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Highlights 
 Introduces a new framework for building advanced metamodels for 

efficient GSA. 
 Illustrates why Sobol indices method should be used instead of the 

SRC method. 
 Discusses how the accuracy of indices can be improved with cross-

validation. 
 Provides software to implement the framework in the easyGSA 

toolbox. 
 

 

  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2 

 

Meta-modeling based efficient global 
sensitivity analysis for wastewater treatment 
plants – An application to the BSM2 model 
Resul Ala, Chitta Ranjan Beheraa, Alexandr Zubova, Krist V. Gernaeya, 

Gürkan Sina,* 

aProcess and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical 

Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark 

*Corresponding Author: Gürkan Sin, Associate Professor,  Department of Chemical and 

Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, 

Denmark, Email: gsi@kt.dtu.dk, Tel: +45 45252980 

 

 

Abstract 

Global sensitivity analysis (GSA) is a powerful tool for quantifying the effects 

of model parameters on the performance outputs of engineering systems, such 

as wastewater treatment plants (WWTP). Due to the ever-growing 

sophistication of such systems and their models, significantly longer processing 

times are required to perform a system-wide simulation, which makes the use 

of traditional Monte Carlo (MC) based approaches for calculation of GSA 

measures, such as Sobol indices, impractical. In this work, we present a 

systematic framework to construct and validate highly accurate meta-models to 

perform an efficient GSA of complex WWTP models such as the Benchmark 

Simulation Model No. 2 (BSM2). The robustness and the efficacy of three 

meta-modeling approaches, namely polynomial chaos expansion (PCE), 

Gaussian process regression (GPR), and artificial neural networks (ANN), are 

tested on four engineering scenarios. The results reveal significant 
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computational gains of the proposed framework over the MC-based approach 

without compromising accuracy.  

 

Keywords: global sensitivity analysis; Sobol method; wastewater treatment plant modeling; 

polynomial chaos expansions; Gaussian process regression; artificial neural networks. 
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1. Introduction  

Over the past decades, computational models describing technical and 

natural systems have become increasingly complex, requiring incorporation 

of many model parameters, which add up to model output uncertainty. 

Sensitivity analysis is widely acknowledged as a good practice to better 

understand model behavior, providing valuable insights into how much of 

the model output variance can be attributed to the uncertainty in a specific 

model parameter. While different methods exist for sensitivity analysis, one 

class of methods is called global sensitivity analysis (GSA) since these 

methods look at the model behavior in a global fashion, allowing more 

than one factor (i.e. an investigated model parameter) to vary at the same 

time as opposed to one-factor-at-a-time (OAT) methods. Therefore, unlike 

OAT methods, GSA methods can account for and quantify the effects of 

factor interactions on the investigated model outputs. Although use of OAT 

methods in sensitivity analysis is fiercely criticized (Saltelli et al., 2017), 

OAT is still the most widely used technique in sensitivity analysis (Ferretti 

et al., 2016). Among two different classes of GSA methods are the 

variance decomposition based methods such as the Sobol indices method 

(Sobol, 2005), and regression based methods such as standardized 

regression coefficients (SRC) (Saltelli et al., 2008). Sobol sensitivity indices 

are considered as the reference measures among practitioners, setting the 

benchmark for all other sensitivity analysis methods. The Monte Carlo 
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simulations approach has been traditionally employed to evaluate Sobol 

sensitivity indices. Although this approach provides robust results, one 

major drawback is its high computational cost, requiring a large number of 

model evaluations, typically in the order of 2,000 to 10,000 to ensure 

convergence of the indices with a satisfactory precision level (Burnaev et 

al, 2017). Therefore, to reduce the computational burden associated with 

the Sobol method, alternative ways of calculating Sobol indices, such as 

metamodeling-based approaches, have gained significant interest in recent 

years. Among the most widely used algorithms of surrogate models for 

global sensitivity analysis are polynomial chaos expansions (Sudret, 2008), 

Gaussian processes regression (Marrel et al., 2009), and artificial neural 

networks (Li et al., 2016).  

In the field of wastewater treatment modeling, the importance of 

performing global sensitivity analysis has been widely recognized with 

applications on both process models and plant-wide frameworks. In some 

of the earliest applications of the Monte Carlo method, Flores-Alsina et al. 

(2008) investigated the effect of activated sludge input uncertainties on the 

control strategies of the BSM2 plant, whereas Sin et al. (2009) identified 

and analyzed different sources of uncertainties in the BSM1 plant. Using 

the SRC method, Sin et al. (2011) also performed a global sensitivity 

analysis on the BSM1 plant to identify the most significant parameters 

influencing the plant performance criteria. Flores-Alsina et al. (2012) 
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applied the SRC method to identify and rank the most important design 

variables of activated sludge process plants. Rojas and Zhelev (2012) used 

GSA to identify the operating conditions with the strongest impact on the 

energy requirements of a thermophilic aerobic digestion system, on which 

they perform energy efficiency optimization using the optimization variables 

identified by the GSA. Cosenza et al. (2013) comparatively applied SRC, 

Morris screening and Extended-FAST methods to a membrane bioreactor 

(MBR) model and reported that Morris screening provides inconsistent 

results in comparison to the other two methods. The same authors also 

studied variance decomposition based methods in WWTP modeling and 

concluded that for model outputs like ammonia, nitrate and phosphorus, 

interactions among input factors provided significantly different sensitivity 

results compared to regression-based methods, such as SRC, which do 

not take interactions into consideration (Cosenza et al., 2014). Ramin et al. 

(2014) studied first order and second order secondary settling tank models 

within the BSM2 plant and conducted a global sensitivity analysis using 

the SRC method and Morris screening. Dragan et al. (2017) used the 

Morris screening method to identify significant design degrees of freedom 

of the BSM2 plant, which are used to perform design optimization. 

