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Abstract

Model discrimination identifies a mathematical model that usefully explains
and predicts a given system’s behaviour. Researchers will often have several
models, i.e. hypotheses, about an underlying system mechanism, but insuf-
ficient experimental data to discriminate between the models, i.e. discard
inaccurate models. Given rival mathematical models and an initial experi-
mental data set, optimal design of experiments suggests maximally informa-
tive experimental observations that maximise a design criterion weighted by
prediction uncertainty. The model uncertainty requires gradients, which may
not be readily available for black-box models. This paper (i) proposes a new
design criterion using the Jensen-Rényi divergence, and (ii) develops a novel
method replacing black-box models with Gaussian process surrogates. Using
the surrogates, we marginalise out the model parameters with approximate
inference. Results show these contributions working well for both classical
and new test instances. We also (iii) introduce and discuss GPdoemd, the
open-source implementation of the Gaussian process surrogate method.

Keywords: Design of Experiments, Model Discrimination, Jensen-Rényi
Divergence, Gaussian Processes, Open-Source Software

1. Introduction

Biochemical engineering deals with noisy and uncertain processes. Mod-
elling these processes is often difficult, and exacerbated by the difficulty of
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observing mechanisms and reactions on the molecular level. We can hypoth-
esise several different mathematical models to explain a system’s behaviour
and run experiments to discriminate between the models. The idea is that
there is a real, expensive-to-evaluate system, and M rival models predict-
ing the system behaviour. These models are effectively different hypotheses
about some underlying system mechanism. We seek to discard all inaccurate
model(s) with as few experiments as possible.

For analytical models, where the functional relationship can be expressed
in closed form, extensive literature exists for design of experiments for model
discrimination, e.g. Hunter and Reiner (1965), Box and Hill (1967), Buzzi-
Ferraris and Forzatti (1983), Buzzi-Ferraris et al. (1984), Buzzi-Ferraris et al.
(1990), Asprey and Macchietto (2000) and Michalik et al. (2010). The chal-
lenge is that most mathematical models for industrially relevant biological
and chemical processes are neither simple nor analytical. From an opti-
misation point-of-view, they are often complex black boxes, e.g. legacy code
representing large systems of partial differential equations. For these models,
we can simulate the process at discrete locations, but gradient information
with respect to model parameters is not readily available. The number of
function evaluations needed for finite-difference gradient approximation may
also be computationally prohibitive. Automatic differentiation (Neidinger,
2010; Farrell et al., 2013; Baydin et al., 2018) can be used to retrieve gra-
dient information from some models, but will not work e.g. for models with
non-smoothness and discontinuities (Conn et al., 2009, pp. 3–5; Martelli
and Amaldi, 2014; Boukouvala et al., 2016). These may be due to switches
(if/else statements) or internal optimisation steps in the models.

Existing methods for design of experiments for black-box model discrim-
ination utilise Monte Carlo techniques, e.g. Vanlier et al. (2014), Drovandi
et al. (2014), Ryan et al. (2015) and Woods et al. (2017). The optimal ex-
perimental design is found through exhaustive sampling of the design and
model parameter spaces. This can incur a significant computational burden,
especially if model evaluation is computationally slow (Vanlier et al., 2014;
Ryan et al., 2016). Even for small-scale problems, the computational time
to find the optimal next experiment can be on the order of days or weeks,
often rivalling the time needed to carry out the actual experiment.

Design of experiments for parameter estimation has received more atten-
tion in literature than design of experiments for model discrimination (Ryan
et al., 2016). Combined design criteria for parameter estimation and model
discrimination exist, e.g. Atkinson (2008) and Waterhouse et al. (2009), but
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tend to perform sub-optimally for model discrimination. Therefore, we focus
on design of experiments for model discrimination.

Section 2 presents the classical method of design of experiments, with de-
scriptions of design criteria from literature. Section 3 proposes a novel design
criterion based on the Jensen-Rényi divergence measure. Section 4 describes
a novel method of using Gaussian process surrogate models to perform de-
sign of experiments for discriminating black-box models. From the surrogate
models, the predictive distributions can be computed and used with design
criteria from literature or our proposed design criterion. Section 5 presents
the open-source Python library GPdoemd, which implements the Gaussian
process surrogate method. Section 6 presents results from several case studies
to assess the performance of our proposed design criterion based on Jensen-
Rényi divergence and Gaussian process surrogate model method. Finally,
Sections 7 and 8 conclude the paper. Table 1 presents the paper’s notation.

This paper is based on and extends two conference papers. Most of
Section 4 (excluding Section 4.2) repeats Olofsson et al. (2018a,b). Tables 6
and 9 and Figure 10a appear in Olofsson et al. (2018a). But Section 3 and 5,
i.e. derivation of the Jensen-Rényi divergence design criterion and description
of the GPdoemd software package, respectively, are novel contributions of this
paper. Additionally, we introduce new examples to the results section.

2. Background

The fundamental principle of experimental design for model discrimina-
tion is selecting the next experimental point where the model predictions
differ most (Hunter and Reiner, 1965). The task is to find an appropriate
measure of this difference as a function of the model inputs. The measure
of difference between model predictions should incorporate our confidence in
said model predictions. Uncertainty in the model predictions comes mainly
from uncertainty in the model parameters, which are tuned by fitting the
model to noisy observations in the data set D. We assume zero-mean Gaus-
sian distributed experimental noise with known (or upper-bounded) covari-
ance Σ. The experimental noise combines measurement noise and inherent
system stochasticity. Skews in the noise distribution can often be handled,
e.g. through a power transformation of the data (Box and Cox, 1964).

Let each model i assume experimental observations y = y(u) are Gaus-
sian distributed with y ∼ N (fi(u,θi),Σi(u)), where fi(u,θi) is model i’s

3



Table 1: Summary of notation.

Symbol Description
N (·, ·) Gaussian distribution

A−1 Inverse of matrix A, such that AA−1 = I.

A> Transpose of matrix A.

|A| Determinant of matrix A.

tr(A) Trace of matrix A.

u Design variable u ∈ RD.

D Dimensionality of design variable space, u ∈ RD.

θi Parameters of model i , θi ∈ RDi .

Di Dimensionality of model i’s parameter space, θi ∈ RDi .

fi Model i

M Number of rival models fi; i = 1, . . . ,M .

f i Model fi evaluated at location (u,θi).

fi,(e) Target dimension e of model fi; e = 1, . . . , E.

E Number of target dimensions; fi : RD+Di → RE.

Σ Experimental noise covariance.

D Set of experimental data

predicted mean and Σi(u) = Σ̆i(u)+Σ is the sum of model and noise covari-
ance, given design u and model parameter estimate θi. The experimental
data set {un,yn}Nn=1 is denoted D. The model covariance Σ̆(·) accounts for
uncertainty in the model prediction due to uncertainty in the model param-
eter estimate θi (see Figure 1). To simplify notation, let f i = fi(u,θi) and
Σi = Σi(u) denote the predictive mean and covariance, respectively.

This section first describes the classical method of computing the model
covariance Σ̆i(u) through a Laplace approximation, which fits a local Gaus-
sian to the parameter distribution p(θi | D), centred at the maximum a pos-
teriori estimate θi = θ∗i . Next, we describe some classical design criteria, i.e.
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Figure 1: Observed data D and two rival models f1 and f2 predicting the outcome of pos-
sible future experiments. The predictive means with two standard deviations are plotted.

measures of difference in model predictions.

2.1. Approximating the Model Covariance Σ̆(u)

The predictive model covariance Σ̆(u) accounts for variance in the model
prediction f i due to uncertainty in the model parameters θi. Classical litera-
ture assumes approximately linear models with respect to the model parame-
ters near θi = θ∗i (Box and Hill, 1967; Buzzi-Ferraris et al., 1984; Prasad and
Someswara Rao, 1977). Given zero-mean Gaussian distributed experimen-
tal noise with covariance Σ, model i’s parameter estimate is approximately
Gaussian distributed, θi ∼ N (θ∗i ,Σθ,i). The covariance Σθ,i is given by the
Laplace approximation:

Σθ,i =

[
N∑
n=1

∇θf>i (un)Σ−1∇θf i(un)

]−1
, (1)

with ∇θf i(un) = ∂fi(un,θi)/∂θi|θi=θ∗i the gradient of the model predic-
tion for design un ∈ D with respect to the model parameters. The model
covariance Σ̆i(u) at a test point u is then given by:

Σ̆i(u) = ∇θf>i (u)Σθ,i∇θf i(u) . (2)

The covariance Σi of experimental observations according to model i, also
taking the experimental noise covariance Σ into account, is Σi = Σ̆i(u) + Σ.

2.2. Design Criteria for Model Discrimination
The fundamental principle of sequential experimental design for model

discrimination says to select the next experimental point where the model
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predictions differ the most (Hunter and Reiner, 1965). The measure of how
much the models differ is the design criterion and the design optimisation
problem maximises this design criterion.

