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ABSTRACT 

A wide range of optimisation methodologies exist for solving optimal control trajectory problems. 

With most approaches it is necessary to solve iteratively, starting from an initialising solution (often 

referred to as an initial guess). In this paper we investigate the performance of two different dynamic 

optimisation strategies for batch beer fermentation temperature control, using different initialisation 

profiles. A sequential method, Control Vector Parametrisation (CVP) is demonstrated as unable to 

produce solution profiles satisfying the industrially imposed undesirable by-product species 

concentration constraints. An alternative simultaneous method, Complete Parameterisation (CP), is 

employed in order to determine solutions satisfying these essential industrial production constraints. 

Blind initialisation guesses (isothermal profiles) have been shown to produce solution profiles not 

suitable for implementation on real fermentors;  more promising candidate profile initialisations yield 

superior solutions. The use of a state-of-art NLP solver (IPOPT) with analytical first derivatives 

achieves remarkable solution robustness, eliminating initialisation and discretisation level dependence.  
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1. Introduction 

1.1 Dynamic Optimisation Background  

The problem of achieving optimal batch reactor operation via systematic optimisation methods 

has received considerable attention in the previous decades to serve the production of 

biochemical and polymer products, prompting novel deterministic (Wajge and Gupta, 1994; 

Arpornwichanop et al., 2005; Zavala et al., 2005) and stochastic (Ferrari et al., 2010; Zapata et 

al., 2010; Patel and Padhiyar, 2017) optimisation approaches, as well as other computational 

methods, e.g. the robust Design of Experiments (DoE) methodology (Mohan et al., 2005). 

A wide range of dynamic optimisation methodologies exist for solving optimal control 

trajectory problems. These include variational methods and finite approximation methods. In the 

former exploiting Pontryagin’s maximum principle allows the resulting two point boundary 

value problem to be solved, while the later uses predefined functional forms to represent the 

control profile (Almeida and Secchi, 2011). Finite formulations may be tackled with 

simultaneous, sequential or multi shooting strategies which are extensively reviewed in the 

literature (Biegler et al., 2002). The sequential strategy, control vector parameterisation (CVP), 

involves discretisation of the control profile with the ODE system (process model), requiring 

regular re-integration during the algorithm to compute corresponding state trajectories, an 

approach effective for problems with few decision variables and constraints (Osorio et al., 2005) 

which has been widely applied to engineering problems (e.g. Farhat et al., 1990; Mujtaba and 

Macchietto, 1993; Sørensen et al., 1996). In contrast, simultaneous strategies require the ODE 

system to also be discretised on the time horizon to produce a large scale NLP problem 

requiring no further integration of the DEA system, generally using orthogonal collocation 

techniques. The later, often referred to as complete parameterisation (CP), can offer numerous 

benefits, potentially being faster to solve problems with a greater number of decision variables 

and constraints (Cervantes et al., 1998; 2000).  

With any approach it is necessary to solve iteratively, meaning that an initialising solution 

(often referred to as an initial guess) is necessary. Where robust globally optimal algorithms 

able to obtain solutions from any initialising profile (initial guess independent) cannot be 

applied certain problems can show sensitivity to the initialisation strategy employed. In this 

paper we investigate the performance of two different dynamic optimisation strategies for batch 

beer fermentation temperature control, using different initialisation solution profiles to elucidate 

the robustness of either strategy for batch fermentation optimisation.  
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1.2 Process Description  

1.2.1 Beer Fermentation Background 

Fermentation is an essential step in the manufacture of alcoholic beverages, responsible for the 

characteristic taste of the final product and of course its alcohol content. Upstream processing 

produces a sugar rich intermediate (wort) from a feedstock starch source (most typically malted 

barley). Once cooled to an appropriate initial temperature the wort enters stainless steel vessels 

along with yeast, allowing fermentation to commence. The primary chemical reaction pathway 

is the conversion of sugars into ethanol and carbon dioxide, which is coupled with biomass 

(yeast) growth and heat generation from the exothermic reaction. Concurrently, a range of 

species are formed at low concentrations by a multitude of side reactions, many of which may 

impact product flavour above threshold concentrations. Fermentation is completed once all 

consumable sugars have been converted by the yeast into alcohol, following which the solution 

leaves the fermenter for subsequent downstream processing prior to sale and consumption. 

1.2.2 Fermentation modelling 

Numerous models for the beer fermentation process have been published (Gee and Ramirez, 

1988; de Andres-Toro, 1998, Trelea et al., 2001). The reduced-order models consider only the 

key species present as to system complexity (Vanderhaegen et al., 2006) leads to exhaustive 

modelling becoming unviable.  

 

Figure 1. Kinetic model for beer fermentation under industrial conditions (de Andres-Toro, 1998). 

The kinetic model of beer fermentation by de Andrés-Toro et al. (1998) has been selected for 

study due to its direct applicability to the industrial process: 

 Published parameters are derived from a very large array of experiments, resulting in a 

wide temperature range (8–24 ºC) which ensures high fidelity and applicability.  
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 The model includes all prominent by-products which degrade beer product quality in 

terms of taste and aroma, rendering the model valuable for assessing performance.  

 Predicted profiles indicate the highest fidelity with experimental and pilot-plant data in 

comparison to other models, due to successful validation against over 200 fermentations.   

The 7 model state (Eqs. 1-7) trajectories are governed by temperature-dependent production and 

consumption factors (Eqs. 8-12); the model structure is shown in Fig. 1. Yeast cells transition 

from latent to active to dead over time, with only active cells able to promote fermentation 

(conversion of sugar to ethanol). Two by-products are considered alongside the primary reaction 

pathway: ethyl acetate (Eq. 5) and diacetyl compounds (Eq. 6). Diacetyl (2,3-butanedione) has a 

pungent butter-like aroma (Izquierdo-Ferrero et al., 1997), while ethyl acetate is often used as an 

indicator of esters present, having an odour similar to nail varnish remover (Hanke et al., 2010). 

Incorporating external heat transfer dynamics induces lag (hence online control is inoperable, 

due to limited instrumentation); it also increases model complexity and escapes the scope of this 

work, which is to explore and map optimal T(t) solution variability. No external heating is 

provided (yeast biocatalytic activity is an exothermic phenomenon), but jacket cooling is used in 

practice, in order to regulate fermentation and avoid flavour species concentration runaway. 