Mannina et al. (2018) used the SRC method, albeit with a poor 

linearization of the MC simulation results (R2<0.7), to identify calibration 

parameters of an integrated activated sludge and membrane bioreactor 
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model. Ochoa et al. (2016) studied process synthesis of wastewater 

treatment network design and applied GSA using the Sobol method on the 

kinetic dynamic model parameters of the optimal network configuration to 

identify opportunities for further design optimization. More recently, Fortela 

et al. (2019) utilized a Morris screening-based GSA method along with 

principal component analysis to identify sensitive biochemical mechanism 

parameters of anaerobic digestion kinetic models. 

Although the SRC method is widely used by researchers, benchmarking 

of the reported sensitivity measures with more reliable variance 

decomposition based methods like the Sobol indices method is necessary 

to strengthen the conclusions drawn from the global sensitivity studies, 

especially in the context of large WWTP modeling case studies. However, 

to the best of our knowledge, the Sobol indices method has thus far not 

seen an application in plant-wide models of WWTPs, such as the BSM2, 

mainly because of the high computational cost associated with calculation 

of these indices. As the Sobol indices method provides researchers with 

more reliable sensitivity measures compared to the popular SRC method, 

there is a need for a systematic framework that will extend the knowledge 

on construction of efficient surrogate models to be used for global 

sensitivity analysis purposes. The main objective of this paper is, therefore, 

to present a systematic methodology to perform efficient Sobol global 

sensitivity analysis of complex biological systems, such as WWTPs, with 
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the help of advanced meta-modeling techniques, such as polynomial chaos 

expansions, Gaussian processes regression, and artificial neural networks. 

For this purpose, four different scenarios including various sources of 

epistemic uncertainties are framed: (1) uncertainty in the influent 

fractionation, (2) uncertainty in stoichiometric and kinetic model parameters, 

(3) uncertainty about the hydraulics and design-related parameters of the 

plant, and (4) simultaneous realization of all the uncertainties in scenarios 

(1), (2), and (3). The efficiency and the accuracy of the different 

approaches for global sensitivity analysis are compared and discussed. 

This paper is organized as follows. First, we present traditional global 

sensitivity analysis methods as well as more recent meta-modeling based 

methods. Second, we introduce four practical scenarios in more detail, in 

which a global sensitivity analysis is needed in order to address the 

questions which design engineers encounter. Then we explain the plant 

model and simulation strategy used in this study. Next, we introduce the 

proposed framework for construction of efficient surrogate models with the 

different steps being detailed and the implemented techniques briefly 

described. Then, we discuss the model development statistics of the PCE, 

GPR and ANN models, and we demonstrate the advantages of using the 

Sobol indices method over the SRC method. Finally, the effectiveness of 

the meta-modeling-based approach for GSA is illustrated with the results of 
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scenario analysis: the most influential parameters in all scenarios are 

identified, and are then discussed in more detail.  

 

2. Methods 

2.1. Global sensitivity analysis methodologies 

Global sensitivity analysis is established as a powerful tool for 

quantifying how much of the variance of an output of interest is due to the 

uncertainty in the input parameters of a mathematical model. There exist a 

wide array of techniques and sensitivity measures available in the 

literature, e.g. the Morris screening method (Morris, 1991), linear 

regression-based methods, variance-based methods (Saltelli et al., 2008), 

to name a few. For a recent review of these methods, readers are 

referred to the studies of (Iooss and Lemaître, 2015; Pianosi et al., 2016). 

Among the most commonly used methods in GSA are standardized 

regression coefficients (SRCs) and Sobol sensitivity indices. SRCs provide 

a measure of sensitivity using a linear regression approximation of the 

model response, whereas the Sobol sensitivity indices approach 

decomposes the total model output variance into each single input 

variance and the combinations thereof. This method is especially useful for 

the case of highly nonlinear computational models. Both methods employ 

Monte Carlo simulations, a technique which is discussed below together 

with the two GSA methods. 
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2.1.1. Monte Carlo simulations approach 

Monte Carlo simulation (MCS) is a universal mathematical technique 

relying on repeated random sampling to obtain numerical results. It has 

found wide use in fields as disparate as finance, energy, uncertainty, and 

sensitivity analyses. Calculation of Sobol sensitivity indices using MCS is a 

relatively well-established procedure and can be divided into 4 steps: (1) 

specification of uncertainty ranges for the input parameters; (2) sampling of 

the parameters within their ranges using a sampling algorithm such as 

Sobol sampling, Latin hypercube sampling, etc.; (3) propagation of 

uncertainty by repeated runs of the simulator for each combination of 

sampled parameters in the input space; (4) post-processing of the acquired 

dataset of quantities of interests. Regardless of the complexity of a single 

simulator run, the MCS procedure remains the same and the repeated 

runs are independent from one another, which makes it inherently suitable 

for parallelization. However, the technique has a serious efficiency 

drawback, as the size of the sampling matrices needed to converge to 

accurate results for sensitivity indices is no less than 103, typically in the 

order of 104 (Burnaev et al., 2017). This results in an unaffordable number 

of model runs in practice. Furthermore, slightly varying estimators are 

suggested for the numerical computation of Sobol sensitivity indices with 

Monte Carlo simulations. A comparison of these can be found in (Saltelli 
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et al., 2010), who have found the Jansen’s estimator more accurate, which 

is therefore selected as the estimator of the Sobol sensitivity indices 

calculated from the MCS method in this study. 

 

2.1.2. Standardized regression coefficients (SRC) 

The SRC method involves obtaining model outputs by performing 

Monte Carlo simulations and fitting a linear regression model to the 

Monte Carlo simulation output using the input variables         as in the 

following functional form.  

        ∑     

 

   

 (1) 

where the coefficients          are determined by least-squares 

minimization of the differences between the y-values produced by the 

regressed linear model and the actual model output produced by the 

Monte Carlo simulation. By scaling the raw coefficients          with the 

standard deviations of the input variables and the output, one can 

obtain the SRCs as follows.  