Possibly the earliest recorded design criterion is the Mahalanobis distance
between the models’ predictive means, proposed by Hunter and Reiner (1965)
and extended to multiple target dimensions and more than two rival models,
e.g. by Espie and Macchietto (1989):

DHR(u) =
M−1∑
i=1

M∑
j=i+1

(f i − f j)>Q(f i − f j) , (3)

where Q is a diagonal scaling matrix. This design criterion is popular in
many practical applications, mainly because of its simplicity. Atkinson and
Fedorov (1975) define a T -optimality criterion and argue that the DHR is the
only design criterion that can realise T -optimal experimental designs.

Box and Hill (1967) criticise the Eq. (3) design criterion for not con-
sidering parameter uncertainty and experimental noise, i.e. maximising the
difference between model predictions without regard for our confidence level
in the predictions’ accuracy. Instead, Box and Hill (1967) propose measuring
the information gain of an additional experimental observation yN through
the change in Shannon entropy HS,N =

∑M
i=1 πi,N log πi,N , where πi,N =

π̂i,N/
∑

j π̂j,N are normalised model posteriors with π̂i,N = N (yN |f i,Σi)πi,N−1.
From this, Box and Hill (1967) derive a new design criterion, extended to
multiple target dimensions by Prasad and Someswara Rao (1977):

DBH(u) =
M−1∑
i=1

M∑
j=i+1

πi,Nπj,N

{
tr(ΣiΣ

−1
j + ΣjΣ

−1
i − 2I)

+ (f i − f j)>(Σ−1i + Σ−1j )(f i − f j)
}
.

(4)

The Eq. (4) design criterion is the upper bound on the expected change
EyN [HS,N ]−HS,N−1 in Shannon entropy from the next observation yN . Ex-
periments are conducted until πi,N ≈ 1 for some model i, or until the exper-
imental budget is exhausted.

Meeter et al. (1970) note that it seems strange to maximise the upper
bound on the expected change in Shannon entropy rather than the lower
bound. Buzzi-Ferraris and Forzatti (1983) criticise the use of the normalised
model posteriors πi,N in Box and Hill (1967) by pointing out that observing
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the same values y1:N in different order will yield different normalised model
posteriors πi,N , which contradicts common statistical sense. In a series of
papers (Buzzi-Ferraris and Forzatti, 1983; Buzzi-Ferraris et al., 1984, 1990),
another design criterion is proposed:

DBF(u) =
M−1∑
i=1

M∑
j=i+1

{
tr
(
2Σ(Σi + Σj)

−1)
+ (f i − f j)>(Σi + Σj)

−1(f i − f j)
}
.

(5)

The DBF design criterion is a heuristic based on the cross-covariance of dif-
ferent models’ prediction errors. It can also be seen as a generalisation of
DHR that incorporates parameter uncertainty (Hoffmann, 2017, p. 5).

Buzzi-Ferraris and Forzatti (1983) and Buzzi-Ferraris and Manenti (2009)
note that under the null hypothesis (“the model is correct”), a model’s pre-
diction errors should be zero-mean Gaussian distributed with variance Σ.
Hence, they propose using a χ2 test with N · E −Di degrees of freedom to
discard inaccurate models. Box and Hill (1967) rank models against each
other and implicitly reject all but the least inaccurate model with respect to
the data gathered. Using a χ2 test and discarding models that inadequately
describe the observed data increases robustness against inaccurate models.
Experiments are conducted until only one model remains, all models have
been discarded, or the experimental budget is exhausted. For comparing two
models (M = 2), the DBF design criterion also has the interpretation that if
DBF(u) is not “sufficiently larger than 1”, the models cannot be discriminated
(Buzzi-Ferraris and Forzatti, 1983; Buzzi-Ferraris, 2010), which can be used
as a stopping criterion. Schwaab et al. (2006) derive a similar design criterion
to DBF consisting of the second term inside the sums in Eq. (5) weighted by
each model’s prediction error χ2 probability.

Michalik et al. (2010) argue that the design criteria DBH in Eq. (4) and
DBF in Eq. (5) reward model lumping, i.e. model aggregation, where the
predictions of some models are similar but far apart from predictions of other
model aggregations (see Figure 2). An observation at a point with model
aggregation may determine whether a group of models are more accurate
than another group of models, but does not discriminate between models
within each of those groups. This is an interesting engineering trade-off: we
may wish to identify the one best model, but significantly discriminating
between model groups may be more practical than partially discriminating
between many models (Buzzi-Ferraris, 2010).
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Figure 2: (a) An example of model aggregation, where f1/f2 and f3/f4 pairwise yield
similar predictions. Given data, we can discriminate between groups of model pairs f1-f2
and f3-f4 but may be unable to discriminate between models intra-pair. (b) No model
aggregation. Model aggregation may affect model discrimination (Michalik et al., 2010).

To avoid sampling at model aggregation points, Michalik et al. (2010) use
Akaike’s information criterion weights wi as a heuristic design criterion:

DAW(u) =
M∑
i=1

wip(fi) , (6)

with p(fi) model fi’s prior probability and the Akaike weights wi defined as:

wi =
1∑M

j=1 exp
(
−1

2
(f i − f j)>Σ−1i (f i − f j) +Di −Dj

) . (7)

Experiments are conducted until wi ≈ 1 for some model i (equivalent to
one model scoring a significantly higher Akaike information criterion than
other models) or until the experimental budget is exhausted. The set of rival
models is assumed to contain a “good” model, so model discrimination using
wi implicitly selects the least inaccurate model.

3. DJR: Jensen-Rényi Divergence Design Criterion

Model discrimination considers the difference between observed data and
model predictions. Hence, Hunter and Reiner (1965) proposed designing
new experiments by maximising the difference between model predictions.
All three design criteria DBH, DBF and DAW implicitly reward divergent
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model predictive distributions. This section proposes a design criterion that
explicitly maximises the model predictive distributions’ divergence.

The general expression for the divergence between M predictive distribu-
tions gi(u) for design u is:

Div[H](u) = H

(
M∑
i=1

πigi(u)

)
−

M∑
i=1

πiH(gi(u)) , (8)

where πi are weights associated with the corresponding models, andH is some
entropy measure. Vanlier et al. (2014) propose a design criterion based on
the Jensen-Shannon divergence between model predictive distributions. The
Jensen-Shannon divergence Div[HS] is the divergence measure corresponding
to the continuous Shannon entropy HS, or differential entropy, defined by:

HS(G) = −
∫
G(γ) logG(γ)dγ , (9)

with information measured in natural units (logarithm base e). The expres-
sion for Div[HS](u) in Eq. (8) is intractable, even for the case of Gaussian
distributions gi(u) = N (f i,Σi). Hence, we can either approximate the di-
vergence measure using Monte Carlo techniques (Vanlier et al., 2014), or find
a different entropy measure that yields a closed-form solution for the diver-
gence of Gaussian distributions. Given the computational complexity of the
former, we choose the latter option and turn to the Rényi (1965) entropy
measure, a generalisation of the Shannon entropy. Specifically, we look at
the quadratic Rényi entropy H2 defined as:

H2(G) = − log

∫
G(γ)2dγ . (10)

For a Gaussian distribution gi(u), the quadratic Rényi entropy is given by:

H2(gi(u)) = E
2

log(4π) + 1
2

log |Σi| . (11)

For a mixture of Gaussian distributions Ĝ =
∑

i πigi(u), the quadratic Rényi
entropy is given by (Wang et al., 2009; Nielsen, 2012):

H2(Ĝ) = − log
M∑
i=1

M∑
j=1

πiπj

(2π)
E
2

exp
(
−1

2
φij(u)

)
, (12)
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where, using f̃ ij = Σ−1i f i + Σ−1j f j, the function φij(u) is given by:

φij(u) = f>i Σ−1i f i + f>j Σ−1j f j − f̃
>
ij

(
Σ−1i + Σ−1j

)−1
f̃ ij

+ log |Σi|+ log |Σj|+ log |Σ−1i + Σ−1j | .
(13)

By noting that φii(u) = log |2Σi|, we rewrite the expression in Eq. (12) to:

H2(Ĝ) = E
2

log(2π)− log
M∑
i=1

[
π2
i

2
E
2 |Σi|

1
2

+ 2
i−1∑
j=1

πiπj exp
(
−1

2
φij(u)

)]
, (14)

which reduces computational effort. After these reformulations, the quadratic
Jensen-Rényi divergence Div[H2](u) has a closed-form expression. We let:

DJR(u) = Div[H2](u) , (15)

denote the quadratic Jensen-Rényi divergence design criterion.
The weights πi are not uniquely defined in DJR. They can be defined

e.g. as the normalised posteriors πi,N of Box and Hill (1967), the Akaike
weights wi of Michalik et al. (2010), or as πi = 1 if the model passes the χ2

test (Buzzi-Ferraris and Forzatti, 1983) and πi = 0 otherwise. Similarly, the
new DJR design criterion is not derived from any specific method of model
discrimination, but from the fundamental principle of maximising model pre-
dictive divergence. Thus, the design criterion DJR is agnostic to the methods
used for model weighting and discrimination.

