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Abstract

The biopharmaceutical industry is increasingly interested in moving from batch to semi-continuous manufacturing
processes. These continuous bioprocesses are more failure-prone and process failure is more consequential. In
addition, the probability of failure is dependent on process run time which generally is determined independent
of scheduling considerations. This work presents a discrete-event simulation of continuous bioprocesses in
a scheduling environment. Dynamic scheduling policies are investigated to make operational decisions in a
multiproduct manufacturing facility and react to process failure events and uncertain demand. First, different
scheduling policies are adapted from the stochastic lot sizing literature and a novel look-ahead scheduling policy
is proposed. Then, policy parameters (including process run time) are tuned using evolutionary algorithms. Our
results demonstrate that the tuned policies perform much better than a policy that estimates policy parameters based
on service level considerations and a policy based on a fixed cyclical sequence.

Keywords: Stochastic economic lot scheduling problem, Hyper-heuristics, Biopharmaceutical manufacture,
Perfusion, Simulation optimisation, Machine failure

1. Introduction

Biopharmaceutical companies manufacture increas-
ingly sizeable portfolios and face increasing pressure
to improve efficiencies by maximising productivity and
minimising costs (Farid, 2009; DiMasi et al., 2010) as
producing biologics is expensive and time-consuming.
Constructing facilities capable of manufacturing mul-
tiple products may take half a decade and could cost
in the order of $40 to $650 million USD (Farid, 2007).
Due to these time and cost pressures, it is essential
that the manufacturing schedules are well optimised
to make the best use of facility capacity. Manufactur-
ing processes may be placed into one of two groups
depending on the mode of operation of the cell culture:
fed-batch (batch) or perfusion (continuous). The former
is the more established and conventional of the two but
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of recent there has been increasing interest in the use
of the latter. Product material is generally harvested
semi-continuously from perfusion processes which con-
trasts with fed-batch processes where all the material is
harvested at the end of the cell culture. As one might
imagine, there are process economic trade-offs between
these two (Pollock et al., 2013): The continuous pro-
cesses run for significantly longer than conventional
fed-batch processes, may decrease downstream pro-
cessing (DSP) consumable costs and offer higher daily
productivities, which allows for smaller facility foot-
prints. However, they bear higher contamination and
equipment failure rates due to the combination of longer
cell culture process run times and the increased number
and volume of feed additions to the reactor(s) during
its operation.

Prior work on scheduling or planning frameworks
for bioprocesses has tended to adopt mathematical pro-
gramming models for fed-batch processes, for example
by Lakhdar et al. (2005, 2006, 2007), with less research
on perfusion processes (Siganporia et al., 2014). Math-
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ematical programming models under uncertainty have
used methods such as chance-constrained programming
(Lakhdar et al., 2006) or dealt with uncertainty through
scenario analysis (Siganporia et al., 2014). Recently
there have been genetic algorithm (GA) (Holland, 1975)
approaches to production planning predominantly for
batch processes such as work done in studies by Oye-
bolu et al. (2017) and Jankauskas et al. (2017, 2019).
Dynamic and stochastic simulation models for perfu-
sion culture have focused on capturing the impact of
failures and variability on cost of goods rather than on
optimal scheduling or planning (Pollock et al., 2013).

This work focuses on investigating optimal schedul-
ing for continuous processes using a dynamic frame-
work. The aim of this work is twofold. The first is
to develop a model for perfusion processes that allows
manufacturing schedules to be simulated. The second is
to adapt and develop dynamic scheduling policies that
make operational decisions in a multi-product facility
that anticipate and react to changes (such as uncertain
demand and process failure events).

To achieve this, a hyper-heuristic is proposed that
tunes the parameters of policies tailored to the problem
of scheduling multiple perfusion products on a facility.
Hyper-heuristics are heuristic search methods that at-
tempt to automate the selection or design of subordinate
heuristics to solve hard computational problems (Burke
et al., 2013). The distinction between a hyper-heuristic
and a meta-heuristic is that the latter searches a solution
space (i.e., the search space is comprised of solutions
to the problem), however, the former searches within a
space of heuristics, rules, or policies. The policy search
comprises a simulation optimisation approach which
uses an evolutionary algorithm (EA) (Bäck, 1996) as
an optimisation algorithm and a custom stochastic bio-
process scheduling model to evaluate performance of
candidate policies. The use of scheduling policies al-
lows quick reactions to demand changes and process
failure as no firm schedule is generated in advance.

This paper makes several contributions. First, it pro-
poses a new stochastic simulation framework for eval-
uating operational decisions for a multi-product facil-
ity utilising perfusion bioprocesses. It tailors existing
policies from the stochastic economic lot scheduling
problem (SELSP) literature to the peculiarities of bio-
pharmaceutical manufacturing, including the batch or
semi-continuous operation of perfusion processes. In
addition, it proposes a novel policy with a custom look-
ahead heuristic which enables better performance on
the test problem. Finally, process run times are opti-

mised for each product in the portfolio.
This paper is structured as follows. Section 2 pro-

vides an overview of related work. Section 3 contains
the problem statement and description. A description of
the overall hyper-heuristic framework can be found in
Section 4 with subsections detailing the bioprocess and
discrete-event models, the scheduling policies, and the
EAs used for policy parameter tuning. The case study
on which the hyper-heuristic is evaluated is laid out in
Section 5, which is followed by a report and discussion
of the empirical evaluation in Section 6. Finally, the
paper concludes with a summary and outlook on future
work.

2. Literature Survey

Production planning aims to make best use of pro-
duction resources in order to satisfy production goals
or demand over a planning horizon. As part of this gen-
eral planning need, there is often the requirement for
lot sizing and scheduling, which aims to balance set-up
costs and inventory costs. Lot sizing and scheduling
as a problem is not new and approaches and solution
methods date back many decades. Concurrently, many
different variants have emerged which may have vari-
ous new constraints or applications. This ranges from
the simplest variant that considers determining lot sizes
for a single item on one machine (Wagner and Whitin,
1958) to more complex problems involving multiple
items, parallel machines, and sequence-dependent setup
times, among other constraints that reflect the different
environments in different industries and instances —
see Copil et al. (2017) for a recent classification of the
variants.

Historically, most research has been on problems
that assume deterministic demand and no randomness
or uncertainty in general. However, real-life systems
often suffer from uncertainty either in demand, produc-
tion rates or setup times. This different class of the
problem is termed the stochastic lot scheduling prob-
lem (SLSP). In their review of the SLSP, Sox et al.
(1999) make a distinction between the SELSP and the
stochastic capacitated lot sizing problem (SCLSP) to be
consistent with their deterministic counterparts — the
former assumes continuous time, an infinite horizon,
and stationary demand while the latter assumes a finite
planning horizon, discrete time periods, and may have
non-stationary demand. However, Winands et al. (2011)
blur this by defining the SELSP as allowing finite plan-
ning horizons but restricting it to stationary demand. In
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addition to these surveys, Aloulou et al. (2014) com-
pile an extensive bibliography of publications on the
non-deterministic lot-sizing problem and classify them
according to the number of products, time-periods, ma-
chines, the uncertain parameters, and the modelling
approaches. Li and Ierapetritou (2008) review the main
methodologies that have been developed to address the
problem of uncertainty in production scheduling as well
as to identify the main challenges in this area and; Ouel-
hadj and Petrovic (2009) survey dynamic scheduling
in manufacturing systems, covering the limitations of
static schedules and approaches in dynamic scheduling.

In general, a production or control policy is required
for the SELSP which defines decisions to make in all
possible states of the system. These decisions are:
whether to continue production of the current product;
or switch to another product; or whether to idle the ma-
chine. Finite production capacity has to be dynamically
allocated between products in order to be responsive
to stochastic demands, which adds to the complexity
of the problem and means that determining an optimal
control policy is non-trivial (Sox et al., 1999). The criti-
cal aspects of these policies are the lot-sizing decisions
and the sequencing decisions. The lot-sizing decision
may either depend on the state of the entire system (a
global lot-sizing decision) or just on the stock level of
the product currently set up (a local lot-sizing decision).
In addition, the production sequence can either be dy-
namic, fixed with variable cycle length, or fixed with
the cycle length fixed as well (Winands et al., 2011).

The SELSP can be formulated as a Semi-Markov
Decision Process (SMDP) but this approach does not
scale well (Graves, 1980). As a result, simulation op-
timisation is often used as a solution approach. Simu-
lation optimisation is a powerful technique useful for
problems with complex or unknown structure where
uncertainty is present (Amaran et al., 2016). Its appli-
cations include supply-chain management, inventory
replenishment, process design, and bioprocess control
(Chu et al., 2015; Jalali and Van Nieuwenhuyse, 2015;
Caballero, 2015; Renotte and Vande Wouwer, 2003)
with heuristics and meta-heuristics often used as the
optimisation algorithm. Recent work in terms of the
multi-item SELSP includes the study by Löhndorf and
Minner (2013) who formulate the problem as a SMDP
and compare different solution approaches including
approximate value iteration and global search on sim-
ple production policies that had either fixed or dynamic
cycles. They find that global control policy search
outperforms average value iteration on large problems.

Löhndorf et al. (2014) then extend that work to con-
sider sequence-dependent setup times. Both papers
use meta-heuristics to conduct the global search for
control policies. Tempelmeier (2013) focuses on dis-
crete time SCLSP models with random demands, fix-
ing production periods and fixing lot sizes under ser-
vice level constraints. Briskorn et al. (2016) present a
fixed cyclic production scheme for multiple products
with control strategies to stabilise the cycle length and
consider sequence-dependent setup times, backlogging
with service level constraints, and limited storage ca-
pacity. They use a nested solution approach comprising
three levels utilising iterative and neighbourhood search
procedures.