 

         

   

  
 (2) 
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The absolute value of      provides a direct interpretation of the 

individual effect of input variable    on the output variance; the higher the 

value, the stronger the influence. However, one limitation of this metric is 

that it does not quantify interaction effects, i.e. the amount of variance 

caused on the output due to the interactions of input variables   . For a 

linear model, the sum of squares of the SRCs should add up to 1 

(∑         , whereas for non-linear models, this sum amounts to the 

coefficient of determination   . According to Saltelli et al. (2008), the SRC 

is a valid measure of sensitivity if the coefficient of determination (R2) of 

the linear model is higher than 0.7, which is the fraction of the output 

variance of the MCS data explained by the regressed model. For cases 

where    is below 0.7, the use of SRC as a sensitivity measure comes at 

the risk of being ignorant of the     (      % of the original output 

variance. Calculation of these SRCs is relatively straightforward using any 

regression software, and one example is to use the fitlm regressor in 

the MATLAB computing environment for generating the SRCs.  

 

2.1.3. Sobol sensitivity indices (Si and STi) 

Sobol indices provide valuable information about both individual effects 

of each input variable on the output variance, as well as interaction effects 

among input variables. Among the most commonly used indices are first 

order Sobol indices    and total order Sobol indices    . The first order 
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sensitivity indices can be interpreted as the expected amount of variance 

that can be subtracted from the total output variance, if we decide to fix 

the value of an input variable within its uncertainty range. It can then be 

formulated as conditional variance over the unconditional variance as 

follows. 

 

    
   (      

 (  
 (3) 

The first order indices show the individual impact of each input variable 

on the uncertainty of the model output. They are indicative of the 

individual contribution of each input, excluding any contribution that may 

arise from interactions with other inputs. They are also called main effects. 

The sum of all first order indices should be equal to 1 for perfectly 

additive (linear) models and less than 1 for non-additive (nonlinear) 

models. The difference (  ∑    ) is an indicator of the presence of 

interactions between input variables (Saltelli et al., 2008).  

Total sensitivity indices, on the other hand, quantify the total effect of 

an input variable on the model output (accounting also for its interactions 

with other input variables), which can be interpreted as the expected 

amount of output variance that would remain unexplained if only that input 
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variable was allowed to vary over its uncertain range. The expression for 

the total sensitivity indices reads,  

 

       
   (       

 (  
 (4) 

The sum of all total indices should be equal to 1 for perfectly additive 

(linear) models, and always higher than 1 for non-additive models (Saltelli 

et al., 2008). Another interesting property of Sobol indices is that the 

difference (        can be regarded as an indicator of the strength of 

interactions between input variables. For definitions of the first and the 

total indices when there are dependent inputs, readers are referred to the 

study of Mara et al., (2015). Traditionally these indices are calculated 

using nested Monte Carlo simulations (e.g. Janssen, Sobol or Saltelli 

approximation) for individual variance contributions. However, more recent 

approaches employ metamodels, such as polynomial chaos expansion and 

Gaussian process regression and artificial neural network models. We 

discuss these three approaches below. 

2.1.4. Metamodeling-based approaches  

To overcome the aforementioned computational cost of the MCS 

approach, metamodeling-based approaches are developed. Metamodeling, 

also referred to as surrogate modeling, has received increased attention in 

recent years as computational models became much more sophisticated 
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with the advancements in computing power. Metamodels are 

computationally undemanding alternative models of usually complex 

simulation models and they come in many types with numerous 

engineering applications. Extensive discussions on how to construct these 

models can be found elsewhere (Forrester et al., 2008). We discuss three 

classes of metamodels that are commonly used for global sensitivity 

analysis purposes, namely, polynomial chaos expansions (PCE), Gaussian 

processes regression (GPR), and artificial neural networks (ANN). This 

selection of metamodels is mainly because these models were found to be 

particularly effective for GSA application in an earlier study (Al et al., 

2018), which also analyzed radial basis function (RBF) interpolation, 

multivariate adaptive regression splines (MARS) comparatively. Readers are 

referred to the original work for more discussions of the performance 

comparison of the other models. Besides these metamodels, relatively 

newer studies also proposed the use of orthogonal augment radial basis 

functions (Wu et al., 2019) and support vector regression (Cheng et al., 

2019) for performing efficient global sensitivity analysis. 

  2.1.4.1 Polynomial Chaos Expansions 

Polynomial chaos expansions are polynomial approximations of model 

responses generated by complex simulators. To emulate a random model 

response    (   from   independent random variables               , 

PCE assumes the following functional shape,  
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        (   ∑     (  

   

 (5) 

 using the following chaos representation, 

 

          
  ∑     

 

   

(     ∑      

 

   

(     )   ∑       

 

   

(        )

   

(6) 

where    is an α-th order multivariate orthogonal polynomial and    are the 

polynomial coefficients. By definition, the orthogonality property of the 

polynomials translates to an ANOVA decomposition (Fajraoui et al., 2011). 

Each multivariate polynomial    in this representation is a tensor product of 

univariate polynomials. These univariate polynomials are selected based on 

the distribution of the input variables, e.g. Legendre polynomials for uniform 

distributions and Hermite polynomials for standard Gaussian distributions. 

More details about these polynomials can be found elsewhere (Marelli and 

Sudret, 2016). For practical computations, the chaos representation is 

truncated to a simpler form in such a way that one only retains those basis 

polynomials with degrees not exceeding a user-defined degree  . Thus the 

number of unknown coefficients to be calculated, denoted by   , leads to  
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    (
   

 
)    

(     

    
  (7) 

Least squares minimization, among other techniques, is often used to 

estimate PC coefficients by minimizing the mean square residual. However, 

in order to avoid an ill-conditioned regression problem, one needs to have 

an initial experimental design of a size greater than   , which increases 

factorially with respect to   and  . To address this, a degree adaptive 

algorithm, which tries to choose the best polynomial degree given the 

experimental design, based on least angle regression (LAR), is proposed 

to create a sparse PC expansion consisting of the significant coefficients 

of the full PC expansion (Blatman and Sudret, 2011). Once this sparse PC 

approximation of the model response is constructed, Sobol sensitivity 

indices may then be computed analytically from the PC coefficients   . The 

generalization error of the resulting PC model can then be estimated by 

the leave-one-out (LOO) cross-validation error      as follows 

 

       
∑ ( (  )       (   )

  
   

∑ ( (      )
  

   

 (8) 

where      (    is the prediction of the model constructed from an 

experimental design excluding    and  (  ) is the actual model response 

at the design point   . The upper part of this expression is also called 

predictive error sum of squares (PRESS) whereas the denominator is a 
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total sum of squares. The corresponding coefficient of determination, with 

analogy to R2, is often called the leave-one-out coefficient Q2 and defined 

as follows.  