3.1. Design Criteria Trade-offs
Figure 3 compares the different design criteria (bottom row) for three

sets of different predictive distributions (top row) for four equally weighted
models (∀ i : πi = 1/4). The means fi(u) of the predictive distributions are
the same in each plot, but the variance σ2

i (u) changes. The design criteria
have all been normalised to lie in the range [0, 1].

In the left-most Figure 3 column, the variance is constant. The top plot
shows a model aggregation example. The DBH and DBH criteria prefer a
small u, where f1/f2 and f3/f4 pairwise yield identical predictions, but the
divergence between e.g. f1 and f3 is large. For constant covariance, i.e. in-
dependent of u, DBH, DBF ∝ DHR. The DAW and DJR criteria, on the other
hand, are maximised for medium u, where all model predictive distributions
are divergent. In the middle Figure 3 column, the variance decreases linearly
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Figure 3: Comparison of discrimination criteria (bottom row) for three different sets of
predictive distributions (top row): constant variance (left), linearly decreasing variance
(centre) and linearly increasing variance (right).

with u. In the right-most column, the variance increases linearly. In the mid-
dle and right-most columns, the change in the variance significantly impacts
the DBH and DBF criteria maxima. The DAW and DJR criteria consistently
favour a medium u, i.e. aim for perfect model discrimination.

In all three cases in Figure 3, none of the predictions fi(u)±σi(u) overlap
for medium-sized u. Using Michalik et al.’s (2010) model aggregation-based
reasoning, placing the next experiment at moderate u yields complete model
disaggregation. However, with increasing model prediction uncertainty, the
attractiveness of an experiment in the centre decreases, as shown in Figure 4
for the constant variance scenario. With increasing uncertainty, the DJR

criterion peak shifts to smaller u before theDAW criterion peak (see Figure 5).
Buzzi-Ferraris (2010) argue that complete discrimination between groups of
models is preferable to partial discrimination between all models. Figure 3
and 4 show that the design criteria represent different trade-offs between the
risk of partial discrimination, and the reward of complete discrimination.

The design criteria are normalised to lie in the [0, 1] range for each plot
independently. Hence, the maximum value of the design criteria in the left-
most and right-most plots in Figure 4 are unequal, i.e. all design criteria
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Figure 4: Comparison of discrimination criteria (bottom row) for three different sets of
predictive distributions (top row) with constant covariance increasing from left to right.

(i) (ii) (iii)σ2

u∗

DBH

DBF

DAW

DJR

Figure 5: Optimal design u∗ = argmaxuD∗∗(u) when variance σ2 increases for rival models
in Figure 4. Variances corresponding to the (i) left-most, (ii) centre and (iii) right-most
plots of Figure 4 are marked on the σ2 axis. DBH and DBF are on top of each other.

prefer small u in the left-most plot over small u in the right-most plot.

4. Design of Experiments for Black-Box Model Discrimination

We now consider designing experiments for black-box model discrimina-
tion, i.e. discriminating models without readily available gradient informa-
tion. This gradient information is needed in the classical methods of design
of experiments for computing model covariance (see Section 2.1).
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We wish to bridge the gap between (i) classical analytical methods (Box
and Hill, 1967; Buzzi-Ferraris et al., 1990; Michalik et al., 2010), which
are computationally cheap but with limited flexibility in the possible model
types, and (ii) Monte Carlo-based methods (Vanlier et al., 2014; Ryan et al.,
2015) that are flexible in model type but may be computationally prohibitive.
We propose hybridising the classical and Monte Carlo-based methods: we
sample the design and parameter spaces to learn surrogate models that can
be incorporated into existing design and model discrimination criteria.

Surrogate models are common in applications where the original model
does not easily lend itself to optimisation, e.g. Palmer and Realff (2002),
Caballero and Grossmann (2008), Fahmi and Cremaschi (2012), Boukouvala
et al. (2017), Beykal et al. (2018), Jones et al. (2018), Carpio et al. (2018)
and Yang et al. (2019). Common surrogate models include e.g. support
vector machines (Cortes and Vapnik, 1995). Our surrogate models are Gaus-
sian processes (GPs), flexible regression tools common in statistical machine
learning (Rasmussen and Williams, 2006), e.g. for Bayesian black-box opti-
misation (Shahriari et al., 2016; Ulmasov et al., 2016; Mehrian et al., 2018;
Olofsson et al., 2019; Babutzka et al., 2019). GPs provide model predic-
tion confidence bounds, and their analytical nature allows us to extend the
classical analytical methods to non-analytical models. The next subsection
provides background on GP regression, which infers predictive distributions
for function values given function observations at training locations.

4.1. Gaussian Process Regression
GPs are distributions over functions. We can place a GP prior on a

function g(z):

g ∼ GP (m(·), k(·, ·)) (16)

where m and k are the mean function and covariance function, respectively.
Formally, a GP is a collection of random variables, any finite subset of which
is jointly Gaussian distributed (Rasmussen and Williams, 2006). The random
variables are the values of the function g(·), whose joint Gaussian distribution
at two locations z and z′ can be written:[

g(z)
g(z′)

]
∼ N

([
m(z)
m(z′)

]
,

[
k(z, z) k(z, z′)
k(z′, z) k(z′, z′)

])
. (17)
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Let Z and g(Z) denote the locations Z = [z1, . . . ,zN ]> and corresponding
function values g(Z) = [g(z1), . . . , g(zN)]>, and let K denote the Gram ma-
trix with entries Kn,` = k(zn, z`) and n, ` ∈ {1, . . . , N}. Then the function
value at test point z and the function values at locations Z are jointly Gaus-
sian distributed with:[

g(z)
g(Z)

]
∼ N

([
m(z)
m

]
,

[
k(z, z) k>

k K

])
(18)

where k = [k(z, z1), . . . , k(z, zN)]> and m = [m(z1), . . . ,m(zN)]>. Given
observations y = g(Z) + η, with η ∼ N (0, σ2

ηI) zero-mean Gaussian mea-
surement noise with variance σ2

η, we can compute the posterior predictive
distribution at test location z:

f(z) ∼ N (µ(z), σ2(z)) , (19)

where the mean and variance are given by:

µ(z) = m(z) + k>(K + σ2
ηI)
−1(y −m) ,

σ2(z) = k(z, z)− k>(K + σ2
ηI)
−1k .

(20)

Figure 6 illustrates GP regression given noisy observations of the underlying
function. A commonly used covariance function k is the radial basis function
(RBF) kernel (also called the “squared exponential” or “Gaussian” kernel)
with automatic relevance determination (ARD):

k(z, z′) = ρ2 exp
(
−1

2
(z − z′)>Λ−1(z − z′)

)
(21)

where ρ2 is the signal variance and Λ = diag(λ21, . . . , λ
2
D) is a diagonal matrix

of squared length scales. Covariance functions, such as the RBF-ARD kernel,
are said to be stationary if they only depend on the distance r = ‖z − z′‖
between z and z′ and not their specific values, i.e. k(z, z′) = k(z+δ, z′+δ).

Together, ρ2, Λ and σ2
η are the GP model hyperparameters. They are

typically learnt by maximising the marginal likelihood p(y |Z, ρ2,Λ, σ2
η) of

the observations with respect to the hyperparameters. This can be done
using gradient-based non-convex optimisation methods. The data Z, y is
commonly referred to as the training data, and is used to learn the GP
hyperparameters at training.

It is common to assume a zero-mean GP prior, i.e.m(·) ≡ 0, for notational
simplicity. If the mean is non-zero, it can be subtracted from observations
and added later to predictions without affecting the result, as long as it is
independent of the hyperparameters.
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Figure 6: GP regression given noisy observations y (black dots) of an underlying function
f (solid line). The mean (dotted line) and two standard deviations (grey area) of the GP
prediction are plotted.

4.2. Sparse Gaussian Process Regression
The curse of dimensionality means that with increasing input dimensions,

the amount of training data required to accurately model a system grows
exponentially. For large training data sets, the matrix inversion (K + σ2

ηI)−1

in GP regression becomes a computational bottleneck. The computational
complexity of GP training scales as O(N3). Computing the predictive mean
and variance in Eq. (20) scales as O(N) and O(N2), respectively (with the
term (K + σ2

ηI)−1(y −m) pre-computed).
Various methods have been proposed to reduce this computational bot-

tleneck by sparsifying the GP regression. Sparse GP regression methods
approximate the predictive distributions by selecting a smaller set of P in-
ducing points. These inducing points can either be a subset of the original
training data set (Smola and Bartlett, 2001; Seeger et al., 2003) or pseduo-
inputs (Snelson and Ghahramani, 2006; Titsias, 2009). Sparse GP regression
scales asO(NP 2) at training, andO(P ) andO(P 2) for computing the predic-
tive mean and variance, respectively. The number P is chosen as a trade-off
between predictive accuracy and computational complexity.

