated by using an adjoint equation. This is

an invasive approach, requiring a detailed knowledge

of mathematics inside the reservoir simulator [25,8].

Other ways to approximate the gradients include meth-

ods such as finite difference perturbation [2], or the si-

multaneous perturbation stochastic approximation [42].

These algorithms assume a certain degree of smooth-

ness of the objective function with respect to the opti-

mization variables. Derivative-based algorithms are po-

tentially very quick to converge but sometimes fall into

local optimal.

Derivative-free algorithms can be subdivided into

local search methods and global search methods. Lo-

cal derivative-free algorithms include generalized pat-

tern search (GPS) [23], mesh adaptive direct search

(MADS) [25], Hooke-Jeeves direct search (HJDS) [25],

ensemble-based optimization (EnOpt) [32], covariance
matrix adaptation evolution strategy (CMA-ES) [7,31],

and so on. These methods have strong ability to find ac-

curate optima in a local space, but may face with some

difficulties in finding global optima, especially when a

good initial guess is not available. Global derivative-

free algorithms search through the entire space and

provide techniques to avoid being trapped in local op-

tima. Examples of global search algorithms include ge-

netic algorithms (GAs) [3], particle swarm optimization

(PSO) [26], and differential evolution (DE) [39,9]. Al-

though these algorithms are robust and easy to use,

they often require more function evaluations than lo-

cal search and derivative-based algorithms to converge.

However, most of these algorithms parallelize naturally

and easily, which make their efficiency satisfactory [10].

Recently, some hybridization of these techniques such

as PSO-MADS[23,26,22], multilevel coordinate search

(MCS) [24], etc., are developed and applied in well

placement and/or well control optimization problems.

These methods provide global search capabilities in ad-

dition to local convergence. The performance of MCS

for well placement and control optimization is discussed

in [43].

The optimization algorithms mentioned above can

be further classified as either stochastic or determinis-

tic. Stochastic methods use information from the pre-

vious iteration and a random element to generate new

search points. The random component of the algorithm

makes it more likely to avoid local optima, but it may

also make the control of solution quality difficult, espe-

cially with a limited computational budget. The stochas-

tic algorithms from the above list are MADS, CMA-ES,

GA, PSO, and DE. Deterministic methods have no ran-

dom element. For a given problem, deterministic meth-

ods will give the same results for each trial. GPS, HJDS,

and MCS are examples of deterministic algorithms.

All the above mentioned algorithms have been used

in well control optimization and/or well placement opti-

mization problems. The performance of the algorithms

are problem-dependent. Some of the algorithms, like

GPS (1960s), GA (1960s), and PSO (1990s), have been

around for decades, and have been used in petroleum

industrial problems for a relatively long time. People

has accumulated a great deal of experience through

case studies. CMA-ES, developed in 2000s [19], was

first used in petroleum related optimization problems

only in 2012 [7]. Though CMA-ES showed great perfor-

mance in solving well placement optimization problem

[7]; to date there has been little work to apply it in well

control problems.

Although many optimization algorithms have been

used, well control optimization is still challenging prob-

lem and an active area of research. The number of op-

timization variables is large in many real–life scenar-

ios. The required number of function evaluations will

rise sharply with the increase of the number of vari-

ables. A single function evaluation requires one reser-

voir simulation which is often very demanding in terms

of CPU time. The non-convex, non-smooth and multi-

modal objective surface further increases the optimiza-

tion difficulty.

It is difficult to find a reasonable frequency for well

control; an excessively low number of control adjust-

ments may not truly optimize oil recovery. Adjusting

each well control too frequently imposes an unrealistic

control burden on operations, increasing the total well

management cost. Moreover, imposing a high number

of control adjustments increases the complexity of the

optimization problem so much that there is a high risk

of optimization algorithms becoming trapped at local

optima and hence missing the optimal startegy [38].

Multiscale regularization approaches are developed to

address these problems. The main idea of the multi-
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scale approach is to start the optimization process with

a very coarse control frequency (and thus, with a small

number of control variables) and refine successively.

The solution at the coarse-scale is used as the initial

guess of controls for the next finer scale optimization

[38].

Lien et al. [30] used an adaptive multiscale regu-

larization approach with gradient-based algorithms for

well control optimization. The number and time of con-

trol adjustments are chosen based on heuristically de-

fined refinement indicators, which are calculated by us-

ing gradients of the objective function. Shuai et al. [38]

applied ordinary multiscale regularization, also called

a successive-splitting multiscale approach, to find ap-

propriate frequencies for well control adjustment. The

optimization starts with a coarse number of control ad-

justments and subsequently splits each control step into

two new ones at every iteration. Two optimization al-

gorithms are considered in their works: ensemble-based

optimization (EnOpt) [32,38] and bound optimization

by quadratic approximation (BOBYQA) [37]. More re-

cently, Oliveira et al. [32] provide an adaptive hierar-

chical multiscale approach with EnOpt and an adjoint

method for estimation of optimal well controls. The

number and lengths of controls are selected adaptively

by splitting/merging control steps on the optimization

proceeds. Most of the algorithms are gradient-based.

The performance and suitability of multiscale methods

combined with derivative-free algorithms for well con-

trol optimization still needs further attention and is the

focus of this paper.

Given the prevalence of the use of derivative-free op-

timization algorithms for well control optimization and

the need for a multiscale approach for problems with a

large number of control variables, we consider the nat-

ural marriage of the two philosophies. In this paper,

we combine a multiscale framework with three typi-

cal derivative-free optimization algorithms for the well

control problem. We choose a deterministic local search

method – generalized pattern search (GPS), a stochas-

tic local search method – covariance matrix adaptation

evolution strategy (CMA-ES), and a stochastic global

search method – particle swarm optimization (PSO).

The performance of each algorithm is analyzed with

two reservoir models. Although GPS, PSO and CMA-

ES are widely used in petroleum engineering and many

other areas, to the best of our knowledge there has been

no attempt to combine these methods with a multiscale

approach to solve the well control optimization prob-

lem. Furthermore, we give detailed discussions on the

following topics:

• The effects of control frequency on well control op-

timization, including the effects on the production

and the effects on the control strategy.

• The performance of GPS, PSO, and CMA-ES with

and without the multiscale framework for well con-

trol optimization.

• The performance of the approaches as a function of

computational budget and the effect of a parallel

environment.

• The best parameter settings for GPS, PSO, and

CMA-ES to maximize their performance within a

multiscale framework.

• The best configuration for the multiscale framework,

including the parameter settings and the choice of

hybridized algorithm.

This paper is structured as follows. Section 2 de-

scribes the well control problem formulation. Section

3 gives brief description of derivative–free optimization

methods used. Section 4 gives detailed description of

the multiscale approach used and the framework of com-

bining the multiscale approach with the three optimiza-

tion algorithms. In Section 5, we detail the computa-

tional methodology and describe the reservoir models

used in this paper. Section 6, we present the results and

discussion for the experiments. Finally, in Section 7, we

provide a summary and conclusions of this work.

2 The well control optimization problem

In this section, we describe the well control optimization

problem, including the objective function of interest,

the control variables and the imposed constraints.