 

           (9) 

Unlike R2, Q2 does not tend to 1 as the number of model parameters 

grows, thereby providing a better measure for model selection. The UQLab 

framework written in the MATLAB environment provides implementations of 

PCE models, and was used in this study to develop these models (Marelli 

and Sudret, 2016).  

 

  2.1.4.2 Gaussian Process Regression 

Gaussian process regression (GPR) is a Bayesian probabilistic nonlinear 

regression algorithm, which uses kernels to explain a given model 

response as a realization of a random function of the following shape, 

 

        (      (       (     (10) 

where the first term   (   is the mean value of the Gaussian process,    

is the variance and  (     is a zero mean unit variance stochastic 
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process.   denotes regressed coefficients and  (   a set of basis functions 

(i.e. constants, polynomials, etc.). The error variance    and the 

coefficients   are estimated from the experimental design, i.e. dataset of 

simulation inputs and outputs used to construct the GPR model. The 

crucial information in a GPR model is contained in its stochastic part, 

 (    , which introduces latent variables to correlate observations   and 

new points    in the input space with correlation functions (also referred to 

as kernel or covariance functions in the literature). The most commonly 

used correlation function types include squared exponential kernel, 

exponential kernel, matern 3/2, matern 5/2 and rational quadratic kernel. 

For more details about Gaussian process regression and kernel functions, 

the reader is referred to the book of Rasmussen and Williams (2006). With 

a wide array of available correlation function types that can be used to 

describe the similarity between two samples in a space, GPR provides 

modelers with a powerful surrogate model capable of approximating highly 

nonlinear random responses. The Statistics and Machine Learning toolbox 

of the MATLAB software (The MathWorks), which has been used for this 

study, provides users with an implementation of different types of GPR 

models. Once a GPR model is built from an experimental design, one can 

then use this model instead of the computationally costly original model to 

calculate Sobol sensitivity indices following the Monte Carlo simulations 

approach as described above.  
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2.1.4.3. Artificial Neural Networks 

Artificial neural networks, initially inspired by biological neurons, have 

attracted widespread attention in recent years especially due to their 

successful applications in highly complex machine learning tasks, such as 

image classification, speech recognition, computer vision, etc (Géron, 

2017). Feedforward neural networks (FNN), where connections between the 

nodes do not form a cycle such as in recurrent neural networks (RNN), 

are among the earliest and the simplest types of neural networks. One 

example of such networks is the multilayer perceptron (MLP), where there 

are at least 3 layers (input, hidden, and output layers) with interconnecting 

transfer functions (also referred to as activation functions) such as 

sigmoids, logistic function, hyperbolic tangent, etc. Figure 1 demonstrates a 

single hidden layer architecture of a feedforward MLP. If more than one 

hidden layers are added in the network architecture, it is then called a 

deep neural network (DNN). Due to their highly versatile and scalable 

architectures, they are very effective at capturing vastly nonlinear 

relationships in datasets, making them an ideal candidate also for 

generation of surrogate models. One of the most widely used training 

algorithms for neural networks is the backpropagation algorithm (Rumelhart 

et al., 1986), in which a prediction is made for each training observation in 

a forward pass, and the error contribution from each connection in the 

network is calculated in a reverse pass to adjust the corresponding 
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weights so that the error in the final prediction is reduced. The Deep 

Learning Toolbox of the MATLAB software provides implementations of the 

backpropagation algorithm variants, which are used to develop these 

models for this study as explained in section 3.1. 

 
Figure 1: A network architecture of a feed-forward MLP containing a single hidden layer and 
an output layer is shown. Input variables (x1, and x2) are passed through the input layer, 
and the hidden and the output layers (also being affected by the bias and the weight terms) 
to produce the network outputs (y1, and y2).  

2.2. Scenarios for global sensitivity analysis  

To elucidate the application of the metamodeling-based global sensitivity 

analysis of WWTPs, four realistic scenarios are postulated as shown in 

Table 1. In scenario 1, the goal is to quantify the sensitivity of the plant 

key performance indicators (KPIs); such as methane gas production, 

aeration energy demand, etc., to the uncertainty in data regarding the 

incoming influent wastewater characterization, which is represented with a 
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set of influent fractionation parameters and their uncertainty ranges as 

shown in Table S1. In scenario 2, the emphasis is put on the investigation 

of the parametric sources of uncertainty, namely stoichiometric and 

biokinetic parameters of the ASM1 model, and their effects on the plant 

KPIs. Table S2 shows the list of those parameters and their uncertain 

bounds. In scenario 3, the objective is to examine the design and 

hydraulics related parameters (listed in Table S3) of the plant and their 

effects on the KPIs. In scenario 4, all different sources of uncertainty 

considered in the previous scenarios are combined in order to identify the 

most influential parameters and quantify their effects on the plant KPIs. 

More detailed descriptions of all scenarios are also included in the 

supplementary material. 

 

Table 1: Different sources of uncertainties considered in the 4 scenarios to be studied 

 

