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Abstract

This work presents a bivariate extension of the moment projection method

(BVMPM) for solving the two-dimensional population balance equations in-

volving particle inception, growth, shrinkage, coagulation and fragmentation.

A two–dimensional Blumstein and Wheeler algorithm is proposed to generate

a set of weighted particles that approximate the number density function.

With this algorithm, the number of the smallest particles can be directly

tracked, closing the shrinkage and fragmentation moment source terms. The

performance of BVMPM has been tested against the hybrid method of mo-

ments (HMOM) and the stochastic method. Results suggest that BVMPM

can achieve higher accuracy than HMOM in treating shrinkage and frag-

mentation processes where the number of the smallest particles plays an

important role.
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dynamics

1. Introduction1

The modeling of discrete populations of particles has found wide applica-2

tions in environmental, biological, medical and technological systems [1–9].3

The evolution of the particle population can be modeled using a population4

balance equation (PBE), which can be expressed as the number density func-5

tion (NDF) associated to the particles’ properties [10]. In general, the NDF6

depends on time, location and a set of internal coordinates such as particle7

volume, temperature, composition and surface area. The PBEs usually con-8

tain an inception term corresponding to the formation of particles from the9

surrounding environment, a growth term due to particle surface reactions,10

a shrinkage term due to oxidation or evaporation, a coagulation term due11

to the collision and sticking of particles as well as a fragmentation term de-12

scribing the breakage of large particles. The resulting PBE is mathematically13

an integro-differential equation which is so complex that analytical solution14

rarely exits.15

For years, different numerical methods have been proposed to solve the16

PBEs. A review of the models of particle formation and the numerical meth-17

ods used to solve them can be found in [11]. These methods often encompass18

a trade-off between accuracy and computational efficiency. The stochastic19

methods [12, 13] are able to provide a highly detailed description about the20

evolution of the NDF; however, under certain condition, the computational21

time and memory requirement can be intractable. In sectional methods [14–22

17], the NDF is discretised into a number of sections or bins, then the PBE23
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is transformed into a set of ordinary differential equations (ODEs) that de-24

scribe the evolution of particle populations within each section. Sectional25

methods are intuitive. However, they usually require large numbers of sec-26

tions to achieve high accuracy, making them computationally expensive. The27

method of moments (MOM) [18] enables a good balance between the physical28

details and computational efficiency. MOM is a class of methods for tracking29

a few lower-order moments from a population of particles without having30

explicit knowledge of the NDF itself as only the integral quantities of the31

particles are of interest for most applications. Unfortunately, the moment32

equations are usually unclosed. Depending on the coagulation kernel used,33

fractional–order moments may be present in the moment equations. These34

moments are not directly solver for and should be properly estimated. For35

the particle negative growth processes such as shrinkage and fragmentation,36

the number of the smallest particles is needed to close the corresponding37

moment equations. However, this information is lost in MOM since the NDF38

has been transformed into moments. Up to now, numerous methods have39

been introduced trying to handle these closure problems.40

A successful approach to approximate the fractional–order moments is41

the method of moments with interpolative closure (MOMIC) [19–22] where42

a functional relationship between the fractional–order moments and integer–43

order moments is created. The formalism of MOMIC allows one to resolve44

for the number of the smallest particles for particle inception, growth and45

coagulation without closure problems. Because of numerical simplicity and46

ease of implementation, MOMIC has been widely adopted for the treatment47

of inception, coagulation and growth processes. Another closure approach48
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is the quadrature method of moments (QMOM) [23–26] where the NDF is49

approximated using a set of weighted particles and weights which are com-50

puted by a product-difference (PD) algorithm [27] based on the moments.51

The direct quadrature method of moments (DQMOM) [28] is an extension of52

QMOM, where the particles and weights are tracked directly without refer-53

ring to the PD algorithm. DQMOM has advantages of being computationally54

cheap and can be easily extended to describe multivariate PBEs. However,55

it suffers from the problem of singularities with certain initial conditions56

and artificial perturbations are needed to prevent failure in the numerical57

solution. Recently, the standard QMOM has been modified by applying the58

Gauss-Radau quadrature interpolation rule to fix one quadrature node at the59

smallest particle size. The resulting method, namely QMOM–Radau [29],60

leads to a better statistical representation of the PSD compared with the61

standard QMOM.62

In order to handle the particle negative growth problem, a number of63

moment methods are proposed with the focus being on the reconstruction of64

the NDF [30–35]. In [30] a finite–size domain complete set of trial functions65

method of moments (FCMOM) is proposed where the NDF is approximated66

with a series of Legendre polynomials. Unfortunately, this method fails to67

guarantee the positivity of the reconstructed NDF due to the limited number68

of polynomials that can be determined. In the extended quadrature method69

of moments (EQMOM) [31, 32], the NDF is approximated with a set of70

continuous non-negative kernel density functions such as gamma, beta and71

log-normal functions. With the reconstructed NDF, the closure of the shrink-72

age or fragmentation moment equations becomes straightforward. However,73
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this method requires prior information of the shape of the NDF to select a74

suitable kernel function.75

Most of the methods described above are restricted to the univariate NDF,76

making them not suitably to include enough characteristics to accurately77

describe a nanoparticle system. For many applications, it is usually inefficient78

to describe the population of particles based on only one internal coordinate.79

For example, the soot particles formed in flames usually exist in the form of80

aggregates. A proper description of the soot particle population is usually81

based on a bivarate NDF that is a function of both the particle volume82

and surface area so that the fractal dimension can be considered. In most83

particle synthesis reactors, not only are the particle sizes evolving in time and84

location, but also is the particle morphology as a result of coagulation (also85

referred to as aggregation). To better design such reactors, it is necessary86

to adopt a mathematical description of the bivariate PBE which is more87

complex and computationally difficult.88

As a historical footnote, in [36] the bivariate extension of MOM for the89

evolution of the two radii of curvature of ellipsoidal particles in a continuously90

fed batch reactor is considered for the first time. However, they did not actu-91

ally complete a bivariate moment calculation but outlined a possible solution,92

i.e., using a large number of mixed moments, for the overly restrictive special93

case. In [37] a bivariate QMOM is proposed for modeling the dynamics of a94

population of inorganic nanoparticles undergoing simultaneous coagulation95

and particle sintering. The authors introduced two quadrature techniques, a96

multiple 3-point quadrature technique and a 12-point quadrature technique,97

to determine the particle positions and weights. The performance of the98
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bivariate QMOM has been assessed by comparison with the high resolution99

discrete method, and it has exhibited high accuracy. However, this method100

is restricted to the calculation of specified number of moments. Furthermore,101

the 12-point quadrature technique requires the aid of the conjugate-gradient102

minimization algorithm which can be very difficult and computationally de-103

manding. In [38] the QMOM is extended for solving two-dimensional batch104

crystallization models involving crystals nucleation, size-dependent growth,105

aggregation and dissolution. The authors have applied the orthogonal poly-106

nomials of lower-order moments to place the weighted particles. With this107

technique, one can calculate as many moments as required. However, this108

method is still restricted by the conjugate-gradient minimization algorithm.109

In [39], a conditional quadrature method of moments (CQMOM) was pro-110

posed. With this method, the multivariate NDF is rewritten as a product111

of univariate marginal NDF and a conditional NDF, both of which can be112

represented with a set of weighted particles. CQMOM has been success-113

fully applied to simulations for TiO2-distributions [40], flash nanoprecipita-114

tion [41] and soot formation [42]. However, similar to QMOM, CQMOM115

cannot handle the shrinkage or fragmentation problem. In [29], a joint ex-116

tended conditional quadrature method of moments (ECQMOM) is proposed117

which combines the technique of EQMOM and CQMOM. This method has118

been applied to simulate the soot formation process in a burner–stabilized119

premixed ethylene flame. The results are found to be in good agreement with120

the Monte Carlo results, suggesting the high accuracy of ECQMOM. In [43],121

a hybrid method of moments (HMOM) is introduced to simulate the soot for-122

mation in premixed flames and counter diffusion flames where the soot NDF123
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is given based on particle volume and surface area. HMOM is a combination124

