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a b s t r a c t 

Electrochemical systems include atomistic processes at electrochemical interfaces and macroscopic trans- 

port processes, which can be modeled using kinetic Monte Carlo (kMC) simulation and continuum equa- 

tions, respectively. Multiparadigm algorithms are applied to directly couple such models to study mul- 

tiscale interactions. This article compares different algorithms for an example problem. Results quantify

the effect of computational cost and numerical accuracy by the choice of algorithm and its configuration.

The stochastic fluctuations of kMC simulations as well as sequential data exchange between the models

generate errors in coupled simulations. Measures to reduce stochastic fluctuations or revise exchanged

data can be either highly successful or futile, depending on the dominant cause of the error. Hence, we

strongly advise to identify the different causes of errors and their mechanics when selecting a coupling

algorithm or optimizing its configuration. This article provides various algorithms and suggestions for

their configuration to enable efficient and robust multiscale simulations.
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1. Introduction

Modeling and simulation have long been applied to the opera-

tion, diagnosis, and optimization of electrochemical systems and

processes (e.g., Ramadesigan et al., 2012 and citations therein).

Most applications construct models via a top-down approach, in

which a description of the technically relevant phenomena is based

on as little physical detail as needed to describe the system’s per-

formance. The demand for computational efficiency often leads

to the application of simplified physical or phenomenological ho-

mogenized continuum models. However, for many systems, in par-

ticular those containing active surfaces, their behavior is deter-

mined by complex mechanisms that occur at the atomistic scale,

such as electrochemical surface degradation in batteries or fuel

cells. In order to facilitate a knowledge-driven optimization of

such systems, atomistic effects need to be included in macro-

scopic models, which leads to an increasing need for multiscale

simulations ( Braatz et al., 2008 ). Simulation techniques applica-

ble for small length scales, such as the kinetic Monte Carlo (kMC)

method, are often of a stochastic nature and cannot be simulated
∗ Corresponding author at: Institute of Energy and Process Systems Engineering,

U Braunschweig, Franz-Liszt-Str. 35, 38106 Braunschweig, Germany.
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or the larger length and time scales describable by continuum

odels. Therefore, multiparadigm approaches are used to bridge

hose scales. The coupling of scales can be realized directly or indi-

ectly ( Franco, 2013 ). Only direct coupling allows for the investiga-

ion of the interaction of the models and phenomena between the

cales. Direct coupling of different simulation paradigms is chal-

enging due to the fundamentally different representation of phys-

cal processes at different scales. Coupling algorithms need to be

urther developed in order to improve accuracy and computational

fficiency ( Salciccioli et al., 2011 ). Better algorithms will help to

urther spread the application of those techniques, which promise

o lift electrochemical modeling to a more advanced and accu-

ate stage for the description of physical processes. The narrow-

ng of the gap between engineering and computational chemistry

s important for electrochemical systems in particular, and hetero-

eneous catalysis in general ( Kalz et al., 2016 ). 

In this article, we investigate methods for the direct coupling of

MC and continuum models based on differential equations. KMC

as been shown to be a useful tool to investigate surface chem-

stry for many years ( Pal and Landau, 1994 ). An excellent overview

n concepts, status, and challenges of applying first-principles KMC

o reactions at surfaces is given in Reuter (2011) . In electrochem-

stry, for instance, kMC has been applied to investigate CO electro

xidation ( Andreaus and Eikerling, 2007 ), copper electrodeposition

 Drews et al., 2006 ), fuel cells ( Pornprasertsuk et al., 2007 ), and
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List of symbols 

Latin letters 

a s specific surface area, m 

−1 

Ā amplitude, A m 

−2 

c concentration, mol m 

−3 or mol m 

−2 

C DL double layer capacitance, F m 

−2 

C 0 standard state concentration, mol m 

−3 

E A activation energy, J mol −1 

E M estimation of mean value 

E S estimation of the standard deviation 

f frequency, s −1 

F Faraday constant, A s mol −1 

I applied current, A m 

−2 

J an elementary process, –

� j boolean of elementary process j , –

k rate constant, s −1 

k f forward reaction rate constant, [s, mol, m] 

k b backward reaction rate constant, [s, mol, m] 

L a lattice site, –

M 

p
s mean value of output parameter sample p of se- 

quence s 

M 

p∗
e mean value of output parameter sample p of itera- 

tion e 

n l total number of lattice sites in kMC instance, –

n j total number of elementary processes, –

n l x number of lattice sites in x direction in kMC in- 

stance, –

n l y number of lattice sites in x direction in kMC in- 

stance, –

n par number of parallel kMC instances, –

n seq number of sequences, –

N s site density, m 

−2 

o s site occupancy number, mol −1 

p kMC output 

q reaction flux, mol m 

−2 s −1 

R ideal gas constant, J mol −1 K 

−1 

S 
p
s standard deviation of the mean value M of sequence 

s 

S 
p∗
e standard deviation of the mean value M of iteration 

e 

t time, s 

T temperature, K 

Greek letters 

β symmetry factor, –

�� drop of electrical potential at the interface, V 

�G 

0 standard state Gibbs free energy, J mol −1 

�L size of lattice site, m 

�t step time length, s 

� microscopic rate, s −1 

ι a kMC step, –

κ smoothing factor, –

ϑ lattice site state, –

ς a sequence, –

θ surface fraction, –

ζ uniform distributed random number, –

Indices 

ads adsorption site 

E electrolyte 

B species B 

A 

+ charges species A 

C species C 
s

V vacancy 

l lattice site index

i kMC step index 

s sequence index 

j elementary process index 

v kMC instance index 

e iteration index 

par parallel instance of the kMC model 

seq sequence 

tot total 

kMC kinetic Monte Carlo 

end end of simulation 

error error compared to continuum solution 

continuum continuum solution 

MPA solution using algorithm MPA 

atteries ( Blanquer et al., 2016; Methekar et al., 2011 ). In contrast

o continuum models, kMC allows the study of lateral stochas-

ic interactions of molecules on surfaces at the atomistic scale

 Jahnke et al., 2016 ). 

KMC models can be coupled with continuum models in a

ultiparadigm model ( Braatz et al., 2008; Franco, 2013; Jahnke

t al., 2016 ). The importance, perspectives, and challenges of

uch coupled models have been outlined by various researchers,

.g., Braatz et al. (2008) ; Franco (2013) ; Jahnke et al. (2016) ;

alciccioli et al. (2011) and Ricardez-Sandoval (2011) . Multi-

aradigm algorithms have been applied to study the agglomeration

f particles in reactors by coupling computational fluid dynamics

CFD) with Monte Carlo methods ( Madec et al., 2001 ), CO oxida-

ion in a catalytic reactor by coupling CFD and first principal kMC

 Matera et al., 2014 ), in the additive-mediated electrodeposition of

opper ( Zheng et al., 2008 ), and to fuel cells and other energy stor-

ge systems ( Quiroga and Franco, 2015; Quiroga et al., 2016 ). In

he field of batteries, mulitparadigm approaches have been used to

tudy the formation of the solid electrolyte interface on negative

lectrodes in lithium-ion batteries ( Methekar et al., 2011; Röder

t al., 2017 ). Further, coupling algorithms are also applied in sev-

ral multiphysics simulation, such as coupling of thermal and elec-

rochemical models for simulation of batteries ( Lin et al., 2018 ) or

oupling of CFD and reaction kinetic models for simulation of re-

ormers ( Goldin et al., 2009 ). 