Scenarios 

Sources of uncertainty 

Influent data Kinetics and 
stoichiometry 

Hydraulics and 
design related 
parameters 

1 Uncertain Certain Certain 

2 Certain Uncertain Certain 

3 Certain  Certain Uncertain 

4 Uncertain Uncertain Uncertain 
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2.3. The model: BSM2 plant layout, simulation strategy and plant 

performance evaluation  

The widely-used Benchmark Simulation Model No. 2 framework, 

originally developed by Jeppsson et al. (2006), was taken as the base 

WWTP layout and is further modified as shown in Figure 2. The final 

modified plant layout consists of a primary clarifier (PC), an activated 

sludge (AS) process, and a secondary clarifier (SC) as the mainstream 

technologies, whereas a thickener, an anaerobic digester (AD), and a 

dewatering unit are used to treat the sludge coming out of the AS and PC 

units. The AS tanks are modelled using the Activated Sludge Model No. 1 

(ASM1) (Henze et al., 1987). The first two tanks are anoxic (aiming at 

denitrification), whereas the remaining three tanks are aerobic (aiming at 

nitrification and COD removal). The secondary clarifier (to separate active 

biomass from effluent) is modelled as a non-reactive system using an 

exponential settling velocity function proposed by Takács et al., (1991), 

while the AD unit is modelled using Anaerobic Digestion Model No. 1 

(ADM1) (Batstone et al., 2002). In the modified layout, the waste activated 

sludge is discharged from the last aerobic tank (adopted from other studies 

(Behera et al., 2018; Boiocchi et al., 2017; Sin et al., 2009)) instead of the 

SC unit as in the original BSM2 configuration. Further details about the 

employed modeling and simulation strategy can be found in the 

supplementary material.  
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Figure 2: Schematic overview of the modified Benchmark Simulation Model No. 2 (BSM 2) 
framework used for global sensitivity analysis. 

The sensitivity analysis results of each scenario are evaluated based on 

6 different plant performance indicators; namely effluent quality index (EQI), 

methane gas production in the AD tank, aeration energy demand by the 

AS tank, net sludge discharge from the plant, effluent ammonium, and 

effluent nitrate concentrations. The EQI definition is adopted from the 

BSM2 publications (Gernaey et al., 2014; Jeppsson et al., 2006), and it 

represents a sum of pollutant loads of the effluent. It is important to note 

that the EQI is calculated for one day (average load used for steady state 

simulation), and not for a longer period (i.e., for the last 364 days) as 

used for dynamic simulation of the BSM2 (Gernaey et al., 2014; Jeppsson 

et al., 2006). The aeration energy demand in the AS tank is calculated 

using the correlation suggested in (Gernaey et al., 2014). The details of 
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the model equations used for calculating the above-mentioned performance 

indicators (such as EQI, AE demand etc.) are provided in the 

supplementary material.  

2.4. Generic framework for meta-model development 

A generic computational framework for building various types of 

surrogate models to be used for global sensitivity analysis is presented in 

Figure 3. First, a set of parameters that are subject to sensitivity analysis 

are chosen to create an input space. All the available information 

regarding bounds and distributions of these parameters can be introduced 

at this step. Second, an experimental design is created using a sampling 

algorithm, such as space-filling designs like Latin Hypercube sampling 

(LHS) (McKay et al., 1979), as well as quasi-random sequences with 

uniformity properties like Sobol and Halton sequences. A recent 

comparative study found the best results when using samples generated 

with Sobol compared to LHS and Halton designs (Davis et al., 2018). 

More efficient designs can also be sought with the use of adaptive 

algorithms, such as those defined in (Burnaev et al., 2017; Steiner et al., 

2019). Monte Carlo simulations are employed to generate the input and 

output pairings of the experimental design. This experimental design is 

then fed into the surrogate model development algorithms to train 

surrogate models. One often needs to estimate the generalization capability 

of these models before their use. Among the techniques that can be used 
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for this purpose are the holdout validation method, the k-fold cross 

validation method, the leave-one-out cross validation method, and the 

Monte Carlo cross validation method. For a detailed discussion of these 

methods, readers are referred to the work of (Molinaro et al., 2005). The 

training sample size directly determines the total computational cost of the 

surrogate model development. An appropriate size of this sample is 

decided by the framework, which monitors the evolution of a user-defined 

target accuracy on an error metric as the size of the experimental design 

is incrementally increased. 

 

 
 

Figure 3: The flowchart of the generic framework for building surrogate models. An iterative 
loop is added to ensure a user-set target model accuracy by incrementally increasing the 
size of the experimental design. 
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It should also be noted here that the generic feature of the framework 

allows for the construction of all different metamodels from the same 

dataset without a further need for tuning of the dataset. On the other 

hand, each metamodel, which is coded as functions returning a model 

given a dataset, has its own corresponding model development algorithm 

to identify an optimal metamodel structure and its parameters. For 

instance, hyperparameters of a GPR model, such as kernel function 

specific parameters, are optimized using a Bayesian solver to improve its 

performance of cross validation statistic (Rasmussen and Williams, 2006). 

3. Results and discussions 

3.1. Performance statistics of PCE, GPR, and ANN models 

PCE models were developed following the proposed framework, which 

sequentially increases the experimental design size and the maximum 

allowable polynomial order until a target accuracy (0.95< Q2) is reached.  

Table 2 shows the performance statistics of the models developed for 

scenario 1, in which 7 different parameters were considered in the input 

space. The orders of the final selected PCE models are relatively 

moderate, although the maximum order limit imposed was 20. The size of 

the experimental design was initially set to 100, with an incremental size 

increase of 50, to a maximum of 250 samples, which was hit by the 

framework for developing models of effluent ammonium and effluent quality 

index for the scenario 1 (see   
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Table 2) as the target accuracy was not reached. The leave-one-out 

error metric ϵLOO (as defined in Eq. 8) is used to select the best PCE 

models in the adaptive sparse PC expansion algorithm since it gives a 

better estimate of the model’s accuracy compared to R2, which 

systematically tends to 1 as the number of model parameters increases 

(Blatman and Sudret, 2011). The adaptive algorithm allows creation of 

highly accurate models with a few hundred samples due to the sparse 

expansion, which calculates only a low number of coefficients (see the 

number of nonzero coefficients in  

Table 2). Statistics of the models developed for scenarios 2, 3, and 4 

are also included in the supplementary material.  

 

Table 2: Performance statistics of PCE models developed for the scenario 1. 

PCE model output Size of  

experimental 

design 

PCE 

order  

p 

Coefficient of 

determination 

R
2
 

Leave-one-out 

coefficient  

Q
2
 

Number of 

nonzero 

coefficients 

Effluent nitrate 150 6 0.988 0.950 37 

Effluent ammonium 250 5 0.955       0.900 26 

Effluent quality index 250 5 0.976       0.910 48 

Sludge disposal 100 2 0.999       0.999 21 

Aeration energy 100 4 0.993       0.968 28 

Methane production 100 5 0.999       0.999 24 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

29 

 

GPR models are developed following the same framework. The 

algorithm incrementally increases the experimental design and for each 

different size of the experimental design, the algorithm seeks the best 

kernel function among a family of available alternatives and performs a 

hyperparameter optimization. The target accuracy was set to obtain models 

with a cross-validation score (0.95 <Q2). Similar to the PCE model 

development, the chosen increment was 50. An increase in the size of the 

experimental design is only made if the desired accuracy was not reached. 