The typical objective function associated with a well

control problem evaluates an economic model and takes

into account different costs such as the price of oil, the

costs of the injection and the production of water. An-

other alternative is to use the cumulative oil production

or the barrel of oil equivalent [7]. In this work, the objec-

tive function of interest is the net present value (NPV)

of a time series of cash flows. For the two-phase flow of

oil and water, the NPV is defined by

NPV (u) =

Nt∑
n=1

[
∆tn

(1 + b)
tn
τ

(
rgpq

n
gp(u) + ropq

n
op(u)

− cwpqnwp(u)− cwiqnwi(u)

)]
,

(1)

where u is set of control variables during the reservoir

productive lifetime; qngp, q
n
op and qnwp, respectively, de-

note the average gas rate, the average oil rate and the

average water rate for the nth time step; qnwi is the av-

erage water-injection rate for the nth time step; rgp and
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rop are the gas and oil revenue; cwp is the disposal cost

of produced water; cwi is the water injection cost; Nt
is total number of time steps; tn is the time at the end

of nth time step; and ∆tn is nth time step size. The

quantity τ provides the appropriate normalization for

tn, e.g., τ = 365 days. The quantity b is the fractional

discount rate.

The optimization variables u could contain the well

bottom hole pressures or the well liquid rates. In this

work, we control wells by specifying the liquid rates.

The vector u is anNu-dimensional column vector, where

Nu is the total number of well controls. Assuming each

well has the same frequency of control steps, then Nu =

Nt ·Nw, where Nw is the total number of wells and Nt
is the total number of time steps.

Well control optimization during the reservoir life

cycle can be expressed as the following mathematical

problem:

max NPV (u) , (2)

subject to ulb ≤ u ≤ uub, (3)

c (u) ≤ 0, (4)

e (u) = 0, (5)

where NPV (u) is the objective function given by equa-

tion (1). And, in order, equations (3–5) are the bound,

inequality, and equality constraints (if any) imposed on

the problem. The quantities ulb and uub are the lower

and upper bounds for control variables, where the in-

equality is understood to apply component–wise. There

are several methods which could be used to handle con-

straints in derivative-free optimization algorithms in

the literature [7]. In general, infeasible individuals can

be rejected, penalized, or repaired. Although all three

algorithms used in this paper can be adapted to handle

the three types of constraints, we restrict ourselves to

bound constraints only.

3 Overview of the derivative–free optimization

algorithms used

In this section, we briefly describe the derivative–free

optimization algorithms considered in this paper: GPS,

PSO, and CMA-ES. These are typical derivative–free,

black–box optimization algorithms. Each method has

distinct characteristics and all have been applied suc-

cessfully to solve reservoir development problems as

mentioned in the introduction.

3.1 Generalized Pattern Search

The generalized pattern search (GPS) is an example of

a direct search method. GPS is a deterministic local

search algorithm. It does not directly use or require the

gradient of the objective function to be specified (or

even to exist). Hence GPS can be used on functions

that lack smoothness, those that are not continuous or

differentiable. GPS can be applied in situations when

the objective function is rough and multi-modal and

hence the gradients do not guide directions of global

ascent [5,25]. GPS is guaranteed to converge to locally

optimal solutions and can provide useful approximate

solutions for some global problems [6,40,45].

A basic generalized pattern search proceeds as fol-

lows. Choose an initial point and evaluate the objective

function at that point. Then evaluate the function on a

pattern specified by set of directions and a step or mesh

size. After the search is complete along all the directions

of the pattern, the point with the highest function value

becomes the current point for the next iteration. The

step size for the next iteration will be multiplied by a

factor that is larger than 1 (an expansion factor) if one

or more previous moves found a better point, or a factor

between 0 and 1 (a contraction factor) if no better point

is found. In one iteration, if all pattern directions are

evaluated before choosing a new current point, we call

it a complete poll. The algorithm can also provide an

incomplete poll procedure instead of the complete one.

For an incomplete poll, the algorithm stops searching

along the directions as soon as it finds a point whose

objective function value is more than that of the cur-

rent point, and the point it finds becomes the current

point at the next iteration. The search stops when, for

example, a specified minimum step size may be reached.

The choice of the GPS pattern can dramatically af-

fect the performance of the algorithm. From the current

point, the pattern determines the search directions for

each iteration. The pattern is usually expressed as a set

of vectors {vi ∈ Rn : i = 1, · · · , r} which form a posi-

tive basis. Every vector in Rn can be written as a linear

combination a1v1 + · · · + arvr with all coefficients ai
are zero or greater. No vector of the positive basis can

be expressed by a positive linear combination of other

members of the basis. Using a positive basis is benefi-

cial in GPS because they give small numbers of search

directions [1]. Two positive basis are commonly used as

search directions in GPS, namely the maximal basis and

the minimal basis. For an n-dimensional optimization

problem, maximal and minimal basis sets have 2n and

n+ 1 vectors respectively [29]. Fig. 1 shows an example

of maximal positive basis (a) and a minimal positive

basis (b) in R2.
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(a) Maximal positive basis

(b) Minimal positive basis

Fig. 1 Maximal positive basis and minimal positive basis
vectors in R2.

For bound constrained problems, GPS needs a fea-

sible initial point and keeps feasibility of the iterates by

rejecting any trial point that is out of the feasible re-

gion. For an infeasible trial point, the objective function

is not evaluated and set to infinity.

As mentioned above, GPS is guaranteed to converge

to locally optimal solutions. Evaluating the objective

function at each point in a maximal basis and using

complete poll will be quite expensive, however, consid-

ering the complexity of well control problems we in-

deed choose the maximal basis and complete poll for

our tests. The expansion factor is set to 2, and the con-

traction factor is set to 0.5.

3.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-

based stochastic search method. The PSO search mech-

anism mimics the social behaviour of biological organ-

isms such as a flock of birds [28]. PSO can search very

large space of candidate solutions, and the stochastic

element of the movement of the population reduces the

chance of getting trapped at an unsatisfactory local op-

timum, however, PSO does not guarantee an optimal

solution is ever found. In spite of this, PSO has been

successfully applied for both well placement and pro-

duction optimization [35,34,26].

PSO initially chooses a population of candidate so-

lutions (called a swarm of particles). These particles

move through the search space in search of function im-

provement according to a random rule which updates

each particle’s position. Each particle’s position xki and

velocity vki changes during each iteration. For objec-

tive function f : Rn → Rn, both xki and vki are n-

dimensional vectors. The objective function value for

each particle, f(xki ), is evaluated simply using the posi-

tion of the particle. Each particle’s movement is guided

by the best position it has found so far, pki , and the

best known position of all particles or particles in some

neighborhood, gki .

Following initialization, the PSO algorithm [28] up-

dates each particle’s position and velocity as:

xk+1
i = xki + vk+1

i , (6)

and

vk+1
i = wvki +c1r

k
1⊗
(
pki − xki

)
+c2r

k
2⊗
(
gki − xki

)
. (7)

Equation 7 include three parts: vki represents the

tendency to continue moving along the particle’s cur-

rent direction and velocity,
(
pki − xki

)
represents the

tendency to move to the best position found by the

particle itself so far, and
(
gki − xki

)
represents the ten-

dency to move to the best position found by all parti-

cles in its neighborhood. The quantities w, c1 and c2 are

weighting parameters and rk1 and rk2 are stochastic n-

dimensional vectors which are generated from the uni-

form distribution on (0, 1) during each iteration. The

operator ⊗ indicates component–wise multiplication.
The random element helps ensure that PSO avoids pre-

mature convergence to a local minimum by facilitating

sufficient global exploration of the search space [28,41].

Here we use an absorbing strategies to handle bound

constraints for PSO. The invalid particles are set to

the nearest boundary position. The respective velocity

components are set to zero [21,12].