  , ∙ , ∙ , ∙    (1) 

 , ∙ , ∙    (2) 

  	 	 , ∙    (3) 

  	 ∙ , ∙    (4) 

 ∙ , ∙    (5) 

  ∙ ∙ ∙ ∙     (6) 

A more detailed description of the model can be found in its original publication (de Andrés-

Toro, 1998). The explicit nonlinear functions of all temperature-dependent model parameters 

which appear in Eqs. (8 - 11) have been derived via regression of industrial scale fermentation 

data obtained for temperature in the range of 8–24 °C, and are also summarised here in Table 1.  
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Table 1. Nonlinear model parameter functions of temperature, and initial conditions for beer fermentation simulation 
 

Description Symbol Temperature function Value Units  
 

 

Maximum sugar consumption rate μSo exp(–41.92 + 11654.64/T ) (variable) h-1 
Maximum ethanol production rate μEo  exp(3.27 – 1267.24/T ) (variable) h-1 
Specific cell activation rate μL  exp(30.72 – 9501.54/T ) (variable) h-1 
Maximum cell growth rate μxo exp(108.31 – 31934.09/T ) (variable) h-1 
Specific cell death rate  μDT  exp(130.16 – 38313/T ) (variable) h-1  
Maximum dead cell settling rate μSDo exp(33.82 – 10033.28/T ) (variable) h-1 
Ethyl acetate:sugar coefficient YEA exp(89.92 – 26589/T ) (variable) ( – ) 
Diacetyl production rate   
Diacetyl consumption rate 

  (Carrillo-Ureta et al., 2001) 1.27672·10-7 g-1 h-1 L 

	 (Carrillo-Ureta et al., 2001) 1.13864·10-3 g-1 h-1 L 
  

 

Initial simulation conditions ,   Biomass inoculum (pitching rate) 4 g L-1 
  Sugar concentration  130 g L-1 

  
 
 
 
 
 
 

1.2.3 Process Targets: Objective Function 

When considering what it is desirable to improve in a fermentation process there are two 

obvious contenders: reduced duration and heightened alcohol content (even if this requires later 

dilution, it is still desirable to increase yield). In addition to batch time minimisation and alcohol 

production maximisation, all prior authors have elected to include terms for minimisation of 

both by-products within their respective optimisation objective functions. However, as is known 

that within certain beer products the concentrations of both ethyl acetate and diactyl compounds 

shall be indistinguishable below certain levels, efforts towards further reduction and 

concentration minimisation are redundant. 

As such it is deemed more appropriate to consider an objective function only seeking to 

minimise production time and maximise sugar conversion to ethanol (with variable relative 

weights) while treating the final concentrations of both ethyl acetate and diacetyl compounds as 

strict constraints to avoid unnecessary efforts towards further by-product reduction. 

Thus the following objective shall be used in this study, considering only a terminal payoff: 

 
J min ∙ ∙

1
 (13)

. .			 		2 ppm (14)

 	 0.1 ppm (15) 

Here our control vector u, represents the temperature profile, T(t), for fermentation. Moreover, 

 and  are the respective weights of the two components in the objective function: while a 

large range of weight values have been investigated, for conciseness only the case 	  = 0.75 

 = 0.25 shall be presented in this paper, which encompasses the desirable window for 

operation. 1/ 	  is the inverse batch time normalised by division with the maximum value 
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attained from exhaustive simulation (Rodman and Gerogiorgis, 2016) and 	is the ethanol 

concentration normalised in the same way. In doing so the normalised ethanol concentration,	 	 

ranges from 0.68 when 	42 g L-1 to 1 when 	61.3 g L-1, similarly the normalised 

inverse batch time,	 1/ 		 , ranges from 0.62 to 1 when t is 99 hrs and 160 hrs respectively.  

Given the strong dependence of yeast health on system temperature it is necessary to include an 

additional constraint such that the control profile (temperature) remains within acceptable levels. 

Eq. 16 ensures that the lower temperature limit excludes scenarios in which the system lacks 

enough energy to promote cell growth while the upper limit ensures bacteria which are present 

above this temperature cannot thrive, while also preventing the temperature from reaching a 

level at which undesirably high by-product concentrations are known to be produced. 

∈ 9	°C, 16	°C  for all t ∈ [ , ]      (16)  

The problem formulation relies upon a fundamental assumption that the batch reactor features 

perfect mixing and ideal liquid mixture behaviour. Furthermore, we treat the reaction 

temperature directly as the manipulated (control) variable, assuming negligible delay between 

supplying or removing heat and the bulk broth temperature changing. Such an assumption can be 

valid on small or medium scale vessels (such those used in the booming craft beer movement in 

recent years), where temperature manipulations can be realised extremely quickly. Care must be 

taken when extrapolating to larger industrial scale vessels, where lag time can be more 

significant, and direct temperature control becomes less realistic.  

1.3 Prior work 

Since the early work of Denbigh (1958) optimal control of batch reactors has received a vast 

amount of research interest (Aziz and Mujtaba, 2002). Logsdon (1990) considered a maximum 

conversion and fixed timeframe optimisation problem for a consecutive reaction scheme. This 

work sought the optimal temperature profile, T(t), to maximise conversion of the desired product 

in a predefined reaction time, solved with a two-point collocation method. Later Logsdon and 

Biegler (1992) solved the same problem with a relaxed simultaneous approach requiring less 

CPU time to solve. Luus (1994) also considered a maximum conversion for consecutive 

reactions. Here the piecewise constant T(t) profile with fixed switching is optimised by iterative 

dynamic programming (IDP) to maximise conversion. Garcia and colleagues (1995) considered 

another conversion maximisation problem a consecutive parallel reaction scheme. The dynamic 

optimal control is discretised into an NLP problem and solved by a generalised reduced gradient 

method coupled with a golden search technique. The authors compared considering 5 and 10 

time intervals to discretise the temperature profile, concluding that there is no significant 
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improvement upon increasing the discretisation density and resultant NLP problem size. Aziz 

and Mujtaba (2002) consider a CVP method for both maximum conversion (operation time is 

fixed a priori) and minimum time problems (conversion is fixed a priori) for a typical 

consecutive reaction scheme in batch reactors. They explore the effect of waste and/or 

temperature constraints (both path constraints and terminal value constraints) on the optimal 

operation policies and on the attainable performance (solution objective function values). 