of DQMOM and MOMIC. It adopts the interpolation technique to approxi-125

mate the fractional-order moments due to the application of realistic collision126

kernels. The soot NDF is discretised into two modes: the smallest particles127

and large particles. A source term for the smallest particles is proposed to128

close the shrinkage and fragmentation moment equations [44]. The resulting129

HMOM is mathematically simple, easy to implement and numerically robust.130

Recently, a moment projection method (MPM) [45, 46] has been pro-131

posed. This method retains the advantages of ease of implementation and132

robustness, and at the same time it is able to directly track the number of133

the smallest particles. The performance of MPM for treating the particle134

shrinkage and fragmentation processes has been evaluated under different135

conditions and it is of great accuracy. In this work, we extend the MPM136

into a bivariate method (BVMPM) for solving the two–dimensional PBE in-137

cluding particle inception, growth, shrinkage, coagulation and fragmentation.138

The paper is organized as follows. Section 2 presents the moment methods139

for solving the bivariate particle population balance equations. The detailed140

mathematical formulation of BVMPM and the related algorithms are intro-141

duced. In section 3, the proposed BVMPM is compared with HMOM and the142

stochastic method for all the particle processes under different conditions. In143

section 4, principal conclusions are summarized.144
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2. Model formulation145

2.1. Population balance equation146

For BVMPM, an important consideration is the realisability of the mo-147

ment set. Realisability is related with the existence of an underlying NDF148

that corresponds to the moment set. If the set of moments are not realisable,149

they lead to unphysical distributions or no NDF can be described by such mo-150

ments. The generation of unrealisable moments is usually caused due to the151

improper treatment of the spatial transportation of moments [47]. This prob-152

lem can be avoided by properly designing the numerical schemes. In [48], a153

high–order–volume–scheme is proposed to guarantee the moment realisability154

for quadrature–based moment methods. The general idea behind this scheme155

is to evaluate the moment flux terms at the faces of the cells through inter-156

polation of the weighted particles rather than the moments, thus preventing157

the realisability problem. In light of realisability, in this work we restrict158

our attention to the moment closure method for a bivariate particle system.159

The aim is to evaluate the BVMPM error in isolation. Therefore we simulate160

a spatially homogenous PBE with no moment spatial transportation terms.161

The obtained moments always remain realisable during the simulation time162

span. For the application of BVMPM to the spatially inhomogeneous parti-163

cle systems, the realisable finite–volume numerical scheme can be adopted to164

gurantee the moment realisability. The spatially homogenous PBE governing165

the evolution of the bivariate particle distribution is given as follows:166

dN(t; i, j)

dt
= R(t; i, j) +W (t; i, j) + S(t; i, j) +G(t; i, j) + F (t; i, j), (1)
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where N(t; i, j) is the number of particles as a function of time t and internal167

size coordinates (i, j) which we will refer to as N(i, j) from hereon. R, W , S,168

G and F are the inception, growth, shrinkage, coagulation and fragmentation169

source terms, respectively. The specific functional forms used in this work170

are as follows:171

R(t; i0, j0) = KIn, (2)

W (t; i, j) = KG(N(i− δi, j − δj)−N(i, j)), (3)

S(t; i, j) = KSk(N(i+ δi, j + δj)−N(i, j)), (4)

G(t; i, j) =
1

2

i∑
i′=i0

j∑
j′=j0

KCgN(i− i′ , j − j ′)N(i
′
, j
′
)

−
∞∑

i′=i0

∞∑
j′=j0

KCgN(i, j)N(i
′
, j
′
), (5)

F (t; i, j) =
∞∑
i′=i

∞∑
j′=j

KFg(i
′
, j
′
)P (i, j|i′ , j ′)N(i

′
, j
′
)−KFg(i, j)N(i, j), (6)

where KIn is the inception kernel that describes the formation rate of the172

particles at the smallest size coordinates (i0, j0). KG and KSk are the growth173

and shrinkage kernels, respectively. δi and δj refer to the change of the174

particle sizes in a single growth or shrinkage event. KCg is the coagulation175

kernel that describes the rate at which particles collide and stick together.176

Lastly, KFg(i, j) is the fragmentation kernel that describes the frequency with177

which particles fragment. The particles at the smallest sizes are not supposed178

to fragment, otherwise it may lead to an infinite number of particles of zero179

size and for this reason the total particle size would not be conserved [49, 50].180

As a result, the fragmentation kernel has to meet the following requirement:181
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KFg(i, j) =

0, if i < 2i0 or j < 2j0,

KFg, otherwise,
(7)

P (i, j|i′ , j ′) is the fragmentation distribution function which represents the182

number of particles at size coordinates (i, j) formed by the fragmentation of183

particles at size coordinates (i
′
, j
′
). Different types of fragmentation exist,184

such as symmetric fragmentation, erosion fragmentation, uniform fragmen-185

tation and parabolic fragmentation. This work only considers the erosion186

fragmentation. The application of BVMPM to other types of fragmentation187

can be implemented in a similar way. During an erosion event, one particle188

with the size coordinate (i, j) breaks up into two fragments with one frag-189

ment having the minimum size (i0, j0) and the other is of (i− i0, j− j0). The190

fragmentation distribution function is described as:191

P (i, j|i′ , j ′) =


1 if i = i0 and j = j0

1 if i = i
′ − i0 and j = j

′ − j0

0 otherwise

(8)

The evaluations of the moment souce terms are dependent on these kernel192

functions. If realistic additive kernels or free-molecular Brownian kernels are193

used, fractional–order moments are present, which can be estimated by using194

either the interpolation technique as in MOMIC or the weighted particles as195

in QMOM. However, this will introduce an interpolation error. Since the196

aim here is to investigate the BVMPM error in isolation, constant kernels197

are adopted in this work.198
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2.2. Method of moments199

The x-th, y-th order moment Mx,y of the bivariate NDF is given by:200

Mx,y =
∞∑
i=i0

∞∑
j=j0

ixjyN(i, j). (9)

Multiplying this expression with the PBE gives the bivariate moment evolu-201

tion equation:202

dMx,y

dt
= Rx,y(M) +Wx,y(M) + Sx,y(M,N) +Gx,y(M) + Fx,y(M,N) (10)

The moment source terms are as follows:203
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Rx,y(M) = KIni
x
0j
y
0 , (11)

Wx,y(M) = KG

x∑
m=0

y∑
n=0

x

m

y
n

 δx−mi δy−nj Mm,n −KGMx,y, (12)

Sx,y(M,N) = KSk

x∑
m=0

y∑
n=0

x

m

y
n

 (−δi)x−m(−δj)y−nMm,n −KSkMx,y

−KSk

∞∑
j=j0

i0+δi−1∑
i=i0

(i− δi)x(j − δj)yNi,j

−KSk

∞∑
i=i0

j0+δj−1∑
j=j0

(i− δi)x(j − δj)yNi,j

+KSk

i0+δi−1∑
i=i0

j0+δj−1∑
j=j0

(i− δi)x(j − δj)yNi,j, (13)

Gx,y(M) =
1

2
KCg

x∑
m=0

y∑
n=0

x

m

y
n

Mm,nMx−m,y−n −KCgMx,yM0,0,

(14)

Fx,y(M,N) = KFg

x∑
m=0

y∑
n=0

x

m

y
n

 (−i0)x−m(−j0)y−nMm,n +KFgi
x
0j
y
0M0,0 −KFgMx,y

−KFg

∞∑
j=j0

2i0−1∑
i=i0

((i− i0)x(j − j0)y + ix0j
y
0 − ixjy)Ni,j

−KFg

∞∑
i=i0

2j0−1∑
j=j0

((i− i0)x(j − j0)y + ix0j
y
0 − ixjy)Ni,j

+KFg

2i0−1∑
i=i0

2j0−1∑
j=j0

((i− i0)x(j − j0)y + ix0j
y
0 − ixjy)Ni,j. (15)