Unlike local search methods, such as GPS, the PSO

algorithm may avoid local optima with its stochastic

and global search capability. PSO has been used in

petroleum and other fields with excellent effect. How-

ever, no number of function evaluations can guarantee

convergence to the global optima. The selection of the

algorithmic parameters has a considerable affect on the

performance of the algorithm [11,36]. For the parame-

ters w, c1 and c2, Perez et al. [36] demonstrated that

the particle swarm is only stable if the following two

conditions are satisfied:

0 < (c1 + c2) < 4, (8)
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and

1

2
(c1 + c2)− 1 < w < 1. (9)

Following the above principles, our implementation

of PSO uses weighting parameters of w = 0.9, c1 = 0.5,

and c2 = 1.25. We use a global best neighbourhood

topology, meaning that every particle communicates

with every other particle in the swarm, and thus gki can

be replaced by a single vector gk, representing the best

solution found so far. Evaluating the objective function

for all members of the swarm is an embarrassingly par-

allel operation.

3.3 Covariance Matrix Adaptation Evolution Strategy

Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) is a population-based stochastic optimization algo-

rithm. Unlike GA, PSO, and other classical population-

based stochastic search algorithms, candidate solutions

of CMA-ES are sampled from a probability distribution

which is updated iteratively. This algorithm performs

better on the benchmark multimodal functions than all

other similar classes of learning algorithms [44]. CMA-

ES also showed its potential in well placement and con-

trol optimizations [7,13].

CMA-ES samples a population of λ candidate solu-

tions at iteration k according to:

xki = N
(
mk, (σk)2Ck

)
, for i = 1, · · · , λ, (10)

where N (· · · , · · · ) is a random vector from a multivari-

ate normal distribution.

The mean vector mk represents the favorite solu-

tion or best estimate of the optimum, and the covari-

ance matrix Ck is a symmetric positive definite matrix

which characterizes the geometric shape of the distribu-

tion and defines where new candidate solutions are sam-

pled. The step-size σ is used as a global scaling factor

for the covariance matrix. It aims at achieving fast con-

vergence and preventing premature convergence. These

three parameters are updated as the iteration proceeds.

The λ individuals generated by equation (10) are

evaluated and ranked by objective function value. The

mean mk is then updated by taking the weighted mean

of the best µ individuals:

mk+1 =

µ∑
i=1

ωix
k
1:λ (11)

where xk1:λ is the ith best individual.

The default weights [4] are chosen as

ωi =
ln (µ+ 1)− ln (i)

µ ln (µ+ 1)− ln (µ!)
, for i = 1, · · · , µ. (12)

Typically µ is chosen as µ = bλ/2c, where b c is the floor

function, and ωi are strictly positive and normalized

weights.

The covariance matrix Ck is then updated as

Ck+1 = (1− ccov)Ck +
ccov

µcov
pk+1
c p(k+1)

c

T

+ ccov

(
1− 1

µcov

)
×

µ∑
i=1

ωi

σ(k)2

(
xk+1
i:λ −mk

)(
xk+1
i:λ −mk

)T
,

(13)

where quantity pkc is called the evolution path. It gives

a direction where we expect to see good solutions. The

evolution path is given iteratively as

pk+1
c = (1− cc)pkc+

√
cc (2− cc)µeff

mk+1 −mk

σk
, (14)

where cc is a constant in (0, 1]. The quantity µeff =

1/
∑µ
i=1 ω

2
i denotes the variance effective selection mass.

It is a measure characterizing the recombination. From

equation (14) we can see that the new search direction

pk+1
c is based on the old direction pkc and the descent

direction mk+1−mk

σk
.

The adaptation of the global step size σk+1 is given

by

σk+1 = σk exp

[
cσ
dσ

( ∥∥pk+1
σ

∥∥
E ‖N (0, I)‖

− 1

)]
(15)

which depends on the conjugate evolution path pk+1
σ

given by

pk+1
σ = (1− cσ)pkσ

+
√
cσ (2− cσ)µeffσ

k−1
Ck−

1
2
(
mk+1 −mk

)
.

(16)

In combination with covariance matrix adaptation,

step-size adaptation enables linear convergence on a

wide range of, even ill-conditioned, functions [7].

Fig. 2 is an illustration of an optimization run with

CMA-ES on a two-dimensional linear function f(x) =

x2
1 + x2

2 with bound constraints x1, x2 ∈ [−800, 800].

The dashed lines are the contour lines of the function.

The initial point is [−200,−200]. The optimal solution

is [0, 0] and is marked by blue symbol ‘x’. The orange

and gray dots denote the population distribution for

the current and the last iteration, respectively. The red

cross (‘+’) and the red ellipsoid denote the symmetry

center m and the isodensity line of the distribution for

the current iteration, while the black cross and the black
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ellipsoid give these quantities for the last iteration. The

isodensity line defined as (x − m)TC−1(x − m) = c

where the constant c = 3 [7]. The population is much

larger than necessary, but the figure clearly shows how

the distribution of the population changes during the

optimization.

For bound constrained problems, CMA-ES can sim-

ply ‘repair’ an infeasible individual to its nearest feasi-

ble solution by using a repair algorithm before the up-

date equations are applied [18]. This strategy is not rec-

ommended because CMA-ES makes implicit assump-

tions on the distribution of individuals. The distribu-

tion can be violated by a repair. Here we choose the

penalization strategy from [16,7]. The infeasible points

are repaired by using the repair algorithm and evalu-

ated, and a penalty is added to the function value for

every repaired point. The penalty is dependent on the

distance to the repaired solution.

Our implementation of CMA-ES uses the parame-

ters given in the work of Hansen et al. [17]. The param-

eter values are given in Table 1. The initial values used

are p0
σ = p0

c = 0 and C0 = I, while x(0) and σ0 are

user supplied.

Table 1 Strategy parameter values used in CMA-ES from
[17].

Parameter Value

λ 4 + b3 ln(n)c
µ bλ/2c
cc

4
n+4

cσ
µeff+2

n+µeff+3

dσ 1 + 2 max
(

0,
√
µeff−1
n+1

− 1
)

+ cσ

µcov µeff

ccov
1
µcov

2

(n+
√

2)2
+
(

1− 1
µcov

)
min

(
1, 2µeff−1

(n+2)2+µeff

)

4 A Multiscale framework

In production optimization, specifying the frequency of

needed well control adjustment is a challenge. On one

hand, a high frequency adjustment of control parame-

ters imposes unrealistic burden on operations, leading

to an increase in well management costs. In addition,

from an optimization perspective a high frequency of

control adjustments implies an explosion in the num-

ber of control variables, requiring a great amount of

computation and time to get an optimal solution. This

may be especially true for derivative-free algorithms,

which may need many more function evaluations than

gradient-based algorithms. Many degrees of freedom

also increase the risk of an optimization algorithm be-

ing trapped in a local optimum. On the other hand,

imposing too few control adjustments may not truly

optimize oil recovery.

Multiscale regularization provides a way to address

the complexity of the optimization problem with a large

number of control adjustments. The multiscale approach

starts with a coarse number of control steps and suc-

cessively increases the frequency of control adjustments

using the coarse-scale solution as the initial guess for

the next finer scale optimization [30,32,38]. The refine-

ment process is terminated when a specified stopping

criteria is satisfied. For example, a maximum number

of control adjustments or a minimum allowable change

in the objective function could be imposed.

To the best of our knowledge, three related mul-

tiscale approaches have been investigated for the well

control optimization problem. The first approach, first

seen in [30], is referred to as ordinary multiscale or

successive-splitting multiscale [38] . The optimization

starts with a coarse number of control adjustments and

subsequently splits each control step into two new ones

at every iteration. The second optimization strategy,

also proposed by Lien et. al. [30], uses the magnitude

of the components of the gradient of the objective to de-

termine refinement indicators. The algorithm progres-

sively increases the number of variables using the re-

finement indicators to choose the most-efficient parti-

tioning of the current control steps to increase the value

of the objective function. The third approach is called

the hierarchical multiscale method [32,33]. It is simi-

lar to the ordinary multiscale approach in [30,38], but

the algorithm can also merge existing control steps by

considering the difference between well controls at two

consecutive control steps and the gradient of the objec-

tive function with respect to the well controls.