Specifically pertaining to beer fermentation, numerous authors have used the de Andrés-Toro 

(1998) model for optimisation studies. Several have been stochastic approaches, including 

genetic algorithms (Carrillo-Ureta et al., 2001), ant colony system (Xiao et al., 2003) and 

simulated annealing (Rodman and Gerogiorgis, 2016a). These have addressed both the single 

objective case for batch time minimisation or ethanol yield maximisation (de Andrés-Toro, 1998; 

Carrillo-Ureta, 2001), or both (Rodman and Gerogiorgis, 2016). Additionally, Bosse and 

Griewank (2014) have used the kinetic model to generate optimal control profiles using a 

sweeping dynamic optimisation methodology. The process involves guessing a control path and 

using this to integrate the states forward in time. This allows the costates to be integrated 

backwards through the process time span: a new control profile is thus deduced by maximising 

the Hamiltonian for all t ∈ [ , ], and the process is repeated until path convergence is attained. 

The authors were able to compute a more preferable temperature profile using the same 

objective, compared to a prior stochastic approach (de Andrés-Toro et al., 1997).     

In this paper we investigate the performance of two different dynamic optimisation strategies for 

batch beer fermentation temperature control optimisation. A range of initialisation solution 

profiles to elucidate the robustness of either strategy for batch fermentation optimisation and to 

observe the solution dependence on the initialisation strategy. The nonlinearity of the dynamic 

process model coupled with the constraints on terminal state values (Eqs 14-15) introduce non-

convexity into the case study problem presented. Herein local solutions exist in the solution 

space, and an appropriate initialisation strategy becomes pertinent. Additionally, the bi-criteria 

weighted sum objective (Eq. 13) can lead to a very flat objective space due to the inherent trade-

off between competing objective components which can potentially lead to convergence issues.  

2. Materials and Methods 

In this study we compare two different dynamic optimisation methodologies: a simultaneous 

strategy (CVP) with an interior point algorithm and a sequential dynamic optimisation 

procedure with orthogonal collocations on finite elements, complete parametrisation (CP). The 

algorithms used are detailed below.  
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2.1 Sequential Strategy for Dynamic Optimisation: Control Vector Parametrisation 

The sequential approach to direct dynamic optimisation (often referred to as control vector 

parametrisation, CVP) involves discretising the control trajectory to a function of a few 

parameters, while the state equations remain in ODE/DAE form (Biegler et al., 2012). By 

defining a finite number of equal size piecewise segments within the temperature profile a NLP 

problem can be formulated for Eqs (1-16), which any one of many large scale nonlinear 

programing solvers may be applied. Herein function evaluations still invoke integration across 

the time horizon, as the state trajectories remain continuous. Both methodologies employed in 

this study are implemented in MATLAB 2017a on a Windows system. Integration in the CVP 

method is performed using the ode45 function based on an explicit Runge-Kutta (4,5) formula, 

the Dormand-Prince pair (Dormand, and Prince, 1980; Shampine, and Reichelt; 1997) . 

2.1.1 Interior Point Algorithm  

IPOPT (Interior Point Optimizer) is a leading open source software package for large-scale 

nonlinear optimization. It solves general nonlinear programming problems of the form: 

min 	 ∈ 							      (17) 

. . 									     (18) 

																     (19) 

where x∈  are the optimization variables (possibly with lower and upper bounds, xL ∈ (  ∪ 

{−∞})n and xU ∈ (  ∪ {+∞})n,  f :  →  is the objective function, and g :  →   are the 

general nonlinear constraints. The functions f(x) and g(x) can be linear or nonlinear and convex 

or non-convex. The constraints, g(x), have lower and upper bounds, gL ∈ (R ∪ {−∞})m and gU ∈ 

(R ∪ {+∞})m. Equality constraints of the form gi(x) = ̅  are treated as inequality constraints with 

equal lower and upper bounds:  =  = ̅ . IPOPT implements an interior point line search 

filter method that detirmines a local solution of Eqs. 17-19. Details of the full mathematical 

algorithm can be found in several publications (Wächter, 2003; Wächter and Biegler, 2005a-b; 

2006; Nocedal et al., 2009). IPOPT has been utilised via OPTI’s MATLAB® implementation of 

the solver (Currie and Wilson, 2012) for the CVP approach in this work. 

2.2 Simultaneous Strategy for Dynamic Optimisation: Complete Parameterisation  

2.2.1 Dynopt for Fermentation Optimisation  

The alternative direct method for dynamic optimisation (a simultaneous strategy) has also been 

performed in this study. Here the control trajectory is again discretised, however now the NLP 

problem is derived by also converting the ODE state model into algebraic equations, the 

coefficients of which become decision variables. This has been implemented using the Dynopt 

package (Cizniar et al., 2006) to compute the nonlinear programming problem. Orthogonal 
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collocations on finite elements are used to parameterize the ODE system (process model) to 

algebraic equations to formulate the NLP problem: both control and state profiles are 

approximated by a combination of basis functions. The methodology approximates the solution 

with Lagrange polynomials over each element, i: 

Φ ,										Φ
,

 (20) 

	 ,
,

 (21) 

Where  is a piecewise polynomial of order 	 1 , 	 is a piecewise polynomial of 

order	 . Figure 2 is representative of orthogonal colocation with 1 collocation point per control 

segment (piecewise constant), and 3 collocation points for each state trajectory element. This 

polynomial form allows the bounding of both the states and control trajectories, enabling path 

constraints to be imposed on the temperature profile in the problem formulation (Eq. 16).  

 

Figure 2. Collocation method for state and control profiles (adapted from Cizniar et al., 2006 & Biegler, 2010)  

The NLP formulation now consists of the ODE model (Eqs. 1 - 7) discretised on finite elements, 

continuity equations for state variables and the inequality constraints on the system (Eqs. 14 - 15), 

and is compatible with the interior point NLP solver described in Section 2.1.    

3. Results and Discussion 

3.1 Sequential Optimisation  

3.1.1  Piecewise Constant Control Profiles  

Profiles which are piecewise constant between discreet time points are first computed to 

investigate the performance of the algorithm and its sensitivity to the input initial guess 

(initialising solution, T0), and as to how performance is affected by varying the degree of 

discretisation (N). To achieve this a range of cases are systematically considered: four 

discretisation levels have been considered: N = [6, 12, 18, 24] along with four isothermal 

initialising solutions: T0 (°C) = [11, 12, 13, 14], producing 16 permutations to be solved in turn. 
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The optimal profile computed in each case is shown in Fig. 3, with the performance criteria from 

each case shown in Fig. 4 using MATLABs fmincon solver (Waltz et al., 2006), using objective 

weights Wt = WE = 0.5 and a fixed terminal time. Batch time is this defined as the tome to 

consume 99.5% of the feed sugars. The equivalent results are also shown in Fig. 5-6, here using 

IPOPT and Wt = 0.25 and WE = 0.75. 