Table 3 shows the statistics of the final selected models for scenario 1 

outputs. For more details of the different kernel functions, readers are 

referred to the book of Rasmussen and Williams (2006). The 

supplementary material also contains the statistics of the models developed 

for the other scenarios. 

Table 3: Performance statistics of GPR models developed for the scenario 1. 

GPR model output Size of  

experimental 

design 

Coefficient of 

determination 

R
2
 

Leave-one-out 

coefficient  

Q
2
 

Kernel function 

Effluent nitrate 100 1 0.977 ARD Matern 3/2 

Effluent ammonium 150 0.999 0.976 Squared Exponential 

Effluent quality index 150 1 0.984 ARD Matern 5/2 

Sludge disposal 100 0.999 0.999 ARD Matern 3/2 

Aeration energy 100 1 0.994 ARD Matern 3/2 

Methane production 100 0.999 0.999 ARD Matern 3/2 
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ANN models are built following a grid search approach which tries to 

find the best combination of user-configurable network parameters such as 

the number of neurons in each layer, training algorithms, and transfer 

functions, etc. The Deep Learning Toolbox of the MATLAB software is 

used to develop the ANNs with backpropagation training algorithm variants, 

i.e. Levenberg-Marquardt (LM), Bayesian regularization (BR), scaled 

conjugate gradient (SCG), and conjugate gradient with Powell-Beale 

restarts (CGB) were all tested for the each output. 5-fold cross-validation is 

used to decide on the right size of the training sample, i.e. further 

increase in the sample size is avoided if the target accuracy (cross-

validation R2 above 0.95) is reached. One fifth of the training sample is 

used as a validation dataset while the rest is used for training. Bayesian 

regularization is most often selected as the training algorithm by the 

framework whereas the size of the hidden layer (i.e. number of hidden 

nodes) is allowed to vary from 10 to 15 in order to keep the number of 

network connections at a reasonable level. Table 4 shows performance 

scores and configuration details (number of nodes and the training 

algorithm) of the final selected models for the scenario 1. The 

supplementary material also contains the statistics of the models developed 

for the other scenarios.  
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Table 4: Performance statistics of ANN models developed for the scenario 1. 

ANN model output Size of experimental 

design 

Training R
2
 5-fold  

cross-validation R
2
 

Configuration 

selected 

Effluent nitrate 150 0.999 0.978 7×12×1 with BR 

Effluent ammonium 150 1 0.992 7×10×1 with BR 

Effluent quality index 150 1 0.994 7×10×1 with BR 

Sludge disposal 100 0.999 0.998 7×15×1 with BR 

Aeration energy 150 0.999 0.993 7×11×1 with BR 

Methane production 100 0.999 0.998 7×14×1 with BR 

It is significant to emphasize that the accuracy of the above-shown 

metamodels are valid in the entire domain of their input parameter space, 

as they are developed for global sensitivity analysis purposes in this 

contribution. This means that for different application purposes, the 

framework needs to be aligned accordingly. For example if one is 

interested in understanding the use of metamodels in a local sensitivity 

analysis context (i.e. how much a small variation of a single input 

parameter affects the outputs), then the scope of design of experiments in 

the sampling stage of the framework needs to be aligned with this 

purpose. In that case, one should define a narrow range of input space 

around the nominal point where local sensitivity analysis is to be 

performed and construct a metamodel fit for this purpose. 

3.2. Comparison of SRCs and first order Sobol indices 
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According to Saltelli et al. (2004), standardized regression coefficients 

can be used as a valid measure of sensitivity if the coefficient of 

determination (R2) of the linear regression of the Monte Carlo simulation 

results has a value higher than 0.7. Similar to first order Sobol indices, for 

a perfectly linear model, summation of the squared SRCs should add up 

to 1. Therefore, this sensitivity measure is comparable to Sobol first order 

indices. In order to show a comparison of these two sensitivity measures, 

Monte Carlo simulation results of scenario 1 are used to calculate SRCs 

of the input parameters. Figure 4 shows a comparison of squared SRCs 

with first order Sobol indices obtained from the same Monte Carlo 

simulations. Also shown are the R2 values obtained from the regressed 

linear models. For low values of R2, such as effluent ammonium, the two 

sensitivity measures significantly diverge, whereas for high values of R2, 

such as sludge production, they converge to the same values and 

rankings. However, for effluent ammonium, the SRC method results in a 

different ranking of the most significant parameters compared to the Sobol 

method. As the Sobol method relies on variance decomposition, the 

measures obtained from this method are more reliable compared to 

regression-based methods whose accuracy depends on the percent of the 

output variance explained by the fitted linear model, i.e. R2. These results 

clearly show why the Sobol method should be preferred over SRC as a 

more reliable method for global sensitivity analysis. 
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Figure 4: Comparison of standardized regression coefficients (squared) with first order Sobol 
indices. As the coefficient of determination of the linear models decreases, SRC provides 
increasingly diverging indices compared to the corresponding Sobol indices. 

In addition, the varying performance results of the linear models also 

imply that certain KPIs of the system, such as effluent ammonium and 

nitrate concentrations, exhibit a nonlinear behavior with the chosen set of 

input parameters. For instance, the input-output relationships between the 

influent temperature and effluent ammonium as well as effluent nitrate are 

visualized in Figure S1 and Figure S2, respectively. As there is a clear 

nonlinear type correlation, the predictions from the linear model will diverge 

from the true simulation results. Figure 5 shows a comparison of the linear 

model predictions of effluent nitrate to those obtained from PCE and GPR 

models. This result implies a limitation to the amount of relational 
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information that can be extracted from a dataset due to the choice of 

functional form of the metamodel. Overall, this emphasizes the importance 

of systematically exploring different functional forms (metamodel structure) 

to describe input-output data relations as presented in this framework.  