The detailed derivations of these moment source terms can be found in Ap-204
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pendix Appendix A. Since constant kernels are adopted, the moment source205

terms for growth and coagulation are closed by themselves. For shrinkage,206

however, the numbers of particles at the smallest size coordinates are needed207

to evaluate the particle boundary flux terms represented by the last three208

terms on the right–hand side of Eq. 13. Similarly, the accumulation of par-209

ticles at the smallest sizes in fragmentation also requires the knowledge on210

the number of the smallest particles, as can be seen from Eq. 15. This is211

challenging to MOM since the detailed information on NDF has been lost212

when it is transformed into moments. Therefore, proper approximation on213

the numbers of the smallest particles has to be made to close these source214

terms.215

2.3. Bivariate moment projection method216

The general idea behind BVMPM is to rewrite the NDF N(i, j) as a217

product of a univariate marginal NDF N(i) and a conditional NDF N(j|i):218

N(i, j) = N(i)N(j|i). (16)

As a result, the x-th, y-th order moment can be expressed as:219

Mx,y =
∞∑
i=i0

ixN(i)(
∞∑
j=j0

jyN(j|i)). (17)

We defineMx,0 =
∞∑
i=i0

ixN(i) as the marginal moment andMy|i =
∞∑
j=j0

jyN(j|i)220

as the conditional moment which meets:221

M0|i =
∞∑
j=j0

N(j|i) = 1. (18)
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In BVMPM, we approximate the bivariate NDF with a set of weighted parti-222

cles which can also be expressed as a product of univariate marginal weighted223

particles Ñ(αk) and conditional weighted particles Ñ(βl|k):224

Ñ(αk, βl|k) = Ñ(αk)Ñ(βl|k), (19)

where (αk, βl|k) are the internal size coordinates for the weighted particle. In225

order to evaluate the number of the smallest particles present in the shrinkage226

and fragmentation moment source terms, we fix one particle size, α1, to be227

located at the smallest size: α1 = i0. Given each αk, β1|k is fixed at j0:228

β1|k = j0. As a result, the pointwise values of the NDF at the smallest size229

coordinates can be evaluated. The x-th, y-th order empirical moment in230

BVMPM can then be expressed as:231

M̃x,y =

N1∑
k=1

N2∑
l=1

αxkβ
y
l|kÑαkÑβl|k , x = 0, · · · , 2N1 − 2, y = 0, · · · , 2N2 − 2,

(20)

where N1 and N2 are the maximum numbers of the particle sizes αk and βl|k,232

respectively. By construction, the particle size coordinates and weighted233

particle number generated in BVMPM should ensure that the corresponding234

moments are always equal to those from the true bivariate NDF:235

M̃x,y = Mx,y, x = 0, · · · , 2N1 − 2, y = 0, · · · , 2N2 − 2. (21)

With BVMPM, the moment evolution equation is transformed as:236

dM̃x,y

dt
= Rx,y(M̃) +Wx,y(M̃) + Sx,y(M̃, Ñ) +Gx,y(M̃) + Fx,y(M̃, Ñ), (22)
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with the specific moment source terms given as:237

Rx,y(M̃) = KIni
x
0j
y
0 , (23)

Wx,y(M̃) = KG

x∑
m=0

y∑
n=0

x

m

y
n

 δx−mi δy−nj M̃m,n −KGM̃x,y, (24)

Sx,y(M̃, Ñ) = KSk

x∑
m=0

y∑
n=0

x

m

y
n

 (−δi)x−m(−δj)y−nM̃m,n −KSkM̃x,y

−KSk

N2∑
l=1

(α1 − δi)x(βl|1 − δj)yÑα1Ñβl|1

−KSk

N1∑
k=1

(αk − δi)x(β1|k − δj)yÑαkÑβ1|k

+KSk(α1 − δi)x(β1|1 − δj)yÑα1Ñβ1|1 , (25)

Gx,y(M̃) =
1

2
KCg

x∑
m=0

y∑
n=0

x

m

y
n

 M̃m,nM̃x−m,y−n −KCgM̃x,yM̃0,0,

(26)

Fx,y(M̃, Ñ) = KFg

x∑
m=0

y∑
n=0

x

m

y
n

 (−i0)x−m(−j0)y−nM̃m,n +KFgi
x
0j
y
0M̃0,0 −KFgM̃x,y

−KFg

N2∑
l=1

((α1 − i0)x(βl|1 − j0)y + ix0j
y
0 − αx1β

y
l|1)Ñα1Ñβl|1

−KFg

N1∑
k=1

((αk − i0)x(β1|k − j0)y + ix0j
y
0 − αxkβ

y
1|k)ÑαkÑβ1|k

+KFg((α1 − i0)x(β1|1 − j0)y + ix0j
y
0 − αx1β

y
1|1)Ñα1Ñβ1|1 . (27)

The challenge now is determining αk, βl|k, Ñαk and Ñβl|k such that Eq. (21)238

is true while fulfilling the requirement that α1 = i0 and β1|k = j0 to close the239
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moment source terms due to shrinkage and fragmentation. This can be done240

in two steps. The first step is to determine the univariate marginal weighted241

particles with the empirical marginal moments:242

M̃x,0 =

N1∑
k=1

αxkÑαk x = 0, · · · , 2N1 − 2. (28)

This can be done using the 1-D Blumstein-Wheeler algorithm [51] summa-243

rized in Appendix Appendix B. This algorithm uses an adaptive scheme244

to ensure that the obtained weighted particles are always distinct and non-245

negative. The second step is to determine the conditional weighted particles246

with the empirical conditional moments:247

M̃y|k =

N2∑
l=1

βyl|kÑβl|k , y = 0, · · · , 2N2 − 2 (29)

Firstly, rewrite Eq. (20) as a linear system:248

VR = P, (30)

where249

V =



Ñα1 Ñα2 · · · ÑαN1

α1Ñα1 α2Ñα2 · · · αN1ÑαN1

α2
1Ñα1 α2

2Ñα2 · · · α2
N1
ÑαN1

...
...

...
...

αN1−1
1 Ñα1 αN1−1

2 Ñα2 · · · αN1−1
N1

ÑαN1


, (31)
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R =



M̃1|1 M̃2|1 · · · M̃2N2−2|1

M̃1|2 M̃2|2 · · · M̃2N2−2|2

M̃1|3 M̃2|3 · · · M̃2N2−2|3
...

...
...

...

M̃1|N1 M̃2|N1 · · · M̃2N2−2|N1


, (32)

and250

P =



M̃0,1 M̃0,2 · · · M̃0,2N2−2

M̃1,1 M̃1,2 · · · M̃1,2N2−2

M̃2,1 M̃2,2 · · · M̃2,2N2−2

...
...

...
...

M̃N1−1,1 M̃N1−1,2 · · · M̃N1−1,2N2−2


. (33)

Given the values for distinct αk and non-negative Ñαk , the matrix V is non-251

singular and the linear system in Eq. (30) can be solved by simply reversing252

the matrix V to determine the values for the conditional moments M̃y|k,253

which can then be adopted to find the conditional weighted particles by us-254

ing the 1-D Blumstein-Wheeler algorithm.255

The 2-step procedure illustrated above to find the bivariate weighted par-256

ticles is described as a 2-D Blumstein-Wheeler algorithm presented in Ap-257

pendix Appendix C. With the weighted particles determined, the moment258

source terms are closed. The numerical procedure of BVMPM is summarized259

in Algorithm 1.260
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Algorithm 1: Bivariate Moment projection method algorithm.

Input: Moments of the NDF Mx,y(t0) for x = 0, . . . , 2N1 − 2 and

y = 0, . . . , 2N2 − 2 or the NDF itself N(t0; i, j) for i = i0, . . . ,∞

and j = j0, . . . ,∞ at initial time t0; final time tf.

Output: Empirical moments of the NDF M̃x,y(tf) for

x = 0, . . . , 2N1 − 2 and y = 0, . . . , 2N2 − 2 at final time.