 

Figure 3. Piecewise constant T(t) solutions – CVP with fmincon & fixed endpoint, Wt = WE = 0.5. 
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Figure 4. Influence of discretisation level (N) and initialising isothermal profile (T0) on piecewise 

constant profile performance - CVP with fmincon & fixed endpoint.  

 

Figure 5. Piecewise constant T(t) solutions – CVP with IPOPT & moving endpoint, Wt = 0.25, WE = 0.75. 
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Figure 6. Influence of discretisation level (N) and initialising isothermal profile (T0) on piecewise 

constant profile performance – CVP with IPOPT and moving endpoint.  

3.1.1.1 Effect of Initialising Temperature Profile 

Computed optimal control profiles on an identically discretised T(t) domain for numerous 

initialising temperature profiles can be seen in each column in Fig. 5. From top to bottom 

isothermal profiles at 11, 12, 13 and 14 °C were used for the initial iteration respectively. The 

performance of each solution obtained with IPOPT is tabulated in Table 2.  

It is observed that the same general solution form is produced in all cases presented from this 

method. This tends initially to the highest permitted temperature for the first stages of the 

process (16 °C) to accelerate the yeast growth and promote fermentation immediately. This is 

followed by a gradual dip in temperature down to 13 °C, before climbing back to 16 °C in 

parabola form over hours 10-70. This acts to prolong the maximum yeast concentration and 

delay cell death, permitting accelerated fermentation.   

It is shown here that the solution produced for the optimal control profile problem is not 

particularly dependent on the choice of input profile when utilising this CVP methodology. For 

all four discretisation levels (N = 3-18) the solution produced is identical, indicating 

independence to the initialisation profile among those trailed, suggesting local solutions have not 

been encountered by the NLP algorithm towards converging to this robust T(t) solution profile. 

3.1.1.2 Effect of increasing time domain discretisation. 

To access the effect of increasing the discretisation level of the control profile, the computed 

results for N = 3, 6, 12 and 18 (representing the number of equispaced time segments in which 

the fermenter temperature is piecewise constant) are shown in each row of Fig. 5 for a specific 

initialising isothermal temperature.  
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For the lowest levels of discretisation (N = 3, 6) significant differences are seen in the form of 

the computed profiles, showing that for course discretisation’s the solution form is dictated by 

the size of the time segments within the profiles. When N = 3 the optimal scenario involves little 

temperature variation with only a very minor decrease in the middle portion, with and greater 

decrease not being effective as it would be sustained for longer than desirable. Once N = 6 the 

shorter time segments mean that it is now possible to drop the temperature more significantly for 

a shorter period of time, which is more desirable in this case due to acting to suspend the cell 

death rate. Increasing N further to 12 allows the solution form to develop further: more gradually 

decreasing the temperature towards the end of the process permits the by-product concentrations 

to be reduced while maintain an adequate fermentation rate.  

The last case (N = 18) shows refinement upon the case when N = 12, with no significant change 

in solution form. Improvements in objective function value are less significant, suggesting that 

optimality is being approached for the specific objective. A trade off exists as the required CPU 

time for computing the profiles increases rapidly with increasing discretisation level suggesting 

little value in increasing discretisation beyond this point.  

It is noteworthy that the majority of profiles produced from CVP with an interior point method 

are not highly changeable in form: that is to say there is minimal abrupt changes in temperature 

so no secondary smoothing procedure is required, which often the case with stochastic 

techniques (Carrillo-Ureta et al., 2001; Xiao et al., 2004) which often computed abrupt changes 

in the control profile which would not be attainable in a real world application. 

3.1.1.3 Control Profile Performance 

The upper row in Fig. 6 compares the performance of the profiles computed for N = 18 with 

each initialising isothermal profile considered. The second row of plots in Fig. 4 considers a 

third axis to simultaneously visualise the effect of both discretisation level and initialising profile 

on the resulting fermentation performance. These results produced with IPOPT demonstrate 

effective independence to the initialisation profile and the discretisation level, once N is 

increased past 6.  

In contrast Fig. 4 shows how the results produced with fmincon are highly variable. It is 

observed that the ethanol concentration actually decreases when N is increased for all values of 

T0. In contrast the batch time decreases consistently with increasing N for all values of T0: batch 

time decreases much more rapidly that ethanol concentration with increasing N, such that the 

overall objective value continues to improve with greater discretisation. This result suggests that 

the ethanol concentration of the product may have too little weighting in the objective (Eq. 13) 

as it is being consistently sacrificed as to improve the overall objective value. It is noteworthy 
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that between N = 12 and N = 20 there is significant change in both ethanol concentration and 

batch time for any single T0, showing that the solution performance is still dependant on the 

discretisation level. It would be beneficial to continue to increase N until no significant further 

improvement is found, meaning that a discretisation level independent soliton has been obtained. 

The product concentrations of undesirable fermentation by-products are shown in the right half 

of figure 4. It is apparent that the ethyl acetate concentration constraint (Eq 14) is universally 

fulfilled, however the constraint imposed on the diacetyl concentration (Eq 15) has been 

regularly violated when N = 20. The algorithm has converged at unfeasible solutions due to not 

being able to fulfil the imposed constraint the objective, rendering their little reason to progress 

to higher values of N. 

3.1.2  Piecewise Linear Control Profiles  

It is apparent that such instantaneous temperature gradients as shown in Fig. 3 and 5 are not 

attainable in large scale process equipment. Piecewise linear profiles are computed using the 

same methodology, as to see how these more readily implementable solutions compare to the 

more simple piecewise constant profiles in section 3.2, and if the additional degrees of profile 

freedom will enable constraint satisfaction across the range of N and T0 considered.  
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Figure 7. Piecewise linear T(t) solutions – CVP with fmincon & fixed endpoint, Wt = WE = 0.5.  

The same 16 cases have been solved in turn: N = [3, 6, 12, 20], T0 (°C) = [11, 12, 13, 14], the 

optimal profile computed in each case is shown in Fig. 5, with the performance criteria from 

each case shown in Fig. 6.  
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Figure 7. Influence of discretisation level (N) and initialising isothermal profile (T0) on piecewise linear 

profile performance - CVP with fmincon & fixed endpoint. 

 

Figure 8. Piecewise linear T(t) solutions – CVP with IPOPT & moving endpoint, Wt = 0.25, WE = 0.75. 
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Figure 9. Influence of discretisation level (N) and initialising isothermal profile (T0) on piecewise linear 

profile performance - CVP with IPOPT & moving endpoint. 