An extension to SLSPs looks at production processes
which are prone to random machine/equipment failure.
In the case of equipment failure, corrective mainte-
nance is done to restore the machine to its ‘normal’
state and any imperfect product items are either re-
worked or discarded. Also, preventive maintenance
may be carried out in order to mitigate the occurence
of failure events. Nourelfath (2011) determines robust
production plans for the SCLSP to ensure that specified
service level is met with high probability. The model
accounted for random machine breakdowns and ran-
dom repair times independent of product type and lot
size. It did not consider random demand nor preventive
maintenance planning. On the other hand, Purohit and
Kumar Lad (2016) present a mathematical model incor-
porating job sequencing, lot sizing, and a schedule for
preventative maintenance which is solved with the use
of a simulation-based GA approach and outperforms
previous conventional approaches.
Though these works are noteworthy, they are not ex-
actly transferable to the problem considered in this
paper. This is because the prior work has preventative
maintenance scheduling as an additional separate de-
cision variable. However, in this paper, lot-sizing and
and preventative maintenance are intrinsically linked
and therefore inseparable. Equipment failure in this
paper is an increasing function of process run-time and
therefore lot-size. So a decision on lot-size may be seen
as implicitly scheduling preventive maintenance since
the process (and time to the next failure) is ‘reset’ at
the end of each lot or batch.

The use of hyper-heuristics in generating or design-
ing heuristics for production scheduling is surveyed by
Branke et al. (2016). In an indirect GA representation
proposed by Kimms (1999), a two-dimensional matrix
is used as chromosome, with each entry representing a
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rule for selecting the set up state for a machine at the
end of a period. Since the entries in the chromosome
represent a rule for selecting set up states, the approach
can be seen as a selection hyper-heuristic as the search
space is on potential rules and not direct solutions to
the problem. Similarly, the previously described ap-
proach of Löhndorf and Minner (2013) and Löhndorf
et al. (2014) can be classed as a hyper-heuristic as there
is a global search for control policies. Hyper-heuristics
may also incorporate machine-learning techniques such
as Artificial Neural Networks (ANNs) (Haykin, 1994)
or genetic programming (GP) (Koza, 1992). For exam-
ple, Burke et al. (2007) have demonstrated automated
heuristic generation with GP. For a complex dynamic
scheduling problem, Pickardt et al. (2013) proposed a
two-stage hyper-heuristic using GP for the generation
of work centre-specific dispatching rules. Branke et al.
(2015) investigate three different rule representations
for optimising rules to compute priority indices for
new/arriving jobs in a jobshop environment, namely:
linear representation, a feed-forward ANN, and GP
with tree-representation.

Literature in the biopharmaceutical industry on plan-
ning and production scheduling is scarce but growing
(Vieira et al., 2015). However, the models used are
either deterministic, do not model perfusion processes,
or do not focus on scheduling.
For example, Lakhdar et al. (2005) developed a deter-
ministic mixed-integer linear program for the planning
and scheduling of a multi-product biopharmaceutical
manufacturing facility utilising fed-batch processes and
later extended it for use with a multi-facility model
where multiple criteria were considered using goal pro-
gramming (Lakhdar et al., 2007). Siganporia et al.
(2014) also develop a mixed-integer linear program-
ming (MILP) model, in this case to optimise an eight-
year planning horizon for a mixture of fed-batch and
continuous bioprocesses while considering capacity de-
cisions in a few scenarios with different demands and
bioreactor titres. They utilised a rolling time horizon
to improve computational performance. Recently, the
work done by Lakhdar et al. (2005) has been extended
to alternative approaches by other authors. First, Vieira
et al. (2016) solved a set of example problems based
on a Resource Task Network (RTN) continuous-time
single-grid formulation focusing on addressing specific
operational characteristics of bioprocesses. Jankauskas
et al. (2017) then used a continuous-time model opti-
mised by a GA which is underpinned by a dynamic
chromosome structure (i.e., vector of decision vari-

ables) that is allowed to vary in length.
Also, Gatica et al. (2003) and Levis and Papageorgiou
(2004) present a mathematical programming approach
for the capacity planning problem with a focus on long-
term planning and capacity investment decisions un-
der uncertainty of clinical trials rather than scheduling.
Marques et al. (2017) present a simulation optimisation
approach combining a MILP model and Monte Carlo
simulation procedure to integrate process design and
planning decisions under clinical trial and demand un-
certainty for the pharmaceutical industry. Finally, Pol-
lock et al. (2013) developed a model focused on inves-
tigating the economic benefits of continuous perfusion
culture and single-use technology for a monoclonal
antibody (mAb). As part of this evaluation, stochas-
tic process failure events and their consequences are
considered using simulation. This is then extended by
Pollock et al. (2017) to include an assessment of various
integrated continuous process flowsheets.

3. Problem Domain Description

In this work, characteristics specific to bioprocessing
and biopharmaceutical manufacturing are addressed
using a simulation optimisation approach. Novel to bio-
processing literature, we to optimise the schedule of a
facility manufacturing multiple drug products utilising
a perfusion cell culture process. This is while incorpo-
rating uncertainty in demand and random equipment
failure, and simulating any disruptions these stochastic
events have on the manufacturing schedule and plan-
ning environment as a whole. This necessitates the de-
velopment of a custom discrete-event simulation model
coupled with an optimisation algorithm. For the opti-
misation algorithm, we use an EA to search for optimal
production control polices. As we search the space
of possible heuristics or rules as opposed to possible
solutions, it constitutes a hyper-heuristic approach.

The problem that is considered by this paper is a
variant of the SELSP applied to biopharmaceutical
manufacturing. It involves a facility and a set of drug
products PF , each associated with a bioprocess which,
when operated, manufactures the corresponding prod-
uct. The state of the facility, m, refers to the product, p,
whose bioprocess is currently in operation on the facil-
ity or is 0 (zero) if idle. A facility refers to the set of
equipment suites available to operate a bioprocess. In
the case of two separate, segregated, and independent
sets of equipment suites, these would be classed as two
separate facilities. The bioprocesses are comprised of
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Figure 1: Overview of the hyper-heuristic, including a flow sheet of the simulation framework. The optimisation algorithms evaluate the fitness
of candidate scheduling policies using the discrete-event simulation framework and its interfaces with the bioprocess model and scheduling
policy instructions.

the same multiple stages (unit operations) and are op-
erated in a semi-continuous manner — the bioprocess
has to be operated in multiples of a pre-defined batch
length (i.e., process duration or run-time) but processed
material is made available over the course of the batch
and not just at the end. In general, no more than one
bioprocess may be in operation in the facility at any
time to avoid cross-contamination or product-carryover
issues and to ease the validation burden, though there is
some exception to this which allows the earlier stages of
a subsequent process to be in operation simultaneously
with the latter stages of the previous process.

In addition to stationary stochastic demand, the man-
ufacturing process is prone to equipment failure of dif-
fering types, risks, and consequences. Demand may
be backlogged by meeting unfulfilled demand in one
period with production from future periods, but will
accrue a backlog penalty. There is also a daily backlog
decay on unfulfilled demand — i.e., a certain percent-
age of backlogged demand is lost every day. The simu-
lation runs over a finite time horizon and discrete-time
periods of one day each.

The objective is to maximize the overall profit, cal-
culated as total revenue minus the costs for produc-
tion, storage, process changeover, wastage, and backlog
penalties given a facility with different manufacturing
yields and manufacturing costs for the different prod-
ucts.

4. Modelling Framework

The hyper-heuristic proposed in this paper is de-
signed as a custom framework comprising a discrete-
event model used to simulate the scheduling environ-
ment on the manufacturing facility in which the biopro-
cesses are operated, policies that dictate scheduling de-
cisions, and optimisation algorithms to tune the schedul-
ing policy parameters. Figure 1 gives an overview of
this framework and the interactions between its com-
ponents. The optimisation algorithm passes policy pa-
rameters to the simulation framework which interfaces
directly with the bioprocess model and the logic of the
scheduling policies. The simulation framework can
then return expected profit as the fitness measure for
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the policy parameters selected by the optimisation al-
gorithm. This section describes the components of the
hyper-heuristic framework and their interactions.

4.1. Bioprocess Model
The bioprocess model utilised by the framework in

this paper is defined by the flowsheet and configuration
of the manufacturing process, the associated process
economics, timings of the unit operations, and the risk
and consequences of failure events.

4.1.1. Manufacturing process
The basis of the bioprocess used is a platform mAb

manufacturing process utilising a perfusion bioreactor
with an alternating tangential flow (ATF) filtration sys-
tem for cell retention. Perfusion bioreactor systems
equipped with an ATF filter have been shown to per-
form well in economic analyses compared to other cell-
retention filter systems and do not suffer consequences
as severe in the event of filter failure (Pollock et al.,
2013). A flow sheet of this process is shown in Fig-
ure 2.

For simplicity, the unit operations of the process can
be grouped together into three main steps:

• A seed train which encompasses all cell thawing
and expansion operations;

• the upstream processing (USP) which is just the
cell culture; and

• the downstream processing (DSP) which accounts
for all unit operations from the capture chro-
matography step (Protein A) to the final finish &
polishing steps (UF/DF).

The approach could easily be adapted to different pro-
cess configurations but this work uses only scenar-
ios with one bioreactor to each DSP train, i.e., a 1:1
USP:DSP train configuration.

4.1.2. Process timing
The seed train takes 14 days and then the production

bioreactor can be innoculated. The ramp-up time to
reach the desired cell density for harvests is ten days.
In this period, no harvests are collected as the process
has not yet reached steady-state. From day 11 onwards,
daily harvests are collected from the bioreactor and
then taken through DSP. Each DSP ‘batch’ then takes
two days to be fully processed and material coming
out of it then can be put in inventory, sold or otherwise

Cell 
Culture 

Suite

Seed #1

Seed #2

CC

ProA

VI

Pool

CEX

UFDF

VRF

AEX

UFDF

DSP 
Suite

Viral 
Secure 
Suite

Figure 2: Process sequence and suite configuration for the perfusion-
based bioprocess. CC = cell culture, ProA = Protein A chromatog-
raphy, VI = virus inactivation, Pool = daily perfusate volume pool-
ing, CEX = cation exchange chromatography, UFDF = ultrafiltra-
tion/diafiltration, AEX = anion exchange chromatography, VRF =

virus retention filtration. Adapted from Pollock et al. (2013).