Calculate the moments of the true NDF using Eq. (9):

Mx,y(t0) =

∞∑
i=i0

∞∑
j=j0

ixjyN(i, j)

For M̃x,y = Mx,y, solve Eq. (20) for αk and Ñαk , βl and Ñβl|k

(k = 1, . . . , N1, l = 1, . . . , N2) with α1 fixed at i0 and β1|k fixed at j0

using the 2-D Blumstein and Wheeler algorithm:

M̃x,y =

N1∑
k=1

N2∑
l=1

αxkβ
y
l|kÑαkÑβl|k , x = 0, · · · , 2N1−2, y = 0, · · · , 2N2−2

t←− t0, M̃x,y(t)←− M̃x,y(t0);

while t < tf do

Integrate Eq. (22) over the time interval [ti, ti + h]:

dM̃x,y

dt
= Rx,y(M̃)+Wx,y(M̃)+Sx,y(M̃, Ñ)+Gx,y(M̃)+Fx,y(M̃, Ñ)

where Rx,y(M̃), Wx,y(M̃), Sx,y(M̃, Ñ), Gx,y(M̃) and Fx,y(M̃, Ñ)

are given by Eqs. (23), (24), (25), (26) and (27) respectively.

Use the 2-D Blumstein algorithm to update αk, Ñαk , βl|k and Ñβl|k ,

and assign solution at ti+1 = ti + h:

M̃x,y(ti+1)← M̃x,y(ti + h)

i←− i+ 1;

261
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3. Results and discussion262

In this section, the performance of BVMPM for solving the bivariate263

PBEs is assessed. The method is first tested for the individual particle pro-264

cesses of inception, growth, shrinkage, coagulation and fragmentation, then265

for all of these processes combined. We devise a number of test cases where266

different types of NDFs are supplied as the initial conditions. The numerical267

results are compared to those from HMOM and a high-precision stochastic268

solution calculated using the direct simulation algorithm (DSA).269

3.1. Inception270

As mentioned above, inception is modeled as the formation of the smallest271

particles. In this work, the inception rate is assumed to be a constant:272

KIn = 1012 s−1. Simulations are performed with a normal distribution as the273

initial condition:274

N(i, j) = 100exp(−1((i− 100)2 + (j − 100)2)/200), (34)

which is shown in Fig. 1. Also shown in Fig. 1 is the NDF computed by275

solving the master equation after 100 seconds of pure inception. Only the276

smallest particles at (i0, j0) are formed while the number of the other particles277

remains unchanged.278

We now want to see if BVMPM is able to capture this increase in the279

number of the smallest particles due to inception. We use in total 16 (N1 =280

4, N2 = 4) weighted particle size coordinates to simulate this process. Fig-281

ure 2 exhibits the distributions of these weighted particles at t0 and tf. At282

t0, most of the weighted particles are located at around (100, 100). Some283
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Figure 1: Particle number density functions at t0 = 0 s (left panel) and tf = 100 s (right

panel) computed by solving the master equation under pure inception.

weighted particles are observed to be located at the smallest size coordinates,284

suggesting that the proposed 2-D Blumstein and Wheeler algorithm success-285

fully fixes the weighted particles at the designated location. A significant286

increase in the number of the weighted particles at (i0, j0) is observed at the287

end of simulation, this trend matches well to the observation in Fig.1.288

Figure 2: Distributions of weighted particles at t0 = 0 s (left panel) and tf = 100 s (right

panel) generated in BVMPM under pure inception.

As a further point of comparison, the time evolutions of M0,0, M0,1, M1,0289

and M1,1 computed using BVMPM, HMOM and the stochastic method are290
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shown in Fig. 3. It can be seen that all the methods give the same results.291

The continuous inception of particles leads to a linear increase in the total292

number and sizes of particles.293
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Figure 3: Comparison of M0,0 (top left panel), M0,1 (top right panel), M1,0 (bottom

left panel) and M1,1 (bottom right panel) between BVMPM, HMOM and the

stochastic method under pure inception.

3.2. Growth294

In this work, growth is modeled as a process through which particles grow295

in size due to surface reactions. The size changes during one growth process296

are assumed to be equal to 1 for both size coordinates: δi = 1, δj = 1. Note297
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that any positive value can be taken as the size change and it can be different298

for both size coordinates. A constant growth kernel is adopted: KG = 2 s−1,299

and the following uniform distribution is applied as the initial condition:300

N(i, j) = 1, i = 1, 2, · · · , 20, j = 1, 2, · · · , 20. (35)

The NDF at t0 and that at tf computed by solving the master equation301

after 50 seconds for pure growth are shown in Fig. 4. A shift of particles302

towards the larger size coordinates is observed; however, the distribution303

becomes widened and the peak decreases in magnitude consistent with a304

growth process.305

Figure 4: Particle number density functions at t0 = 0 s (left panel) and tf = 50 s (right

panel) computed by solving the master equation under pure growth.

Figure 5 shows the distributions of the weighted particles generated in306

BVMPM to approximate the NDFs at t0 and tf. Similar to Fig. 4, the307

weighted particles have shifted towards the larger size coordinates reflecting308

the increase in the particle sizes.309

The time evolution of M0,0, M0,1, M1,0 and M1,1 computed using the310

different methods are compared in Fig. 6. Since constant kernels are used,311
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Figure 5: Distributions of weighted particles at t0 = 0 s (left panel) and tf = 50 s (right

panel) generated in BVMPM under pure growth.

no fractional- or negative-order moments are present in the moment source312

term. Both HMOM and BVMPM give the same results with the stochastic313

method. The total particle number reflected by M0,0 remains unchanged,314

while a linear increase is observed for the particle sizes indicated by M0,1 and315

M1,0.316

3.3. Coagulation317

Coagulation is a nonlinear process describing the collision and sticking318

among particles. In this work, the coagulation kernel is assumed to be KCg =319

1× 10−6 s−1. A log-normal distribution is adopted as the initial condition:320

N(i, j) = 100exp(−((log(i)− log(50))2 + (log(j)− log(50))2)/2). (36)

The NDFs at the beginning and end of the simulation are shown in Fig. 7.321

A shift of the distribution towards the larger particle sizes is observed as322

particles collide and stick together.323
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Figure 6: Comparison of M0,0 (top left panel), M0,1 (top right panel), M1,0 (bottom

left panel) and M1,1 (bottom right panel) between BVMPM, HMOM and the

stochastic method under pure growth.

Figure 8 shows the formation of weighted particles at large size coordinates324

together with the decrease of weighted particles at small size coordinates.325

This is consistent with the trend observed in Fig. 7.326

The mean quantities computed using BVMPM are in agreement with327

HMOM and the stochastic method as shown in Fig. 9. Since coagulation is328

a nonlinear process, we observe a nonlinear decrease in M0,0 while M0,1 and329

M1,0 remain unchanged.330
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Figure 7: Particle number density functions at t0 = 0 s (left panel) and tf = 30 s (right

panel) obtained by the stochastic method for pure coagulation.

Figure 8: Distributions of weighted particles at t0 = 0 s (left panel) and tf = 30 s (right

panel) generated in BVMPM under pure coagulation.

3.4. Shrinkage331

Shrinkage is the opposite of the growth process but with an important332

difference: when particles of the smallest sizes shrink they are removed from333

the particle system, leading to a decrease in the total particle number. As334

shown in Eq. (13), the number of particles of the smallest sizes is required to335

close the shrinkage moment source term. In BVMPM, we fix some particle336

sizes at the samllest size coordinates so that the cooresponding number of337

these weighted particles can be used to evaluate the boundary flux term due338
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Figure 9: Comparison of M0,0 (top left panel), M0,1 (top right panel), M1,0 (bottom

left panel) and M1,1 (bottom right panel) between BVMPM, HMOM and the

stochastic method under pure coagulation.

to shrinkage. In this section, we test the ability of BVMPM to handle the339

shrinkage problem. A constant shrinkage kernel is used: Ksk = 2 s−1 and340

the size change in one shrink event is assumed to be 1. Two test cases are341

adopted where different types of NDFs are supplied as the initial condition.342

Case 1 A normal distribution:343

N(i, j) = 1020exp(−((i− 100)2 + (j − 100)2)/1000) (37)
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Case 2 A log-normal distribution:344

N(i, j) = 1020exp(−((log(i)− log(100))2 + (log(j)− log(100))2)/0.02) (38)

For Case 1, a normal distribution is supplied as the initial condition which345

is shown in Fig. 10. Also shown in Fig. 10 is the NDF obtained by solving346

the master equation after 100 seconds of pure shrinkage. The NDF shifts347

towards the smallest particle size. A decrease in the total particle number is348

observed as the smallest particles are continuously removed from the particle349

system due to shrinkage.350

Figure 10: Particle number density functions at t0 = 0 s (left panel) and tf = 100 s

(right panel) computed by solving the master equation under pure shrinkage

(Case 1).