Comparing Fig. 7 to Fig 3 shows how the profiles differ for equivalent N and T0 between 

piecewise linear and piecewise constant. It can be seen that the profile forms are extremely 

similar, with intermediate cooling prevailing as a strategy for optimal fermentation performance. 

For the lowest discretisation level studied (N = 3), rather than producing an approximately 

isothermal profile as in the piecewise constant cases, a dip has been introduced which improves 

the objective greatly. Once N = 6 this dip can become more pronounced and sustained for a 

lesser period of time, further improving the objective. As N is increased to 12 then to 20 the 

objective continues to improve, however as with the piecewise constant cases, it is found that the 

initialising solution has a significant bearing on the computed profile: when N = 20 the five 

profiles computed have major differences.  

It is shown in Fig. 7 that the objective has improved when compared to the equivalent piecewise 

linear profiles due to the additional path freedom introduced. Again it is found that both batch 

time and ethanol concentration vary considerably with the differing profiles produced with each 

T0 input. Similarly it is again shown that while the ethyl acetate constraint (Eq. 14) is satisfied, 

the diacetyl constraint (Eq. 15) has been violated in several cases. It is shown in Fig. 7 that as N 

is increased the ethanol concentration decreases, however this is alongside a reduction in batch 

time, representing an overall improvement in the objective. The exception to this is the case 

initialised with an isothermal profile of T0 = 12 °C: it is shown that batch time actually increases 

in this case when the discretisation level is increased. 

Again in contrast, results from IPOPT do not show such sensitivity to initialisation, with the 

profiles presented in Fig. 8 very closely resembling those in Fig. 5, with the benefit of being 

more readily implementable due to the lack of instantaneous temperature manipulations.  
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Table 2. Solution performance for all results produced via IPOPT.  

Figure 
Optimisation 

 Method 
N 

Initialisation 
Profile 

J 
EtOH 
(g/L) 

tf (hrs) EA DY 

5 

CVP  
PW Constant 
Isothermal T0 
  

3 

11 °C 

-0.980 59.70 99.56 2.00 0.10 
6 -0.989 59.32 94.22 2.00 0.10 

12 -0.990 59.38 93.97 2.00 0.10 
18 -0.991 59.40 93.87 2.00 0.10 
3 

12 °C 

-0.976 59.64 100.66 1.98 0.09 
6 -0.989 59.32 94.22 2.00 0.10 

12 -0.990 59.38 93.97 2.00 0.10 
18 -0.991 59.40 93.87 2.00 0.10 
3 

13 °C 

-0.980 59.70 99.56 2.00 0.10 
6 -0.989 59.32 94.22 2.00 0.10 

12 -0.990 59.38 93.97 2.00 0.10 
18 -0.991 59.40 93.87 2.00 0.10 
3 

14 °C 

-0.980 59.70 99.56 2.00 0.10 
6 -0.989 59.32 94.21 2.00 0.10 

12 -0.990 59.38 93.97 2.00 0.10 
18 -0.991 59.40 93.87 2.00 0.10 

8 

CVP 
PW Linear 

Isothermal T0 
  

3 

11 °C 

-0.984 59.96 98.99 2.00 0.10 
6 -0.990 59.32 93.78 2.00 0.10 

12 -0.991 59.40 93.80 2.00 0.10 
18 -0.991 59.39 93.73 2.00 0.10 
3 

12 °C 

-0.984 59.96 98.99 2.00 0.10 
6 -0.990 59.32 93.78 2.00 0.10 

12 -0.991 59.40 93.80 2.00 0.10 
18 -0.991 59.39 93.73 2.00 0.10 
3 

13 °C 

-0.984 59.96 98.99 2.00 0.10 
6 -0.990 59.32 93.78 2.00 0.10 

12 -0.991 59.40 93.80 2.00 0.10 
18 -0.991 59.39 93.73 2.00 0.10 
3 

14 °C 

-0.984 59.96 98.99 2.00 0.10 
6 -0.990 59.32 93.78 2.00 0.10 

12 -0.991 59.40 93.80 2.00 0.10 
18 -0.991 59.39 93.73 2.00 0.10 

11 

CP 
PW Constant 

 Isothermal T0 
  

6 

11 °C 

-0.988 59.33 94.49 2.01 0.10 
12 -0.990 59.53 94.66 2.11 0.11 
18 -0.991 59.38 93.70 2.00 0.10 
24 -0.991 59.36 93.65 2.02 0.10 
30 -0.991 59.34 93.71 1.99 0.10 
36 -0.991 59.37 93.68 2.00 0.10 
6 

12 °C 

-0.990 59.34 93.90 1.99 0.10 
12 -0.991 59.40 93.73 2.01 0.10 
18 -0.991 59.39 93.73 2.00 0.10 
24 -0.991 59.40 93.71 2.00 0.10 
30 -0.991 59.40 93.75 2.01 0.10 
36 -0.991 59.38 93.66 1.98 0.10 
6 

13 °C 

-0.989 59.32 94.12 1.99 0.10 
12 -0.991 59.35 93.81 1.99 0.10 
18 -0.991 59.37 93.70 1.98 0.10 
24 -0.992 59.41 93.60 2.01 0.10 
30 -0.991 59.39 93.70 1.99 0.10 
36 -0.991 59.38 93.78 1.99 0.10 
6 

14 °C 

-0.990 59.35 93.95 1.96 0.10 
12 -0.991 59.40 93.74 2.01 0.10 
18 -0.991 59.40 93.73 2.02 0.10 
24 -0.992 59.42 93.75 2.04 0.10 
30 -0.992 59.43 93.70 2.02 0.10 
36 -0.992 59.42 93.68 2.00 0.10 

17 

CP 
PW Constant 

Novel T0 
  

6 

A 

-0.990 59.41 93.68 2.00 0.10 
12 -0.990 59.32 93.72 2.00 0.10 
18 -0.991 59.38 93.89 2.01 0.10 
24 -0.990 59.29 93.86 1.99 0.10 
30 -0.991 59.33 93.69 1.98 0.10 
36 -0.991 59.38 93.71 2.00 0.10 
6 

B 

-0.991 59.40 93.74 2.03 0.10 
12 -0.991 59.40 93.73 1.99 0.10 
18 -0.991 59.42 93.80 2.04 0.10 
24 -0.991 59.36 93.65 2.03 0.10 
30 -0.991 59.38 93.70 2.00 0.10 
36 -0.991 59.41 93.74 2.00 0.10 
6 