Table 1: Process scheduling parameters.

Parameters Value Units

Seed train 14 days
Bioreactor turnaround 4 days
Changeover time 10 days
Ramp-up time 10 days
DSP duration 2 days

delivered. Therefore, a process that has a cell culture
run time of 60 days and ramp-up time of 10 days will
produce 50 separate DSP batches. The turnaround on
the bioreactor determining the earliest time it can be
reused is four days and accounts for cleaning-in-place
(CIP) and sterilization-in-place (SIP) operations and
other activities in preparation for a new cell-culture op-
eration. Turnaround time is the minimum time between
two USP operations of the same product. Changeover
between different products takes longer than turnaround
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as more tasks are required to prepare the facility suites
for a manufacturing campaign of a different product.
As it is possible for parts of the seed train process to use
a different suite, the earliest portion of the seed train
of a product can take place concurrently with the latter
days of the USP of a previous batch (of the same or a
different product). We can then define a threshold, as
the minimum time elapsed for a USP operation before a
decision on starting a new batch (i.e., a new seed train)
can be made. The seed-restart threshold is for starting a
new batch of the same product and is the sum of its cell
culture run-time and turnaround time minus its seed
run time. The changeover threshold is for starting a
new batch of a different product and is equal to cell
culture run-time plus changeover time minus seed train
run time of the subsequent product. Process timing
information is contained in Table 1.

4.1.3. Process economics
The economics associated with this process are such

that a seed train cost is attributed to every seed opera-
tion that is started, and a cell culture setup cost for the
setup and prep activities that go into starting up each
bioreactor in a batch. The daily cell culture perfusion
costs are accrued for every day a bioreactor is in opera-
tion, and for every DSP batch commenced, DSP batch
cost is accrued. A cost is associated with replacing
a fouled ATF filter; this is also captured in the batch
setup costs as a new ATF filter is needed for each one.
Finally, if the process is idle for more than the setup
expiry period, there is a cost of re-establishing sterile
and clean holds for all equipment before another batch
of the same product is started. This is the same as
the changeover costs of setting up the facility when
changeover to manufacturing another product occurs.

4.1.4. Process failure
To capture the stochastic failure events and the con-

sequences, previous data adapted from Pollock et al.
(2013) was used and this is presented in Table 2. That
study used a fixed perfusion duration of 60 days so
the probability of ATF culture contamination (6%) and
ATF filter failure events (2%) were within the 60 days.
As our study is looking at various process durations,
this requires some adjusting. We believe that the rate of
failure should be low in the early stages of the process
and be relatively high towards the end. The process
for Pollock et al. choosing a 6% failure rate for the
cell culture contamination is based on the assumption
that each addition to (or sample from) the bioreactor

has a 1 in 1000 chance of introducing contamination to
the system; the 60 day batch had approximately sixty
such additions leading to the 6% chance of failure. As a
result, the chance of failure on any specific day is inde-
pendent of how far along in the process it currently is.
For the equipment failure due to filter fouling, however,
Pollock et al. choose a probability of 2% and weight
failure to occur at latter stages of the cell culture. We
reason that not only additions can cause contamination
but equipment that wears or stresses over the course of
the process (such as tubing, gaskets, valves, O-rings,
filters, seals or connectors). So we deviate from Pol-
lock et al. and use an exponential function of the form
shown below to describe the probability of a failure
event occurring P(x), on a specific day x:

P(x) =
exp(x/a) − 1

b
(1)

Here, a is benchmarked to 60 and also represents the
amount of time it takes (in days) for the probability of
failure to increase by a factor of e; and b is a scaling
constant.

The difference in assumption is illustrated in Figure 3
which shows the cumulative probability of a cell cul-
ture contamination event occurring within the duration
of a process. For the profile (used by Pollock et al.)
where the daily absolute risk of failure is constant, the
cumulative probability of failure in the early parts of the
process can be significantly larger than for the profile
used in this paper that is modelled from an exponential
function.

Primarily, just two failure rates were used: 2%, and
10% — the former for the ATF filter failure and the lat-
ter for culture contamination. These are defined using
Equation (1), as the probability of failure event occur-
ring within the first 60 days unless otherwise specified.

4.2. Discrete-Event Simulation Framework

Based on the bioprocess model discussed in Sec-
tion 4.1, a discrete-event simulation model was devel-
oped in JavaTM. The model simulates the processing of
batches on a facility as a multi-stage process compris-
ing of a seed train, USP, and DSP. In addition, based
on the state of the facility (i.e., what it is currently man-
ufactured), inventory levels, and stochastic events, it
evaluates the economics of operational decisions and
reports key metrics, inventory profiles, and the facility
schedule of the given time horizon. Finally, it allows
the use and evaluation of dynamic scheduling policies
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Table 2: Process failure events, consequences and the associated risk (adapted from Pollock et al. (2013)).

Process Event p(Failure) Consequence

ATF culture contamination 10% Batch loss & discard two pooled perfusate
volumes

ATF filter failure 2% Replace filter & discard next 24 hours of per-
fusate
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Figure 3: The cumulative probabilities showing how likely the USP operation of a certain duration will fail based on different failure rates.
Failure profile with a constant daily failure risk used in Pollock et al. (2013): 1/1000 daily rate. Failure profile with a variable daily failure risk
used in this paper: 10% in 60 days.
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to make scheduling decisions.
On each day:

• any new activities or operations are started if
required whilst any existing ones have their dura-
tions advanced by a day;

• any manufacturing takes place and the random
variables (such as demand, process failure events,
or yield) are realised by sampling their associated
probability distributions;

• the process economics related to the model are
evaluated;

• scheduling decisions are made if necessary; and

• activities or operations are brought to an end at
their target run time (or terminated early due to
equipment failure).

Scheduling decisions are made near the end of a
batch (at seed-restart or changeover thresholds), in the
event of batch failure, or if the facility is idle. The set
of decisions available to make is limited to deciding
whether to keep the facility idle or not, and if the latter,
which product should the new batch produce. Decisions
made on one day are implemented and take effect the
following day.

In the event a decision is made to start a batch and/or
campaign, a seed train operation is created and started
up. When that is completed, it triggers the start of
a USP operation which proceeds until it reaches its
intended end — specified by the process run time —
or is terminated because of a process failure event.
During the course of USP but past its ramp-up, the
daily harvests trigger separate DSP operations which
deposit product in the inventory when completed. Over
the course of the simulation, all these operations are
recorded so that at the end of the simulation, a facility
schedule can be generated describing the history of op-
erational decisions taken, the inventory levels for each
product, the workload of the facility, and identifying
any batches terminated early due to contamination.

Depending on the assumptions made for the purposes
of the simulation, demand may be set to be yearly,
monthly, or daily. Any available product in inventory
is used to satisfy the demand for that period. If the
inventory is not sufficient, unfulfilled demand is added
to backlog on which a decay function is applied. Any
product that has exceeded its shelf-life is deleted from
inventory and discarded.

4.3. Scheduling Policies

The scheduling strategies employed in a dynamic
simulation environment are based on control policies
that initiate new production orders (batches in this case)
based on current inventory levels as well as the state of
the facility (i.e., the product currently being manufac-
tured), m, in a make-to-stock fashion.

Three base-stock policies (BSPs) are presented here,
two of which are adapted from Löhndorf and Minner
(2013), and the third is a novel development. In addi-
tion, two benchmark policies are described here. The
adaptations from the versions presented in previous
work are necessary because in our paper, processes can
fail and consist of a fixed sequence of multiple batch
(and semi-continuous) unit processes. In addition, there
is a need to identify an optimum run time for one of the
constituent unit processes — the perfusion cell culture
in this case. Since the processes here are composed of
multiple stages, the decision to make the next batch has
to be made before the current batch is over. This means
that the amount of product made and delivered in that
time lag needs to be estimated and taken into account.

In our case, due to the multi-stage process, the time-
period in which a decision can be made (decision epoch)
begins at the seed-restart or changeover thresholds. De-
cisions can also be made once the cell culture is con-
taminated and fails or when the facility is idle. As a
result of the lag between when a decision is required
and the end of the current batch, the policies presented
here will take into account the expected extra material
that will have been produced by the end of the current
batch (if the facility is not idle). So, γpt is set to be
the estimated net production (i.e., material produced
minus expected demand) in the interval between the
decision-making time point and the end of the batch.
Decision epochs end when a decision to start a batch
has been made.

4.3.1. Simple base-stock policy (BSP1)
This is the first of the policies adapted from Löhndorf

and Minner (2013). In this case, there are three policy
parameters defined:

1. The reorder point, Y (1)

2. The order-up-to level, Y (2)

3. The process run time of batches in the campaign,
B
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Algorithm 1 Pseudocode of BSP1.
1: procedure BSP1(current time t)
2: PF = the set of products manufactured
3: mt = the product manufactured at time t, 0 if

idle
4: Ipt = the inventory level of product p at time t
5: γpt = the estimated net output of p between t

and end of its batch
6: µp = the expected demand of product p
7: Zt = {p : Ipt ≤ Y (1)

p } ∀p ∈ PF
8: if mt > 0 AND Imt + γmt < Y (2)

m then
9: Start new seed train of product mt

10: else if Z(1)
t , {} then

11: Start new seed train of product
arg mini∈Zt {Iit/µi}

12: else if ∀p : Ipt > Y (1)
p then

13: Keep facility idle
14: end if
15: end procedure

The logic for determining when to start a new seed
train is detailed in Algorithm 1. This states that if the
facility is idle and there is a product p with inventory
below inventory policy parameter Y (1), a new batch —
with a cell culture run time of B days — for this product
is initiated. If there is more than one product to which
this applies, the product selected to be manufactured
next is the one with the smallest run-out time — i.e.,
time until product runs out of stock, Ip/µp, where Ip is
inventory of product p and µp is its expected demand.
Once the facility is manufacturing a product, it does
not go idle or switch products (changeover) until it has
reached inventory policy parameter Y (2).