In general, direct coupling – also called hybrid or

eterogeneous-homogeneous coupling – and indirect coupling 

an be distinguished. Direct coupling includes a frequent inter-

ction of continuum model and kMC model during simulation

 Franco, 2013 ). Designing a numerically stable and accurate direct

ultiparadigm algorithm is challenging, and so an indirect cou-

ling strategy is preferred if such a formulation can be derived

hat sufficiently captures the underlying coupled phenomena.

ome multiscale systems, however, need direct coupling to accu-

ately describe their behavior ( Braatz et al., 2008 ). Direct coupling

eparates the simulation into time intervals where the kMC

nd the continuum model are solved in sequence or in parallel

 Ricardez-Sandoval, 2011 ). Both algorithms can be iterated multi-

le times within each time interval convergence to self-consistent

olutions between the models ( Vlachos, 1997 ). Further, filtering

echniques are often applied to reduce fluctuations of the kMC

utput ( Braatz et al., 2006; Drews et al., 2004 ). All aspects have

onsiderable impact on accuracy and computational cost of the

imulation, which is rarely addressed. Theoretical approaches are

vailable ( Rusli et al., 2004; To and Li, 2005; Weinan et al., 2003 ),

ut no comprehensive comparison is available between different

trategies and their impact on accuracy and computational cost. 



Table 1

Reactions and adsorption/desorption processes I-IV, with continuum processes and

their rate constants k and the processes j as considered in the kMC model with

their microscopic rates �.

Nb. Continuum process j kMC process

I A + ( E ) + V ( ads ) 
k f

I −⇀ ↽ −
k b

I

A + ( ads ) – –

– –

II A + ( ads ) + e −( el ) 
k f

II−⇀ ↽ −
k b

II

B ( ads ) 1 A + ( ads ) + e −( el ) 
�l  1

i −−→ B ( ads )

2 B ( ads )
�l  2

i −−→ A + ( ads ) + e −( el ) 

III B ( ads ) 
k f

III−⇀ ↽ −
k b

III

C ( ads ) 3 B ( ads )
�l  3

i −−→ C ( ads )

4 C ( ads )
�l  4

i −−→ B ( ads )

IV C ( E ) + V ( ads ) 
k f

IV−⇀ ↽ −
k b

IV

C ( ads ) – –

– –

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Example of the electrochemical system (A) and illustration of the mul- 

tiparadigm model including the continuum model (B) and the kMC model (C).

Species and processes not addressed in a model are colored in gray.

Fig. 2. Illustration of the interface between kMC and continuum models.
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The scope of this article is to give the first systematic design,

evaluation and comparison of algorithms for direct coupling of

kMC with continuum models for electrochemical problems. The

focus is on electrochemical interfaces, which arise in many sys-

tems of scientific and engineering interest. To benchmark the per-

formance of the algorithms, a simple example problem is defined

with sequential reactions with only first-order reaction kinetics in-

cluding an electrochemical reaction step. By excluding heteroge-

neous processes, i.e. atom to atom interaction, the problem can be

accurately solved using mean field approximation in pure contin-

uum codes, which enables the evaluation of the accuracy of the

multiparadigm simulations. We aim to provide an introduction to

direct multiparadigm algorithms applicable to surface degradation

problems in electrochemical engineering. Further, we show the im-

pact of grid size, time step length, and smoothing of fluctuations

on the performance, i.e. computational cost and accuracy, of the

algorithms. 

2. Computational details

2.1. Example problem 

For the purpose of evaluating multiscale modeling algorithms,

a simple example problem is introduced, which includes a mech-

anism of two consecutive reactions of first order, without interac-

tion of the species on the surface. The mechanism is illustrated in

Fig. 1 (A) and the considered processes are given in Table 1 . Pro-

cess I is adsorption of species A 

+ from the liquid phase, i.e. the

electrolyte, to the surface. Process II is the electrochemical reaction

of species A 

+ to species B. Process III is the subsequent chemical

reaction of species B to species C. Finally, Process IV is the desorp-

tion of species C from the surface. All processes are reversible. The

presented example problem does not include any atom to atom

interaction and can thus also be solved exactly by a pure contin-

uum code, allowing the validation of the multiparadigm code and

benchmark of the different multiparadigm algorithms. This holds

not only for first order reaction, but also for second order reactions

in the absence of lateral interactions. 

With the here presented multiparadigm approach, a continuum

model composed of ordinary differential equations, and an atom-

istic model using the kMC method, are directly coupled. The ther-

modynamics and kinetics of each process in each model are de-

tailed below. With this work we suggest, that only the processes of

particular interest or clearly heterogeneous nature should be mod-

eled on an atomistic scale (e.g., Zheng et al., 2008 ). All other pro-

cesses, which can be sufficiently accurately approximated by mean

field approaches, should preferably be solved by the much faster
ontinuum codes. The boundary between models is defined be-

ween educts and products of a process, which is illustrated in

ig. 2 for process II. Species A 

+ and e − are considered by the con-

inuum model and species B is considered by the kMC model. The

odels are coupled by synchronization of the fluxes, e.g. the flux

f process II. In general, the boundary between continuum and

MC model can be flexibly defined at every considered process.

he choice will depend on the investigated problem. 

In the following, first the continuum and the kMC model is

rovided. Then, the sequence concept and the multiparadigm al-

orithms for coupling of those models are introduced. Finally, the

pproach to quantify simulation errors and the investigated simu-

ation scenario are given. 
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.2. Continuum model 

The scope of the continuum model is illustrated in Fig. 1 (B).

t features changes of electrical potential, ��, at the interface,

hanges of concentrations of species A 

+ and C, c A + ( E ) and c C(E) ,

ithin the electrolyte, and changes of surface fractions of species

 

+ and C, θA + ( ads ) and θC(ads) , on the adsorption site. Surface frac-

ion of B, θB(ads) , is an input parameter provided by the kMC

odel. Further, the model covers expressions for processes I-IV, as

llustrated in Fig. 1 (B). While processes I and IV are independent

f the kMC model, processes II and III are synchronized with the

MC model by adapting the forward and backward reaction rate

onstants of reactions II and III, namely k 
f 
II 
, k b 

II 
, k 

f 
III 

, k b 
III 

. It is noted

hat instead of passing reaction rate constants, reaction fluxes can

lso be passed from the kMC to the continuum model. However,

assing rate constants yields more numerically stable codes, as dis-

ussed below. In the following, the equations of the continuum

odel are given. 

The charge balance is included as 

 

DL d ��

d t 
= I − q II F (1) 

ith applied electrical current I , surface flux of the electrochemical

eaction II, q II , double layer capacitance C DL and Faraday constant

. Balance equations for surface fraction of species A 

+ and C are

iven as

N s 

o s

d θA + ( ads ) 

d t 
= q I − q II (2) 

nd 

N s 

o s

d θC ( ads ) 

d t 
= q III + q IV , (3)

espectively, using site density N s , site-occupancy number o s and

uxes q of processes I–IV. Balance equations for concentrations of

 

+ and C within the electrolyte are included as 

1 

a s 

d c A + ( E ) 

d t 
= q I (4) 

nd 

1 

a s 

d c C ( E ) 

d t 
= q IV , (5) 

espectively, using specific surface area a s . Fluxes q of processes

-IV are provided by

o s 

N s 
q I = k f 

I 
θV 

c A + ( E ) 

C 0 
A + ( E ) 

− k b I θA + ( ads ) , (6)

o s

N s 
q II = k f 

II 
θA + ( ads ) exp

(
β��F 

R T 

)

−k b II θB ( ads ) exp 

(
− (1 − β)��F

R T 

)
, (7) 

o s

N s 
q III = k f 

III 
θB ( ads ) − k b III θC ( ads ) , (8)

nd 

o s

N s 
q IV = k f 

IV 
θV 

c C ( E )