C 

-0.990 59.34 94.06 2.05 0.10 
12 -0.991 59.36 93.79 2.00 0.10 
18 -0.992 59.44 93.72 2.05 0.10 
24 -0.991 59.38 93.75 2.05 0.10 
30 -0.992 59.41 93.69 2.03 0.10 
36 -0.991 59.37 93.67 1.99 0.10 
6 

D 

-0.989 59.13 93.27 1.94 0.10 
12 -0.991 59.34 93.73 1.99 0.10 
18 -0.990 59.32 93.77 2.02 0.10 
24 -0.992 59.34 93.36 2.13 0.10 
30 -0.991 59.35 93.52 2.04 0.10 
36 -0.991 59.37 93.71 1.99 0.10 
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3.2 Simultaneous Optimisation Results  

The optimisation problem defined by Eqs (1-15) has been solved using Dynopt (Cizniar et al., 

2006). In this study the fmincon function from MATLAB has been used to solve the resultant 

NLP problem produced from Dynopt, using the interior point algorithm from the optimisation 

toolbox. This is repeated using IPOPT and providing analytical gradients for comparison. Three 

collocation points have been used for state trajectories, with one collocation point being used for 

control profiles, resulting in the computation of profiles which are piecewise-constant. For a 

fixed level of discretisation, N, segment length has been treated as a decision variable, meaning 

that profile time segments are no longer of fixed length, . 

3.2.1 Isothermal Initialisation 

Initially, using all base case conditions for process inputs (Table 1) the methodology described 

here has been used to formulate control profiles for 6 levels of temporal domain discretisation (N 

= [3, 6, 12, 20, 30, 40] along with five isothermal initialising solutions, T0 (°C) = [11, 12, 13, 14], 

producing 24 permutations to be solved in turn.  

Computed optimal control profiles for numerous initialising temperature profiles and 

discretisation levels can be seen in each column in Figure 10. From top to bottom isothermal 

profiles at 11, 12, 13 and 14 °C were used for the initial simulation respectively. Comparing Fig. 

10 (simultaneous) with Fig. 3 (sequential) shows the differing profile forms favoured by the two 

methods. The differences are drastic: the sequential (CVP) profiles show a very drastic 

temperature reduction around the active cell concentration maxima, meanwhile the results 

obtained from DynOpt (CP) favour a far less significant temperature reduction during this stage. 

It is remarkable that, excluding the numerous cases of constraint violation, the performance of 

the profiles produced by the two methods have performance which is not drastically different, 

despite the significant differences in their form.  

3.2.1.1 Effect of initialising temperature profile.  

An immediate observation from Fig. 10 is that solutions have not, meaning that globally 

optimality is never achieved, rather the input initialising profile has significant impact on the 

profile output for any set of conditions when using this methodology. This is not the case when 

IPOPT with analytical first derivatives are used, shown in Fig. 11. Here the T(t) solution profiles 

all tend to the same solution form, identical to that produced from CVP (Fig. 6). 

Firstly considering the lowest level of discretisation (first column, N = 3): Using 11 °C as the 

initial solution allowed the algorithm to rapidly achieve the temperature profile shown in dark 

blue. The first 40 hours of the fermentation are carried out at approximately 15 °C, the following 
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40 hours use a lower temperature around 14 °C before increasing marginally to around 14.5 °C 

for the final 40 hours. Similarly, the light blue profile below shows the same form when 

initialising at 12 °C; with a greater temperature in the final third of the process (16 °C). The 

three remaining cases (T0 = 13 and 14 °C) have produced a profile form differing from the 

aforementioned two. Here there is a gradually decreasing temperature over the three segments. It 

is apparent from the respective objective function values that the profile form in the latter three 

cases is preferable It is shown by the relatively low objective function values in all cases where 

N = 3 that such a low level of discretisation does not permit sufficient control over the process 

for an effective fermentation.  

In the second column (N = 6) there is again distinct differences in the profile forms when 

comparing the first two cases to the later 3. The cases initialised with 11 and 12 °C favour 

increasing the temperature to a prolonged peak before dropping it back down, while the other 

three cases again prefer a general temperature decrease for the process duration.  It is found that 

the top two cases require both longer batch times and are producing lesser ethanol, continuing 

the trend that these initialising solutions are resulting in less useful control profiles being 

computed.  

The third column (N = 12) shows similar results for the first 4 initialising profiles: a gradual 

temperature increase takes place, and is followed by a subsequent temperature decrease. The 

next discretisation level (N = 20) again shows similar behaviour. The first row (T0 = 11 °C) 

shows a very sporadic profile which results in poor fermentation performance, while the middle 

three cases all show comparable, moderate performance.   

The industrial practicalities of fine manipulations to the temperature of the bulk vessel contents 

should be noted. While the large batch fermenters used for industrial scale brewing are capable 

of accurately regulating temperature, temperature gradients inevitably exist and manipulations  < 

0.5 °C likely lie within the unavoidable variation present throughout the tank, having 

implications on the accuracy of model predictions.  
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Figure 10. T(t) solutions from CP with fmincon and finite difference derivatives, for various isothermal initialisations (T0) and discretisation levels (N), Wt = 0.5, WE = 0.5. 
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Figure 11. T(t) solutions from CP with IPOPT and analytical first derivatives, for various isothermal initialisations (T0) and discretisation levels (N), Wt = 0.25, WE = 0.75. 
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3.2.1.2 Effect of increasing time domain discretisation. 

To access the effect of increasing the discretisation level of the control profile, the computed 

results for N = 3, 6, 12, 20, 30 and 40 (representing the number of time segments in which the 

fermenter temperature is piecewise constant) are shown in each row of Fig. 10 for a specific 

initialising isothermal temperature. Excluding the first two rows, due to the sporadic profiles 

computed at high N, the remaining three cases all show that as N increases the profile form 

develops gradually towards an optimal scenario. The preferable profile form appears to be a 

gradual temperature increase occurring towards a dipped peak to prolong the maximum active 

cell concentration, followed by a gradual temperature decrease back to around 13 °C at the end 

of the process. 

 

Figure 12. Influence of discretisation level (N) and initialising isothermal profile (T0) on piecewise linear 

profile performance - CP with fmincon.  