The goal of the present work is to explore the fea-

sibility of improving the performance of derivative-free

algorithms in solving large scale well control optimiza-

tion problems by using a multiscale approach. We choose

the successive-splitting multiscale approach because the

other two methods, the refinement indicator multiscale

approach and the hierarchical multiscale approach, re-

quire gradient information of the objective function –

information we do not assume is available. Furthermore,

one recent study compared the sophisticated refinement

indicator and hierarchical multiscale approaches with

the simpler successive-splitting approach and showed

similar performance [32].

Before we introduce our modified approach, we take

a look at the original successive-splitting multiscale ap-

proach. As Shuai et al. describe in [38], the successive-
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(a) Iteration 1 (b) Iteration 3 (c) Iteration 5

Fig. 2 An illustration of CMA-ES optimization on a two-dimensional linear function f(x) = x21 + x22. The dashed lines are
the contour lines of the function. The optimal solution is in the upper right corner. The orange and gray dots denote the
population distribution for the current and the last iteration, respectively. The black cross (’+’) and the black ellipsoid denote
the symmetry center and the isodensity line of the distribution for the current iteration, while the gray cross and the gray
ellipsoid are for the last iteration.

splitting multiscale algorithm generally loops over the

following steps:

1) INITIALIZATION One control step for each well

(initial steps n0 = 1); The number of unknowns

is equal to the number of wells; Initial guesses of

control are assigned to each well.

2) OPTIMIZATION Solving the well control optimiza-

tion problem using an optimization algorithm.

3) SPLITTING Split each control step into two steps

of equal length (split factor ns = 2); This doubles

the number of control variables; Use the solution

from step 2) as the initial well control; Go to step

2).

Our experience indicates the efficacy of a multiscale

approach depends on two key parameters: the num-

ber of control steps for each well at the beginning of
the optimization (i.e. the number of initial steps n0)

and the multiplicative increase in the number of con-

trol steps at every iteration (i.e. the split factor ns).

As mentioned, the successive-splitting multiscale ap-

proach used in [38] starts the optimization procedure by

finding the optimal control strategy assuming one con-

trol step (n0 = 1). Subsequent optimizations split the

number of control steps by a fixed split factor ns = 2.

We show that this configuration of the two parameters

is not always the most efficient configuration. On one

hand, the optimal well control strategies with a very

coarse parametrization may be dramatically different

than with a fine parametrization (or large number of

control adjustments). Hence the solution found by a

very coarse parametrization is not useful as an initial

guess to find the optimal fine parametrization or will re-

quire many successive splittings. This observation has

to be balanced with the realization and motivation that

the problem with a large number of control adjustments

is too difficult solve immediately. The split factor is the

key to balance the difficulty of optimization problem

at each scale and the total number of scales. With a

higher split factor, less scales are needed to reach the

maximum number of control steps. We will show this is

more efficient in some cases.

Based on the above, in addition to coupling the mul-

tiscale approach with commonly used derivative free al-

gorithms, we consider the effect of the choice of the ini-

tial number of control number steps n0 and the choice

of ns in the overall efficiency of the multiscale opti-

mization process. We show this added flexibility in our

algorithm is useful in some situations. In our modified

multiscale approach, we left the choice of the initial

number of steps and the choice of the split factor to the

user. We start the multiscale algorithm with a reason-

ably small value of n0 – the initial number of control

steps, and then find the associated optimal controls.

After maximizing objective function on the basis of the

initial control steps, we split each control step into sev-

eral steps depending on the split factor ns as

xi+1(n) = xi∗(dn/nse), n = 1, 2, · · · , Nw × ns, (17)

where xi+1(n) is the nth variable in the initial guess

for the (i+1)th scale; xi∗(dn/nse) is the dn/nseth vari-

able in the optimum solution for the ith scale, d e is the

ceiling function; Nw is the total number of variables for

the ith scale. With this formula, the total number of

variables for the (i+ 1)th scale becomes Nw × ns, and

every ns variables for the (i + 1)th scale use the opti-

mum solution of the ith scale. This process of splitting

the control steps and performing a new optimization is

continued until the maximum number of control steps

is reached.

Fig. 3 gives an illustration of how the successive-

splitting multiscale approach splits the control steps to

give the next finer scale. In this figure, we show the

resulting number of control steps for two choices of ns
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(ns = 2 and ns = 4) assuming the number of initial

steps is n0 = 2.

Control step=2

ns=2 ns=4

Control step=4 Control step=8

Fig. 3 Control steps split by the successive-splitting multi-
scale approach.

Our well control optimization procedure using a derivative-

free multiscale approach is described by the following

steps (Algorithm 1). A flow chart of the algorithm is

given in Fig. 4.

Algorithm 1 The multiscale approach with derivative-

free algorithms
select solver: GPS, PSO or CMA-ES
set initial control steps for each well n0, and the split factor
ns
set initial guess x0

iteration i← 0
while not (global stopping criteria reached) do

while not (scale stopping criteria) do
solve x∗ = argmax NPV (x)

end while
let xi∗ = x∗
split, set control steps for each well ni+1 ← ni × ns
update the initial guess, xi+1(n) = xi∗(dn/nse), n =
1, 2, · · · , Nw × ns
test the scale stopping criteria

end while

At early scales of the algorithm, optimizations are

performed with less stringent convergence tolerances to

find an approximate solution. The tolerances are made

smaller as the algorithm proceeds, using the smallest

tolerance at the last scale. With this approach, we re-

duce the computational cost at early scales. The toler-

ance settings for the experiments can be found in Sec-

tion 6.

5 Example cases

In this section, we list all approaches considered, and

give a detailed description of the reservoir models used

in this paper.

Fig. 4 Flow chart of well control optimization with multi-
scale approach and derivative-free algorithms.

5.1 Optimization Approaches

Approaches considered in this paper include the three

original optimization algorithms, GPS, PSO, and CMA-

ES as described in Section 3 and three hybrid approaches

that combine the original algorithms with our modified

multiscale method described in Section 4. The hybrid

multiscale approaches are labeled as M-GPS, M-PSO,

and M-CMA-ES.

To investigate the effect of n0 and ns, we test four

different configurations for each hybrid approach. We

use the Roman numerals I, II, III, and IV to represent

the four configurations. The configurations used are:

• Configuration I, —the initial number of control steps

for each well is n0 = 1 and the split factor is ns = 2.

With this configuration, the multiscale method is

the same as the successive-splitting multiscale method

from [38].

• Configuration II, —the initial number of control steps

for each well is n0 = 2 and the split factor is ns = 2.

• Configuration III, —the initial number of control

steps for each well is n0 = 2 and the split factor is

ns = 4.
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• Configuration IV, —the initial number of control

steps for each well is n0 = 1 and the split factor is

ns = 4.

Fig. 5 provides an overview of all approaches con-

sidered in our experiments. The approaches fall into

different quadrants according to their search features.

CMA-ES

M-CMA-ES

M-CMA-ES-I

M-CMA-ES-II

M-CMA-ES-III

M-CMA-ES-IV

Global 

Search

Local 

Search

Stochastic 

Search

Deterministic 

Search

PSO

M-PSO

M-PSO-I

M-PSO-II

M-PSO-III

M-PSO-IV

GPS

M-GPS

M-GPS-I

M-GPS-II

M-GPS-III

M-GPS-IV

Fig. 5 An overview of all approaches we considered in our
experiments. The approaches fall into different quadrants ac-
cording to their search features.