C 0 
C ( E )

− k b IV θC ( ads ) , (9)

ith forward and backward reaction rate constants, k f and k b , sym-

etry factor, β , standard state concentrations, C 0 , and temperature,

 . Reaction II is an electrochemical reaction and thus includes an

xponential dependency of electrical potential �� at the interface.

urface fraction θB and reaction rate constants k 
f 
II 
, k b 

II 
, k 

f 
III 

and k b 
III

re provided as input parameters from the kMC model as given in
he following sections. Surface fractions of vacant sites V(ads) are

etermined as 

V = 1 − θA + ( ads ) − θB ( ads ) − θC ( ads ) . (10) 

orward and backward rate constants of the sorption processes I

nd IV are independent of the kMC model and determined by the

ollowing equations: 

 

f 
I 

= k I exp 

(
−E AI 
R T 

)
, (11) 

 

b 
I = k I exp 

(
−(E A I − �G 

0 
I ) 

R T 

)
, (12) 

 

f 
IV 

= k IV exp

(
−E AIV
R T 

)
, (13) 

nd 

 

b 
IV = k IV exp 

(
−(E A IV − �G 

0 
IV ) 

R T 

)
(14) 

ith activation energy of the forward process, E A , and standard

tate Gibbs free energy of the forward process, �G 

0 . 

.3. Kinetic Monte Carlo model 

The scope of the kMC model is illustrated in Fig. 1 (C). The

odel includes the reaction processes II and III. Only species B is

onsidered explicitly, i.e. sites covered with B. The species A 

+ and

 are assumed to be homogeneously distributed on the sites that

re not covered by B, referred to as ¬B site. The fraction of surface

pecies A 

+ (ads) on ¬B sites, θA + ( ads ) , ¬ B , surface species C(ads) on

B sites, θC(ads), ¬B , and the electrical potential, ��, are provided as

nput parameters from the continuum model. Details about model

nteraction are provided in the next section. 

Kinetic equations for reaction II and III are solved using a

ejection-free kMC algorithm with variable step size. The kMC al-

orithm is based on examples provided by Burghaus (2006) . Steps

ithin the algorithm are explained in the following. In general the

MC algorithm includes the following actions with every kMC step

 : 

1. Calculate microscopic rate �l, j 
i 

of considered microscopic pro-

cesses j ∈ {1, 2, 3, 4} on the lattice sites l ∈ { z| z ∈ N , z ≤ n l } . 
2. Calculate the step time length �t i +1 applying a random number

ζ 1 ∈ (0, 1). 

3. Select one microscopic process J i ∈ {1, 2, 3, 4} and one lattice

site L i ∈ { z| z ∈ N , z ≤ n l } taking into account the microscopic

rates �l, j 
i 

applying a second random number ζ 2 ∈ (0, 1). 

4. Perform the selected process J i on surface site L i .

5. If i < ι, with ι being the last step of the kMC sequence, go to 1.

The last step ι is defined using the time steps of the kMC se-

quence t 
seq 
s , which are set within the MPA (details are provided

in the following section).

Thereby, the kMC model sets up a cubic lattice with n l = n l x · n l y
attice sites, with lattice state ϑ 

l 
i 

∈ { 0 , 1 } at lattice site l . A lattice

ite covered by B yields ϑ 

l 
i 

= 1 , i.e. B site, and a lattice site not

overed by B yields ϑ 

l 
i 

= 0 , i.e. ¬B site. Within the kMC algorithm,

n every kMC step i lattice state is changed. The lattice site is se-

ected according to microscopic rates of the considered microscopic

rocesses. A lattice site transfers ϑ 

l 
i 

= 0 to ϑ 

l 
i 

= 1 with the micro-

copic rate 

l, 1 
i 

= (1 − ϑ 

l 
i ) k II θA + ( ads ) , ¬ B exp 

(
−E AII
R T 

)
exp 

(
β��F 

R T 

)
(15)
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Fig. 3. Processes during one sequence in the coupled simulation.
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θ

corresponding to a microscopic forward step of process II and 

�l, 4 
i 

= (1 − ϑ 

l 
i ) k III θC ( ads ) , ¬ B exp 

(
−(E A III − �G 

0 
III ) 

R T 

)
(16)

corresponding to a microscopic backward step of process III. Ac-

cordingly, a lattice site transfers from ϑ 

l 
i 

= 1 to ϑ 

l 
i 

= 0 with the

microscopic rate 

�l, 2 
i 

= ϑ 

l 
i k II exp 

(
−(E A II − �G 

0 
II ) 

R T 

)
exp 

(
−(1 − β)��F 

R T 

)
(17)

corresponding to microscopic backward step of process II and 

�l, 3 
i 

= ϑ 

l 
i k III exp 

(
−E AIII
R T 

)
(18)

corresponding to a microscopic forward step of process III. With

this, a total of n j = 4 microscopic processes are considered in the

kMC model. The microscopic rates include the following input val-

ues: ��s , θA + ( ads ) , ¬ B and θC(ads), ¬B , which are constant within a

kMC sequence. Updating those input values with every kMC time

step i is computationally very expensive and thus not feasible. As-

suming constant values causes an error in the coupled simulation,

which is evaluated and discussed to assess the coupling quality as

detailed below. 

In every kMC step i , first the step time length is calculated

based on a uniform distribution random number ζ 1 ∈ (0, 1) as 

�t kMC 
i +1 = 

− ln (ζ1 )

�tot 
i 

, (19)

with �tot 
i 

being the total microscopic rate, which is calculated as 

�tot 
i = 

n l ∑ 

l=1

n j ∑ 

j=1

�l, j 
i 

. (20)

The discrete time at the following kMC time step i + 1 can be cal-

culated with 

 

kMC 
i +1 = t kMC 

i + �t kMC 
i +1 . (21)

Further, in every kMC step, one of the n j microscopic processes j

and one of the n l lattice sites l , is selected, with respect to the

microscopic rate �l, j 
i 

as given in Eqs. (15) –(18) , applying a second

uniform distribution random number ζ 2 ∈ (0, 1) according to ∑ L i 
l=1

∑ J i −1 
j=1 

�l, j 
i 

�tot 
i 

< ζ2 ≤
∑ L i 

l=1

∑ J i 
j=1 

�l, j 
i 

�tot 
i 

(22)

with J i being the selected process and L i being the selected grid

point. A boolean � , which indicates the selection of a process j

within a kMC step i is determined as 

� j 
i 

= 

{
1 , if J i = j 
0 , otherwise 

(23)

to enable counting how often a certain process j occurs. 

2.4. Sequence and model interaction 

As shown in the previous sections, both models rely on input of

the respective other model. This requires to pass input parameters

between the models, which needs to be handled by the MPA. One

possibility is to split the simulation in time sequences. In each time

sequence both models are simulated one after another with fixed

sequence specific input parameters. Input of the model simulated

first needs to be estimated, while the input of the second model

can be evaluated using the results of the first model. 

The simulation procedure during a sequence is illustrated in

Fig. 3 . It can be seen that within a sequence s the continuum and
he kMC model are solved. The sequence period is determined as

t seq
s = 

t end

n 

seq 
(24)

here t end is the simulation time and n seq the number of se-

uences. This determines the end time of the following sequence

 + 1 

 

seq 
s +1 

= t seq
s + �t seq

s +1
(25)

he mean-time corresponding to a sequence is defined as 

 ̄

seq 
s = 

t seq
s + t seq

s −1

2 

(26)

he time of the last kMC step i corresponding to a sequence s, ι, is
ot equal to but slightly higher than the end time of the sequence

 

seq 
s , as kMC step time length is determined using a random num-

er. The last kMC step ι can be determined as a function of s , i.e.