 

Figure 13. Influence of discretisation level (N) and initialising isothermal profile (T0) on piecewise linear 

profile performance - CP with IPOPT. 
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3.2.1.3 Control Profile Performance 

The upper row in Fig. 12 compares the performance of the profiles computed for N = 42 with 

each initialising isothermal profile considered. Firstly, the left most plot shows the product 

ethanol concentration: while a range of values are attained with varying T0 this range is a lot 

narrower than for the results obtained via CVP (Fig. 3). The next plot shows the batch time 

achieved by the 5 profiles where N = 40: the difference of up to 18 hours is very significant 

showing the vast difference between the objective value obtained in these cases and the solver 

sensitivity to T0. The next two plots show the by-product concentrations in the product, where it 

is clear that no constraints have been violated, a significant improvement over the CVP results in 

section 4.  

The second row of plots in Fig. 12 considers a third axis to simultaneously visualise the effect of 

both discretisation level and initialising profile on the resulting fermentation performance. It is 

found that ethanol concentration decreases with increased N, and while batch time is generally 

reduced there are several outliers showing poor performance. This occurs when T0 = 11 °C, 

likely a fragment of the initial guess (initialising solution, T0) lying far from the optimal path, 

hindering attainment of a desirable solution.  

3.2.2 Initialisation with Promising Candidate Profiles 

Initialising with isothermal profiles may be seen as assessing the blind performance of the 

optimisation strategies. This can be seen as highly beneficial not only in assessing the algorithm 

performance, but also prevents narrowing of the attainable solution space by starting in the 

vicinity of local solutions. It is however shown that for the beer fermentation problem the 

solutions produced from isothermal initialisations, specifically when using fmincon, are of 

limited applicability, due to their highly changeable nature. It is now desirable to take solutions 

already showing promise, and see how the optimisation algorithms perform, and of the output 

profile solutions are more suitable for industrial manipulation.   
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Figure 14. Performance of four promising profiles with respect to by-product concentration thresholds.  

We have selected a range of profiles from a prior exhaustive simulation campaign (Rodman & 

Gerogiorgis, 2016a-b) performed with a low discretization level, N = 6. To visualise how these 

profiles perform the three lower plots indicate the position of these points within performance 

plots for the entire solution set. The top plot (ethanol vs. batch time) shows that the four profiles 

taken forward from exhaustive simulation for initialising the simultaneous optimisation 

procedure all fall towards the more desirable portion of the plot. 

As these initialising profiles are piecewise linear and DynOpt is computing piecewise constant 

temperature profiles it is necessary to approximate the profiles in Fig. 9 to a piecewise constant 

form, which will differ for each discretisation level solved. This approximation is performed by 

averaging the temperature over N steps of equal duration: this transformation is shown in Fig. 15 

for profile D. It is demonstrated that N increases the profile tends to the original piecewise linear 

form. The resulting solution profiles are presented in Fig. 16 - 17 following initialisation with 

the 4 candidate profiles shown in Fig. 14 for 6 discretisation levels.  

 

Figure 15. Piecewise constant approximations of profile D (Fig. 9) for varying discretisation levels.  
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3.2.2.1 Effect of increasing time domain discretisation. 

Similarly to the isothermal initialisations, the profiles obtained with IPOPT and analytical first 

derivatives converge to the same solution trajectory, irrespective of the discretisation level or 

initialisation. In contrast the fmincon results (Fig. 16) show far greater dependence, as discussed 

below. It is shown that that regardless of the discretisation level the solution form is often similar 

for each initialisation profile: in general, as N increases the profile becomes refined, following a 

similar trajectory in a smoother manner. There are however instances where considerable 

deviations occur. The upper row of Fig. 16 (input profile A) shows that depending on the 

discretisation level, the solution profile has a drastically different initial temperature, T(t=0), 

ranging from 11 to 16 °C. A similar observation can be made from the third row of the same 

figure (input profile C). For input profile C some more drastic changes are observed as N 

increases. Initially, as with all cases, a single minimum in temperature is produced. This 

develops towards a profile form with two distinct peaks, not dissimilar to the work of Bosse and 

Griewank (2014) as the discretisation level increases beyond 18. These differences indicate that 

the discretisation level can have significant bearing on the specific profile being produced with 

this method, however in most cases the overall solution form does not differ as drastically. It is 

shown that as N is increased the attainable value for the objective function (Eq. 13) increases, as 

expected due to the greater level of control possible with a higher number of manipulatible 

sections in the temperature profile.  

3.2.2.2 Effect of initialising temperature profile.  

An immediate observation is that solutions do not converge to the same profile, meaning that 

globally optimal solutions are not being produced, rather the input initialising profile has 

significant impact on the profile output for any set of conditions when using this methodology. 

However, there exists a large number of similarities between many of the solution profiles’ 

appearance, with significant features present across all solutions even when differences in the 

duration or magnitude of these features exists. It is found that cases A-C all tend towards the 

same solution form with a single peak. 
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Figure 16. T(t) solutions from CP with fmincon and finite difference derivatives, for various initialisations (T0) and discretisation levels (N), Wt = 0.5, WE = 0.5. 
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Figure 17. T(t) solutions from CP with IPOPT and analytical first derivatives, for various initialisations (T0) and discretisation levels (N), Wt = 0.25, WE = 0.75. 
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3.2.2.3 Control Profile Performance 

The upper row in Fig. 18 compares the performance of the profiles computed for N = 42 with 

each initialising isothermal profile considered.  

 

Figure 18. Influence of discretisation level (N) and initialising isothermal profile (T0) on piecewise linear 

profile performance - CP with fmincon, novel initialisation profiles. 

 

Figure 19. Influence of discretisation level (N) and initialising isothermal profile (T0) on piecewise linear 

profile performance - CP with IPOPT, novel initialisation profiles. 

Firstly, the left most plot shows the product ethanol concentration: all profiles are producing high 

concentration (59-60 g L-1). The next plot similarly shows batch times: while all cases represent 

acceptable batch durations, significant variation exists between the values for the four cases 

considered, ranging from 110 to 130 hours. The last two plots in top row depict the by-product 

concentration levels, highlighting that for this discretisation level (N = 42) all profiles satisfy the 

constraint thresholds. The second row of plots in Fig. 18 considers a third axis to visualise the 
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effect of discretisation level on the resulting fermentation performance. The general trend 

observed is that as the discretisation level increases the attainable ethanol concentration also 

increases.  