5.2 Model description

Two reservoir models are considered in this paper. The

first one is a simple 2-D reservoir model. This model

is used to analyze the performance of the approaches

mentioned in Section 5.1. The second model is a real-

world reservoir model, and we apply the multiscale ap-

proaches to this model to optimize the control strategy.

5.2.1 Model 1: 5-spot model

The first model is a single-layer reservoir containing

four producing wells and one injection well in a five-spot

well pattern [32]. The reservoir model is represented by

a 51 × 51 uniform grid (4x = 4y = 10m; 4z = 5m).

We consider only oil-water two phase flow. The reser-

voir permeability field and well placements are shown

in Fig. 6. We note that there are four different regions of

homogeneous permeability. The permeabilities are 1000

mD for the two high-permeability regions, and 100 mD

for the two low-permeability regions. The porosity, net-

to-gross ratio, and initial water saturation are all 0.2 at

all grid blocks.

The reservoir lifetime is set to 720 days. The injec-

tion well INJ-01 (in Fig. 6) is not controlled, the liq-

uid rate is fixed at 240 m3/d. The liquid rates of four

Fig. 6 The permeanbility field (mD) for model 1.

producing wells are the optimization variables. Bound

constraints are considered for the producing wells. The

lower bound is set to 0 m3/d and the upper bound is

80 m3/d for PRO-01 & PRO-03 while 0 m3/d and 40

m3/d are the lower and upper bounds for PRO-02 &

PRO-04. The initial rates of all producing wells are 20

m3/d.

The objective function we use for this model is the

NPV (see equation (1)) and the corresponding economic

parameters are given in Table 2.

Table 2 Economic parameters used for model 1.

Parameter Value

Oil revenue USD 500.0/m3

Water-production cost USD 250.0/m3

Water-injection cost USD 80.0/m3

Annual discount rate 0

We use Eclipse 100 [15], a commercial reservoir sim-

ulation software from Schlumberger Ltd., to calculate

the relevant time-dependent production information for

every well for all experiments in this paper.

5.2.2 Model 2: PUNQ-S3

The second reservoir model is the PUNQ-S3, which is

a small-size reservoir model based on the North Sea

reservoir [14]. The model contains a three phase gas-

oil-water system with 19 × 28 × 5 grid blocks, of which

1761 blocks are active. The field contains 6 production

wells but no injection wells are present due to the strong

aquifer. Fig. 7 shows the tops (depth of the top phase),

permeability and oil saturation present in the model.
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(a) Tops (b) Permeability (c) Oil saturation

Fig. 7 Property and wells of PUNQ-S3 field.

We use a production period of 3840 days (about 10

years), with a minimum control interval of 120 days.

The initial liquid rates for all wells are 100 m3/d. The

lower bound is set to 0 m3/d and the upper bound is

200 m3/d for all wells. BHP bounds are also considered

in this example. The lower BHP bounds are set to 12

MPa and no upper bound is enforced for any producers.

The economic parameters for the NPV calculation are

given in Table 3.

Table 3 Economic parameters used for PUNQ-S3.

Parameter Value

Gas revenue USD 0.5/m3

Oil revenue USD 500.0/m3

Water-production cost USD 80.0/m3

Annual discount rate 0

6 Results and discussion

6.1 Effects of control frequency on well control

optimization

To show the effect of the control frequency on the NPV

for the first model, as described in Section 5.2.1, we turn

off the multiscale approach and optimize using four dif-

ferent, fixed control frequencies. Four control frequen-

cies are considered and these constitute four variations

of the optimization problem:

• Case 1A, each well is produced under a liquid rate

throughout its lifetime. This gives 4 optimization

variables in total.

• Case 1B, the liquid rate for each well updated every

360 days (2 control periods). This gives 8 optimiza-

tion variables in total.

• Case 1C, the liquid rate for each well updated every

90 days (8 control periods). This gives 32 optimiza-

tion variables in total.

• Case 1D, the liquid rate for each well updated ev-

ery 22.5 days (32 control periods). This gives 128

optimization variables in total.

Three optimization algorithms, GPS, PSO, and CMA-
ES, are applied to each case to find the optimal controls

and the corresponding NPV.

6.1.1 Optimal NPV under different control frequencies

Fig. 8 compares the optimal NPV under different con-

trol frequencies for this model. The results shown are

the best values found using all the optimization ap-

proaches. Well control with a reasonable frequency is

necessary — we obtain a significantly higher NPV than

what is possible when using a fixed rate over the life

cycle (Case 1A). It is clear that with the increase of

the number of control adjustments, the optimal NPV

grows more and more slowly. The increase in maximum

NPV found is very slight (0.28 %) when the number

of control steps for each well increases from 8 (Case

1C) to 32 (Case 1D). There is no need to adjust well

rates too frequently. We will not see a considerable rev-

enue increase and the increase in the number of con-

trol adjustments will increase operation costs. Also the
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problem with a large number of control adjustments

is harder to optimize and have a higher risk of falling

into a local optima (see Section 6.2.2). This justifies the

use of multiscale approach to determine an appropriate

control frequency.
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Fig. 8 Optimum NPV for cases with different control fre-
quencies.

6.1.2 Optimal controls under different control

frequencies

Fig. 9 presents optimum controls for wells PRO-01 and

PRO-02 under different control frequencies. We omit

the results for well PRO-03 and PRO-04 because the

reservoir is symmetric. The optimum controls become

more like a bang-bang solution for all wells with an in-

crease in the number of control steps. It is worth noting

that the optimum controls for Case 1A are significantly

different that those for Cases 1B–1D. This reflects the

different production strategies for wells using a static

rate compared to using dynamic well controls in water

flooding reservoirs. The similarity of optimum controls

between different control frequencies is important for

the success of a multiscale framework. As the multiscale

approach uses the optimal controls found in iteration i

as the initial guess for iteration i + 1, a good initial

guess could accelerate optimization process and a bad

initial guess may mislead the optimizer to wrong search

areas and directions (see Section 6.2.1). Indeed Fig. 9

shows this required similarity as the number of control

steps is increased.

6.2 Performance of GPS, PSO, and CMA-ES for well

control optimization

In this section we address the performance of GPS,

PSO, and CMA-ES for well control optimization with-

out the use of the multiscale framework. We use the

same test cases as in Section 6.1. We use the maximum

number of simulation runs as the stopping criterion, and

this value is set to 100 times the number of control vari-

ables. As PSO and CMA-ES are stochastic algorithms,

10 trials are performed for these two algorithms to as-

sess the average performance.

6.2.1 Parameter tuning and the effect of the initial

guess on GPS, PSO, and CMA-ES

The performance of the optimization algorithms are af-

fected by the choice of their parameter values. In this

section, we complete parameter tunings for GPS, PSO,

and CMA-ES to improve their performance in solving

well control optimization problems. Here we perform

a tuning study for two choices of initial guesses. The

good initial guess is chosen to mimic the initial guess

provided by the multiscale algorithm. The bad initial

guess is purposely chosen to be far away from the opti-

mal controls.

We hypothesize that the performance of the local

search algorithms are highly affected by the initial guess,

while the stochastic global search algorithms are not.

We take Case 1B as an example and use the three dif-

ferent initial guesses shown in Table 4. For each initial

guess, 10 trials were performed for PSO and CMA-ES

and 1 trial for GPS (since it is a deterministic algo-

rithm).