= f (s ) , according to 

= max (i ) ∈ { i | t seq 
s −1 

< t kMC 
i −1 ≤ t seq 

s } (27)

urther, the sequence ς , corresponding to of a certain point in time

an be determined as a function of i , i.e. ς = f (i ) , according to 

 

seq 
ς−1 

< t kMC
i −1 ≤ t seq

ς (28)

The input parameters for the kMC model in step i are evaluated

ith the continuum model at the mean time t̄ 
seq 
ς of the sequence

 as 

A + ( ads ) , ¬ B (i ) = θA + ( ads ) ( ̄t 
seq 
ς )

1 − θB ( ads ) ( ̄t 
seq 
ς )

(29)

C ( ads ) , ¬ B ,s (i ) = 

θC ( ads ) ( ̄t 
seq 
ς )

1 − θB ( ads ) ( ̄t 
seq 
ς )

(30)

�(i ) = ��( ̄t seq 
ς ) (31)

hich are functions of kMC time step i and constant within a se-

uence. 

The input to the continuum model needs to be provided as a

ontinuous function of time t . In the following, the required evalu-

tion of kMC simulations to determine these inputs is shown. The

MC simulations are performed as parallel instances v , i.e. several

MC simulations with equal simulation input are performed in par-

llel during each sequence. This allows one to statistically evalu-

te the kMC output as shown below. The mean surface fraction of

pecies B within one simulation instance v and one sequence s is

etermined as 

ˆ 
B (s ) = 

∑ ι(s ) 
i = ι(s −1) 

(�t KMC 
i 

∑ n l

l=1 ϑ 

l 
i 
)∑ ι(s )

i = ι(s −1) 
( �t KMC 

i 
n 

l ) 
(32)
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ith this the mean surface fraction of ¬B sites can be calculated

s 

ˆ ¬ B (s ) = 1 − ˆ θB (s ) (33)

sing the average ¬B site fraction, the effective average fraction of

he other species can be determined, as given in the following for

he example of the A 

+ species: 

ˆ 
A + = θA + ( ads ) , ¬ B · ˆ θ¬ B (34) 

his can be used to determine the effective reaction rate constants

or forward and backward rates of process II and III, as shown in

he following at the example of forward reaction of process II: 

ˆ 
 

f 
II 
(s ) = 

∑ ι(s )
i = ι(s −1)

�1
i

�t seq 
s n 

l �L 2

· 1

N s ̂
 θA + ( ads ) exp

(
β��F 

R T

) . (35) 

e note, that indeed, instead of reaction rate constants, one could

lso directly pass the reaction fluxes, e.g. q II , from the kMC to the

ontinuum model. However, for numerical stability of the solution

t is advantageous to include some general dependencies within

he continuum solution, if possible. For instance, here, we include

he general dependency of the forward reaction of process II on

urface fraction θA + ( ads) within the continuum model, i.e. as given

y Eq. (7) . Synchronization of the fluxes between kMC and contin-

um model is realized by adapting the rate constants k 
f 
II 

and k b
II

n the continuum model. Passing rate constants instead of fluxes,

revents, for instance, negative values of θA + ( ads) in the continuum

imulation and thus improves numerical stability, as stated above. 

As mentioned above, kMC simulations are performed in parallel

nstances v . Thus, an output parameter ˆ p s, v , e.g. ˆ θB ,s, v , depends on

 and v . The mean value of the n par parallel instances can thus be

alculated as 

 

p 
s = 

∑ n par

v =1 ˆ p s, v 

n 

par 
, (36) 

hile the standard deviation of the calculated value M 

p 
s can be ap-

roximated as 

 

p 
s ≈

√
1 

n 

par (n 

par − 1) 

n par ∑ 

v =1 

| ̂  p s, v − M 

p 
s | 2 (37) 

t is noted that S 
p 
s , indeed, is only an approximation of the stan-

ard deviation, which is achieved by evaluating a sample of kMC

imulations of the size n par . In order to determine p ( t ), e.g. θB ( t ),

or the continuum model a cubic smoothing spline is determined,

hat minimizes 

n seq ∑ 

s =1

| M 

p 
s − p( ̄t seq 

s ) | + (1 − κ)

∫ ∣∣∣∣d 2 p(t) 

dt 2 

∣∣∣∣
2

dt (38) 

ith smoothing factor κ . This yields the continuum input parame-

ers as continuous functions of time t : k 
f 
II 
(t) , k b 

II 
(t) , k 

f 
III 

(t) , k b 
III 

(t) ,

nd θB ( t ). 

.5. Direct coupling algorithms 

The previous section showed the continuum model, the kMC

odel, the sequencing and the exchanged values in detail. How-

ver, the order of passing values and the interpretation of simula-

ion outputs have not yet been discussed. There are various options

o realize this coupling which differ significantly in stability, accu-

acy and computation time. Here, a systematic analysis and com-

arison allows to show the pros and cons of the approaches, and
hus educated selection and tailoring in future studies. Three dif-

erent algorithms for coupling of both models are presented in this

ection. 

In every algorithm within a sequence s , the kMC and the con-

inuum model is solved. However, the order and the interpreta-

ion of the outputs can vary between algorithms. The first, MPA1, is

hown in Fig. 4 (a). Here, within a sequence, the continuum model

s simulated first. In the second, MPA2, the order is switched, as

an be seen in Fig. 4 (b). The third, MPA3, as shown in Fig. 4 (c),

as the same sequential order as MPA1, but includes an estimation

oop, which repeats one sequence s until the results are within a

efined tolerance. As will be shown, the additional loop consid-

rably increases computational cost of the overall simulation. The

lgorithms include a filtering step of the kMC data to account for

he stochastic nature of kMC, and a prediction step to predict the

utput of the second model in the upcoming sequence. This pre-

iction step can cause an error in the overall simulation, which

ill be referred to as the prediction error . For MPA3, an estimation

tep is also introduced, in which the output of the kMC step is esti-

ated based on the previous iterations. The intention is to correct

he initially introduced prediction error. The simulation is termi-

ated as soon as a specified end criteria is reached, which can be,

or instance, t > t end with t end being the specified end time. 

In MPA1 and MPA3, the output of the kMC model for the up-

oming sequence is predicted as 

 

p 
s +1

= M 

p 
s + 

(M 

p
s − M 

p
s −1 

) 

( ̄t seq 
s − t̄ seq 

s −1 
) 

( ̄t seq 
s +1 

− t̄ seq 
s ) (39)

n the upcoming sequence p ( t ) is calculated based on Eq. (38) in-

luding this prediction. In MPA2 the output of the continuum

odel is predicted as 

p( ̄t seq 
s +1 

) = p(t seq 
s ) + 

d p(t seq 
s )

d t 

�t seq
s +1 

2 

. (40)

Filtering of the kMC output is realized using the smoothing fac-

or κ as given in Eq. (38) , while a smoothing factor of 1 yields no

moothing and smoothing factor of 0 yields an approximation by a

inear function. The filtering in MPA1 includes the predicted kMC

utput based on Eq. (39) . In the first sequence, s = 0 , the input of

he first model is estimated using the start values at t = 0 , which

re provided in Table 2 . 