 

Figure 5: Predictive performance of the linear model used by the SRC method is compared 
to more advanced metamodels of type PCE and GPR for the scenario 1 results of effluent 
nitrate concentration.  

3.3. Comparison of Monte Carlo and meta-model-based approaches for 

calculation of Sobol indices 

3.3.1. Sensitivity analysis of the uncertain influent fractionations – Scenario 1 

From the sensitivity analysis results shown in Figure 6 for scenario 1, it 

is clear that the most significant parameters are temperature (T) and the 

influent fractions, fSS and fXI respectively. For nitrification, temperature is 

the most influential input, capturing more than 95% of the output variation, 

and this is in line with process understanding i.e., the effect of T on the 

nitrification rate is described by an Arrhenius equation where the rate 

increases rapidly with temperature. Likewise, the effluent nitrate 
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concentration depends on the denitrification rate which inherently relies on 

the availability of biodegradable COD (both soluble and particulates), and 

the heterotrophic growth rate. The sensitivity analysis also supports the 

development of improved process understanding by ranking T (influences 

growth of heterotrophs and autotrophs), fSS (represents soluble 

biodegradable COD) and fXI (inversely related to biodegradable particulate 

COD) as influential parameters. For EQI and aeration energy demand, T 

and fXI are the most influential parameters as the growth of heterotrophs 

and autotrophs depends on temperature. Higher growth rate and availability 

of biodegradable particulate COD (which correlates with lower fractions of 

inerts, fXI) translates to a higher demand for dissolved oxygen (i.e., higher 

aeration energy demand). The EQI estimation depends on the effluent 

COD, BOD5, TSS, TKN and nitrate concentration (see the supplementary 

material for detailed equations) and the temperature influences the effluent 

concentration by altering the growth rate. The methane production in the 

AD depends on the COD load, which comes from the sludge produced in 

the AS and PC underflow. From activated sludge process understanding it 

is known that the availability of biodegradable COD influences the sludge 

production in the AS among other factors that include the decay rate and 

the SRT. The decay rate itself is also a function of temperature. Likewise, 

the influent COD fractions also directly influence the composition of the 

underflow solids from the PC, which are sent to the AD where sludge is 
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digested anaerobically to produce methane gas. Therefore, the sensitivity 

analysis identifies T, fXI and fSS as influential parameters for methane gas 

production as well. The sludge production from the plant is mainly 

influenced by the influent fXI (which directly affects the amount of sludge 

production in the plant). Temperature has a lower impact on the sludge 

production, mainly through its effect on the decay rate of biomass in the 

system. These observations are all in agreement with general process 

engineering understanding of activated sludge systems. The results of 

scenario 1, where the purpose is to study the importance of influent quality 

on plant design performance, also imply that uncertainty in the influent 

wastewater fractionations (i.e. COD) and temperature (i.e. T), which could 

be affected by climate change, are crucial parameters affecting all the key 

design performance indicators. Therefore in plant design studies, 

appropriate engineering measures need to be proposed to ensure 

robustness of plant performance against future changes in influent quality 

and temperature (e.g. by increasing design safety margins). 

Comparing the sensitivity analysis methods, one observes that the sensitivity indices 
obtained from the Monte Carlo procedure were in very good agreement with the indices 
obtained from PCE, GPR, and ANN metamodels, with GPR and ANN models giving slightly 
better results compared to PCE models. This is mainly because GPR and ANN models 
have a better cross-validation performance score compared to PCE models (see  

Table 2, Table 3, Table 4), especially for models of effluent nitrate, 

effluent ammonium, and the effluent quality index. However, the ANN 
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model performs even better than the GPR model for the effluent quality 

index. For methane and sludge production, all the models give very similar 

results, as they all have cross-validation scores close to 1. 

 

 

 

Figure 6: Comparison of Sobol indices obtained from the original plant model (BSM2) using 
the MC procedure and metamodels (PCE, GPR, and ANN) for the scenario 1. The most 
influential influent fractionation parameters are shown for the key plant performance 
indicators: (a) Effluent nitrate (b) Effluent ammonium (c) Effluent quality index (d) Sludge 
production (e) Aeration Energy (f) Methane production. 

3.3.2. Sensitivity analysis of stoichiometric and biokinetic parameters - Scenario 2 

 

The objective of the scenario 2 was to assess the importance of 

process model parameters on the plant design performance metrics. In 
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BSM2, ASM1 is used to describe microbial conversion dynamics in 

activated sludge tanks, hence (stoichiometric and kinetic) parameters of the 

ASM1 model are analyzed in this scenario as input sources of uncertainty. 

The sensitivity analysis results, as shown in Figure 7, reveals that for 

effluent nitrate, the influential parameters (in descending order) are iXB, 

KOH, ηyh, YH, and ηg. When the nitrogen fraction in biomass (i.e. iXB) 

increases, the ammonium concentration inside the reactor increases as this 

nitrogen fraction is hydrolyzed after biomass decay. Therefore, the effluent 

nitrate concentration increases due to increased availability of ammonium 

for nitrification/oxidation. The effluent nitrate concentration can also depend 

on the anoxic growth rate of heterotrophs (KOH, ηg), which convert nitrate 

to N2. As expected from process engineering understanding, the 

heterotrophic yield, a stoichiometric parameter, is one of the most 

influential parameters for this output. It is noteworthy to mark that the EQI 

is also influenced by the same set of parameters (iXB, KOH, ηhyh, YH, and 

ηg), because the effluent nitrate concentration has a considerable weight in 

the EQI calculation (see supplementary material for EQI equation). 

Likewise, for the effluent ammonium concentration, the sensitivity analysis 

reveals that the nitrification parameters (KNH, KOA, bA, uA) are significant. 