Other methods of reducing the computational bottleneck of GP regres-
sion look at e.g. the spectral representation of GPs (Hensman et al., 2018)
or exploiting algebraic properties of the Kronecker and Khatri-Rao tensor
products on a grid of inducing inputs (Evans and Nair, 2018). A review of
sparse and variational GP regression methods—some of which can be used for
training sets with billions of data points—can be found in Liu et al. (2018).
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4.3. Gaussian Process Surrogate Model
We will now show how GPs can act as surrogates for the original mod-

els for the design of experiments for model discrimination. Let’s begin by
studying the predictions f = f(u,θ) of a single model f = fi, with θ = θi.
We wish to find the model’s predictive distribution, taking uncertainty in the
model parameters θ into account. We place independent GP priors on each
output (or target dimension) e = 1, . . . , E of f :

f(e) ∼ GP(m(e)(x), ku,(e)(u,u
′)kθ,(e)(θ,θ

′)) . (22)

Training data is required for learning the GP hyperparameters and per-
forming GP regression. We sample designs u` and model parameter values
θ` ∼ N (θ∗, εI), for some small ε, and produce corresponding training targets
y` = f(u`,θ`). Let z` = [u>` ,θ

>
` ]> denote the combined training inputs.

The GP training data should not be confused with the experimental data set
D, which is used for parameter estimation and model discrimination.

The predictive distribution f(z) ∼ N (µ(z),Σf (z)) at a test location
z = [u>,θ>]> is given by:

µ(z) =
[
µ(1)(z), . . . , µ(E)(z)

]>
,

Σf (z) = diag
(
σ2
(1)(z), . . . , σ2

(E)(z)
)
,

(23)

with the expressions for µ(e) and σ2
(e) given in Eq. (20). Note that the covari-

ance function k(e) for each target dimension is k(e)(z, z′) = ku,(e)(u,u
′)kθ,(e)(θ,θ

′),
as given in Eq. (22).

Given a model parameter distribution p(θ | D) = N (θ∗,Σθ), where θ∗ de-
notes the maximum a posteriori parameter estimate with covariance Σθ, and
D are real, experimental data, we wish to determine the resulting marginal
model predictive distribution:

p (f(u) | D) =

∫
p (f(u,θ) |θ) p (θ | D) dθ . (24)

This distribution is intractable and has to be approximated. We approxi-
mate the marginal predictive distribution in Eq. (24) with a Gaussian distri-
bution N (µ̆(u), Σ̆(u)), where µ̆(u) ≈ Eθ|D[µ(z)] and Σ̆(u) ≈ Eθ|D[Σf (z)] +
Vθ|D[µ(z)].

We will compare first-order and second-order Taylor approximations of
µ̆ and Σ̆. For the remainder of this section, we let z∗ = [u>,θ∗>]> and
∆θ = θ− θ∗, and simplify the gradient notation as ∇θµ(e) = ∇θµ(e)(z)|θ=θ∗
and ∇θσ2

(e) = ∇θσ2
(e)(z)|θ=θ∗ .
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4.4. First-Order Taylor Approximation
The first-order Taylor approximations of µ(e)(z) and σ2

(e)(z) around a
parameter value θ∗ is given by:

µ(e)(z) ≈ µ(e)(z
∗) +∇θµ(e)∆θ ,

σ2
(e)(z) ≈ σ2

(e)(z
∗) +∇θσ2

(e)∆θ .
(25)

The expressions for ∇θµ(e) and ∇θσ2
(e) can be found in Appendix A. With

a Gaussian model parameter distribution N (θ∗,Σθ), using the first-order
Taylor expansions, we find:

µ̆(u) ≈ µ(z∗) ,

Σ̆(u) ≈ Σf (z
∗) +∇θµΣθ∇θµ> .

(26)

where ∇θµ = [∇θµ>(1), . . . ,∇θµ>(E)]
> ∈ RE×Di . We see that the model co-

variance expression in Eq. (26) is equivalent to the expression in Eq. (2),
plus the added term Σf (z

∗) for the uncertainty in the surrogate model. Be-
cause µ̆(u) ≈ µ(z∗) without any added terms, we may also choose to replace
µ(z∗) with the original model f(z∗). This makes the added uncertainty term
Σf (z

∗) in the model covariance redundant.

4.5. Second-Order Taylor Approximation
The second-order Taylor approximations of µ(e)(z) and σ2

(e)(z) around a
parameter value θ∗ is given by:

µ(e)(z) ≈ µ(e)(z
∗) +∇θµ(e)∆θ + 1

2
∆θ>∇2

θµ(e)∆θ ,

σ2
(e)(z) ≈ σ2

(e)(z
∗) +∇θσ2

(e)∆θ +
1

2
∆θ>∇2

θσ
2
(e)∆θ .

(27)

The expression for ∇2
θσ

2
(e) can be found in Appendix A. With a Gaussian

model parameter distribution N (θ∗,Σθ), using the second-order Taylor ex-
pansions, we find that the marginal mean µ̆(u) has elements e = 1, . . . , E
given by:

µ̆(e)(u) ≈ µ(e)(z
∗) + 1

2
tr
(
∇2
θµ(e)Σθ

)
. (28)

The corresponding covariance Σ̆(u) is approximated with the sum of (i) the
diagonal matrix Eθ|D[Σf (z)] ≈ diag(q(1), . . . , q(E)) with elements:

q(e) = σ2
(e)(z

∗) + 1
2

tr
(
∇2
θσ

2
(e)Σθ

)
, (29)
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Figure 7: First- (left) and second-order (right) Taylor approximation of marginal predictive
distribution (grey area on y-axis), given an input distribution (grey area on x-axis) and
Taylor approximation (solid line) of the function (dotted line). The predictive distribution
is shifted slightly downwards for the second-order approximation compared to the first-
order one.

and (ii) the full covariance matrix Vθ|D[µ(z)] ≈ [q(e1),(e2)] with elements:

q(e1),(e2) = ∇θµ(e1)Σθ∇θµ>(e2) + 1
2

tr
(
∇2
θµ(e1)Σθ∇2

θµ(e2)Σθ

)
, (30)

for e1, e2 = 1, . . . , E.
Figure 7 illustrates the difference between the first- and second-order Tay-

lor approximations. The first-order method directly correlates to the classi-
cal method of approximating the model parameter covariance and predictive
distribution presented in Section 2.1, with f i replaced with µ̆(u). When
using the second-order Taylor approximation of the models’ predictive dis-
tributions, it is still best to use the first-order Laplace approximation of the
model parameter covariance since a second-order approximation can result
in a singular Σ−1θ .

The approximate marginalisation using first- or second-order Taylor ap-
proximations can also be used for surrogate models with inducing input
sparse GP regression. The expressions for ∇θµ(e), ∇θσ2

(e) and ∇2
θσ

2
(e) us-

ing sparse GP regression with inducing inputs are directly equivalent to the
gradient expressions for the full GP model (see Appendix A).

5. The GPdoemd Software Package

GPdoemd1 is an open-source Python package implementing the GP sur-
rogate method to design of experiments presented in Section 4. This section

1Available online at: https://github.com/cog-imperial/GPdoemd
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Name Reference |u| |θi| |y| M fi

bff1983 Buzzi-Ferraris and Forzatti (1983) 3 5 1 5 A
bffeh1984 Buzzi-Ferraris et al. (1984) 2 4 2 4 A
bffc1990a Buzzi-Ferraris et al. (1990) 3 2–6 1 4 A
mixing – 3, (1) 1 1 5 A
msm2010 Michalik et al. (2010) 3 1 1 10 A
vthr2014linear Vanlier et al. (2014) 1 2–4 1 4 A
vthr2014ode Vanlier et al. (2014) 3, (2) 14 1 4 BB
tandogan2017 Tandogan et al. (2017) 4 8–14 2 3 BB

Table 2: GPdoemd case studies, with the number of design variables |u| (number of dis-
crete variables in parenthesis), model parameters |θi|, target dimensions |y|, rival models
M . The last column says whether the models are analytical (A) or black boxes (BB).

describes the package. Additional documentation for installing and using
GPdoemd via a PDF document and Jupyter notebook demonstrations is on
GitHub. GPdoemd uses functionality from the GPy (since 2012) Python
package for GP training and inference. Other dependencies are the standard
numpy (v1.7-v1.15) and scipy (v0.17-v1.1) packages. GPdoemd is tested for
Python version 3.4, 3.5 and 3.6. There are several Python interfaces to query
models written in other languages, e.g. R or MATLAB. GPdoemd only re-
quires point sampling of the original models in order to construct the GP
surrogates.

5.1. Implementation
GPdoemd consists of several modules, illustrated in Figure 8, that offer

a choice between different GP kernel functions, inference methods, meth-
ods to approximate the marginal predictive distributions, design criteria and
model discrimination methods. The modules can easily be extended and new
functions implemented and added to the GPdoemd toolbox.

GPdoemd currently comes with the Table 2 case studies. Researchers may
try the GP surrogate method and compare the performance to competing
methods for design of experiments for model discrimination. The case study
mixing was developed for GPdoemd and considers different order micro- and
macrofluid models. Appendix B describes the mixing case study.
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Model dictionary 1. Model

Analytic

Numerical

GPModel

SparseGPModel

GPGriefModel

3. GP kernels

RBF

Exponential

Matern32

Matern52

Cosine

RatQuad

2. Param.

estimation

diff_evol

least_squares

4. Param.

covariance

laplace_approximation

5. Approximate

marginalisation

first_order_taylor

second_order_taylor

6. Design

criterion

HR

BH

BF

AW

JR

7. Discrimina-

tion method
gaussian_posterior

chi2

akaike

Figure 8: The modular structure of the GPdoemd open-source software package.