4.3.2. Can-order base-stock policy (BSP2)
This policy was designed by Löhndorf and Minner

(2013) to be an improvement on BSP1 by including two
more policy parameters. This allows the control policy
to interrupt a campaign (a set of consecutive batches of
the same product) if the inventory of another product
falls critically low. The policy parameters are identified
below:

1. The reorder point, Y (1)

2. The order-up-to level, Y (2)

3. The can-order point, Y (3)

4. The can-order-up-to level, Y (4)

Algorithm 2 Pseudocode of BSP2.
1: procedure BSP2(current time t)
2: PF = the set of products manufactured
3: mt = the product manufactured at time t, 0 if

idle
4: Ipt = the inventory level of product p at time t
5: γpt = the estimated net output of p between t

and end of its batch
6: µp = the expected demand of product p
7: Z(1)

t = {p : Ipt ≤ Y (1)
p } ∀p ∈ PF

8: Z(3)
t = {p : Ipt ≤ Y (3)

p } ∀p ∈ PF
9: if mt > 0 AND Imt + γmt < Y (4)

m then
10: Start new seed train of product mt

11: else if Z(1)
t , {} then

12: Start new seed train of product
arg mini∈Z(1)

t
{Iit/µi}

13: else if mt > 0 AND Imt + γmt < Y (2)
m then

14: Start new seed train of product mt

15: else if Z(3)
t , {} then

16: Start new seed train of product
arg mini∈Z(3)

t
{Iit/µi}

17: else if ∀p : Ipt > Y (3)
p then

18: Keep facility idle
19: end if
20: end procedure

5. The process run time of batches in the campaign,
B

The logic for determining when to start a new seed
train is detailed in Algorithm 2. If the facility is idle
and there is a product p with inventory below Y (3), a
new batch for this product is started. The campaign
cannot be interrupted until the inventory of that product
exceeds Y (4). When this occurs, changeover to another
product is allowed if its inventory level is less than Y (1)

— again any ties are settled by picking the product with
the smallest run-out time. However, if there are no
products with inventory below their reorder points, the
campaign may continue until it exceeds Y (2).

So the facility does not go idle until all products are
above their can-order points. In this manner, this policy
works similarly to BSP1 but with the can-order point
and the can-order-up-to level it enables interruptions.
In general, Y (1) ≤ Y (3) ≤ Y (4) ≤ Y (2) and BSP1 can be
considered a special case of BSP2 where the inventory
policy parameters are such that Y (1) = Y (3) and Y (4) =

Y (2). The disadvantage of this policy is that with more
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Algorithm 3 Pseudocode of BSP3.
1: procedure BSP3(current time t)
2: PF = the set of products manufactured
3: mt = the product manufactured at time t, 0 if

idle
4: Ipt = the inventory level of product p at time t
5: γpt = the estimated net output of p between t

and end of its batch
6: µp = the expected demand of product p
7: Z(5)

t = {p : Ipt ≤ Y (5)
p } ∀p ∈ PF

8: CE(π) = the estimated cost of manufacturing a
permutation, π

9: if Z(5)
t , {} then

10: S(Z(5)
t ) = all permutations of products in

Z(5)
t

11: Select cheapest permutation, π∗ =

arg minπ∈S(Z(5)
t ){CE(π)}

12: Start new seed train of product π∗1
13: else if ∀p : Ipt + γpt > Y (5)

p then
14: Keep facility idle
15: end if
16: end procedure

policy parameters (compared to BSP1 for example),
it requires a greater computational effort in searching
for good policy parameters. In addition, due to the
ability to interrupt campaigns, this policy may introduce
more product changeovers which require substantial
operational and validation effort in practice.

4.3.3. Forecasting base-stock policy (BSP3)
This policy is a novel contribution that this paper is

proposing and utilises a ‘look-ahead’ heuristic. The
following policy parameters are identified:

1. The reorder point, Y (5)

2. The process run time of batches in the campaign,
B

When the inventory of a product falls below the re-
order point during a decision epoch (i.e., during idle
time, or after a batch ends or is contaminated), a new
batch of that product is started with cell culture run
time of B. If there is more than one product with inven-
tory below Y (5), the heuristic first generates all possible
permutations of manufacturing a single batch of each
of the products with inventory less than Y (5). Next, the
heuristic estimates the costs of each permutation. This

estimated cost is the projected sum of inventory costs,
backlog penalties, and any changeover costs assuming
that the processes will be run without failure and the
demand realised is equal to the mean of its probability
distribution — other manufacturing costs will be the
same regardless of manufacturing permutation. Cost
estimation is done by generating a function describ-
ing the piecewise linear estimation of each product’s
inventory before, during, and after production of its
corresponding batch within the permutation time frame.
The inventory cost for each product is the product of
the inventory rate and the absolute value of the sum
of positive integrals of the function; and the backlog
penalty is the product of the backlog penalty cost and
the absolute value of the sum of negative integrals of
the function. The permutation of batches that has the
lowest estimated cost is selected and a batch of the first
product in the permutation is started.

It should be noted that this policy does not automati-
cally schedule the entirety of the cheapest permutation
but at the next decision time, the heuristic generates
a new set of permutations, evaluates them, and then
makes a decision based on the new evaluations. The
logic of this policy is laid out in Algorithm 3. The
drawbacks of this policy include the need to enumerate
all permutations of elements in Z(5) which, in the worst
case, gives the policy a complexity of O(n!) where n
is the number of products. However, the number of
products in one facility is usually small. In addition,
the cost estimation is not exact and does not anticipate
or account for the possibility of process failure.

4.3.4. Benchmark policies
In addition to the proposed policies, some benchmark

policies are introduced to serve as baselines to compare
the previously proposed policies.

Heuristic base-stock policy. The first takes the form of
the simple base-stock policy where the policy param-
eters are heuristically chosen by the Doll & Whybark
heuristic (Doll and Whybark, 1973) adapted by Gascon
et al. (1994) and used as an initial guess in the direct
policy search by Löhndorf and Minner (2013). The
values of the policy parameters of this benchmark pol-
icy are based on common cycle time as calculated by
that method. This is denoted as BSP0. This heuristic
attempts to construct a schedule by producing products
in repetitive cycles so that each product is manufactured
once every certain period of time (that may be unique to
each product) where each of these periods is a multiple
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of a common cycle time. The method to calculate these
values is as follows: Let T̂ be the common cycle time
and k be a safety factor to mitigate stock-outs.

T̂ = max
{√√√√√√ 2

∑
∀p∈PF

Ap∑
∀p∈PF

ρpµD
p (1 − µD

p /(brpydp))
,

∑
∀p∈PF

αp

1 −
∑
∀p∈PF

µD
p /(brpydp)

} (2)

k = Φ−1
( δp(1 + θT̂ )/2

δp(1 + θT̂ )/2 + ρp

)
(3)

Where µD
p is the expected daily demand; σD

p is the stan-
dard deviation of the daily demand; αp is the process
lead time which in this case is the sum of the seed train
time, the ramp-up time, and the time of one DSP batch;
brp is the amount harvested from the daily perfusate of
the bioreactor; ydp is the process yield; δp is the lost
demand penalty cost; θ is the daily backlog decay rate;
ρp is the inventory holding cost; and Ap represents all
setup costs associated with the first batch of a campaign
prior to its first perfusion harvest, i.e., the sum of the
changeover cost, seed cost, cell culture setup cost, and
the perfusion costs in the ramp-up period.
Then, the reorder level and order-up-to point are, for
each product p, set to:

Y (1)
p = max

{
µD

pαp + kp

√
σ2

pT̂ , 0
}

(4)

Y (2)
p = Y (1)

p + max
{
µD

p (1 − µD
p /(brpydp))T̂ , 1

}
(5)

In this benchmark policy, the process run time for each
product is set to 60 days.

A fixed cycle policy. The second benchmark policy is
based on a fixed cycle. This policy, denoted as FCP,
ensures that the manufacturing facility follows a fixed
sequence of batches. The policy parameters for this
policy are the sequence and the process run times. This
policy is implemented by cycling through each element
in the sequence, producing a batch of the product the
item corresponds to, and then moving to the next ele-
ment in the sequence — when it gets to the end of the
sequence, it starts from the beginning again. Each ele-
ment in the sequence can be one of any p in PF which

Table 3: The minimum and maximum values for the genes in the
chromosome.

Gene Type Min value Max value

Y (1), Y (i) − Y ( j) continuous 0 60
B integer 14 120

indicates that a single batch of product p is to be manu-
factured. In addition, any element in the sequence may
be zero (0) which indicates that the facility should be
made idle. Consecutive identical but non-zero elements
in the sequence means that consecutive batches of that
product are produced. However, consecutive zeroes in
the sequence are pruned down to one instance which
means that sequences can be of variable length. A se-
quence with a leading and trailing zero will have the
leading element preserved and the last element deleted.
The time the facility spends being idle is determined
by the inventory levels of the products. Specifically,
idle time is ended when any product’s run-out time falls
below 90 days. At that point, the facility will then move
on to the next product in the sequence. Also, if a batch
ends prematurely due to process failure, the facility will
move to the next element in the sequence.

4.4. Optimisation Algorithms

Evolutionary algorithms were used to optimise the
policy parameters of the scheduling policies imple-
mented. To be specific, we compare the performance
of a genetic algorithm (GA) and a Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) for the op-
timisation of the BSP policy parameters. These were
implemented in JavaTM using the ECJ Library (Version
24) (Luke, 1998).