Table 4 Three initial guesses for GPS, PSO, and CMA-ES.

Type Initial guess NPV, ×106 USD
good [20, 20, 20, 20, 20, 20, 20, 20] 5.0009

medium [20, 20, 40, 40, 40, 40, 20, 20] 2.6484
bad [0, 40, 0, 80, 0, 80, 0, 40] -4.2826

Fig. 10 shows the plots of NPV versus the number

of simulations for GPS, PSO, and CMA-ES. Each line

represents one trial. The early convergence of GPS and

PSO is affected by the choice of the initial guess. CMA-

ES recovers quite quickly from the bad initial guess,

even converges more quickly than from a good initial

guess in some cases. With a large number of simulation

runs, the effect of initial guess for all three algorithms

is quite small. This suggests that if we want to make

efficient use of the multiscale approach, the number of

simulations at each scale should be limited.

Again using a good and a bad initial guess, we an-

alyzed the effect of the other parameters for PSO and

CMA-ES, to find out the primary parameters which af-

fect the performance of the algorithms. For PSO, the

algorithm parameters include the population size λ, and

the parameters ω, c1, and c2. Three levels are cho-

sen for each parameter. For CMA-ES, the algorithm
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Fig. 9 Optimum well control for cases with different control frequencies.

parameters include the population size λ, the parent

number µ (number of candidate solutions used to up-

date the distribution parameters), the recombination

weights ω, and the parameter σ, which determines the

initial coordinate-wise standard deviations for the search.

For each parameter choice, 10 trials are performed

for Case 1B with a good and a bad initial guess to start

the optimization. We use the best NPV obtained af-

ter 20% of maximum simulation runs as the evaluation

criterion of the algorithm’s performance. We mainly fo-

cus on the performance of the algorithms at an early
stage because the multiscale framework requires a good

early stage performance for the hybrid optimization al-

gorithm. Also our test results showed that the perfor-

mance of the algorithms are less sensitive to the param-

eter values at a later stage. The performance for each

parameter choice is shown in the beanplots in Fig. 11

and Fig. 12. A beanplot [27] promotes visual compar-

ison of univariate data between groups. In a beanplot,

the individual observations are shown as small points

or small lines in a one-dimensional scatter plot. In addi-

tion, the estimated density of the distributions is visible

and the mean (bold line) and median (marker ‘+’) are

shown.

From Fig. 11 we can see that for PSO the popu-

lation size plays the most important role in the algo-

rithm’s ability to utilize the good initial guess. When

the population size equals 20 or 50, PSO with a bad

initial guess obtains a similar NPV as PSO with a good

initial guess. This is because with the same number

of simulation runs, PSO with a small population size

can evolve more generations, and this decreases the af-

fect of the initial guess. The bigger population size, the

smaller the variability in the NPV results with a similar

mean value. For these reasons, we choose λ = 100 for all

subsequent PSO experiment. Parameter c2 is one of the

weighting parameters, the bigger c2, the greater the ten-

dency for the particles to fly towards the best location

found so far. We suggest a bigger c2 when combining

with the multiscale approach. The parameters ω and

c1 have no obvious affect in this case. Generally for all

parameter values PSO responds favorably to the better

initial guess.

From Fig. 12 we can see that for CMA-ES the good

initial guess gives a higher average NPV with smaller

variability. For this problem, the best configuration is

σ = 0.3, λ = 10, µ = 2, and ω = superlinear; this

is also the default configuration of CMA-ES. In fact,

according to the work of [20], since finding good pa-

rameters is considered as part of the algorithm design,

CMA-ES does not require significant parameter tuning

for its application. The choice of parameters is not left

to the user (arguably with the exception of population

size σ).

6.2.2 Performance with different control frequencies

Table 5 and Fig. 13 show the performance of GPS, PSO,

and CMA-ES for well control optimization problems

with different control frequencies. In Table 5, the maxi-

mum, minimum, mean, median, and standard deviation

of the NPV for each case are given. From the table we
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Fig. 11 Beanplots of the NPV for various parameter settings of PSO. The left side of each beanplot gives the results obtained
with a good initial guess, and the right side gives the results obtained with a bad initial guess. The individual dots show the
NPV obtained by each trial. The background pink and green colors show the distribution of results. The short horizontal line
and the marker ‘+’ denote the mean and median of all 10 trials, respectively.

can see that, for Case 1A, which has only 4 variables,

GPS obtains the highest NPV after 400 simulation runs.

Similar results are found in Case 1B. In Case 1C, the

maximum NPV of CMA-ES exceeds the GPS, but the

mean and median NPV for CMA-ES are lower than

these of GPS. In these three cases, although the final

NPV of GPS is larger than the final NPV for CMA-ES

and PSO, the difference of the mean/median NPV for

the three algorithms is quite small (less than 2%). In

Case 1D, which has 128 variables, the NPV obtained

by GPS is obviously lower than CMA-ES. Generally,

CMA-ES showed excellent performance in most cases.

GPS performs best when the problem dimension is very

small.

Fig. 13 shows the plots of NPV versus the number

of simulation runs for the four cases. In this figure, we

use a solid line to show the median NPV of each algo-

rithm, and use the same color as the line to fill the area

between the maximum and minimum NPV for each al-

gorithm. These plots clearly show the performance of

GPS, PSO, and CMA-ES using different computational

budgets. GPS obtains the highest NPV for Case 1A–

1C at the end of optimization. But the budget (number

of simulation runs) required for GPS grows rapidly as

the dimension of the problem increases. GPS converged

with no more than 50% of total budget for Cases 1A and

1B, and about 80% of the total budget for Case 1C. For

Case 1D, GPS did not converge after 100D simulation

runs. CMA-ES obtains almost as high a NPV as GPS

for Case 1A–1C, and it obtains highest NPV for Case

1D. Furthermore, CMA-ES showed an excellent perfor-

mance when the budget is limited. PSO outperforms

GPS for a low budget and a large problem dimension,

but it still can not beat CMA-ES in these cases.

Since PSO and CMA-ES are stochastic algorithms,

the performance is different for each trial. In Table 5

we can see the standard deviation for PSO is larger

than the standard deviation for CMA-ES. In Figure 13

we can see that the best NPV obtained has a higher

variation for low computational budgets than for high

budgets. For PSO, the variability did not decrease in

Case 1C and 1D as the algorithm converged.

To investigate further, we choose 2 of the 32 vari-

ables and 5 of the 10 trials for Case 1C and then com-
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Fig. 12 Beanplots of the NPV for various parameter settings of CMA-ES. The left side of each beanplot gives the results
obtained with a good initial guess, and the right side gives the results obtained with a bad initial guess. The individual dots
show the NPV obtained by each trial. The background pink and green colors show the distribution of results. The short
horizontal line and the marker ‘+’ denote the mean and median of all 10 trials, respectively.

Table 5 Results for Cases 1A-1D for Model 1 using GPS, PSO, and CMA-ES. Values shown are NPV (×106 USD).