The distributions of the weighted particles obtained in BVMPM (N1 =351

4, N2 = 4) to approximate the NDFs are shown in Fig. 11. All the weighted352

particles are moving towards the smallest particle sizes. An increase in Ñ1,1353

is observed as the large particles are transformed into the smallest ones. This354

observation is consistent with that in Fig. 10.355
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Figure 11: Distributions of weighted particles at t0 = 0 s (left panel) and tf = 100 s

(right panel) generated in BVMPM under pure shrinkage (Case 1).

To investigate the influence of the number of the weighted particle sizes356

on the accuracy of BVMPM, we vary N2 from 3 to 5 while keeping N1 un-357

changed. Note that the accuracy of BVMPM can also be affected by changing358

N1 in a similar way. The M0,0, M0,1, M1,0 and M1,1 obtained using BVMPM359

for different N2 are compared with the stochastic solution in Fig. 12. M0,0360

computed using BVMPM with N2 = 3 (dashed line) shows an obvious dis-361

crepancy with M0,0 obtained by the stochastic method (continuous line). By362

contrast, the moments obtained using N2 = 4 and N2 = 5 show a satisfac-363

tory agreement with the stochastic solution. This indicates that increasing364

the number of particle sizes in BVMPM can lead to a better approximation365

of the number of the smallest particles. Similar observations are found for366

M0,1 and M1,0. By contrast, M1,1 is relatively insensitive to the number of367

particle sizes. M1,1 obtained using BVMPM with N2 = 3, 4 and 5 all match368

well with the stochastic solution. Note that increasing the number of par-369

ticle sizes requires the solution of more moments. Smaller tolerances have370

to be adopted for the time integration of the ODEs and the stiffness of the371
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eigenvalue-eigenvector problem in the Blumstein and Wheeler algorithm is372

increased, resulting in a higher computational cost. For this reason, N2 = 4373

is a good compromise between accuracy and computational efficiency.374
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Figure 12: Sensitivity of M0,0 (top left panel), M0,1 (top right panel), M1,0 (bottom left

panel) andM1,1 (bottom right panel) to the number of particle sizes, N2, using

BVMPM under pure shrinkage. Results coorspond to Case 1 where a normal

distribution is supplied as the initial condition. The stochastic solution is

shown as a point of reference.

Figure 13 compares the moments obtained using BVMPM, HMOM and375

the stochastic method. As mentioned above, In HMOM the NDF is dis-376

cretized into a group of the smallest particles and a group of large particles.377
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A source term accounting for the formation and consumption of the smallest378

particles is proposed. It is assumed that the number of the smallest particles379

formed due to the shrinkage of the large particles is proportional to the totoal380

sizes decreased from these large particles. This assumption is too coarse as381

there are cases where the NDF is located far away from the smallest sizes, for382

which the shrinkage process can lead to a decrease of the total particle size383

without there being a change in the total number of particles. As a result384

HMOM overestimates the formation of the smallest particles, and therefore385

M0,0, at the beginning. Since the smallest particles are easier to remove,386

HMOM leads to a faster decrease in M0,0 and, eventually underestimates the387

particle number M0,0 and particle sizes (M0,1 and M1,0). By contrast, the mo-388

ments obtained uisng BVMPM with N1 = 4 and N2 = 4 match satisfactorily389

well to the stochastic solutions.390

The results for Case 2 where a log-normal distribution is supplied as391

the initial condition are shown in Fig. 14. Similar to Case 1, in Case 2392

HMOM overestimates the total particle number at the initial stage while the393

reverse occurs at the later stage. By contrast, BVMPM exhibits very high394

accuracy. Excellent agreement is achieved between the moments obtained395

using BVMPM and the stochastic method.396

3.5. Fragmentation397

Fragmentation is a popular phenomenon in particle dynamics. It is a398

process by which particles break up into two or more fragments, leading to an399

accumulation of particles at the smallest sizes. As a result, the information400

on the number of the smallest particles plays an important role. In this401

section, we test the performance of BVMPM in treating the fragmentation402

30



0 2 0 4 0 6 0 8 0 1 0 0

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5
M 0,0

 [d
im

en
sio

nle
ss

]

T i m e  [ s ]

 S t o c h a s t i c
 B V M P M
 H M O M

x 1 0 2 3

0 2 0 4 0 6 0 8 0 1 0 0

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

M 0,1
 [d

im
en

sio
nle

ss
]

T i m e  [ s ]

 S t o c h a s t i c
 B V M P M
 H M O M

x 1 0 2 5

0 2 0 4 0 6 0 8 0 1 0 0

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

M 1,0
 [d

im
en

sio
nle

ss
]

T i m e  [ s ]

 S t o c h a s t i c
 B V M P M
 H M O M

x 1 0 2 5

0 2 0 4 0 6 0 8 0 1 0 0

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

M 1,1
 [d

im
en

sio
nle

ss
]

T i m e  [ s ]

 S t o c h a s t i c
 B V M P M
 H M O M

x 1 0 2 7

Figure 13: Comparison of M0,0 (top left panel), M0,1 (top right panel), M1,0 (bottom

left panel) and M1,1 (bottom right panel) between BVMPM, HMOM and the

stochastic method under pure shrinkage (Case 1).

process. The fragmentation kernel is assumed to be KFg = 5 s−1. Two types403

of NDFs are supplied as the initial condition:404

Case 3 A log-normal distribution:405

N(i, j) = 1020exp(−((log(i)− log(100))2 + (log(j)− log(100))2)/0.2) (39)

Case 4 A uniform distribution:406
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Figure 14: Comparison of M0,0 (top left panel), M0,1 (top right panel), M1,0 (bottom

left panel) and M1,1 (bottom right panel) between BVMPM, HMOM and the

stochastic method under pure shrinkage (Case 2).

N(i, j) = 100, i = 100, · · · , 200, j = 100, · · · , 200. (40)

For Case 3 a log-normal distribution is adopted as the initial condition407

as shown in Fig. 15. Also shown in Fig. 15 is the NDF obtained by solving408

the fragmentation master equation after 50 seconds. It can be seen that all409

particles have been transformed into the smallest ones.410

Figure 16 shows the distributions of the weighted particles generated in411
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Figure 15: Particle number density functions at t0 = 0 s (left panel) and tf = 50 s (right

panel) computed by solving the master equation under pure fragmentation

(Case 3).

BVMPM to simulate the fragmentation process. All the weighted particles412

shift towards the smallest particle size. An accumulation of weighted particles413

at (i0, j0) is observed.414

Figure 16: Distributions of weighted particles at t0 = 0 s (left panel) and tf = 50 s (right

panel) generated in BVMPM under pure fragmentation (Case 3).