The genomes (chromosomes) used to represent can-
didate policies were designed to deal with the con-
straints on policy parameters. For example, a BSP1
policy needs to have its policy parameters such that
Y (1) ≤ Y (2) and a BSP2 policy needs its policy param-
eters so Y (1) ≤ Y (3) ≤ Y (4) ≤ Y (2). This is illustrated
in Figure 4, where instead of the genome representing
the inventory policy parameters directly, the difference
between adjacent inventory policy parameters is en-
coded. The ranges for the genes encoding the policy
parameters are detailed in Table 3. The fitness of a
candidate solution is determined by evaluating multiple
simulations of the solution’s policy parameters using
the discrete-event framework.
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Figure 4: Structure of a BSP2 policy chromosome for a facility manufacturing three drug products where the process run times are simultaneously
optimised.

All results reported are an average of 50 runs unless
otherwise stated. Below, the parameters of the evolu-
tionary algorithms deployed are detailed.

4.4.1. The Genetic Algorithm
A GA was designed to optimise the policy parame-

ters in each BSP strategy and the GA parameters are as
follows: The number of generations was set to be 200,
the population size was 30. The elitism implemented
was such that the fittest six individuals in the population
each generation are carried over to the next generation
automatically. The chromosome was determined by
the type of BSP and the number of products. So, if
the policy did not simultaneously set process duration,
the length of the chromosome would be the number
of inventory policy parameters times the number of
products. In the case where the policy also set the pro-
cess duration, then additional genes for each product
would be added to the chromosome. The first segment
of the chromosome representing the inventory policy
parameters for each product were real-valued whilst the
last few genes representing the process duration were
integer (see Figure 4).

The selection process for individuals to be crossed
over was a tournament (with replacement) of size two.
The probability of crossover being applied was 0.9 and
the crossover operator was uniform crossover. Probabil-
ity of a gene being mutated was the value of the inverse

of the chromosome length (i.e., 1/chromosome length).
Gaussian mutation was used (with a standard deviation
of 6) for the real-valued genes whilst the integer genes
used random walk. Random walk mutation performs a
random walk starting at the current gene value. At each
step in the random walk it adds either +1 or −1 to the
current variable value. Then with a probability of 0.9 it
iterates another step, else it quits the walk.

FCP is also tuned using a GA with a chromosome
encoding a sequence of at most 12 elements and pro-
cess run times (if these are allowed to be optimised) —
all the genes are therefore integers. The GA is identical
to the one previously outlined, except that the crossover
operator was two-point crossover and to mutate the
sequence segment of the chromosome, a gene is re-
moved and randomly re-inserted somewhere else in the
sequence.

4.4.2. The Covariance Matrix Adaptation Evolution
Strategy

The CMA-ES does not have many user-specified pa-
rameters, as a lot of them are calculated based on the
chromosome specified. As a result the default settings
were used (Hansen and Ostermeier, 2001). The chromo-
some has the same structure as previously discussed but
with the values of the encoded genes normalised to fall
between [−1,+1]. These values are then transformed
to the actual policy parameters at the point of fitness
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evaluation. The transformation functions are such that
to obtain the inventory policy parameter Y (i.e., Y (1)

or Y (i) − Y ( j)) from the encoded value Y ′ the following
equation was used:

Y = 30Y ′ + 30 (6)

To get B from its encoding B′ the equation below is
used, where Round(x) rounds x up:

B = min
{
Round(53.5B′ + 67), 120

}
(7)

The CMA-ES was given the same budget as the GA
(6, 000 fitness evaluations) and the starting point for the
search was set randomly in the decision space.

5. Case Study Description

To evaluate our proposed method, we designed a
biopharmaceutical industrial case study. The data com-
prises anticipated market demand and manufacturing
facility characteristics. This problem features multiple
products to be produced on a single facility with differ-
ent efficiencies, yields and costs, perishable inventory,
and the ability to backlog demand. The processes to
manufacture these products are all based on a platform
mAb process as described in Section 4.1.

The demand forecast is made up of three different
products (p1 − p3) to be manufactured over the period
of seven years (with a year comprising 360 days). The
demand forecast shows the expected annual demand
which is stationary (i.e., does not change from year to
year) but is stochastic (see Table 4). The stochastic
demand for each product follows a Normal distribution,
N(µ, σ2), where µ is the annual forecasted demand and
σ is 0.025µ. The demand frequency is set to be daily
which means that demand is sampled, is due, and can
be delivered every day; sampled demand is truncated
and not allowed to be negative. This means the distribu-
tion describing the daily demand is N(µD, (σD)2) where
µD =

µ
360 and σD = σ

√
360

. The different constituents
of the manufacturing costs are also listed in Table 4
as well as the reactor yields, the sales price for each
kilogram of each product, and the periodic penalty cost
for each unit of unfulfilled demand. The reactor yield
indicates how much product is in each daily harvest
from the bioreactor. The product of this and the over-
all process yield is how much material is deposited in
inventory after each DSP batch. For all products, the
overall process yield is 69%.

Table 4: Process economics parameters in relative monetary units
(RMU) unless otherwise stated.

p1 p2 p3

Seed cost 4.6 5.2 5.1
Daily cell culture cost 3.4 3.2 3.6
Cell culture batch setup cost 26 26.9 33.7
ATF replacement cost 17.8 14.6 15.7
DSP batch cost 10.7 11 14.2
Sales price (RMU/kg) 150 95 100
Backlog penalty cost (RMU/kg/day) 0.25 0.1 0.1
Annual demand (kg) 60 120 115
Reactor yield (kg) 2.03 2.25 1.38

Changeover cost is accrued when switching between
two different products or after the setup expiry period
lapses between batches of the same product. Changeover
and turnaround times are defined as the minimum time
between two USP operations for different and same
product respectively. Equation (8) describes the daily
backlog rate, where for product p: ∆pt is the amount
of product p that is late at time t, θ is the daily backlog
decay rate, Dpt is the observed demand of product p at
time t, and S pt is the amount of product p that is sold
at time t.

∆pt = max
{
0, θ∆p,t−1 + Dpt − S pt

}
∀ p, t (8)

The daily backlog decay is defined as 180
√

0.5 so that
any product that is backlogged would have decayed to
half that amount after 180 days (given no demand or
sales in that period). This means that if 1kg of product
is undelivered at time t, the amount due at time t + 1
is (1 × 180

√
0.5) kg plus whatever new demand arrives at

t+1. Each product has a maximum period of time — its
shelf-life — that it can be stored for before it perishes.
Any product that has to be thrown away because it has
exceeded its shelf-life or as a consequence of process
failure will also accrue a wastage penalty per kilogram.
These case study parameters are specified in Table 5.
It is assumed that processes utilise a single reactor so
that the process configuration is a 1:1 USP:DSP ratio.
Failure rates were set such that the probability of cell
culture contamination was 10% in 60 days and the
probability of ATF filter failure was 2% in 60 days too.

The case study is designed so that each of the three
products has a particular characteristic. The first prod-
uct, p1, is high-value and low-demand; p2 is high-
demand and high-yield; and p3 is high-demand and
low-yield. So the trade-off between p1 and p2 is that
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Table 5: Case study parameters

Parameter Value Unit

Shelf life 720 Days
Backlog decay 0.5 Per 180 days
Inventory rate 0.01 RMU/kg/day
Bioreactor turnaround 4 Days
Changeover time 10 Days
Wastage rate 5 RMU/kg
Setup expiry 30 Days
Planning period 7 Years
Number of reactors 1
Changeover cost 35 RMU

the former commands a higher sales price per kilogram
manufactured but also a larger penalty per kg of unful-
filled demand. On the other hand, comparing p3 to p2,
we see that p3 has a similar demand profile as p2 but
its yield is a third lower.

This case study will be the basis of simulation opti-
misation experiments reported in the following section.

6. Results and Discussion

To evaluate the performance of the policies, optimi-
sation runs were carried out in the manner described
in Section 4.4. This section presents and discusses the
scenarios investigated and their results.

6.1. Evaluating the optimised policies

The policies were optimised twice: once with the
process durations fixed to 60 days, and a second time
where the optimisation algorithm is free to optimise
the process duration. These are differentiated by the
suffixes appended to the policy name. Where the pro-
cess duration is fixed, the suffix is ‘A’ and if the process
duration is optimised, the suffix is ‘B’.

The optimisations were run on the case study data
previously described. During the EA optimisation, the
fitness evaluation uses the average performance of 500
simulations as this was found to give a good estimate
without making computation time(s) too long. Finally,
each simulation was started with each product having
an initial inventory equal to a quarter of the expected
yearly demand.

6.1.1. Policies with benchmark run-times
Tables 6 and 7 summarise the performance of all the

policy variants averaged over 50 independent runs of
the GA. The first of these (Table 6) compares the perfor-
mance characteristics of the benchmark policies (BSP0
& FCPA) to those tuned base-stock policies (BSP1-
3) where the process run times are fixed to 60 days.
The performance characteristics for all policies were
evaluated using 20, 000 simulations on the same ran-
dom number seeds. The table shows that the tuned
base-stock policies outperform the benchmark poli-
cies (substantially with regards to BSP0 and less so
for FCPA) in terms of the expected profit generated.
This is driven primarily by differences in the revenue
(and consequently, backlog penalties and customer ser-
vice level (CSL)) and storage costs. By scrutinizing
the seed costs and the cell culture setup costs, it ap-
pears that both BSP0 and the optimised base-stock
policies start a similar number of batches so the ad-
vantage of the optimised base-stock policies is due to
the sequence or timing of the batches ordered. It is
worth pointing out that BSP0 does outperform the op-
timised policies in one metric: changeover costs. This
means that although the overall timing and sequencing
of batches in BSP0 is sub-optimal in terms of the over-
all objective, it is able to schedule batches of the same
product together in longer campaigns thereby reducing
changeover costs and potentially making the operation
of the facility more straightforward with fewer manu-
facturing switches between products. In contrast, while
FCPA does represent a large improvement on BSP0
with regards to profit its costs are only slightly lower
than BSP0 due to its higher changeover, USP, and DSP
costs.