MPA3 includes an additional estimation loop, which is used to

orrect errors caused by the prediction step. The estimation proce-

ure is provided in detail in the following. M 

p∗
e is the mean output

f value p in estimation step e and E M 

e is the estimation of the

ean output. The estimation of the upcoming step e + 1 is calcu-

ated as 

 

M 

e +1 = E M 

e + K P (M 

p∗
e − E M 

e ) + K I

e ∑ 

z=1

(M 

p∗
z − E M 

z ) (41)

hile the estimate of the standard deviation E S e is calculated ac-

ordingly, as 

 

S 
e +1 = E S e + K P (S p∗

e − E S e ) + K I

e ∑ 

z=1

(S p∗
z − E S z ) (42)

quations likewise consider the difference between the estimated

alue, e.g. E M 

e , and the actual output mean value, e.g. M 

p∗
e , in the

revious step as well as the sum up to the last iteration step,

hich are thereby weighted by a proportional K P and an inte-

ral factor K I , respectively. This algorithm resembles the setup of a

roportional-integral (PI) controller. Due to the fluctuations of the

MC output, E M 

e and M 

p∗
e are unlikely to converge to exactly the

ame value. An acceptable tolerance between both values needs to

e defined, which in this work is 

 

M 

e − E S e λ < M 

p∗
e < E Me + E S e λ (43)



Fig. 4. Illustration of the multiparadigm algorithms MPA1 (a), MPA2 (b) and MPA3 (c).
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with λ being the tolerance factor to scale the tolerance relative to

the standard deviation, i.e. fluctuations of the output. As soon as

Eq. (43) is true for all M 

p∗
e , the output of the sequence is defined

as 

M 

p
s = M 

p∗
e (44)

and the next sequence is calculated. 

2.6. Error estimation 

To estimate the error of the coupled simulation, results are

compared to a pure continuum solution. This is possible because

no heterogeneity is included in this kMC model. Nevertheless, the

approach enables to consider heterogeneity in a coupled simula-

tion as we showed in our previous work on chemical and electro-

chemical degradation in Lithium-ion batteries ( Röder et al., 2017 ). 
The kMC model covers the calculation of the reaction rate con-

tants of reaction II and III, which for the homogeneous case can

e determined as 

 

f 
II 

= k II exp

(
−E AII
R T 

)
, (45)

 

b 
II = k II exp 

(
−(E A II − �G 

0 
II ) 

R T 

)
, (46)

 

f 
III 

= k III exp

(
−E AIII
R T 

)
, (47)

nd 

 

b 
III = k III exp 

(
−(E A III − �G 

0 
III ) 

R T 

)
. (48)



Table 2

Model parameters.

Parameter Value

Ideal gas constant R [J mol −1 K −1 ] 8.314

Temperature T [K] 300

Faraday constant [A s mol −1 ] 96,485.33289

Specific surface area a s [m 

−1 ] 1 × 10 6 

Double layer capacitance C DL [F m 

−2 ] 0.2

Distance between lattice sites �L [m] 6 × 10 −10 

Site density N s [m 

−2 ] 1/ �L 2

Site-occupancy number o s [mol −1 ] 6.022 × 10 23 

Input amplitude Ā [A m 

−2 ] 1

Input frequency f [s −1 ] 0.1

Symmetry factor β [–] 0.5

Rate constant k I [s −1 ] 1 × 10 13 

Rate constant k II [s −1 ] 1 × 10 10 

Rate constant k III [s −1 ] 1 × 10 10 

Rate constant k IV [s −1 ] 1 × 10 13 

Activation energy E A I [kJ mol −1 ] 45

Activation energy E A II [kJ mol −1 ] 50

Activation energy E A III [kJ mol −1 ] 50

Activation energy E A IV [kJ mol −1 ] 45

Standard state Gibbs free energy �G 0 I [kJ mol −1 ] 0

Standard state Gibbs free energy �G 0 II [kJ mol −1 ] −0.965

Standard state Gibbs free energy �G 0 III [kJ mol −1 ] −0.965

Standard state Gibbs free energy �G 0 IV [kJ mol −1 ] 1.93

Standard state concentration of species A + (E) C 0 
A + (E) 

[mol m 

−3 ] 10 0 0

Standard state concentration of species C(E) C 0
C (E) 

[mol m 

−3 ] 10 0 0

Initial potential ��(t = 0) [V] 0

Initial concentration of species c A+ (E)(t = 0) [mol m 

−3 ] 10 0 0

Initial concentration of species c C ( E ) (t = 0) [mol m 

−3 ] 10 0 0

Initial surface fraction of species θA + ( ads ) (t = 0) [–] 0.18

Initial surface fraction of species θB ( ads ) (t = 0) [–] 0.26

Initial surface fraction of species θC ( ads ) (t = 0) [–] 0.38
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urther, the model covers the balancing of species B on the adsorp-

ion site. In the purely continuum model this balance is included

s 

N s 

o s

d θB ( ads ) 

d t 
= q II − q III (49) 

y supplementing the continuum model as provided in

ection 2.1 with Eqs. (45) –(49) , an accurate reference solution

an be determined. In summary, this yields the following possible

olutions for the simulation of the example problem: 

• MPA1: Continuum model of Section 2.1 coupled with kMC

model of Section 2.2 using MPA1 algorithm.
• MPA2: Continuum model of Section 2.1 coupled with kMC

model of Section 2.2 using MPA2 algorithm.
• MPA3: Continuum model of Section 2.1 coupled with kMC

model of Section 2.2 using MPA3 algorithm.
• Reference: Continuum model of Section 2.1 supplemented by

Eqs. (45) –(49) .

To determine errors of the MPA algorithms, results are com-

ared to the reference solution. Thus, absolute errors of the MPA

olutions can be determined, which is shown for the example of

he surface fraction of species B calculated by MPAx with x ∈ {1, 2,

} in the following:

error 
B ( ̄t seq 

s ) = θMPAx 
B ( ̄t seq 

s ) − θ reference 
B ( ̄t seq 

s ) . (50)

urther, the absolute average error of potential, reaction rate con-

tants, and surface fraction over all sequences are determined as

�̄
error =

∑ n seq

s =1 | ��error ( ̄t seq 
s ) |

n 

seq 
, (51) 
¯
 

error = 

∑ n s

s =1 | k f, error 
II 

( ̄t seq 
s ) | 

4 · n 

seq 
+ 

∑ n seq 

s =1 | k b, error 
II 

( ̄t seq 
s ) |

4 · n 

seq 

+ 

∑ n seq 

s =1 | k f, error 
III 

( ̄t seq 
s ) | 

4 · n 

seq 
+ 

∑ n seq 

s =1 | k b, error 
III 

( ̄t seq 
s ) |

4 · n 

seq 
, (52) 

nd 

¯error = 

∑ n seq

s =1 | θ error 
A + 

( ̄t seq 
s ) |

4 · n 

seq 
+ 

∑ n seq

s =1 | θ error 
B 

( ̄t seq 
s ) |

4 · n 

seq 

+ 

∑ n seq

s =1 | θ error 
C 

( ̄t seq 
s ) | 

4 · n 

seq 
+ 

∑ n seq

s =1 | θ error 
V 

( ̄t seq 
s ) |

4 · n 

seq 
, (53) 

espectively. Absolute errors for reaction constants for forward and

ackward reaction and those of the surface fractions are averaged;

his allows to reduce the number of variables and thus enables a

ocused discussion and comparison of the MPAs. 