5.2. Syntax and Supported Features
Assuming the rival models fi(u,θi) have been proposed, GPdoemd assists

in model discrimination. Figure 8 illustrates the process.

Model type. A model object is initialised using a Python dictionary contain-
ing the model name (name), the model function fi(u,θi) handle (call), the
design variable and model parameter dimensions D and Di (dim_x and dim_p),
the number of target dimensions E (num_outputs), model parameter bounds
(p_bounds), experimental noise (co)variance Σ (meas_noise_var), and a list of
the dimensions for binary design variables (binary_variables). Binary design
variables are handled by creating separate GP surrogates for each binary com-
bination. This dictionary is passed to one of the implemented model types
(Box 1 in Figure 8). GPdoemd uses the GPy implementation of sparse GP
regression, with variational learning of the inducing inputs (Titsias, 2009).

Parameter estimation. Given experimental data Ydata for designs Xdata, GP-
doemd helps find the optimal model parameter values θ∗ using prediction
error minimisation (Box 2 in Figure 8): differential evolution (diff_evol) or
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least squares with finite difference gradient approximation (least_squares).
Both diff_evol and least_squares are wrappers for scipy functions.

GP kernels. The GP surrogate models require a choice of GP kernel functions
kx and kθ for the GP prior GP(0, kxkθ). GPdoemd currently supports 6 kernel
functions (Box 3 in Figure 8) from the GPy package, with minor extensions.

Model parameter covariance. GPdoemd assumes a Gaussian approximation
N (θ∗,Σθ) of the model parameter distribution. GPdoemd currently imple-
ments a Laplacian approximation of Σθ.

Approximating marginal predictive distributions. The hybrid approach ap-
proximates the marginal predictive distribution in with a Gaussian distribu-
tion. GPdoemd implements the first- and second-order Taylor approxima-
tions (Box 5 of Figure 8) of the first two moments of the models’ predictive
distributions in Eq. (24).

Design criterion. GPdoemd provides five different criteria (Box 6 in Figure 8)
for designing the next experiment: HR (Hunter and Reiner, 1965), BH (Box and
Hill, 1967), BF (Buzzi-Ferraris et al., 1990) and AW (Michalik et al., 2010) and
JR (Jensen-Rényi divergence, this work).

Discrimination criterion. GPdoemd provides three different criteria (Box 7
in Figure 8) for model discrimination: normalised Gaussian posteriors πi,N (Box
and Hill, 1967), χ2 test (Buzzi-Ferraris and Forzatti, 1983), and the Akaike
information criterion weights (Michalik et al., 2010).

5.3. Example
Assume we have a list dlist of model dictionaries, experimental data Xdata,

Ydata with experimental noise variance measvar, and lists X, P and Y of surrogate
model training data (design, model parameters and predictions, respectively).
We wish to select the optimal next experiment from candidates Xnew.

N = Xnew.shape[0] # Number of test points

M = len( dlist ) # Number of rival models

E = Ydata.shape[1] # Number of target dimensions

mu, s2 = np.zeros(( N, M, E )), np.zeros(( N, M, E, E ))

for i,d in enumerate( dlist ):

# Initialise surrogate model

m = GPdoemd.models.GPModel(d)
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# Estimate model parameter values

opt_method = GPdoemd.param_estim.least_squares

m.param_estim(Xdata, Ydata, opt_method , m.p_bounds)

# Set−up surrogate model
RBF = GPdoemd.kernels.RBF

Z = np.c_[ X[i], P[i] ]

m.gp_surrogate(Z=Z, Y=Y[i], kern_x=RBF, kern_p=RBF)

m.gp_optimise()

# Approximate model parameter covariance

m.Sigma = GPdoemd.param_covar.laplace_approximation( m, Xdata )

# Approximate marginal predictive distribution at test points

mu[:,i], s2[:,i] = GPdoemd.marginal.taylor_first_order( m, Xnew )

# Design criterion at test points

dc = GPdoemd.design_criteria.JR(mu, s2, measvar)

# Optimal next experiment

xnext = Xnew[ np.argmax(dc) ]

The newly designed experiment is executed, and xnext and the new obser-
vation added to Xdata and Ydata, respectively. If model discrimination fails,
the process above is repeated in order to find the optimal next experiment.

6. Results

We study the novel design criterion DJR and the GP surrogate method
using four case studies:

• Ammonia synthesis (Buzzi-Ferraris et al., 1990)

• Chemical kinetic models (Buzzi-Ferraris et al., 1984)

• Mixing (Appendix B)

• Biochemical networks (Olofsson et al., 2018a)

The first case study considers four different models for synthesis of am-
monia NH3 from hydrogen H2 and nitrogen N2. There are D = 3 design
variables, Di ∈ {2, 4, 6} parameters per model, and E = 1 observable output.
Each simulation has N0 = 5 initial measurements and a maximum budget of
40 new experiments. Appendix C further describes the case study.

The second case study, further described in Appendix D, has four dif-
ferent chemical kinetic models. There are D = 2 design variables, Di = 4

22



parameters per model, and E = 2 observable outputs. Each simulation has
N0 = 5 initial measurements and a maximum budget of 40 additional exper-
iments.

The new mixing case study is third. It studies conversion of a reactant
under mixing of a fluid. There are D = 3 design variables (one of which is
binary), Di = 1 parameter per model, and E = 1 observable output. Each
simulation has N0 = 2 initial measurements and a maximum budget of 20
additional experiments. Appendix B further describes the case study.

The last case study is a version of the Vanlier et al. (2014) biochemical
networks case study, with models consisting of systems of ordinary differential
equations (Olofsson et al., 2018a). There are D = 3 design variables, Di = 10
parameters per model, and E = 2 observable outputs. Each simulation has
N0 = 20 initial measurements and a maximum budget of 100 additional
experiments. Olofsson et al. (2018a) further describe the case study.

The models in the first three case studies are analytical, i.e. gradient ex-
pressions are available. Section 6.1 uses the Section 2.1 analytical expressions
for a performance comparison between the novel design criterion DJR and the
classical design criteria DBH, DBF and DAW. Section 6.2 compares the GP
surrogate method with the analytical method it emulates. Section 6.3 shows
that the GP surrogate method successfully extends the analytical method
for design of experiments for model discrimination to black-box models.

Let DC and MD denote the chosen design criterion and method of model
discrimination, respectively. Section 2.2 describes three different methods of
model discrimination:

• Normalised Gaussian posteriors πi,N with updates (Box and Hill, 1967).
The procedure terminates when ∃i : πi,N ≥ 0.999.

• χ2 test (Buzzi-Ferraris and Forzatti, 1983), where a model i is deemed
inadequate and discarded if χ2

i ≤ 0.01 for N ·E−Di degrees of freedom,
with N = |D| the number of available data points.

• Akaike weights wi (Michalik et al., 2010). The procedure terminates
when ∃i : wi ≥ 0.999.

Alternatively, simulation terminates after reaching the maximum number
of additional experiments. The Table 3 statistics are collected after each
simulation. For good performance, the average A should be as low as possible.
A small SE value indicates the estimated A is close to the “true” average.
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A the average number of additional experiments required for
successful model discrimination, i.e. identifying the correct
model as the data-generating model.

SE the standard error of the average number A of additional
experiments.

S the success rate, i.e. the percentage of simulations in which
the correct model was identified as the data-generating model.

F the failure rate, i.e. the percentage of simulations in which
a model other than the correct model was identified as the
data-generating model.

I the rate of inconclusive simulations, i.e. the percentage of
simulations in which more than one model–or no models in the
case of the χ2 test–remain when the experimental budget has
been exhausted.

Table 3: Statistics collected in the simulations.

The success rate S should be close to 100%. An inconclusive result (true or
false negative) is preferable to a failed result (false positive), since selecting
an inaccurate model can incur a large cost at a later stage (see Section 7).

6.1. Comparison of Design Criteria Performance
Table 4 compares the novel design criterion DJR to the classical design

criteria DBH, DBF and DAW for the ammonia synthesis case study. The
comparison also includes the alternative of not optimising the design, but
randomly and uniformly sampling the next experimental design, denoted U .
We use the gradient expressions in Section 2.1 to approximate the models’
marginal predictive distributions N (f i,Σi). Table 4 shows the simulation
performance statistics from 100 sets of random initial measurements.

For this case study, the new design criterion DJR performs similarly to the
classical criteria: DJR has a higher average number of additional experiments
(A) thanDBH andDBF, but also a higher success rate (S). Compared toDAW,
DJR has a lower average A. In all cases, the difference between the criteria’s
averages A is less than the sum of their standard errors SE.