Case Algorithm Trials Max Min Mean Median Std.
1A GPS 1 5.3132 5.3132 5.3132 5.3132 -

PSO 10 5.2850 5.1850 5.2603 5.2720 0.0310
CMA-ES 10 5.3121 5.2969 5.3034 5.3045 0.0048

1B GPS 1 10.3539 10.3539 10.3539 10.3539 -
PSO 10 10.3200 9.4220 10.0840 10.1700 0.2819
CMA-ES 10 10.3536 10.3511 10.3527 10.3528 0.0008

1C GPS 1 12.3470 12.3470 12.3470 12.3470 -
PSO 10 12.2700 11.3800 11.9660 12.1050 0.2966
CMA-ES 10 12.3474 12.3447 12.3466 12.3467 0.0007

1D GPS 1 9.5083 9.5083 9.5083 9.5083 -
PSO 10 11.7000 10.2300 11.1290 11.1700 0.4910
CMA-ES 10 12.4285 12.3466 12.4054 12.4178 0.0315

pare the population distribution of CMA-ES and PSO

at different iterations. The resulting scatter diagrams

are shown in Fig. 14. In Case 1C, the population size

is 100 for PSO, and 14 for CMA-ES. Hence after same

number of simulation runs, CMA-ES and PSO are at

different iteration numbers. After 500 simulation runs,

CMA-ES is at the 36th iteration, while PSO is at the

5th iteration. After about 3000 simulation runs (Fig.

14(d) and 14(h)), we can see that PSO has converged to

different locations for each trial. Compared with CMA-

ES, PSO is more easily falls into local optima in our

test cases, in spite of the larger population size and the

ability search the entire space.

6.2.3 Performance in parallel environments

GPS, PSO, and CMA-ES parallelize naturally. Here we

investigate the performance of these three algorithms

in parallel environments. Table 6 gives the population
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Fig. 13 Optimization performance for well control problems using GPS, PSO and CMA-ES. The solid lines are median NPV
over all 10 runs of PSO and CMA-ES without the multiscale framework. And the areas between maximum and minimum NPV
are filled with the corresponding color. Note that the x-axis scale is different for each case.

sizes of GPS, PSO, and CMA-ES in Cases 1A–1D. The

population size for GPS and CMA-ES are decided au-

tomatically by the algorithms based on the problem di-
mension. For a D-dimensional problem, the population

size equals 2D for GPS, and 4+b3 ln (D)c for CMA-ES.

The population size for PSO is usually decided by the

user and we use 100 for all cases (more discussion on

the population size is given in Section 6.2.1).

In a parallel environment, we can evaluate a number

of individuals, up to the number of processors, simul-

taneously. Note that we are not able to evaluate the

individuals from different iterations at the same time.

For well control optimization problems, the computa-

tion time is mainly spent evaluating the reservoir sim-

ulation, a parallel environment can greatly reduce the

time of optimization.

Assume we have three parallel environments, with

8, 32, and an infinite number of processors, respec-

tively. Fig. 15 compares the parallel performance of

GPS, PSO, and CMA-ES in the parallel environments

to the performance in a sequential environment. We

use the number of runs as the y-axis in this figure. One

run evaluates a number of potential solutions up to the

Table 6 Population size of GPS, PSO, and CMA-ES for
Case 1A-1D. D is the number of variables in the problem.

Case D GPS PSO CMA-ES
1A 4 8 100 8
1B 8 16 100 10
1C 32 64 100 14
1D 128 256 100 18

number of processors. In an iteration, if the number of

potential solutions is less than the number of proces-

sors, then all the potential solutions are evaluated in a

single run, with some processors idle. The number of

runs is equal to the number of simulations if we have

only one processor.

In Fig. 15, we compare the number of runs needed

to get from the initial NPV to 50% of the final NPV,

as well as the number of runs needed to reach the max-

imum number of simulator evaluations (100 times the

problem dimension). From this figure we can see that,

with the increase of processors, the number of runs

required for GPS, PSO, and CMA-ES decrease, until

the number of processors is larger than the population

size. For an algorithm, the larger the population size,
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Fig. 14 Scatter diagrams for CMA-ES and PSO for Case 1C. The bracketed number in the caption of each sub-figure is the
iteration number. Points represent the candidate solutions at this specific iteration.

the greater the benefits from the parallel environment.

With an increase in the number of processors, the or-

der of three algorithms changes. For Case 1A, GPS per-

forms best followed by CMA-ES and PSO in the sequen-

tial environment (number of processors equals 1). The

order becomes GPS>PSO>CMA-ES when the number

of processors reaches 32. Furthermore, with enough pro-

cessors (≥ 100), the order becomes PSO>GPS>CMA-

ES. The order also changes depending on the number

of processors for Case 1B–1D. Generally, A parallel en-

vironment can greatly reduce the time spent for these

algorithms. PSO can outperform GPS and CMA-ES in

performance if the number of processors is large enough.

6.3 Multiscale optimization for Model 1

In this section we address the performance of the mul-

tiscale approaches (M-GPS, M-PSO, and M-CMA-ES)

for well control optimization. We use the first model as

described in Section 5.2. We stop the optimization at

each scale when the average relative well rate change

is less than 10% of the distance between the upper

and lower bounds on the well rates. The scale will no

longer be refined when the relative change in the NPV

is < 10% between two neighboring scales. The maxi-

mum number of simulation runs for the problem is set

to 3200. As M-PSO and M-CMA-ES are stochastic al-

gorithms, 10 trials were performed for these two algo-

rithms to assess the overall performance.

6.3.1 Performance of the multiscale approaches

As in Section 5.1, we consider four configurations for

each multiscale approach. As a first test, the multiscale

optimization process is terminated when the number of

control steps reaches 8 each well for configuration I–III,

and 16 each well for configuration IV.

The plots of NPV versus the number of simula-

tion runs for the different multiscale approaches and

the different configurations, as well as the plots for the

standard algorithms (GPS, PSO, CMA-ES) with 8 pre-

set control steps for each well, are shown in Fig. 16.

From the figure we see that compared with direct op-

timization with 8 well control adjustments, both GPS

and PSO converge faster when using the multiscale ap-

proach. GPS convergence improves the most amongst

the three algorithms. Fig. 16(b) showed that for this

test case, M-PSO could locate a control strategy which

gives a higher NPV than PSO. The performance of

CMA-ES (Fig. 16(c)) is quite different. Results showed

that CMA-ES converges faster than M-CMA-ES for
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Fig. 15 Number of runs required for the well control optimization problems in parallel environments with different numbers
of processors. “50%” in the legend denotes the number of runs required to reach 50% of the maximum NPV for the algorithms.
“final” in the legend denotes the total number of runs required to reach the maximum number of simulator evaluation for the
algorithms.

this relatively small scale optimization problem. This

is because CMA-ES is less sensitive to the quality of

the initial guess and hence it can not take great ad-

vantage of the multiscale framework to speed up its

convergence rate. The multiscale framework for CMA-

ES still does, however, give us a way to detect a good

control frequency for well control optimization.

As a second test of the multiscale framework we in-

crease the number of control steps to 32 for each well.

The plots of NPV versus the number of simulation runs

for the different multiscale approaches and the different

configurations, as well as the plots for the standard al-

gorithms (GPS, PSO, CMA-ES) are shown in Fig. 17.

From the figure we see that compared with direct op-

timization with 32 well control adjustments, all algo-

rithms converge faster when using the multiscale ap-

proach. GPS convergence improves the most amongst

the three algorithms, followed by PSO and CMA-ES.

6.3.2 Performance in parallel environments

Fig. 18 shows the performance of the multiscale ap-

proaches in parallel environments with 8, 32, and an

infinite number of processors using 8 pre-set final con-

trol steps for configurations I–III and 16 control steps

for configuration IV. As in Section 6.2.3, we use the

number of runs as the y-axis. The lines for PSO, CMA-

ES, M-PSO, and M-CMA-ES are the medians of 10 tri-

als. From this figure we can see that, not surprisingly,

the more processors the less runs needed to converge.