The errors, as introduced above, are used to evaluate the overall

rror of the coupled simulation. However, those evaluations barely

llow to assign errors to certain causes. Most relevant causes are

he fluctuation of the kMC (fluctuation error), the quasi steady

tate assumption within a kMC sequence neglecting the transient

hange of the input parameter (transition error), and the predic-

ion of the input values (prediction error). To decompose the effect

f those contributions, they are investigated separately, as will be

utlined in the following. By assuming constant values for the in-

ut of the kMC model, as given in Eqs. (29) –(31) , an error is in-

roduced, which will be referred to as transition error. The error

an be decomposed by using the according assumption in the ref-

rence solution. In the following, this is shown for the example of

he electrical potential ��, as used in Eq. (7) : 

�(t) = ��( ̄t seq 
s ) (54) 

or t 
seq 
s −1 

< t ≤ t 
seq 
s . According to Eq. (40) the error of MPA2, which

ncludes the prediction, can be introduced at the example of ��

y assuming 

�(t) = ��(t seq 
s −1 

) + 

d ��(t seq 
s −1 

) 

d t 

�t seq
s 

2 

(55)

ccording to Eq. (39) the error of MPA1, which includes the pre-

iction, can be introduced at the example of θB by identification

f 

 

θB 
s = M 

θB 

s −1
+ 

(M 

θB 

s −1
− M 

θB 
s ) 

( ̄t seq 
s −1 

− t̄ seq 
s )

( ̄t seq
s − t̄ seq 

s −1 
) (56)

or t 
seq 
s −1 

< t ≤ t 
seq 
s and application of the smoothing function in

q. (38) to determine θB ( t ). The assumptions that are given in

qs. (55) and (56) , however, also include a transition error, which

eed to be subtracted to decompose the error of the predic-

ion. The errors caused by the fluctuation of the kMC output can

e quantified by the standard deviation of the kMC output, i.e.

q. (37) . To sum up, the particular error contributions in this work

ave been estimated as absolute errors, which are calculated as

ifference between the reference model and the reference model

ith modifications outlined above. With this, the contributions to

he overall error of the three causes listed above, can be decom-

osed for any value, e.g. the surface fraction of B θB , as given in

he following: 

• transition error of value = value in reference model modi-

fied by assumptions according to Eq. (54) - value in reference

model;
• prediction error of value (MPA1) = value in reference model

modified by assumptions according to Eq. (55) - transition er-

ror - value in reference model; 
• prediction error of value (MPA2) = value in reference model

modified by assumptions according to Eq. (56) - transition er-

ror - value in reference model; 
• p 
fluctuation error = S s in Eq. (37) .



Fig. 5. Difference in the electrical potential �� and absolute error compared to the continuum solution, and the CPU time for algorithms MPA1, MPA2, and MPA3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Concentration and absolute error of species (a) A + and (b) C for MPA1. 
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2.7. Simulation scenario and parameters 

The input into the simulation triggering the reaction is an ex-

ternally applied current I . The current leads also to charge and dis-

charge of the electrochemical double layer and change of the elec-

trical potential �� at the electrochemical surface. Since the pre-

sented approach is designed to be applied to investigate dynamic

operation of electrochemical systems, also a dynamic signal is ap-

plied. We define the sinusoidal input current as 

I = Ā sin (2 π f t) (57)

with amplitude Ā and the frequency f . All parameters are listed in

Table 2 . Parameters are chosen in a physically reasonable order of

magnitude but mainly to provide illustrative simulation results. All

models are implemented and solved in MATLAB. Ordinary differ-

ential equations are solved by the ode15s solver. Simulations are

performed in Matlab on a 64-bit linux system with Intel Core TM 

i7-3770 CPU with 3.40 GHz × 8 and 15.5GB RAM. 

3. Results and discussion

To show the impact of the type of coupling algorithm and con-

figuration, simulations were performed with a varying number of

lattice sites n l , number of sequences n seq , proportional factor K P ,

tolerance factor λ, and smoothing factor κ . Multiparadigm simula-

tions are benchmarked by comparison to a pure continuum solu-

tion, indicated as reference. The standard configuration of the algo-

rithms is defined by n l = 10 2 , n par = 16 , K P = 0 . 2 , λ = 1 , and κ = 1

and is always applied if not stated otherwise. 

3.1. Numerical accuracy of the coupling algorithms 

Fig. 5 shows the electrical potential �� for the continuum

model and for the multiparadigm algorithms MPA1, MPA2, and

MPA3 using the reference configuration. Due to the sinusoidal sig-

nal input of the external current I , the electrical potential increases

and decreases as a sinusoid also. All three algorithms are in good

agreement with the continuum solution with deviations below 5%

relative to the voltage amplitude. The errors of MPA1 and MPA2

are significantly higher than MPA3. Further, MPA1 and MPA2 both

possess an oscillatory increase and decrease of the error. The peaks

of the errors are increasing for both algorithms towards the end of

the simulation and are comparable regarding positions in time and

magnitude, which suggests both errors are of the same origin. In

contrast, the error of MPA3 neither increases nor shows a compa-

rable systematic behavior. The electrical potential is determined by

the continuum part of the MPAs with Eq. (1) , and depends on the

current input I and the rate of reaction II, q . Since the input I is
II 
quivalent for all simulations, the error of the electrical potential

riginates from an error of the reaction rate q II . In the MPA simu-

ations, this rate directly depends on three kMC outputs, being the

orward and backward reaction rate constants, k 
f 
II 

and k b 
II 
, and the

urface fraction of species B, θB . Although the simulation accuracy

s considerably higher for MPA3 compared to MPA1 and MPA2, its

omputational cost is nearly 30 times higher, as given in Fig. 5 . 

While the errors for MPA1 and MPA2 have the same system-

tic behavior, MPA1 had a larger maximum error and so was an-

lyzed in more detail. In Fig. 6 , the concentrations of species A 

+ 

nd C in solution are compared for the continuum-only model and

PA1. Just as for the electrical potential, the concentrations are

olved within the continuum part of the MPAs, and errors indi-

ectly originate from errors in the kMC output. The concentration

f species A 

+ is in very good agreement with the continuum so-

ution, whereas the concentration of species C has a considerable

eviation, as the absolute error of the concentration is about two

rders of magnitude higher compared to the absolute error of con-

entration of species A 

+ . Both errors show the same systematic be-

avior as previously seen for the electrical potential. The concen-

rations are influenced by surface fractions of species A 

+ , C, and

acancies V, so the surface fractions and their errors are discussed

ext. 



Fig. 7. Surface fraction of species A + , B, C, and vacancies V for the continuum so- 

lution and MPA1.

Fig. 8. Absolute error of surface fraction of species A + , B, C, and vacancies V for 

MPA1.
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In Fig. 7 , MPA1 is further evaluated for the surface fractions θ i 

f species A 

+ , B, C, and vacancies V. Again, the impact of the si-

usoidal input can be seen, as the surface fractions decrease and

ncrease sinusoidally as well. The amplitude of the oscillations is

owest for species A 

+ and V and highest for species B. The mean

nd amplitude of the surface fraction of vacant sites and of species

 

+ are very similar. The deviations of the surface fractions in MPA1

re highest for species B and lowest for species A 

+ and vacancies

, which is shown in detail in Fig. 8 . The errors in the surface frac-

ions originate from errors in the kMC outputs and in particular

irectly from error in the surface fraction θB . Since surface frac-

ions of all species sum up to 1 as given by Eq. (10) , the absolute

rror in the surface fractions sum up to 0. As such, an error in the

urface fraction of species B forces a distribution of this error on

he other surface fractions. The share of this error is almost equal

or species A 

+ and vacancies V. The very low observed error in the

oncentration of A 

+ in the solution can be explained. Comparing
o the continuum solution, the surface fractions of the vacancies V

nd of species A 

+ impact the forward and backward rate of process

, respectively. Since both surface fractions have almost the same

alues and errors, the impacts compensate each other leading to a

ery low error propagation to the concentration of A 

+ in the solu-

ion. In contrast, for reaction 4, the values and errors of the surface

raction of C considerably differ leading to a distinct and significant

rror propagation to the solution concentration C. The results illus-

rate that the propagation of an error in a multiscale algorithm can

epend considerably on the system and its parameters. 