The random design selection U results are a sanity check: the success rate
is significantly lower while the inconclusive rate is higher. For the πi,N model
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MD πi,N χ2
i wi

DC DBH DJR U DBF DJR U DAW DJR U

A 20.85 22.24 34.50 20.56 21.12 14.50 7.11 6.61 21.25
SE 0.82 0.72 1.77 1.43 1.22 3.02 0.47 0.49 1.08

S [%] 81 87 2 81 84 10 100 100 73
F [%] 0 0 0 1 1 1 0 0 2
I [%] 19 13 98 18 15 89 0 0 25

Table 4: Comparison of design criteria performance for the ammonia synthesis case study.
The DJR design criterion is compared to the classical design criteria DBH, DBF and DAW

for their corresponding model discrimination methods (see Section 2.2). The columns U
uniformly sample the next experimental design rather than optimising the criterion.

discrimination method, random design selection succeeded in only 2 simula-
tions. For the χ2 model discrimination method, the average A is lower for
the random design selection than for DBF and DJR, due to a low success rate:
random design selection only succeeded for the easier simulations. Making
an informed decision for the next experimental design is obviously beneficial
to reduce the number of extra experiments needed for model discrimination.

6.2. Performance of Gaussian Process Surrogate Method
We next compare the GP surrogate method of approximating the marginal

predictive distribution to the analytical method (Section 2.1). We will show
that the GP surrogate method is not significantly worse at model discrimi-
nation than the analytical method, since otherwise the GP surrogates would
be ineffective for extending the analytical method to black-box models. For
notational convenience, we call the GP surrogate method with first- and
second-order Taylor approximations of the marginal predictive distribution
GP-T1 and GP-T2, respectively. In each case study, training data is gener-
ated from a grid in input space to ensure some level of space-filling.

First, we compare the GP surrogate method to the classical analytical
method on the ammonia synthesis case study (Buzzi-Ferraris et al., 1990).
Table 5 shows the performance statistics of GP-T1 and GP-T2 from sim-
ulations from 100 sets of random initial measurements. We compare these
statistics to the analytical method statistics in Table 4.

Table 5a shows that GP-T1 performs similarly to the analytical method.
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MD πi,N χ2
i wi

DC DBH DJR DBF DJR DAW DJR

A 19.72 21.73 17.28 17.55 6.73 6.53
SE 0.68 0.70 1.30 1.12 0.39 0.41

S [%] 86 84 79 82 100 100
F [%] 0 0 1 2 0 0
I [%] 14 16 20 16 0 0

(a) GP-T1 (first-order Taylor)

MD πi,N χ2
i wi

DC DBH DJR DBF DJR DAW DJR

A 6.31 6.13 17.29 13.64 3.03 2.94
SE 0.21 0.24 1.55 1.73 0.14 0.12

S [%] 96 95 63 22 100 99
F [%] 0 0 0 2 0 1
I [%] 4 5 37 76 0 0

(b) GP-T2 (second-order Taylor)

Table 5: Performance statistics of GP surrogate method with first- (GP-T1) and second-
order (GP-T2) Taylor approximation of the marginal predictive distribution for the am-
monia synthesis case study. Compare to statistics for analytical method in Table 4.

The averages A are similar, taking the sometimes relatively large standard er-
rors SE into account. In Table 5b, GP-T2 largely produces better simulation
statistics than both the analytical method and GP-T1. GP-T2 appears to
produce marginal predictive distributions more beneficial for model discrim-
ination in this case study. It may be that the second-order characteristics of
GP-T2 improve the marginal predictive distribution accuracy. It may also
be that the models’ structure (all model parameters appear in exponents in
the denominator) advantage models with the fewest model parameters (f1
and f2). In this case study, we generate data from model f1.

Next, we compare the GP surrogate method to the classical analytical
method on the chemical kinetic models case study (Buzzi-Ferraris et al.,
1984). Table 6 shows the performance statistics of GP-T1, GP-T2 and the
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Analytical GP-T1 GP-T2
MD πi,N χ2

i wi πi,N χ2
i wi πi,N χ2

i wi

DC DBH DBF DAW DBH DBF DAW DBH DBF DAW

A 2.60 2.87 2.08 4.31 2.23 2.72 4.14 2.29 2.64
SE 0.04 0.12 0.04 0.09 0.06 0.08 0.09 0.07 0.06

S [%] 86.4 64.2 62.4 95.6 47.4 88.6 96.9 46.6 90.1
F [%] 13.6 5.0 37.6 4.4 4.8 11.4 3.1 9.9 9.9
I [%] 0.0 30.8 0.0 0.0 47.8 0.0 0.0 43.5 0.0

Table 6: Performance comparison between the GP surrogate method with first- (GP-T1)
and second-order (GP-T2) Taylor approximation of the marginal predictive distribution,
and the analytical methods, for the chemical kinetic models case study.

analytical method from simulations from 500 sets of random initial measure-
ments. In this table, GP-T1 and GP-T2 perform similarly. For the πi,N and
wi model discrimination methods, the GP surrogate method has higher av-
erages A than the analytical method, but also higher success rates and lower
failure rate. For the χ2 model discrimination method, the situation reverses,
though the difference in average A is smaller and for GP-T1 the failure rate
is still lower. Overall, Table 6 indicates that the GP surrogate method is
more conservative than the classical analytical method. This conservatism
may arise from the added surrogate uncertainty term Σf in Eq. (26) yielding
a larger predicted variance for the surrogate than the original model.

Lastly, we compare the GP surrogate method to the classical analytical
method on the mixing case study (Appendix B). The mixing case study has
the option from which model to generate experimental data. Table 7 shows
the performance statistics for GP-T1, GP-T2 and the analytical method from
simulations from 100 sets of random initial measurements, with experimental
data generated from model f3. This case study has a high success rate and
low number of additional experiments required for all discrimination criteria
and methods of model discrimination.

Table 8 shows the performance statistics for GP-T1, GP-T2 and the an-
alytical method from simulating 100 sets of random initial measurements,
with experimental data generated from model f5. The mixing case study
with data generated from model f5 is more difficult, so we increase the max-
imum number of additional experiments to 100. Table 8 shows that GP-T1
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MD πi,N χ2
i wi

DC DBH DJR DBF DJR DAW DJR

A 4.42 4.25 2.09 1.30 2.47 2.38
SE 0.09 0.07 0.04 0.05 0.06 0.09

S [%] 100 100 100 100 100 100
F [%] 0 0 0 0 0 0
I [%] 0 0 0 0 0 0

(a) Analytical

MD πi,N χ2
i wi

DC DBH DJR DBF DJR DAW DJR

A 4.65 4.48 1.78 1.24 2.61 2.19
SE 0.16 0.13 0.08 0.09 0.06 0.09

S [%] 99 100 99 100 100 100
F [%] 0 0 0 0 0 0
I [%] 1 0 1 0 0 0

(b) GP-T1 (first-order Taylor)

MD πi,N χ2
i wi

DC DBH DJR DBF DJR DAW DJR

A 5.75 4.45 1.21 1.15 2.27 2.30
SE 0.16 0.23 0.06 0.11 0.05 0.10

S [%] 99 95 100 100 100 100
F [%] 0 0 0 0 0 0
I [%] 1 5 0 0 0 0

(c) GP-T2 (second-order Taylor)

Table 7: Performance comparison between the GP surrogate method with first- (GP-T1)
and second-order (GP-T2) Taylor approximation of the marginal predictive distribution,
and the analytical methods, for the mixing case study. Noisy observed data is generated
from model f3.
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MD πi,N χ2
i wi

DC DBH DJR DBF DJR DAW DJR

A 54.71 50.79 50.97 45.00 26.07 27.70
SE 2.25 2.08 4.88 3.96 1.56 1.68

S [%] 75 72 34 49 98 97
F [%] 0 0 0 1 2 2
I [%] 25 28 66 50 0 1

(a) Analytical

MD πi,N χ2
i wi

DC DBH DJR DBF DJR DAW DJR

A 53.13 50.88 49.03 44.23 26.91 28.05
SE 1.95 1.96 4.84 4.23 1.52 1.79

S [%] 71 74 33 43 100 98
F [%] 0 0 2 1 0 2
I [%] 29 26 65 56 0 0

(b) GP-T1 (first-order Taylor)

MD πi,N χ2
i wi

DC DBH DJR DBF DJR DAW DJR

A 75.69 83.05 60.70 52.86 12.32 22.96
SE 5.82 2.25 4.13 11.89 0.82 2.65

S [%] 16 39 33 7 59 45
F [%] 17 2 0 3 41 55
I [%] 67 59 67 90 0 0

(c) GP-T2 (second-order Taylor)

Table 8: Performance comparison between the GP surrogate method with first- (GP-T1)
and second-order (GP-T2) Taylor approximation of the marginal predictive distribution,
and the analytical methods, for the mixing case study. Noisy observed data is generated
from model f5.
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and the analytical method perform similarly. GP-T2 performs poorly for this
case study: the failure rates for the πi,N and wi methods of model discrimina-
tion are often comparable to the corresponding success rates. The averages
A are higher and the success rates lower for the mixing case study with data
generated from model f5 instead of model f3. This is due to indiscriminability
between models f4 and f5 (further discussed in Section 6.3).