Figure 17 compares the moments obtained using HMOM, BVMPM and415

the stochastic method. In general, BVMPM gives the same results with416

the stochastic solutions. The total number of particles represented by M0,0417
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exhibits an increase at the beginning as the large particle breaks up into two418

smaller ones. Eventually M0,0 reaches steady when all the particles have been419

transformed into the smallest ones which are not supposed to fragment any420

further. The total particle sizes (M0,1 and M1,0) remain unchanged during the421

fragmentation process. As mentioned above, HMOM tends to overestimate422

the formation of the smallest particles due to the coarse assumption made423

on the smallest particle source terms. As a result, a higher M0,0 is predicted424

by HMOM.425

In Case 4, a uniform distribution is used as the initial condition. The426

moments obtained using different methods are compared in Fig. 18. The427

conclusions can be drawn are similar to that in Case 3: HMOM over-predicts428

the total number of particles; BVMPM exhibits very high accuracy, giving429

the same results with the stochastic method.430

3.6. Combined processes431

We have evaluated the ability of BVMPM to treat the individual particle432

processes of inception, coagulation, growth, shrinkage and fragmentation.433

Now we want to test BVMPM against HMOM and the stochastic method434

for all of these particle processes combined. The initial condition is defined435

as a log-normal distribution:436

N(i, j) = 1010exp(−((log(i)− log(100))2 + (log(j)− log(100))2)/0.02). (41)

The kernels adopted are: KIn = 108 s−1, KG = 2 s−1, KCg = 10−12 s−1,437

KSk = 20 s−1 and KFg = 10−4 s−1. Since the focus of this work is to test438

the ability of BVMPM to handle shrinkage, a larger shrinkage kernel than439
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Figure 17: Comparison of M0,0 (top left panel), M0,1 (top right panel), M1,0 (bottom

left panel) and M1,1 (bottom right panel) between BVMPM, HMOM and the

stochastic method under pure fragmentation (Case 3).

the growth kernel is adopted to simulate a shrinkage dominate process. The440

NDFs at the beinning and end of the simulation under the combined processes441

are shown in Fig. 19. Figure 20 shows the evolution of the weighted particles442

for this case. There is a net shrinkage of particles and the NDF moves towards443

the smallest size coordinates.444

Comparison of the moments between different methods is shown in Fig. 21.445

In general, the moments obtained by BVMPM match satisfactorily well to446

35



0 2 0 4 0 6 0 8 0 1 0 0
0 . 0

0 . 3

0 . 6

0 . 9

1 . 2

1 . 5

1 . 8
M 0,0

 [d
im

en
sio

nle
ss

]

T i m e  [ s ]

 S t o c h a s t i c
 B V M P M
 H M O M

x 1 0 8

0 2 0 4 0 6 0 8 0 1 0 0
1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

M 0,1
 [d

im
en

sio
nle

ss
]

T i m e  [ s ]

 S t o c h a s t i c
 B V M P M
 H M O M

x 1 0 8

0 2 0 4 0 6 0 8 0 1 0 0
1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

M 1,0
 [d

im
en

sio
nle

ss
]

T i m e  [ s ]

 S t o c h a s t i c
 B V M P M
 H M O M

x 1 0 8

0 2 0 4 0 6 0 8 0 1 0 0

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

M 1,1
 [d

im
en

sio
nle

ss
]

T i m e  [ s ]

 S t o c h a s t i c
 B V M P M
 H M O M

x 1 0 1 0

Figure 18: Comparison of M0,0 (top left panel), M0,1 (top right panel), M1,0 (bottom

left panel) and M1,1 (bottom right panel) between BVMPM, HMOM and the

stochastic method under pure shrinkage (Case 4).

the stochastic solutions. The total number of particles remains unchanged447

before 4 s since no particles exist at the smallest size coordinates. Then M0,0448

exhibits a fast decrease before reaching relatively steady. The moments ob-449

tained by HMOM show an obvious discrepency with the stochastic solutions450

due to the poor prediction on the number of the smallest particles.451
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Figure 19: Particle number density functions at t0 = 0 s (left panel) and tf = 8 s (right

panel) computed using the stochastic method under all particle processes.

Figure 20: Distributions of weighted particles at t0 = 0 s (left panel) and tf = 8 s (right

panel) generated in BVMPM for all particle processes.

4. Conclusion452

In this work, a bivariate moment projection method is proposed for solv-453

ing the two-dimensional population balance equations describing particle dy-454

namics. The general idea of this method is to consider the particle number455

density function (NDF) as a product of univariate marginal NDF and a456

conditional NDF. A 2-D Blumstein and Wheeler algorithm is introduced to457

approximate the NDF with a set of weighted particles. The sizes of some458
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Figure 21: Comparison of M0,0 (top left panel), M0,1 (top right panel), M1,0 (bottom

left panel) and M1,1 (bottom right panel) between BVMPM, HMOM and the

stochastic method under all particle processes.

weighted particles are fixed at the smallest size coordinates so that the num-459

ber of these weighted particles can be used to evaluate the boundary flux460

term due to shrinkage and the accumulation of particles at the smallest sizes461

due to fragmentation.462

The performance of this method has been tested by comparing with the463

hybrid method of moments (HMOM) and the stochastic method, first for464

individual processes of inception, growth, shrinkage, coagulation and frag-465
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mentation, then for all the processes combined. Different types of NDFs are466

supplied as the initial conditions. Results suggest that the weighted particles467

generated in BVMPM can well reproduce the behavior of particle dynamics.468

BVMPM exhibits very high accuracy for treating inception, growth, coagu-469

lation and fragmentation. When it comes to shrinkage, however, BVMPM470

shows a slight discrepancy with the stochastic solution in terms of the to-471

tal number of particles. This discrepancy can be minimized by increasing472

the number of weighted particle sizes, N1 or N2. It is found that N1 = 4473

and N2 = 5 can provide an excellent match with the stochastic solution.474

In general, BVMPM performs much better than HMOM in handling the475

shrinkage and fragmentation processes. Future work includes the application476

of BVMPM to real particle processes such as soot formation in flames. It477

remains to be seen how effective BVMPM can be for more complicated PBEs478

with adaptive kernels and/or free-molecular Brownian kernels.479
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Nomenclature483

Upper-case Roman

D Eigenvectors of matrix T

E Eigenvalues of matrix T

F Source term due to fragmentation

G Source term due to coagulation

H Matrix with components which are a function of conditional mo-

ments

KIn Inception rate

KCg Coagulation kernel

KFg Fragmentation kernel

KG Growth kernel

KSk Shrinkage kernel

M Moment

M Matrix with components which are a function of moments

N Number

P Fragmentation distribution function

P Matrix with components which are a function of mixed moments

R Source term due to inception

R Matrix with components which are a function of conditional mo-

ments

484
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S Source term due to shrinkage

T Symmetric tridiagonal matrix as a function of recursion coeffi-

cients a and b

V Matrix with components which are a function of weighted parti-

cles

W Source term due to growth

Y Matrix with components which are a function of weighted

marginal particles

Z Matrix with components Z which are a function of the moments

M

Lower-case Roman

a, b Recursion coefficients

h Time interval

i, j particle size coordinate

k, l, x, y,m, n Indices

r Recursive function

t Time

Greek

α Particle size coordinate

β Particle size coordinate

γ Particle size coordinate

485
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δ Particle size change

η Particle size coordinate

Subscripts

f Final

p Particle

0 Initial or minimum

Symbols

x̃ Approximation of x

a|b Value of a given the condition of value of b

Abbreviations

BVMPM Bivariate moment projection method

ECQMOM Extended conditional quadrature method of moments

FCMOM Finite–size domain complete set of trial functions method of mo-

ments

HMOM Hybrid method of moments

PBE Population balance equation

NDF Number density function

MOM Method of moments

MOMIC Method of moments with interpolative closure

QMOM Quadrature method of moments

486
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PD Product difference algorithm

DQMOM Direct quadrature method of moments

EQMOM Extended quadrature method of moments

MPM Moment projection method

CQMOM Conditional quadrature method of moments

DSA Direct simulation algorithm

ODE Ordinary differential equation

487

43



Appendix A. Moment source term derivation488

In this section, the detailed derivations for the moment source terms489

(Eq. 11, Eq. 12, Eq. 13, Eq. 14 and Eq. 15) are given. Note that constant490

kernels are adopted in this work.491

Inception492

Applying Eq. 9 to Eq. 2, the moment source term for inception can be493

easily obtained:494

Rx,y(M) = KIni
x
0j
y
0 . (A.1)

Note that only particles of the smallest sizes (i0, j0) are formed during the495

inception process.496

Growth497

The moment source term for growth is obtained by applying Eq. 9 to498

Eq. 3:499

Wx,y(M) =
∞∑
i=i0

∞∑
j=j0

ixjyKG(N(i− δi, j − δj)−N(i, j)). (A.2)

Assume i
′
= i− δi and j

′
= j − δj:500

Wx,y(M) = KG

∞∑
i′=i0−δi

∞∑
j′=j0−δj

(i
′
+δi)

x(j
′
+δj)

yN(i
′
, j
′
)−KG

∞∑
i=i0

∞∑
j=j0

ixjyN(i, j).