The magnitude and systematic nature of the errors of MPA1 and

PA2 (not shown here in detail) were found to be comparable, and

he order of the sequence was of minor relevance for the simula-

ion accuracy and computational cost. MPA3 significantly improved

he accuracy but with much higher computational cost. The sys-

ematic oscillatory nature of the errors in MPA1 and MPA2, which

o not appear in MPA3, suggests a different origin. The next sec-

ion analyzes the errors in detail and discusses efficient tuning of

he algorithms to reduce the overall simulation error. 

.2. Algorithm tuning 

By examining the system states (i.e. potentials, concentrations,

nd surface fractions), the impact of MPAs on the simulation error

as been shown. Errors can originate thereby from the coupling of

he continuum and kMC models, as well as the stochastic nature

f the kMC model. Different algorithms can lead to very differ-

nt systematic errors and magnitudes of the errors. In particular,

 considerable difference between algorithms without estimation

orrection, i.e. MPA1 and MPA2, and an algorithm including an es-

imation correction, i.e. MPA3, could be seen. As introduced above,

e distinguish three types of errors: (i) prediction error, (ii) tran-

ition error, and (iii) fluctuation error. The errors of the reaction

ate constants were not dependent on time and so do not include

ny prediction or transition errors. As such, only the results for the

urface fraction θB are discussed in detail. 

The various absolute errors of θB for the MPAs are shown in

ig. 9 . The prediction and transition errors are oscillatory. The fluc-

uation error induced by the kMC simulation is nearly constant

uring the whole simulation. The prediction error is considerably

arger than the transition and fluctuation errors, which are of the

ame order of magnitude. The overall error for MPA1 is oscillatory

nd strongly correlates with the prediction error, especially dur-

ng the first quarter of the simulation; as the simulation proceeds,

he overall error of the MPA1 increases and exceeds the prediction

rror. The errors accumulate and the MPA solution becomes some-

hat out of phase with ongoing simulation time. A similar cor-

elation between the prediction error and overall error occurs for

PA2. The prediction error of MPA2 is slightly lower, with some

ncrease in peak overall error with time. For MPA3, the initial pre-

iction is equal to that for MPA1, but is corrected by the estima-

ion correction loop and so is not seen in the Fig. 9 (c). The esti-

ation correction leads to a considerable decrease of the overall

rror. The prediction error is the result of the linear interpolation

sing Eqs. (39) and (40) . We note that the prediction error may

e reduced by using higher order extrapolations instead. However,

his could also increase the error or cause numerical instabilities.

etailed investigations of these effects are out of the scope of this

rticle, but nevertheless should be addressed in future work. 

The fluctuation error can be reduced by increasing the number

f lattice sites, such as increasing the grid size. Fig. 9 indicates that

ncreasing n l from 10 2 to 20 2 did not reduce the overall error of

PA1 and MPA2, which is dominated by the prediction error, but

id reduce the overall error for MPA3. The reduction in fluctuation

rror for MPA3 results in its overall error becoming more corre-

ated to the transition error. These results illustrate that increasing



Fig. 9. Errors for (a) MPA1, (b) MPA2, and (c) MPA3 for surface fraction of species B for n l = 10 2 and n l = 20 2 , as well as prediction, transition, and fluctuation errors for 

n l = 10 2 . The CPU time for n l = 20 2 is given in each subplot. 

Fig. 10. Absolute average errors for the electrical potential �̄�
error 

, reaction rates 

k̄ error , and surface fractions θ̄ error for varying field size, smoothing factor, and num- 

ber of sequences.
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the number of lattice sites can only be an efficient strategy if the

fluctuation error is the dominant, because of the overall simulation

error. 

The computational cost for the simulations with an increased

field size are also provided in Fig. 9 . The computational cost is sig-

nificantly increased for all simulations compared to that of n l =
10 2 , given in Fig. 5 . Again, the computational cost of MPA3 is

significantly higher, i.e. more than 30 times higher, compared to

MPA1 and MPA2. As such, there is a strong incentive to avoid a

computationally expensive estimation-correction loop or to signifi-

cantly reduce its iterations. 

A systematic analysis of several measures to tune the MPA is

shown by varying the field size n l in Fig. 10 (a), (d) and (g), the

smoothing factor κ in Fig. 10 (b), (e) and (h), and the number of

sequences n seq in Fig. 10 (c), (f) and (i). The results show the effect

of aforementioned measures on the averaged absolute errors of the

electrical potential �� in Fig. 10 (a–c), the reaction rate constants
 

f 
II 
, k b 

II 
, k 

f 
III 

and k b
III 

in Fig. 10 (d–f), and the surface fractions θA + ,

B , θC , and θV in Fig. 10 (g), (h) and (i) for the three MPAs. The

lectrical potential can be interpreted as being an overall simula-

ion error, as it represents the typical electrochemical model out-

ut. The reaction rates are kMC output variables that are indepen-

ent of time and thus are only affected by fluctuation errors. The

urface fractions are variables that are additionally directly affected

y transition and prediction errors. 

In Fig. 10 (g), the errors in surface fractions are shown for a

arying field size. The error is not affected by n l for MPA1 and

PA2 since their errors are dominated by prediction error, but the

rror can be reduced for MPA3, which has no prediction error. Pre-

iction errors are not affected by the number of lattice sites, which

ere makes increasing the field size a futile measure. In contrast,

rrors in the reaction rate constants, as shown in Fig. 10 (d), are

educed for increasing the field size for all three algorithms. This

rror is only affected by fluctuation errors, which can be efficiently

educed by increasing the number of lattice sites. In Fig. 10 (a), er-

ors in the electrical potential is shown. Again, errors do not pos-

ess a clear dependency on field size for MPA1 and MPA2. In con-

rast, the errors of MPA3 can be slightly decreased with increased

 

l . The error in the electrical potential is more strongly influenced

y the error of the surface fraction than by the error of the re-

ction rate constant. For the variation in field size in Fig. 10 , the

rror in MPA3 is an order of magnitude lower for electrical poten-

ial and surface fraction than for MPA1 and MPA2, but only about

0% lower for the reaction rate constant. The accuracy can be im-

roved most by an estimation correction if the error is dominated

y prediction error. 

Next, consider the effects of smoothing the kMC output.

moothing the kMC output, i.e. decreasing κ , reduced the overall

rror dominated by fluctuations of the kMC model ( Fig. 10 (e)). In

ontrast, smoothing had minimal effects on the overall error dom-

nated by prediction error, i.e. the error in surface fraction θ for

PA1 and MPA2 ( Fig. 10 (h)), and increased smoothing increased

he overall error for MPA3, which has no prediction error. The

rends in the errors in the electrical potential are similar to those

or θ ( Fig. 10 (b)), as those errors are more closely related than the

rrors in reaction rate constants in this simulation scenario. 