In a parallel environment, the improved convergence of

the multiscale approach is less apparent. The multiscale
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Fig. 18 Comparison of the performance of multiscale approaches with 8 final control adjustments for each well in parallel
environments with 8, 32, and an infinite number of processors.

approach still benefits, however, if the optimal control

frequency is unknown and hence not specified a priori.

In Fig. 19 we repeat this experiment for the more

difficult problem with 32 control steps for each well.

The results are similar.

6.3.3 Performance with different computational

budgets

Here we assess the effect of computational budget on

the efficacy of the multiscale approach. We use 300,

1500, and 3000 simulation runs as a low, medium, and

high budget. For different budgets, the performance of

the different multiscale approaches and the different

configurations are shown in several beanplots in Fig. 20.

In the beanplots, the individual observations are shown

as small lines in a one-dimensional scatter plot. The es-

timated density of the distributions is visible and the

mean (blue bold line) and median (red ‘+’) are shown.

Fig 20(a) shows results for a low budget. Since GPS

is a deterministic algorithm, we have no distribution

for the four configurations of M-GPS. M-GPS-II and

M-GPS-III obtained the highest NPV amongst all four

configurations. Although some configurations of M-PSO

and M-CMA-ES could obtain a relatively high NPV,

there is also has a risk of obtaining a low NPV due to

the high variability. For a medium budget, Fig 20(b),

the variation of all four configurations of M-CMA-ES

is relatively small. The variation of the M-PSO is quite

large. With this budget of function evaluations, M-GPS

and M-CMA-ES are good choices. For a large budget,

we see that M-GPS-IV obtained a higher NPV than the

other configurations. With the fourth configuration, the

approach terminated at 16 control steps for each well,

while the other three configurations terminated at 8

control steps for each well. With more control steps,

a higher NPV could be obtained. Configuration I per-

forms less well with a low budget. This is because the
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Fig. 19 Comparison of the performance of multiscale approaches with 32 final control adjustments for each well in parallel
environments with 8, 32, and an infinite number of processors.

initial number of control steps for configuration I is 1.

The optimal control found with only 1 step is very dif-

ferent when compared with the optimal control found

with more steps. In general, we see that the second con-

figuration performs better than the other three config-

urations for M-GPS, M-PSO and M-CMA-ES. Further-

more, M-GPS-II is highly recommended for all budgets.

6.4 Multiscale optimization for a real-world reservoir

Based on the results of the previous section we now

apply the multiscale approaches with configuration II

(n0 = 2 and ns = 2) to solve the well control problem of

reservoir PUNQ-S3 (see Section 5.2.2). The maximum

number of function evaluations is set to 10000. We use

an average relative well rate change of < 10% of the

gap between the upper and lower bound as the stop-

ping criterion for each scale. The scale will no longer be

refined when the relative change in the NPV is < 10%

between two neighboring scales. Due to the large com-

putational time we perform only 3 trials for M-PSO and

M-CMA-ES.

Fig. 21 shows the performance of M-GPS-II, M-

PSO-II and M-CMA-ES-II. The performance of GPS,

PSO, and CMA-ES using a pre-set control frequency

of 32 control steps for each well is shown in this figure

as well. The results show that for the same number of

reservoir simulations, combining these three algorithms

with the multiscale framework gives higher NPV val-

ues as compared to directly optimizing with the largest

number of control steps.

The values of NPV found by the approaches after

1000, 5000, and 10000 simulation runs are shown in Ta-

ble 7. From the table we can see that, M-GPS-II outper-

forms among all three multiscale approaches, even when

the number of simulation runs is limited. Of course the

deterministic M-GPS has the additional advantage of
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Fig. 20 Beanplots for different configurations of our multiscale approaches.

having no variability in the outcome. Without the mul-

tiscale framework, CMA-ES performs the best.

Table 7 Median NPV (109 USD) with different budgets for
PUNQ-S3.

Algorithm Trails 1000 5000 10000
GPS 1 2.9936 3.0061 3.0194
M-GPS-II 1 3.0567 3.0570 3.0570
PSO 3 3.0240 3.0365 3.0395
M-PSO-II 3 3.0555 3.0560 3.0560
CMA-ES 3 3.0384 3.0558 3.0572
M-CMA-ES-II 3 3.0561 3.0563 3.0568

7 Conclusions

In this paper we have considered three derivative-free

optimization algorithms combined with a multiscale frame-

work to solve well control optimization problems. The

optimization algorithms used include GPS, which is a

deterministic local search approach; PSO, which is a

stochastic global search method; and CMA-ES, which

is a stochastic local search method. A generalization of

the successive-splitting multiscale approach from [30,

38] was introduced to combine with the derivative-free

optimization algorithms.

Based on thorough numerical experiments the fol-

lowing conclusions can be drawn:

• The control frequency does have a significant effect

on well control optimization problems. The more

frequent the well control adjustment, the higher the
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Fig. 10 Plots of NPV versus the number of simulation runs
for GPS, PSO, and CMA-ES with different initial guesses
with 8 control steps. Each line represents one trial. The color
red, green, blue denotes the good, medium, bad initial guess,
respectively.

NPV that can be obtained but at the cost of a

harder optimization problem. This increase becomes

less significant as we continue to increase the num-

ber of control steps. Considering the operation costs,

each reservoir has a optimal control frequency. The

optimal controls are similar with different control

frequencies when every well is produced under a liq-

uid rate throughout its lifetime.
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Fig. 16 Comparison of the performance of multiscale ap-
proaches with different configurations with 8 final control ad-
justments for each well.

• Without the multiscale framework, GPS performs

best when the problem dimension is very small and

the budget is large enough. CMA-ES showed excel-

lent performance when the budget is limited. A par-

allel environment can greatly reduce the time spent

for these algorithms. PSO can outperform GPS and

CMA-ES in performance if the number of proces-

sors is large enough. The choice of the initial guess

has a significant effect on the convergence speed for

GPS and PSO at the early stage of optimization.

CMA-ES, by contrast, is less sensitive to the choice
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Fig. 17 Comparison of the performance of multiscale ap-
proaches with different configurations with 32 final control
adjustments for each well.

of initial guess. The performance of PSO is affected

dramatically by the population size. Parameter tun-

ing for CMA-ES showed that the default settings

work quite well.

• The multiscale approaches have two advantages in

solving well control problem. (1) they provide a way

to optimize the control frequency and the well con-

trols simultaneously. (2) when compared to the stan-

dalone algorithms the multiscale approach can speed-

up the convergence. Based on the results of the test
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Fig. 21 Comparison of the performance of multiscale ap-
proach and optimizers without multiscale for PUNQ-S3. Here
are the median NPV of trials for PSO and CMA-ES.

cases, the convergence of GPS and PSO improves

the most when combined with the multiscale frame-

work. The multiscale framework is more efficient as

the number of control steps increases. The difference

in performance between the multiscale hybrid algo-

rithms and the stand-alone algorithms decreases as

the number of processors increases.

• The multiscale framework has two key parameters,

the choice of the initial number of control steps n0

and the split factor ns. The choice n0 = 2 and
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ns = 2 gave the best performance. In the multi-

scale framework, M-GPS-II is highly recommended

for any computational budget.

All above conclusions are based on the experiments

in this paper. Although the multiscale approach has

shown its potential to solve complex well control prob-

lems, there are still many possible avenues for future

work. Some potential areas of investigation are the use

of other stochastic approaches such as mesh adaptive

direct search or differential evolution to see if they offer

any improvement in performance. There is also flexibil-

ity to choose different n0 and ns values for each well.

The performance of multiscale approaches with non-

linear constraints still needs additional study. As does

the development of robust stopping criteria within the

multiscale framework.
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