(A.3)

Note that N(i
′
, j
′
) = 0 for i

′
< i0 or j

′
< j0, the above equation becomes:501
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Wx,y(M) = KG

∞∑
i′=i0

∞∑
j′=j0

(i
′
+ δi)

x(j
′
+ δj)

yN(i
′
, j
′
)−KG

∞∑
i=i0

∞∑
j=j0

ixjyN(i, j).

(A.4)

Rewrite i
′

as i and j
′

as j:502

Wx,y(M) = KG

∞∑
i=i0

∞∑
j=j0

(i+ δi)
x(j + δj)

yN(i, j)−KG

∞∑
i=i0

∞∑
j=j0

ixjyN(i, j).

(A.5)

Expand the first term on the right–hand side of the above equation with the503

binomial theorem:504

Wx,y(M) = KG

∞∑
i=i0

∞∑
j=j0

x∑
m=0

x

m

 imδx−mi

y∑
n=0

y
n

 jnδy−nj N(i, j)−KG

∞∑
i=i0

∞∑
j=j0

ixjyN(i, j).

(A.6)

Applying Eq. 9 to the above equation, we have:505

Wx,y(M) = KG

x∑
m=0

y∑
n=0

x

m

y
n

 δx−mi δy−nj Mm,n −KGMx,y. (A.7)

Shrinkage506

The moment source term for shrinkage is obtained by applying Eq. 9 to507

Eq. 4:508

Sx,y(M,N) =
∞∑
i=i0

∞∑
j=j0

ixjyKSk(N(i+ δi, j + δj)−N(i, j)). (A.8)
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Assume i
′
= i+ δi and j

′
= j + δj, the above equation becomes:509

Sx,y(M,N) = KSk

∞∑
i′=i0+δi

∞∑
j′=j0+δj

(i
′−δi)x(j

′−δj)yN(i
′
, j
′
)−KSk

∞∑
i=i0

∞∑
j=j0

ixjyN(i, j).

(A.9)

Rewrite i
′

as i and j
′

as j:510

Sx,y(M,N) = KSk

∞∑
i=i0+δi

∞∑
j=j0+δj

(i−δi)x(j−δj)yN(i, j)−KSk

∞∑
i=i0

∞∑
j=j0

ixjyN(i, j).

(A.10)

In order to transform the terms on the right–hand side of the above equation511

into moments, they are rewritten as:512

Sx,y(M,N) = KSk

∞∑
i=i0

∞∑
j=j0

(i− δi)x(j − δj)yN(i, j)−KSk

∞∑
j=j0

i0+δi−1∑
i=i0

(i− δi)x(j − δj)yN(i, j)

−KSk

∞∑
i=i0

j0+δj−1∑
j=j0

(i− δi)x(j − δj)yN(i, j)

+KSk

i0+δi−1∑
i=i0

j0+δj−1∑
j=j0

(i− δi)x(j − δj)yN(i, j)−KSk

∞∑
i=i0

∞∑
j=j0

ixjyN(i, j).

(A.11)

The second and third terms on the right–hand side of the above equation513

refer to the boundary flux terms in j and x coordinates, respectively. The514

forth term on the right–hand side of the above equation is included to avoid515

double subtraction. Expanding the first term on the right–hand side of the516

above equation with the binomial theorem, Eq. A.11 becomes:517
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Sx,y(M,N) = KSk

∞∑
i=i0

∞∑
j=j0

x∑
m=0

x

m

 im(−δi)x−m
y∑

n=0

y
n

 jn(−δj)y−nN(i, j)

−KSk

∞∑
j=j0

i0+δi−1∑
i=i0

(i− δi)x(j − δj)yN(i, j)−KSk

∞∑
i=i0

j0+δj−1∑
j=j0

(i− δi)x(j − δj)yN(i, j)

+KSk

i0+δi−1∑
i=i0

j0+δj−1∑
j=j0

(i− δi)x(j − δj)yN(i, j)−KSk

∞∑
i=i0

∞∑
j=j0

ixjyN(i, j).

(A.12)

Applying Eq. 9 to the above equation, we obtain:518

Sx,y(M,N) = KSk

x∑
m=0

y∑
n=0

x

m

y
n

 (−δi)x−m(−δj)y−nMm,n

−KSk

∞∑
j=j0

i0+δi−1∑
i=i0

(i− δi)x(j − δj)yNi,j −KSk

∞∑
i=i0

j0+δj−1∑
j=j0

(i− δi)x(j − δj)yNi,j

+KSk

i0+δi−1∑
i=i0

j0+δj−1∑
j=j0

(i− δi)x(j − δj)yNi,j −KSkMx,y. (A.13)

It can be seen that the numbers of particles at the smallest size coordinates519

are needed to evaluate the second, third and forth terms on the right–hand520

side of the above equation.521

Coagulation522

Applying Eq. 9 to Eq. 5, the moment source term for coagulation is523

obtained:524
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Gx,y(M) =
1

2
KCg

∞∑
i=i0

∞∑
j=j0

ixjy
i∑

i′=i0

j∑
j′=j0

N(i− i′ , j − j ′)N(i
′
, j
′
)

−KCg

∞∑
i=i0

∞∑
j=j0

ixjy
∞∑

i
′
=i0

∞∑
j
′
=j0

N(i, j)N(i
′
, j
′
). (A.14)

Assume w = i− i′ and v = j − j ′ :525

Gx,y(M) =
1

2
KCg

∞∑
w+i′=i0

∞∑
v+j′=j0

w+i
′∑

i′=i0

v+j
′∑

j′=j0

(w + i
′
)x(v + j

′
)yN(w, v)N(i

′
, j
′
)

−KCg

∞∑
i=i0

∞∑
j=j0

ixjyN(i, j)
∞∑

i
′
=i0

∞∑
j
′
=j0

N(i
′
, j
′
). (A.15)

Note that N(w, v) = 0 for w < i0 or v < j0, the above equation becomes:526

Gx,y(M) =
1

2
KCg

∞∑
w=i0

∞∑
v=j0

∞∑
i′=i0

∞∑
j′=j0

(w + i
′
)x(v + j

′
)yN(w, v)N(i

′
, j
′
)

−KCg

∞∑
i=i0

∞∑
j=j0

ixjyN(i, j)
∞∑

i′=i0

∞∑
j′=j0

N(i
′
, j
′
). (A.16)

Let w = i, v = j and expand the first term on the right–hand side of the527

above equation with the binomial theorem, the above equation becomes:528

Gx,y(M) =
1

2
KCg

∞∑
i=i0

∞∑
j=j0

∞∑
i′=i0

∞∑
j′=j0

x∑
m=0

x

m

 imi
′x−m

y∑
n=0

y
n

 jnj
′y−n

N(i, j)N(i
′
, j
′
)

−KCg

∞∑
i=i0

∞∑
j=j0

ixjyN(i, j)
∞∑

i′=i0

∞∑
j′=j0

N(i
′
, j
′
). (A.17)
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Apply Eq. 9 to the above equation, we have:529

Gx,y(M) =
1

2
KCg

x∑
m=0

y∑
n=0

x

m

y
n

Mm,nMx−m,y−n −KCgMx,yM0,0.