Between the optimised policies, BSP1A is the worst,
with BSP2A performing a bit better, and BSP3A best.
That ranking is the same when looking at revenue but
is reversed with regards to the total costs. The only
other major difference between them is that BSP2A
appears to have on average at least two fewer product
changeovers than the other policies. This is however
offset by it having larger storage costs than BSP1A
and BSP3A. Any differences between two policies in
total seed, USP or DSP costs are due to a policy having
marginally fewer or more batches started than the other,
since they all have the same process run times.

6.1.2. Policies with optimised run-times
In Table 7 the performance characteristics of the

best performing policy that had a fixed process run
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Table 6: Profit, costs, customer service level (CSL), and other performance characteristics for the three BSPs and FCP with process duration
fixed to 60 days as well as the BSP0 solution. Mean ± std. err. are listed of 50 runs (for the tuned policies) each and values reported are in
RMU apart from CSL values. Best mean values are highlighted in bold; values not statistically significantly different from the best are likewise
highlighted.

BSP0 FCPA BSP1A BSP2A BSP3A

Profit 179015 ± 20.9 186544 ± 14.9 189589 ± 1.6 189651 ± 4.5 189711 ± 1.7
Revenue 214690 ± 17.9 221708 ± 21.5 222908 ± 6.8 222996 ± 6.0 223075 ± 7.5
Total costs 35676 ± 5.7 35164 ± 33.4 33319 ± 7.1 33345 ± 6.1 33363 ± 8.0

Seed 179.0 ± 0.04 185.3 ± 0.12 181.3 ± 0.03 181.7 ± 0.02 181.9 ± 0.03
USP 8059 ± 0.9 8346 ± 5.4 8155 ± 1.1 8173 ± 1.1 8181 ± 1.5

Replacement ATF filters 10.3 ± 0.09 10.9 ± 0.02 10.5 ± 0.01 10.6 ± 0.01 10.6 ± 0.01
Cell culture setup 1064.6 ± 0.22 1100.0 ± 0.68 1076.9 ± 0.15 1079.6 ± 0.15 1080.7 ± 0.21

DSP 21022 ± 2.5 21736 ± 13.7 21265 ± 2.8 21313 ± 3.1 21342 ± 4.2
Changeover 478.0 ± 0.24 1091.9 ± 12.17 1132.5 ± 0.44 1053.1 ± 4.00 1150.1 ± 1.11
Storage 3065 ± 1.0 3114 ± 25.6 2253 ± 5.0 2315 ± 4.7 2210 ± 4.7
Backlog penalties 2827.3 ± 5.24 642.8 ± 7.82 285.3 ± 1.70 263.8 ± 1.55 251.8 ± 1.74
Wastage 44.9 ± 0.16 47.8 ± 0.09 45.8 ± 0.02 45.9 ± 0.02 45.9 ± 0.02

CSL 95.88% ± 0.007 98.96% ± 0.009 99.50% ± 0.003 99.54% ± 0.004 99.58% ± 0.004

Table 7: Profit, costs, customer service level (CSL), and other performance characteristics for the three BSPs and FCP with process durations
optimised by the GA compared to the best performing BSP with fixed process duration. Policy names with a suffix of ‘A’ are for optimisations
with process duration fixed to 60 days while those with suffix ‘B’ have process duration optimised by the EA. Mean ± std. err. are listed of 50
runs each and values reported are in RMU apart from CSL values. Best mean values are highlighted in bold; values not statistically significantly
different from the best are likewise highlighted.

FCPB BSP3A BSP1B BSP2B BSP3B

Profit 186585 ± 127.1 189711 ± 1.7 189972 ± 6.3 190016 ± 13.9 190125 ± 1.9
Revenue 221389 ± 73.8 223075 ± 7.5 223101 ± 9.2 223123 ± 9.4 223240 ± 7.3
Total costs 34804 ± 99.5 33363 ± 8.0 33129 ± 6.8 33107 ± 10.2 33116 ± 7.2

Seed 172.2 ± 3.72 181.9 ± 0.03 182.2 ± 0.72 178.8 ± 0.86 185.8 ± 0.36
USP 8128 ± 36.3 8181 ± 1.5 8148 ± 8.3 8110 ± 9.5 8178 ± 5.0

Replacement ATF filters 13.5 ± 0.36 10.6 ± 0.01 11.1 ± 0.11 11.5 ± 0.09 11.3 ± 0.07
Cell culture setup 1004.9 ± 21.24 1080.7 ± 0.21 1065.7 ± 4.34 1043.1 ± 4.87 1077.0 ± 2.68

DSP 21602 ± 44.8 21342 ± 4.2 21248 ± 3.6 21282 ± 5.7 21256 ± 4.0
Changeover 1119.2 ± 21.22 1150.1 ± 1.11 1211.1 ± 4.13 1150.5 ± 6.02 1249.5 ± 1.63
Storage 2998 ± 96.7 2210 ± 4.7 2050 ± 8.2 2102 ± 12.6 2002 ± 6.1
Backlog penalties 721.5 ± 21.33 251.8 ± 1.74 243.5 ± 2.26 235.3 ± 3.04 197.8 ± 2.06
Wastage 62.6 ± 3.41 45.9 ± 0.02 46.9 ± 0.39 48.4 ± 0.36 46.4 ± 0.19

CSL 98.83% ± 0.035 99.58% ± 0.004 99.60% ± 0.004 99.61% ± 0.004 99.66% ± 0.004
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time — BSP3A in this case — is compared with the
benchmark fixed cycle policy that optimised process
run time, and the base stock policies that optimised both
the inventory policy parameters and also the process
run time. First, one can observe that the FCP policies
are always worse than the tuned base stock policies
regardless of process run time optimisation. In fact,
when comparing FCPA and FCPB, although there is an
improvement, it is coupled with an order-of-magnitude
increase in variance. This is likely due to the FCPB
parameter optimisation running out of its computation
budget before fully converging (see Figure A.8 in the
Appendix). On the whole, it suggests that utilising
a rigid fixed schedule in an uncertain environment is
sub-optimal compared to policies reactive to changes.

Comparing Tables 6 and 7, one can see that BSP-
B variants are better than their BSP-A counterparts
across the board and that the worst BSP-B is better
than the best BSP-A. The difference between the best
and worst fixed-run-time policies is less than the differ-
ence between the best of those policies and the worst
optimised-run-time policy. Among the BSP-B policies,
the BSP3 policy is again the best performing in profit,
followed by BSP2B then BSP1B. The other trends that
follow from the observations from BSP-A policies is
the relative ranking of policies with regards to revenue
generated, changeover costs, and storage costs accrued.

6.1.3. Tuned policy parameters
Table 8 lists the policy parameters in the optimised

base-stock policies as well as the calculated policy pa-
rameters for the benchmark base stock policy. Table 9
reports the policy parameters for both benchmark FCP
policies. This data represents the overall best solution
for each policy from all the GA runs.

The striking difference between BSP0 and the op-
timised BSPs is that the benchmark policy has much
higher order-up-to levels. Coupled with slightly lower
reorder points, this means that batches are more likely
to be ordered in campaigns of the same product in-
stead of the facility switching more frequently between
products. Conversely, the optimised policies have their
inventory policy parameters in much narrower ranges
which means that campaigns are more likely to have just
one batch — amount produced per batch is much larger
than the ranges of the inventory policy parameters —
and subsequently more product changeover(s). In fact,
with BSP1, the best policies have Y (1) and Y (2) policy
parameter values almost equal which suggests that the
second parameter is not particularly useful. This would

Table 8: Policy parameters for p1-p3 in each of the base-stock poli-
cies. The best solutions (i.e., the best solution out of all EA runs for
each tuned policy) are reported.

p1

Y (1) Y (2) Y (3) Y (4) Y (5) B

BSP0 6.2 52.5 – – – 60
BSP1A 16.4 16.7 – – – 60
BSP1B 18.7 19.9 – – – 47
BSP2A 10.5 27.5 15.2 16.2 – 60
BSP2B 12.8 20.3 15.0 17.1 – 43
BSP3A – – – – 16.3 60
BSP3B – – – – 16.3 43

p2

Y (1) Y (2) Y (3) Y (4) Y (5) B

BSP0 11.1 93.6 – – – 60
BSP1A 28.8 28.9 – – – 60
BSP1B 25.1 25.5 – – – 58
BSP2A 23.5 38.4 25.3 26.1 – 60
BSP2B 22.4 31.5 23.4 25.3 – 59
BSP3A – – – – 23.8 60
BSP3B – – – – 29.2 51

p3

Y (1) Y (2) Y (3) Y (4) Y (5) B

BSP0 10.7 77.5 – – – 60
BSP1A 23.8 23.9 – – – 60
BSP1B 21.0 21.6 – – – 65
BSP2A 19.1 39.9 21.3 21.5 – 60
BSP2B 6.6 36.4 18.8 19.9 – 74
BSP3A – – – – 28.8 60
BSP3B – – – – 19.2 79

Table 9: The optimal sequence and process run times for the fixed
cycle policies overall from all GA runs.

Sequence Bp1 Bp2 Bp2

FCPA 1-3-2-3-0-3-0-2 60 60 60
FCPB 2-0-1-3-0-2-3-0-1-0-2-3 42 48 73

mean that the policy could be replaced by one with
just Y (1) (like BSP3) which would require less effort
tuning it — i.e., if it were to be run again but with one
policy parameter it should give faster convergence but
similar results. This assumption has been confirmed
experimentally.