The results in Tables 4–8 were generated for j = 1, . . . , 21 combinations
of case studies, methods of model discrimination and design criteria (exclud-
ing random design). In each case study, ` = 1, . . . , 100 random initial data
sets were generated. Thus, a total of 2100 experiments were run for each of
GP-T1, GP-T2 and the analytical method. Define aj,` as the number of addi-
tional experiments needed for successful model discrimination in combination
j with initial data set ` (using GP-T1, GP-T2 or the analytical method).
Simulations resulting in unsuccessful model discrimination are ignored for
now. The average A and standard error SE in Table 3 are defined for combi-
nation j as Aj = mean{aj,1, . . . , aj,100} and SEj = std{aj,1, . . . , aj,100}/

√
100.

Figure 9 shows the outcomes of all case study simulations and compares the
averages with standard errors for GP-T1, GP-T2 and the analytical method.

Figure 9 indicates that GP-T1 performs similarly to the analytical method.
The number of additional experiments aj,` is not expected to be the same in
each simulation, since we add random noise to each measurement. The simi-
lar average performance indicates that the GP surrogate method successfully
emulates the analytical method, which also uses a first-order approximation.
In most case studies, GP-T2 performs as well as—or better than—GP-T1.
For case studies where the GP surrogate model makes accurate predictions,
a second-order approximation of the marginal predictive distributions may
be more accurate than a first-order approximation. However, for the difficult
mixing case study, with data generated from model f5, GP-T2 performed
worse. Figure 9 shows that the GP-T1 average performance is more similar
to the analytical (first-order) method’s performance than GP-T2.

6.3. Non-Analytical Case Study
We wish to verify that the GP surrogate method successfully extends the

classical, analytical method for design of experiment for model discrimination
to situations with black-box models. The Table 9 results for 4 models show
that the the success rates are significantly lower for this case study than for
previous case studies. For the πi,N model discrimination method, the success
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(d) GP-T2 (second-order Taylor)

Aj ± 2 · SEj

Figure 9: Comparison of the number of additional experiments aj,` needed for successful
model discrimination using the analytical method or (a)-(b) GP-T1 or (c)-(d) GP-T2.
Plots (a) and (c) show the outcomes of all simulation with successful model discrimination
for both the analytical and GP-T1 (1828 simulations) or GP-T2 (1615 simulations). Plots
(b) and (d) show the average A (with standard error SE) computed for each case study,
design criterion and method of model discrimination.

rate is only twice as high as the failure rate. Rates of inconclusive results are
high, despite allowing 100 additional experiments with averages A all below
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4 models 3 models
MD πi,N χ2

i wi π χ2
i wi

DC DBH DBF DAW DBH DBF DAW

A 20.10 39.83 29.62 15.80 21.91 9.74
SE 3.72 12.09 7.72 2.05 2.52 1.70

S [%] 15.9 9.5 33.3 89.5 77.2 95.6
F [%] 7.9 0.0 7.9 6.1 0.9 1.8
I [%] 76.2 90.5 58.7 4.4 21.9 2.6

Table 9: Results from the biochemical networks case study. With four models, we en-
counter model indiscriminability: Two of the models make predictions too similar to suc-
cessfully discriminate between them in a majority of simulations. Experimental data is
generated from one of the two models. If we remove the other model, we find that we are
able to successfully perform model discrimination.

50. The reason is that, in this case study, the prediction difference between
models f1 and f2 is often smaller than the experimental noise.

For a simulation, we can examine the evolving model discrimination cri-
terion (πi,N , χ2 or wi) while adding measurements. For example, Figure 10
shows the evolution of the Akaike weights wi for all simulations. Figure 10a
suggests that models f1 and f2 cannot be discriminated in many simulations.
To verify this, we remove model f2 from the set of rival models. Table 9
(3 models) and Figure 10b show that removing model f2 enables correct
identification of model f1 as the data-generating model in most simulations.

7. Discussion

Model discrimination is a very important problem, and optimal design of
experiments forms part of the solution. For example, model discrimination
is crucial in developing new drugs. DiMasi et al. (2016) estimate the average
pre-approval R&D cost for new drugs to $2.56B, of which $1.1B is spent in
the pre-clinical stage (in 2013 US dollars). Successful model discrimination
early in the drug development may lower costs, whereas inaccurate models
passing the pre-clinical stage can incur significant costs (Scannell and Bosley,
2016; Plenge, 2016). Hence, inaccurate models should be discarded as early
as possible in the drug development process. Model discrimination is a major
hurdle e.g. in in silico pharmacokinetics (Heller et al., 2018).

The optimal design of experiments for model discrimination literature
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Figure 10: Results from biochemical networks case study with (a) four rival models and
(b) three rival models. The first four plots from the left show the evolution of the Akaike
weights wi for all simulations. The right-most plots show the averages (with one standard
deviation). The plots in (a) and statistics in Table 9 indicate that model f1 and f2 are
almost indiscriminable. When we remove model f2 from the set of models, as in (b), the
GP surrogate method successfully finds that f1 is the data-generating model.

has focused on either classical analytical approaches or Monte Carlo-based
approaches. The former is computationally cheap but limited in the model
structures and approximations it can accommodate, whereas the latter is
flexible and accurate but may be computationally expensive. Hence, there
is a trade-off between flexibility, accuracy and computational speed. Our
GP surrogate method adds another alternative: we can accommodate non-
analytical models as easily as analytical models in a computationally inex-
pensive way. A commonly-observed limitation of GP surrogates is the scaling
to the large training data sets required to accurately emulate models with
high-dimensional design and parameter spaces. As mitigation, our surrogate
approach with approximate marginalisation of model parameters accommo-
dates sparse GP surrogate models, which increases the maximum number of
input dimensions the surrogate models can accommodate. Because different
users might face different restrictions on computational time (for generating
training data and training the GP surrogates), and because different mod-
els’ behaviour can differ significantly, we do not attempt to provide general
guidelines for how best to generate training data. The maximum number of
input dimensions the GP surrogates can accommodate depends on how much
training data is required to accurately replicate the original models, which in
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turn depends on how sensitive each target dimension is to the model inputs.
Beyond the GP surrogate method, we have derived the novel design cri-

terion DJR and discussed trade-offs between different experimental designs.
Investigating these trade-offs is enabled by our GPdoemd toolbox. In our
experiments, the different design criteria sometimes perform similarly and
(in those cases) the model discrimination method has a large impact on the
success rate or the number of additional experiments required. GPdoemd
allows switching between these discrimination methods. GPdoemd could be
further extended to alternative model discrimination criteria including the
Minimum Message Length (Wallace and Boulton, 1968), the Bayesian In-
formation Criterion (Schwarz, 1978) or the Widely Applicable (Bayesian)
Information Criterion (Watanabe, 2010, 2013). Another important consid-
eration is parameter estimation: We may discard the data-generating model
due to poor parameter estimation. GPdoemd could be extended to incorpo-
rate global parameter estimation.

Model indiscriminability is a major hurdle for model discrimination. Para-
metric models may be very flexible, spanning a large part of the target space
depending on the specific model parameter values. Useful stopping criteria
for design of experiments, e.g. Buzzi-Ferraris and Forzatti’s (1983) criterion
DBF(u) > 1 mentioned in Section 2.2, are difficult to come by. In practice,
we may need to rethink the experimental set-up to reduce measurement noise
or add new system inputs or target dimensions. Another option is to anal-
yse the physical meaning of the model parameters with the goal of tightening
the bounds on the allowed model parameter values. The smaller design space
should in turn reduce the target space spanned by the model predictions.

This paper has addressed sequential design of experiments, but engineers
researchers may want to design several new experiments to run in paral-
lel. This is called batch optimisation in the Bayesian optimisation litera-
ture (Gonzalez et al., 2016). Galvanin et al. (2006, 2007) and Bazil et al.
(2012) have studied design of parallel experiments for parameter estimation,
but there have been fewer contributions on design of parallel experiments
for model discrimination. A simple heuristic is to design new experiments
in a sequential fashion while penalising new experiments in the vicinity of
experiments already added to the next batch.

The Section 6 experiments are not in every way representative of model
discrimination in a real setting. The large-scale tests of the DJR design cri-
terion and GP surrogate method require fixed thresholds for when model
discrimination (using πi,N , χ2 or wi) rejects or selects a model. Our experi-
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ments set the “winning” threshold for πi,N and wi to 99.9%, which is arguably
high. But a high threshold also decreases the failure risk. In practice, an
engineer may select a model maintaining a probability score, e.g. of wi = 0.98
over multiple experiments. Regardless of the precise threshold value, the re-
sults in Section 6 may indicate the methods’ relative performance in a real
setting.