(A.18)

Fragmentation530

Applying Eq. 9 to Eq. 6, the moment source term for fragmentation is531

obtained:532

Fx,y(M,N) =
∞∑
i=i0

∞∑
j=j0

ixjy
∞∑
i′=i

∞∑
j′=j

KFg(i
′
, j
′
)P (i, j|i′ , j ′)N(i

′
, j
′
)

−
∞∑
i=i0

∞∑
j=j0

ixjyKFg(i, j)N(i, j). (A.19)

The above equation can be rewritten as:533

Fx,y(M,N) =
∞∑

i′=i0

∞∑
j′=j0

i
′∑

i=i0

j
′∑

j=j0

ixjyKFg(i
′
, j
′
)P (i, j|i′ , j ′)N(i

′
, j
′
)

−
∞∑
i=i0

∞∑
j=j0

ixjyKFg(i, j)N(i, j). (A.20)

Note that KFg(i, j) = 0 for i < 2i0 or j < 2j0 otherwise the total particle534

size is not conserved. Therefore the above equation is transformed as:535
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Fx,y(M,N) =
∞∑

i′=2i0

∞∑
j′=2j0

KFgN(i
′
, j
′
)

i
′∑

i=i0

j
′∑

j=j0

ixjyP (i, j|i′ , j ′)

−
∞∑

i=2i0

∞∑
j=2j0

ixjyKFgN(i, j). (A.21)

Applying Eq 8 into the above equation:536

Fx,y(M,N) =
∞∑

i′=2i0

∞∑
j′=2j0

KFgN(i
′
, j
′
)(ix0j

y
0 + (i

′ − i0)x(j
′ − j0)y)

−
∞∑

i=2i0

∞∑
j=2j0

KFgi
xjyN(i, j). (A.22)

Let i
′
= i, j

′
= j and rewrite the above equation as:537

Fx,y(M,N) =
∞∑

i=2i0

∞∑
j=2j0

KFgN(i, j)(ix0j
y
0 + (i− i0)x(j − j0)y − ixjy). (A.23)

To transform the terms on the right–hand side of the above equation into538

moments, the above equation is rewritten as:539
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Fx,y(M,N) =
∞∑
i=i0

∞∑
j=j0

KFgN(i, j)(ix0j
y
0 + (i− i0)x(j − j0)y − ixjy)

−
2i0−1∑
i=i0

∞∑
j=j0

KFgN(i, j)(ix0j
y
0 + (i− i0)x(j − j0)y − ixjy)

−
∞∑
i=i0

2j0−1∑
j=j0

KFgN(i, j)(ix0j
y
0 + (i− i0)x(j − j0)y − ixjy)

+

2i0−1∑
i=i0

2j0−1∑
j=j0

KFgN(i, j)(ix0j
y
0 + (i− i0)x(j − j0)y − ixjy).

(A.24)

The second and third terms on the right–hand side of the above equation540

refer to the accumulation of particles at the smallest size coordinates i0 and541

j0, respectively. The forth term on the right–hand side of the above equation542

is included to avoid double subtraction. Expanding the first term on the543

right–hand side of the above equation with the binomial theorem, the above544

equation becomes:545

Fx,y(M,N) =
∞∑
i=i0

∞∑
j=j0

KFgN(i, j)(ix0j
y
0 − ixjy +

x∑
m=0

x

m

 im(−i0)x−m
y∑

n=0

y
n

 jn(−j0)y−n)

−
2i0−1∑
i=i0

∞∑
j=j0

KFgN(i, j)(ix0j
y
0 + (i− i0)x(j − j0)y − ixjy)

−
∞∑
i=i0

2j0−1∑
j=j0

KFgN(i, j)(ix0j
y
0 + (i− i0)x(j − j0)y − ixjy)

+

2i0−1∑
i=i0

2j0−1∑
j=j0

KFgN(i, j)(ix0j
y
0 + (i− i0)x(j − j0)y − ixjy).

(A.25)
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Applying Eq. 9 to the above equation, we obtain:546

Fx,y(M,N) = KFg

x∑
m=0

y∑
n=0

x

m

y
n

 (−i0)x−m(−j0)y−nMm,n +KFgi
x
0j
y
0M0,0 −KFgMx,y

−KFg

∞∑
j=j0

2i0−1∑
i=i0

((i− i0)x(j − j0)y + ix0j
y
0 − ixjy)Ni,j

−KFg

∞∑
i=i0

2j0−1∑
j=j0

((i− i0)x(j − j0)y + ix0j
y
0 − ixjy)Ni,j

+KFg

2i0−1∑
i=i0

2j0−1∑
j=j0

((i− i0)x(j − j0)y + ix0j
y
0 − ixjy)Ni,j. (A.26)

It can be seen that the numbers of particles at the smallest size coordinates547

i0 and j0 are needed to evaluate the above equation.548

Appendix B. 1-D Blumstein and Wheeler algorithm549

This algorithm is used to determine the sizes and corresponding number550

of weighted particles to approximate the univariate NDF from the empirical551

moments.552

553
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Algorithm 2: 1-D Blumstein and Wheeler algorithm.

Input: The empirical moments M̃x for x = 0, 1, . . . , 2N1 − 2.

Output: The particle size αk and the corresponding number of weighted particles Ñαk for

k = 1, 2, . . . , N1.

for Np = 2 to N1 do

Determine the elements of the first row of matrix Z: Z1,j = M̃j−1 for j = 1, . . . , 2Np− 1.

For a1 = M̃1/M̃0 and b1 = 0, determine the recursion coefficients ai and bi:

for i = 2 to Np do

for j = i to 2Np − 1 do
The elements of Z must satisfy the following recursion relation:

Zi,j = Zi−1,j+1 − ai−1Zi−1,j − bi−1Zi−1,j ;

If Zi,i < Mmin or Zi−1,i−1 < Mmin, exit the main loop. Otherwise

ai =
Zi,i+1

Zi,i
−

Zi−1,i

Zi−1,i−1
; bi =

Zi,i

Zi−1,i−1
.

For r1 = 1/(i0 − a1) where i0 is the smallest particle size, determine the recursion

function:

ri = 1/(i0 − ai − biri−1) i = 2, . . . , Np − 1.

As we fix the smallest particle size, replace aNp with:

aNp = i0 − bNprNp−1.

Construct a symmetric tridiagonal matrix T with ai as the diagonal and the square

roots of bi as the co-diagonal:

T =



a1 −
√
b2 0 · · · 0

−
√
b2 a2 −

√
b3 · · · 0

0 −
√
b3 a3 · · · 0

...
...

...
. . .

...

0 0 0 · · · aNp


.

Solve for the eigenvalues E and eigenvectors D of matrix T:

[
E,D

]
= eig(T).

If any diagornal element of matrix E is smaller than i0 or any element in the first row of

matrix T is negative, exit the main loop and adopt the weighted particles obtained in

the last loop as the final output.

Otherwise determine αk and Ñαk by:

αk = E(k, k), Ñαk = M̃0D(1, k)2.

554
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Appendix C. 2-D Blumstein and Wheeler algorithm555

This algorithm is used to generate the weighted particles to approximate556

the bivariate NDF from the empirical moments. It involves multiple appli-557

cations of 1-D Blumstein and Wheeler algorithm.558

54



Algorithm 3: 2-D Blumstein and Wheeler algorithm.

Input: The empirical moments M̃x,y for x = 0, 1, . . . , 2N1 − 2 and

y = 0, 1, . . . , 2N2 − 2.

Output: The weighted particle internal coordinates (αk, βl|k) and the

corresponding numbers Ñαk and Ñβl|k for k = 1, 2, . . . , N1

and l = 1, 2, . . . , N2.

Use the marginal moments M̃x,0 (x = 0, . . . , 2N1 − 2) to determine αk

and Ñαk (k = 1, . . . , N1) with the 1-D Blumstein and Wheeler

algorithm.

Create a N1 ×N1 matrix Y and a N1 × (2N2 − 1) matrix M with zeros

in all elements.

for i = 1 to N1 do

for j = 1 to N1 do

Determine the elements of Y with the weighted marginal

particles:

Yi,j = αi−1
j Ñαj .

for i = 1 to N1 do

for j = 1 to 2N2 − 1 do

Determine the elements of M with the empirical moments:

Mi,j = M̃i−1,j .

Create a N1× (2N2− 1) matrix H with the elements in the first column

are 1 and the others are determined by

H(1 : N1, 2 : 2N2 − 1) = Y−1M.

for k = 1 to N1 do

With H(k, 1 : 2N2 − 1), use the 1-D Blumstein and Wheeler

algorithm to determine the conditional weighted particles: βl|k and

Ñβl|k .
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