Finally, consider the impact of varying the number of se-

uences, n seq . An increasing number of sequences corresponds to a

eduction of the time length of each sequence. Shorter time steps

ill reduce prediction length and improve accuracy of mean ap-

roximations within a kMC simulation, which will reduce the pre-
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Fig. 11. (a) Convergence status during the iteration process and (b) estimated value, tolerance region, and actual kMC output for the surface coverage of B, θB . The con- 

vergence status of the kMC outputs are indicated as converged (blue plus), i.e. output is within the tolerance region, and not converged (red circle), i.e. output is outside

the tolerance region. End time of a sequence is indicated by vertical gray lines with the last time step corresponding to t end . This reference configuration has n l = 10 2 , 

n instance = 16 , K P = 0 . 2 , λ = 1 , and κ = 1 . 
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iction and transition errors. However, shorter time sequences will

rovide less data from the kMC model and thus result in an in-

rease in the fluctuation error. The consequences can be observed

n Fig. 10 (c), (f) and (i). The errors in surface fraction θ for MPA1

nd MPA2 in Fig. 10 (i), which are dominated by the prediction er-

or, can be significantly reduced to nearly the same magnitude as

he error of MPA3 with an increasing number of sequences, n seq ,

rom 10 to 50. Further increase in the number of sequences in-

reases the error. 

In contrast, the error in the reaction rate constants for all MPAs

ncrease with increasing number of sequences ( Fig. 10 (f)), as this

rror is dominated by kMC fluctuations, whose effects are in-

reased by lowering the number of kMC steps. The trends in the

rrors for the electrical potential in Fig. 10 (c) mostly mirror the

rrors for the surface fraction θ , except for stronger error reduc-

ion for MPA3 when decreasing the number of sequences, due to

educed fluctuation errors. 

In general, the trend and magnitude of the errors for MPA1 and

PA2 are comparable for variations, and confirm that the sequen-

ial order of the stochastic and continuum models was of minor

elevance. Distinct effects could be observed between algorithms

ith and without estimation correction and in particular for the

umber of sequences and smoothing of the kMC output. In gen-

ral, the accuracy of MPA3 was the highest for all simulations and

onfigurations shown here. The high accuracy was achieved by cor-

ecting the prediction error but with significantly increased com-

utational cost. In summary, these results clearly examined the

rigin of the errors of the MPAs for the simulation scenario. The

verall error was dominated by the largest of the three types of

rror (prediction, transition, fluctuation), and a reduction of less

ominant errors did not reduce the overall error of the simulation.

.3. Efficient estimation correction 

The estimation-correction loop in MPA3 evaluates the kMC out-

ut and iterates until the kMC output is within a defined tolerance
egion. The definition of the tolerance and the approach to control

he solution into this tolerance region determines the accuracy and

omputational cost of MPA3. The computational cost is strongly re-

ated to the number of iterations needed in each time interval. To

nable cost-effective multiscale simulations, therefore, it is impor-

ant to identify a configuration of the algorithm that minimizes the

umber of iterations. This section analyzes the impact of n l , K P ,

nd λ. 

Fig. 11 shows convergence results for the reference configura-

ion, which takes about 450 iterations to reach t end = 20 s. The

eaction rate constants are within tolerance for most of the iter-

tions, because the parameters are independent of time and the

stimation-correction iterations are not needed ( Fig. 11 (a)). Never-

heless, an output can be outside the specified tolerance because

f stochastic fluctuations. In this simulation, only the kMC output

B changes due to its dependency on the applied sinusoidal cur-

ent input. Therefore, θB is most critical and its progress over the

terations is shown in detail in Fig. 11 (b). Within one sequence,

he estimated value approaches the actual value until it is within

he specified tolerance. The number of iterations needed can con-

iderably deviate between sequences. The probability that one of

he evaluated parameters is outside the specified tolerance because

f stochastic fluctuations increases with the number of evaluated

arameters. As the algorithm needs to hold all the selected out-

ut parameters within the specified tolerance, convergence can be

hallenging when having more than one interdependent output.

he problem as a whole is similar to a robust control problem

 Rusli et al., 2004 ). 

Fig. 12 shows convergence of the critical variable θB for vary-

ng simulation parameters. Increasing the field size decreases the

uctuations of the kMC output (cf. Figs. 11 (b) and 12 (a)), which

ecreases the output uncertainty and in general should help to

ontrol to the tolerance range. However, as tolerance is defined as

 function of standard deviation, as given with Eq. (43) , the to-

al number of iterations increased to almost 600 iterations. More-

ver, the computational cost of a single iteration significantly in-



Fig. 12. Convergence behavior for the kMC output θB for variations of the algorithm parameter set: (a) increased field size, (b) increased proportional factor, and (c) decreased

tolerance factor.
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creases due to increased number of grid elements, resulting in a

total computational time of 42,011 s instead of 8046 s. This factor

of five increase in computational cost only produces a slightly im-

proved accuracy ( Fig. 10 (a)). As discussed in the previous section,

the overall error of the solution cannot be reduced below the tran-

sition error, which is not affected by increasing the field size. Fur-

ther increasing the field size will thus not further reduce the error

of θB . Considering the significantly increased computational cost,

the slight improvement of accuracy is not worth the effort for this

example. 

Increasing the proportional factor K P from 0.2 to 0.8 gives faster

convergence ( Fig. 12 (b)), with a considerable reduction of the num-

ber of iterations compared to the reference configuration. Draw-

backs of the higher proportional factor are overshooting and os-

cillation of the estimation. A systematic optimization of K P and

K I would lead to a faster convergence without oscillation, i.e. a

further reduction of the number of iterations and computational

cost. 

Decreasing the tolerance factor λ from 1 to 0.75 increases the

number of iterations increases significantly, from 450 to more than

800 iterations ( Fig. 12 (c)). In several sequences, the estimation

reaches a steady value, but the tolerance region is not reached,

which suggests that the chosen tolerance is too low compared to

the fluctuation of the kMC output. Although the estimation is good,

the kMC output variables are often outside the tolerance region.

One option for reducing the iterations is to define the tolerance

according to the standard deviation or higher. 
. Conclusions

This article presents a systematic analysis of coupling algo-

ithms for the multiscale simulation of surface processes for elec-

rochemical systems. Any of three presented algorithms can be a

ood choice for multiparadigm simulation, depending on the needs

nd tradeoffs in numerical accuracy and computational cost. The

oupling algorithms without estimation-correction were more than

n order-of-magnitude less computationally expensive, but also an

rder-of-magnitude less accurate. Errors in the coupled simulations

riginate from several different causes and are categorized into

uctuation, prediction, and transition errors. Measures that are ef-

cient in reducing one error type may be futile or even counter-

roductive regarding the other error types. Quantitative analysis as

one in this study should be carried out to learn the underlying

auses of numerical errors to facilitate an efficient and robust de-

ign of the coupling algorithm. While computationally efficient al-

orithms such as MPA1 and MPA2 can be suitable for some appli-

ations, the sequence size length needs to be considered carefully

o keep fluctuation errors and sequence size-dependent errors in

he same order of magnitude. Algorithms that include estimation-

orrection, such as MPA3, are much more robust regarding con-

guration and possess the highest accuracy for all configurations

valuated here. 

To conclude, this work analyzes coupling algorithms applicable

or multiscale simulations in electrochemical systems. This article

rovides a guide for the systematic selection and design of compu-
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ationally efficient and accurate coupling simulations. One of the

bservations made in this article is that the tuning of the cou-

ling parameters is not as straightforward as in most simulation

lgorithms. For example, increasing a simulation parameter such

s the number of sequences may lead to an order of magnitude

eduction in the average errors for some variables while simultane-

usly leading to an order of magnitude increase in average errors

or other variables (cf., Fig. 8 (f) and (i)). This behavior is in con-

rast to the simulation of an ordinary differential equation (ODE),

n which increasing the number of sequences within a fixed time

nterval is generally considered a reliable approach for reducing av-

rage errors for all variables in the ODE. By taking into account

he findings of this work, inappropriate or inefficient multiscale

imulations can be prevented. Thus the article significantly con-

ributes to the establishment of multiscale simulation techniques

or simulation of electrochemical systems and heterogeneous

atalysis. 
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