The reason that the optimised Y (1) values are higher
than that of the benchmark policy is most likely due to
the fact that the optimised policies implicitly account
for the fact that the product changeovers can only hap-
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pen after the end of a batch of a predetermined run
time. This means it can maintain higher levels of safety
stock and reduce the likelihood of stock-outs. And with
the narrower ranges of the inventory policy parameters,
more frequent product changeovers help avoid product
inventories from falling critically low. The benchmark
base-stock policy is based on heuristics that do not
model batch or semi-batch production; this highlights
how previous approaches to lot-sizing approaches don’t
easily apply to biopharmaceutical manufacturing con-
texts. The best FCP solutions also highlight that cam-
paigns of multiple batches are seemingly sub-optimal
at this problem load. Though these policies can sched-
ule consecutive batches of the same product, the best
solutions do not implement that strategy.

Observed solutions for process run times are based
on striking a balance between the process yields and de-
mand forecasts of each product as well as the increasing
risk of process failure with longer process duration. It
is intuitive, based on the specifics of the case study, that
p1 would have a shorter process run time than the other
products because it has much lower demand. By the
same token, it makes sense that p3 has a longer process
run time than p2 because it has similar demand but the
yield of its manufacturing process is a third lower.

There are no major differences in the optimised pro-
cess run times between the different base-stock policies
apart from p2 in BSP3B and p3 in BSP1B where the
run times are significantly lower than that of the other
tuned BSPs. Also, all the optimised durations deviate
from the ‘benchmark’ process run time of 60 days espe-
cially with p1 and p3. It is interesting to note that the
optimised policies tend to have process run times that
cannot produce all of the expected demand for a year in
a single batch even if it is possible — process durations
of 53 and 88 would suffice for p1 and p2 respectively.
As previously mentioned, the factors determining these
decisions are the need to mitigate process failure and
the ability to changeover to other critical products. It is
not clear which role each of those factors play in each
case but it is fair to say that mitigating process failure
is more influential for p2 than it is for p1.

6.1.4. Production schedule(s) for the facility
Although the Gantt charts in Figure 5 are just for

one scenario and simulation run, many of the points
previously discussed are illustrated here. The Gantt
charts shown are for BSP0 and the best performing so-
lutions for FCPB, BSP3A, and BSP3B. BSP0 schedules
batches of the same product together so that campaigns

have multiple batches and minimises changeover costs
as a result. As a result of these sustained campaigns, the
inventory will be built up and incur higher storage costs.
The BSP0 schedule makes it clear how this policy can
accrue very high backlog costs. For example, in this
instance, p2 is not produced until well into the second
year meaning all of the first year’s demand would have
been backlogged and subsequently penalised. These
trends are all reflected in Table 6.

Moving from BSP0 to BSP3A and then to BSP3B,
the number of multi-batch campaigns decreases with
BSP3B not scheduling any two batches of the same
product together in this particular scenario — this also
applies to FCPB as the sequence does not include any
consecutive batches of the same product. With increas-
ing number of product changeover, there is more pro-
duction time lost. This is due to the fact that changeover
between batches of different products requires more
setup time than the turnaround between two batches
of the same product. This is why the BSP0 chart ap-
pears to be less utilised. The difference between the
policies with fixed process run times and those where
the process run times are optimised is also clear from
these schedules. This is most visible when comparing
the Gantt charts of BSP3A and BSP3B. The former has
batches that are more uniform in size unless a failure
occurs whereas the latter looks more irregular.

What these charts also illustrate is a disadvantage
of FCPB (and the FCP policies in general): although
it is able to dictate a schedule ahead-of-time, it is not
able to find a ‘good’ decision to make when the envi-
ronment changes. This is true especially in the event
of process failure where it will move on to the next
batch in the sequence regardless of any critically low
inventory levels. As shown in Table 7, this can lead
to higher backlog penalties and lower revenue. In this
instance, this occurs in the second batch of p3 in the
third year of the FCPB schedule. On the other hand,
while the BSPs cannot fix a schedule in advance or
determine an absolute decision to make when process
failure occurs, they can react to changes by deciding at
each point whether to continue with that product, go
idle or switch to another product.

6.1.5. EA performance and statistical analysis
Statistical testing on the performance of the policies

was carried out, the results of which are presented in
Table 10. It contains a matrix of p-values from Mann-
Whitney U tests comparing the profits of the final so-
lutions from each policy. It indicates that in terms of
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FCP1B - Profit: 187109 RMU, CSL: 97.68%
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BSP3A - Profit: 191259 RMU, CSL: 99.63%
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BSP3B - Profit: 192725 RMU, CSL: 99.83%
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Figure 5: Exemplar schedules from a single simulation run for BSP0, FCPB, BSP3A, and BSP3B scheduling policies.

Table 10: Matrix of the observed significance level of Mann-Whitney
tests comparing the mean profit of the final solutions from each policy.
The p-values are for the test that policy1 > policy2.

policy1
policy2

BSP1A BSP1B BSP2A BSP2B BSP3A BSP3B

BSP1A – 1 1 1 1 1
BSP1B <0.001 – <0.001 1 <0.001 1
BSP2A <0.001 1 – 1 1 1
BSP2B <0.001 <0.001 <0.001 – <0.001 1
BSP3A <0.001 1 <0.001 1 – 1
BSP3B <0.001 <0.001 <0.001 <0.001 <0.001 –

performance, the assertion that BSP1A < BSP2A <
BSP3A < BSP1B < BSP2B < BSP3B is statistically
significant when looking at pairwise comparisons be-
tween each policy and the rest.

Figure 6 shows the convergence of the optimisations
of the base stock policies. In addition to the GA, op-

timisation with CMA-ES is also tested. Across all the
policies both optimisation algorithms deliver essentially
the same quality of final solutions. However, the more
state-of-the-art CMA-ES converges faster than the GA.
This gets more pronounced the more decision variables
the problem has — e.g., BSP2 which has four inventory
policy parameters per product — and with the policies
that have to optimise process durations in addition to
the inventory policy parameters. In addition, these EAs
were compared with random search and it is shown
that the EAs perform significantly better on most of the
policies. The exceptions to this are the BSP3 policies
where there is no statistical difference between the per-
formance of random search and the EAs. This suggests
that BSP3, by virtue of its in-built forecasting heuris-
tic, is able to make good scheduling decisions during
simulation. It also helps that the policy has very few
decision variables to optimise (six at most and as few
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Figure 6: Convergences of the all the BSP optimisations runs with the genetic algorithm (GA), CMA-ES, and with random search (RS).
Errorbars indicate standard error of the mean.

as three when process run times are fixed) so the search
space is smaller.

To test the benefit of the forecasting heuristic, the
BSP3 policies were compared with BSP1 policies where
Y (1) = Y (2). This constraint is to ensure that both poli-
cies work in the same way except that the BSP3 policies
break ties with the forecasting heuristic and the BSP1
policies break ties by comparing run-out times. So for
both the BSP3 and the constrained BSP1, 2,000 poli-
cies were randomly generated and evaluated. The mean
performance (± standard error) of the BSP3 policies
was 167933 ± 850 RMU and the performance of the
constrained BSP1 policies was 166709 ± 855 RMU. A
two-tailed Mann-Whitney U test was performed on the
policies and indicated that the increase in performance
of the BSP3 policies was statistically significant (ob-
served significance level of <0.001).

Overall, these analyses have shown that it is benefi-
cial to tune policy parameters for the scheduling poli-
cies instead of relying on estimated policy parameters
or a fixed schedule or sequence of batches. Further-
more, optimising process run times offers additional

advantages as it allows the policy to schedule batches
so that product changeover can occur when inventory
falls to critical levels and also select run times with ef-
ficient productivities and an acceptable risk of process
failure. Thirdly, the choice of optimisation algorithm,
in this scenario, does not have a significant effect on the
quality of the final solution. However, as the number of
decision variables increases, a more efficient algorithm
such as CMA-ES can contribute to a faster convergence
(with regards to fitness evaluations).

6.2. Evaluating the sensitivity and robustness of opti-
mised policy solutions

The case study that the policies have been optimised
for and evaluated on has a demand forecast which is
stochastic but follows a known distribution. In reality,
it is not easy to accurately predict or forecast demand
— which is why the demand is defined as a probability
distribution with a mean based on targets and market
research (and variance based on estimated margin of
error in predictions). However, as actual demand is
being realised it can be difficult to determine whether
the observed demand actually is sampled from the same

20



Table 11: Robustness of the optimised policies to overestimates (-10%) and underestimates (+10%) of demand. Mean profit ± std. err. are listed
of the best solutions from the 50 GA runs from each of the tuned policies — values reported are in RMU. Best mean values are highlighted in
bold; values not statistically significantly different from the best are likewise highlighted.

Demand case BSP0 FCP1B BSP1B BSP2B BSP3B

−10% 163109 ± 20 167100 ± 158 170650 ± 7 170679 ± 14 170719 ± 8
Standard 178940 ± 21 186585 ± 127 189972 ± 6 190015 ± 14 190125 ± 2
+10% 191997 ± 22 200088 ± 535 200938 ± 176 201904 ± 217 200471 ± 82
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Figure 7: Box plots of the performance of the tuned policies relative to the benchmark heuristic BSPO when demand is overestimated (-10%)
and underestimated (+10%). Whiskers of the box plots represent 95% of the data range; outliers are not shown.

distribution as the one predicted. So the observed de-
mand could potentially be from a distribution with a
different mean and/or variance. This section aims to
determine the behaviour of the previously obtained so-
lutions on slightly different problem instances to the
one they were trained on.