This paper considers models of the type y = f(u,θ) + ε. Many pro-
cesses for which we need to design experiments for model discrimination
are time-dependent, and best described by state-space models. Cheong and
Manchester (2014a,b) look at model discrimination and fault detection in
dynamic systems, but do not take model parameter uncertainty into ac-
count. Neither do Skanda and Lebiedz (2010, 2013). Ignoring parameter
uncertainty may lead to overconfidence in the models’ accuracy. Chen and
Asprey (2003) study non-linear state-space models with model parameter
uncertainty. They use a classical approach of estimating the model parame-
ter uncertainty using analytical gradient information. Georgakis (2013) uses
a data-driven approach to design dynamic experiments for model parameter
estimation. We believe that our GP surrogate method can be extended to
design of experiments for discrimination of rival state-space models. Ko and
Fox (2009) and Deisenroth et al. (2009) use GPs to learn non-linear dynamics,
and propagate uncertainty in the system state to the model prediction.

8. Conclusions

Design of experiments for black-box model discrimination is a difficult but
important problem. Our novel method, hybridising the classical and Monte
Carlo-based approaches using GP surrogate models, performs similarly to the
analytical approach on classical case studies and several orders of magnitude
faster than existing black-box approaches. It allows flexibility with regards
to the structure and software implementations of the underlying models.
Limitations lie in scaling the GPs to the large training data sets required
to accurately emulate models with high-dimensional design and parameter
spaces.

The GP surrogate method has been implemented in the open-source GP-
doemd Python package and made available on GitHub. The GPdoemd pack-
age allows researchers and engineers to implement design of experiments
for model discrimination and includes methods for approximating marginal
predictive distributions, design of experiments, and model discrimination.
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For methodology experts wishing to develop new model discrimination ap-
proaches, GPdoemd also includes a standard set of case studies.
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Appendix A. Gradients of Gaussian Process Prediction

The predictive mean µ(z) and variance σ2(z) are easily differentiable with
respect to the input z. The three gradients used in this paper are:

∂µ(z)

∂z
= (y −m)>(K + σ2

ηI)
−1∂k

∂z
, (A.1)

∂2µ(z)

∂zi∂zj
= (y −m)>(K + σ2

ηI)
−1 ∂2k

∂zi∂zj
, (A.2)

∂2σ2(z)

∂zi∂zj
= −2

[
k(K + σ2

ηI)
−1 ∂2k

∂zi∂zj
+
∂k

∂zi

>
(K + σ2

ηI)
−1 ∂k

∂zj

]
. (A.3)

The most common covariance functions k are also differentiable, e.g. the
RBF-ARD kernel k(z′, z) = ρ2 exp(−1

2
(z′ − z)>Λ−1(z′ − z)):

∂k(z′, z)

∂z
= k(z′, z)(z′ − z)>Λ−1 , (A.4)

∂2k(z′, z)

∂z∂z>
= k(z′, z)Λ−1

(
(z′ − z)(z′ − z)> − I

)
(A.5)

Likewise, expressions can be derived for the gradients of the mean and
variance with respect to the hyperparameters, gradients that are used for
gradient-based learning of the hyperparameters during training. For sparse
GP regression using inducing inputs, these gradient expressions still hold,
swapping the term (K + σ2

ηI)−1 with the appropriate sparse GP equivalent.

Appendix B. Case Study: Mixing

This case study considers a single fluid containing a reactant mixing dur-
ing reaction. We wish to learn (i) whether it is a zero-, first- or second-order
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reaction, and (ii) whether mixing occurs on the microscopic or macroscopic
level (Levenspiel, 1999, ch. 16). We can run experiments in a plug flow reactor
(PFR) or continuous stirred-tank reactor (CSTR) and observe the reactant
conversion rate. We assume ideal reactors. The rival models fi are given in
Table B.10, where Ei(x) =

∫∞
−x t

−1 exp(−t)dt is the exponential integral.

Order R Mixing PFR CSTR

0th θu1/u2
Micro f1 = f2 = 1−R f1 = 1−R (f1 = 0 if R ≥ 1)
Macro (f1 = f2 = 0 if R ≥ 1) f2 = 1−R+R exp(−1/R)

1st θu1
Micro

f3 = exp(−R) f3 = 1/(1 +R)
Macro

2nd θu1u2
Micro

f4 = f5 = 1/(1 +R)
f4 = 1

2R

(
−1 +

√
1 + 4R

)
Macro f5 = 1

R exp(1/R) Ei(1/R)

Table B.10: Conversion rate models for a reaction in a micro- or macrofluid during mixing
in an ideal PFR or CSTR reactor (Levenspiel, 1999, p. 356)

The design variables are the residence time u1 ∈ [1, 100], the initial con-
centration u2 ∈ [0.01, 1] and the reactor type u3 ∈ {PFR,CSTR}. The model
parameter is the reaction rate θi ∈ [1e-6, 0.1].

Note that the expression for the conversion rate in the ideal PFR reactor
is the same for micro- and macrofluids. This is also true for the CSTR reactor
1st-order reaction expression. All expression are differentiable with respect
to the model parameter, with the exception of the f1 and f2 at R = 1.

Experimental data can be generated from any of the models; We propose
the following model parameter value for the data-generating model:

θ1 θ2 θ3 θ4 θ5

6e-3 6e-3 0.015 0.025 0.025

For the experimental evaluation in this paper, we generate data from
model f3 and f5 with experimental noise variance σ2 = 2.5e-3. Generat-
ing data from model f5 produces a significantly more difficult problem of
model discrimination, since models f4 and f5 yield predictions difficult to
differentiate.

Appendix C. Case Study: Ammonia Synthesis

This case study looks at four different models for synthesis of ammonia
NH3 from hydrogen H2 and nitrogen N2 (Buzzi-Ferraris et al., 1990). Given
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pressure P ∈ [300 atm, 350 atm], temperature T ∈ [703 K, 753 K] and inlet
ammonia mole fraction χNH3 ∈ [0.1, 0.2]. The models are given by:

Model 1 : f1 =
φN2 − φNH3/(φ

3
H2
K2

eq)

C1φNH3/φ
3/2
H2

,

Model 2 : f2 =
φN2φH2 − φNH3/(φH2Keq)

2

C1φNH3

,

Model 3 : f3 =
φ
1/2
N2
φ
3/2
H2
− φNH3/Keq

C1φNH3 + C2(φN2/φH2)
1/2

,

Model 4 : f4 =
φ
1/2
N2
φ
3/2
H2
− φNH3/Keq

C1φNH3 + C2φN2 + C3φNH3/φN2

,

where the fugacities are given by φs = Pχsγs for s ∈ {H2, N2, NH3}. We
assume inert-free, stoichiometric reaction, which gives the mole fractions
χN2 = 1

4
(1− χNH3) and χH2 = 3χN2 . The activity coefficients γs for the

reaction are given by (Dyson and Simon, 1968):

γH2 = exp

[
P exp

(
0.541− 3.8402 · T 0.125

)
− P 2 exp

(
−15.98− 0.1263 · T 0.5

)
+

300 (exp(−P/300)− 1)

exp (5.941 + 0.011901 · T )

]
,

(C.1)

γN2 = 0.93431737 + 3.101804e-4 · T + 2.958960e-4 · P
− 2.707279e-7 · T 2 + 4.775207e-7 · P 2 ,

(C.2)

γNH3 = 0.14389960 + 2.028538e-3 · T − 4.487672e-4 · P
− 1.142945e-6 · T 2 + 2.761216e-7 · P 2 .

(C.3)

The thermodynamic equilibrium constantKeq is given by (Gillespie and Beat-
tie, 1930):

log10Keq = 2.6899− 2.691122 log10 T − 5.519265e-5 · T
+ 1.848863e-7 · T 2 + 2001.6/T .

(C.4)

The model parameters appear in the coefficients Cj = exp
(
θj1 − θj2 T−700T

)
.

The bounds on the model parameters are θj1 ∈ [0.1, 10] and θj2 ∈ [0.1, 100].
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We follow (Buzzi-Ferraris et al., 1990) by generating experimental data
from model 1 with θ = [3.68, 11.8] and experimental noise variance Σ =
σ2 = 90.

Appendix D. Case Study: Chemical Kinetic Models

This case study looks at four chemical kinetic models (Buzzi-Ferraris
et al., 1984). There are two observable outputs y1, y2 and two design variables
u1, u2 ∈ [5, 55]. Each chemical kinetic model i has four model parameters
θi,j ∈ [0, 1]. The model functions are given by:

Model 1 : f1,(1) = θ1,1x1x2/g1 , f1,(2) = θ1,2x1x2/g1 ,

Model 2 : f2,(1) = θ2,1x1x2/g
2
2 , f2,(2) = θ2,2x1x2/h

2
2,1 ,

Model 3 : f3,(1) = θ3,1x1x2/h
2
3,1 , f3,(2) = θ3,2x1x2/h

2
3,2 ,

Model 4 : f4,(1) = θ4,1x1x2/g4 , f4,(2) = θ4,2x1x2/h4,1 ,

where gi = 1 + θi,3x1 + θi,4x2 and hi,j = 1 + θi,2+jxj. We follow (Buzzi-
Ferraris et al., 1984) by generating experimental data from model 1 with
θ1,1 = θ1,3 = 0.1 and θ1,2 = θ1,4 = 0.01 and experimental noise covariance Σ =
diag(0.35, 2.3e-3). We start each test with 5 randomly sampled experimental
observations, and set a maximum budget of 40 additional experiments.
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