Conversely the batch time actually increases with N, however at a lesser relative rate such that the 

objective still improves with N. An interesting exception to this trend is profile B which shows 

very little variation of batch time with discretisation level. The last two 3D bar graphs show by-

product levels for all solution profiles. It is seen that there is one anomaly: a single profile where 

the ethyl acetate constraint (Eq. 14), is not satisfied. It can be seen that there are other cases where 

very slight violations exist, however these can be attributed to the slight deviations that exist 

between the performance of the profile during the NLP algorithm and later integration of the 

solution, depending on the accuracy of the piecewise polynomial representation of the continuous 

state trajectories in the NLP formulation. Deviations are shown to be non-significant as the 

algorithm used captures the state trajectories effectively.   

 

 Figure 20. Effect of initialising profile (T0), and discretisation (N) on fermentation performance: fmincon.  

 

Figure 21. Effect of initialising profile (T0), and discretisation (N) on fermentation performance: IPOPT.  
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Figures 20-21 show an alternative performance plot of the output profiles computed. Plotting 

batch time against ethanol concentration represents the bi-criteria objective function, where the 

most favourable solutions would exist in the upper left corner. The second in plot Fig. 20 

represents the by-product levels as a function of discretisation level for each initialising solution. 

Near universal constraint satisfaction is again shown: while many markers lie marginally (< 10%) 

above the threshold level, this is again attributed to the accuracy of the piecewise approximation 

of the state trajectories, and is not detrimental to the applicability and usefulness of the resultant 

profiles produced.  

4. Conclusions 

A control vector parameterisation strategy has been used to compute temperature profiles to 

minimise a bi-criteria problem considering ethanol maximisation and batch time minimisation. 

An interior point NLP algorithm (IPOPT) has been used to determine both piecewise constant 

(stepwise) and piecewise linear temperature profiles, for a range of levels of discretisation and 

initialising temperature profiles. It is found that higher degrees of discretisation permit an 

improved objective due to the greater degrees of path freedom. Similarly, it is shown that 

piecewise linear profiles have greater attainable performance for the same reason, with the 

additional benefit that the removal of instantaneous temperature gradients leads to the piecewise 

linear profiles being industrially implementable. It has been found that in several high 

discretisation cases it has not been possible to satisfy the imposed constraint on diacetyl, limiting 

the usefulness of the results obtained with this methodology.  

An additional sequential dynamic optimisation procedure has been performed using the Dynopt 

package for MATLAB. Discretising the state trajectories in addition to the control vector using 

orthogonal collocations permits a large scale NLP problem to be solved, here for piecewise 

constant temperature profiles. Similarly, a range of N, T0 cases have been solved: it is found that 

the lowest discretisation levels produce control profiles with the most favourable objective. This 

counter-intuitive result is indicative of the limitations of the simultaneous dynamic optimisation 

methodology employed, however it does not discredit the substantial process improvements the 

produced profiles are capable of. It has been demonstrated that the Dynopt package is capable of 

computing temperature profiles for efficient fermentation, which universally fulfil the imposed 

by-product constraints. The solution produced is still sensitive to the input profile used to initiate 

the solver, which if drastically different from the preferred path can produce sporadic, undesirable 

profiles.  It is demonstrated that the attainable performance of the resultant output profile has a 

strong dependence on discretisation level, with the solution form differing when there is a lesser 

number of control profile segments. Once the discretisation level is suffice to describe the 

preferred path adequately, further increments are found to be less significant.  
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Interestingly, comparing the manipulation profiles computed by the two differing methodologies 

shows significantly differing profile forms. The differences are drastic: the sequential profiles 

show a very drastic temperature reduction around the active cell concentration maxima, 

meanwhile the results obtained from Dynopt (sequential) favour a far less significant temperature 

reduction during this stage. It is remarkable that, excluding the numerous cases of constraint 

violation, the performance of the profiles produced by the two methods have performance which 

is not drastically different, despite the significant differences in their form. 

It is demonstrated that blind initial guesses severely restrict the performance of output profiles 

from the dynamic optimisation methodologies. Electing to initialise with promising candidate 

profiles is shown to be highly beneficial, with the simultaneous optimisation approach being able 

to improve upon the input profiles in all cases. It is however shown that the input profile does 

restrict the solution form, so a range of cases should be considered to allow an extensive search 

for the most preferable output profiles to be performed. The robustness and computational 

performance of the interior point NLP solver (IPOPT) is clearly superior to that of the alternative 

solver (Dynopt) considered: while global optimisation is not the purpose of the present study, it is 

clear that poor initialisations result in suboptimal temperature manipulation profiles, but also that 

the form of the solutions obtained (e.g. high initial temperature, progressive cooling and 

reheating) carry technical merit with respect to plant implementations (e.g. feeding warm wort to 

the fermentor straight from the mashing stage under insulation, rather than allowing cooling). 
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Nomenclature  

Roman symbols  

C Concentration (g/L, ppm) 
DY  Diacetyl (-) 
EtOH Ethanol (-) 
EA Ethyl Acetate (-) 

 Objective value (-) 
S Sugar (-) 
T Fermenter temperature (°C) 

 Objective time weight (%) 
 Objective ethanol weight (%) 

 Active biomass concentration (g L-1) 
 Dead biomass concentration (g L-1) 
 Latent biomass concentration (g L-1) 
 Ethyl acetate production stoichiometric factor (g L-1) 

 Fermentation inhibition factor (g L-1) 

 Ethanol affinity constant (g L-1) 
	 Sugar affinity constant (g L-1) 
 Biomass affinity constant (g L-1) 

 Time (h) 
f Batch time (h) 

J  Jacobian (-) 
H  Hessian (-) 
s Slack variables (-) 
S Diagonal of s (-) 
g  Inequality constraint function (-) 
h Equality constraint function (-) 
u Decision vector (-) 
y Lagrange multiplier vector (-) 
e Vector of ones (-) 
N  Discretisation level (-) 
T0 Initialising solution (-) 

 Piecewise state trajectory approximation (-) 
 Piecewise control trajectory approximation (-)  

Greek symbols 
λ Lagrange multiplier 
Λ  Diagonal of λ 
μ Barrier parameter 

 Diacetyl consumption rate (g-1 h-1 L) 
 Specific cell death rate (h-1) 
 Diacetyl production rate (g-1 h-1 L) 

 Ethanol production rate (h-1) 
 Specific cell activation rate (h-1) 

 Sugar consumption rate (h-1) 
 Specific dead cell settling rate (h-1) 

 Specific cell growth rate (h-1) 
ϕ  Basis function (-) 
θ  Basis function (-) 
Subscripts and operators  
		  Normalised parameter (-) 
		  Initial condition (-)  
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