With those considerations, some of the policies were
tested at different demand scales to determine their ro-
bustness. Specifically, the best solutions from each of
the 50 optimisation runs of FCPB, BSP1B, BSP2B,
and BSP3B as well as the previously estimated BSP0
solution were evaluated over 20, 000 simulations on
demand load cases ±10% of the standard demand case
used to train the policies. As before, the demand due
in each year is stochastic and described by a Normal
distribution, N(µ, (0.025µ)2). Apart from the change in
demand load, all the other model and problem parame-
ters were unchanged from those in the case study used

in Section 6.1.
Results of these tests are shown in Table 11. The

−10% case is where demand has been overestimated —
i.e., the standard demand case used to train the policies
is an overestimate of the actual demand. Similarly, the
+10% case is where demand has been underestimated.
Figure 7 shows the descriptive statistics of the perfor-
mance, relative to BSP0, of 50 solutions from each
policy. A summary of statistical tests of these experi-
ments is in the Appendix (Table A.12). The data at the
standard demand case is just a replication of the infor-
mation from Tables 6 & 7 showing that the solutions
of BSP3B are better than those of BSP2B, followed by
BSP1B and then FCPB.

Looking at cases where the demand is overestimated
(−10%), the rankings stay the same (compared with
the standard demand case), with policies with a higher
ranking being statistically significantly better than the
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policies ranking below it. In addition, apart from FCPB,
the variance in performance for all policies is very small
and is within narrow ranges. These rankings change
in the case demand is underestimated (+10%). Here,
BSP2B has better mean performances, followed by
BSP1B, then BSP3B and FCP1B. At this demand, no
policy is statistically significantly better than all of the
others. BSP3B has a much tighter distribution over its
50 best solutions compared to the other policies. 95%
of BSP3B solutions fall within a range of 2%, while the
performance of each of the other policies spans almost
double that range at least. For example, some FCPB
solutions improve on BSP0 by only 1% but some ‘good’
solutions show as much as 6% improvement.

BSP3B is less robust in terms of the policy parame-
ters to a higher demand load even as its expected per-
formance is less variable. However, when we run the
robustness test with BSP3B where its Y (5) values are
the Y (1) values of BSP1B and process run time values
are substituted for that of BSP1B, BSP3B outperforms
BSP1B which shows that our forecasting heuristic is
still rather robust and effective.

Relative to the benchmark policy, which has its pa-
rameters heuristically chosen, the performances of the
tuned policies (apart from FCPB) generally decline as
one moves away from the standard demand case. For
the BSPs, a partial explanation for this trend is that at
less loaded problems, sub-optimal decisions incur less
harsh penalties. For example, the main driver for the
difference between BSP0 and the tuned policies at the
standard demand case is backlog penalties. So with
lower observed demand, clearly this becomes less im-
portant and the difference decreases. At higher demand
load, scheduling in campaigns becomes more impor-
tant as it saves on changeover time and allows more
production time in the facility. As a result, policies that
schedule more batches of the same product together
(like BSP0 does) can perform better. This explains
the poor performance of BSP3B as it ‘links’ very few
batches of the same product together into campaigns
compared to the other policies. For FCPB, the trend is
increasing average relative performance with increasing
demand. An explanation for this is that the FCPB solu-
tions we have are composed of a significant proportion
of policies which have long process run times. These
longer process run times help increase performance at
the higher demand. A more general explanation ap-
plicable to FCPB and the BSPs is that tuning a policy
exploits the specific structure and characteristics of the
problem instance it is trained on to generate better so-

lutions and performance. This also means that it loses
its applicability to moderately different or more general
problems — this is referred to as overfitting.

Finally, we carried out further sensitivity analysis by
doing separate GA optimisation runs for BSP2B and
BSP3B at both +10% and −10% demand cases — i.e.,
we specifically tune policy parameters to these demand
loads. Here, we find that BSP3B retains its advan-
tage over BSP2B with similar margins to the standard
demand case. In addition, compared to these newly
optimised policies, the solutions trained on the standard
case but evaluated on the +10% demand case perform
relatively badly. They perform between 3% and 4%
lower than either BSP2B or BSP3B policies optimised
for the higher demand load. At the −10% demand case,
the difference is much smaller and the policies trained
on the standard case have performance similar to the
policies optimised for the lower demand load.

Overall what can be observed from these tests is that
BSP3B policies perform best when demand is lower or
equal to the demand instance they were trained on. Al-
though other policies outperform BSP3B when demand
is higher, its forecasting heuristic remains robust. In
addition, at higher demand loads, the policies trained on
the standard demand case perform poorly. This implies
that the demand forecasts need to be done carefully and
there should be a mechanism to adapt policy parameters
to changing demand.

7. Conclusions

This paper has considered the stochastic economic
lot scheduling problem (SELSP) in the context of a
biopharmaceutical manufacturing scenario consisting
of multiple products on a single facility utilising semi-
continuous perfusion processes that are prone to various
types of process failure that have significant operational
consequences. To deal with the challenges that this
problem poses, a simulation optimisation approach was
proposed and developed.

First, a custom discrete-event simulation framework
modelling continuous bioprocesses in a scheduling en-
vironment was developed. Then a few dynamic schedul-
ing policies were adapted from the literature to fit the
problem being investigated. In addition to this, a novel
policy with a forecasting heuristic was proposed. These
policies were then tuned on a synthetic case study us-
ing an evolutionary algorithm (EA) in what amounts to
a hyper-heuristic search. Evaluation of these policies
and further comparison with a heuristically determined
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benchmark policy as well as a benchmark policy based
on a fixed sequence demonstrated the benefit of tun-
ing policy parameters and utilising policies that use the
state of the scheduling environment to make decisions.
Further tuning of process run times led to improved
performance as this enables better lot-sizing decisions
which may allow hedging against process failure by
utilising a shorter run time. Finally, robustness and
sensitivity analysis showed that the optimised policies
are more robust to demand overestimation than demand
underestimation with some policies suffering higher un-
certainty and variance at unexpectedly higher demand
loads.

There are a few possible ways to extend the work
presented in this paper. The obvious one is to apply
this method to different case studies — e.g., clinical
manufacturing; or instances where the process yields
are also uncertain and stochastic; or problems that intro-
duce sequence-dependent changeover times by includ-
ing both fed-batch and perfusion cell cultures. It may
be worth developing a method so that policy parameters
are adaptable to changing demand, or combining the
better robustness of BSP2 with the forecasting heuristic
of BSP3. In addition, problems with more products
and multiple facilities may require a more diverse rep-
resentation of potential rules (Branke et al., 2015) and
careful consideration of strategies to deal with expen-
sive evaluations and noise as the problem size increases
(Jin and Branke, 2005; Branke, 2018). Finally, the run
times of batches are fixed ahead of each simulation so
policies can only react to changes at the end of a batch.
It would be interesting to investigate policies that allow
flexible process run times to enable more fine-grained
and immediate responses to changes in the simulation
environment.
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Abbreviations and Notation

Abbreviations

ATF alternating tangential flow

CMA-ES Covariance Matrix Adaptation Evolution
Strategy

CSL customer service level

DSP downstream processing

EA evolutionary algorithm

GA genetic algorithm

mAb monoclonal antibody

MILP mixed-integer linear programming

RMU relative monetary units

SCLSP stochastic capacitated lot sizing problem

SELSP stochastic economic lot scheduling problem

SLSP stochastic lot scheduling problem

USP upstream processing

Notation

The indices p and t denote individual products and
discrete time points respectively. The subset charac-
terising the facility being considered is PF, the set of
products produced by the facility.

Parameters
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αp lead time for production of first DSP batch of
product p, days

δp unit cost charged as penalty for each kilogram
of unfulfilled demand of product p, RMU per
kilogram per day

ζp shelf-life of product p, days
µD

p mean daily demand of product p, kilograms
ρp unit cost for each stored kilogram of product

p, RMU per kilogram
σD

p standard deviation of daily demand of product
p, kilograms

θ daily backlog decay rate
υp unit sales price for each kilogram of product

p, RMU per kilogram
ψp changeover cost for starting a campaign of

product p, RMU
Ap sum of all costs incurred up till the end of

ramp-up for first batch in campaign of product
p, RMU

brp bioreactor yield per daily perfusion harvest,
kilograms

ydp overall process yield, %

State variables

∆pt amount of product p which is late at time t,
kilograms

Dpt observed demand of product p at time t, kilo-
grams

Ipt the amount of product p stored at time t, kilo-
grams

mt the product being manufactured on the facility
at time t, 0 if idle

S pt the amount of product p sold at time t, kilo-
grams

Z(i)
t the set of products p, such that Ipt ≤ Y (i)

p

Decision variables (policy parameters)

B run time of perfusion cell culture batch, days
Y (1) reorder point, kg
Y (2) order-up-to level, kg
Y (3) can-order point, kg
Y (4) can-order-up-to level, kg
Y (5) reorder point, kg (BSP3)

Appendix A. Statistical Tests and FCP Convergence

This appendix details the statistical testing for the de-
mand robustness study as well as the progress and con-

vergence of the fixed cycle policy optimisation run(s).
The former is shown in Table A.12 and the latter in
Figure A.8.
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Figure A.8: Convergences of the genetic algorithm optimisation of
both the fixed cycle policies, FCPA and FCPB.

Table A.12: Matrices of observed significance level of Mann-Whitney
tests comparing the mean profit of the best solutions of each policy
when demand is overestimated and underestimated. The p-values are
for the test that 〈row〉 > 〈column〉.

Demand overestimate (−10%)

FCP1B BSP1B BSP2B BSP3B

FCP1B - 1.00E+00 9.99E+00 1.00E+00
BSP1B 3.43E-18 - 1.00E+00 1.00E+00
BSP2B 3.43E-18 6.74E-04 - 9.68E-01
BSP3B 3.43E-18 1.56E-09 3.21E-02 -

Demand underestimate (+10%)

FCP1B BSP1B BSP2B BSP3B

FCP1B - 7.28E-01 9.21E-01 9.44E-01
BSP1B 2.72E-01 - 1.00E+00 1.50E-01
BSP2B 7.88E-02 1.19E-04 - 1.78E-07
BSP3B 5.56E-02 8.50E-01 1.00E+00 -
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