Moreover, other parameters, namely XITSS (i.e., TSS to COD ratio), are 

found to be important. The latter parameter directly affects the sludge 

production, and, through SRT control, this parameter affects the sludge 
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wastage rate which determines the amount of nitrifying biomass in the 

system. It indicates that the sludge production in the AS system increases 

(recycling more active biomass from SC to AS) with an increase in XITSS 

value, and the SRT decreases (as constant TSS is maintained by the 

controller) by manipulating the flowrate Qw (waste sludge goes to the AD 

via the thickener) and reduces the nitrification rate. This understanding 

agrees well with engineering knowledge and findings reported by Sin et al. 

(2009). The aeration energy consumption is influenced by the parameters 

such as iXB, fp, YH, KOH and XITSS which can be related to the biomass 

availability in the AS tank. This can be because of a higher active 

biomass recycle to the AS tank or a higher yield or a lower inert fraction 

in the biomass or a higher nitrogen fraction in the biomass leading to 

more ammonium substrate resulting in more AOB growth.  

As for the performance comparison of metamodels, there is no clear 

difference between the models except that PCE models give slightly 

diverging results in comparison to the others, which can be attributed to 

their slightly lower cross-validation scores. Moreover, GSA results from 

metamodels also show a good agreement with those obtained from the 

MCS approach in terms of correctly ranking the most important 

parameters. 
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Figure 7: Comparison of Sobol indices obtained from the original plant model (BSM2) using 
the MC procedure and metamodels (PCE, GPR, and ANN) for the scenario 2. The most 
influential stoichiometric and kinetic parameters are shown for the key plant performance 
indicators: (a) Effluent nitrate (b) Effluent ammonium (c) Effluent quality index (d) Sludge 
production (e) Aeration energy (f) Methane production. 

3.3.3. Sensitivity analysis of hydraulics and design related parameters – scenario 3 

 

Regarding the influence of hydraulic and design parameters on the 

effluent nitrate concentration, which was the scope of scenario 3, Figure 8 

shows that slow settling in the secondary clarifier (rP), the anoxic tank size 

(VOL1, VOL2) and the internal recycle flowrate (Qintr) are important 

parameters. The settling parameter (rP) will affect the amount of biomass 

lost in the effluent, which in turn will impact the active biomass 

concentration in the activated sludge tanks. Likewise, VOL1 and VOL2 
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determine the HRT of the anoxic tank and the internal recycle helps to 

transport nitrate from the aerobic tank to the anoxic tank (Baeza et al., 

2004). Altering these parameters can lead to inefficient denitrification that 

will influence the effluent nitrate concentration. The effluent ammonia is 

influenced by aerobic tank size (i.e., VOL3, VOL4, and VOL5) as 

nitrification largely depends on the aerated fraction of the HRT in the 

activated sludge systems (when the SRT is controlled/fixed). The longer 

aerated HRT will allow more nitrification to take place in the system. On 

the contrary, the reduction of HRT (as aerobic tank size reduces) leads to 

washout of biomass and further accumulation of ammonium (Li et al., 

2013) inside the aerobic tank.  However, the EQI solely depends on 

settling parameters (rP) as poor settling in the SC can drastically increase 

total suspended solids and nitrate concentrations of the effluent. This also 

means poor settling leads to higher discharge of biomass in the effluent 

rather than ending up in the anaerobic digester and later in the sludge. 

The aeration energy is mainly influenced by the aeration tank size and 

again by the settling parameter. A similar reasoning can be used here, 

i.e., poor settling in the SC leads to a lower recycle of active biomass to 

the AS tank which can lead to a lower aeration energy demand. 

Therefore, based on scenario 3 results, it is evident that hydraulics (i.e. 

internal recirculation flow rates in aeration tanks) and effective volumes of 

reactors (which may change due to construction or mixing issues for 
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aeration as well as settling tanks) have the potential to affect the design 

performance metrics. Therefore good engineering practices and design 

standards (such as Metcalf & Eddy Inc. et al., 2014) should be followed in 

plant design and commissioning. 

 

 

 

 

Figure 8: Comparison of Sobol indices obtained from the original plant model (BSM2) using 
the MC procedure and metamodels (PCE, GPR, and ANN) for the scenario 3. The most 
influential hydraulics and design parameters are shown for the key plant performance 
indicators: (a) Effluent nitrate (b) Effluent ammonium (c) Effluent quality index (d) Sludge 
production (e) Aeration energy (f) Methane production. 

 

3.3.4. Sensitivity analysis of uncertain influent fractionations, kinetic and biokinetic 

parameters, and hydraulics and design related parameters – Scenario 4 
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The objective of the scenario 4 is twofold: to analyze the comparative 

effects of different sets of parameters, and secondly, to test the robustness 

of the meta-model based GSA techniques in high dimensional settings. For 

that reason, all the previously studied scenario parameters are gathered to 

obtain a larger parameter set. Based on the parameter sensitivity rankings 

obtained in this scenario, the following conclusions are drawn. As was also 

found in scenario 1, all the plant KPIs show a high sensitivity to the 

variation in the incoming influent temperature (T), except total sludge 

production, which is more dictated by the particulate organic matter fraction 

(fXI) of the influent, as expected. For effluent ammonium, effluent quality 

index, and aeration energy demand, the total impact of influent 

temperature is close to one whereas, for methane production, the influent 

fractions of fXI and fSS were also found as significant parameters. The most 

important parameter results of this scenario differ from those of scenario 1 

only with the inclusion of some scenario 2 parameters (such as iXB, fP, 

XITSS) among the top listed parameters. Moreover, this comparison of 

different sets of uncertain parameters on the plant KPIs implies that 

influent uncertainty is the most critical source of uncertainty in WTTP 

design, as it causes the largest deviations from the means of the 

performance metrics (see Table S5). On the other hand, hydraulics and 

design related parameters of scenario 3 play a negligible role when 
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compared with the other sets. Regarding the parameter ranking results 

obtained from the metamodels, a good agreement with the costly MCS 

approach is still preserved (see Figure 9), even when the dimension of the 

parameter space was relatively high (d=37). PCE models give slightly less 

accurate results compared to ANN and GPR models (for example effluent 

nitrate in Figure 9), though they all correctly rank the most sensitive 

parameters. This further strengthens the reliability of the use of the 

metamodeling-based approach for global sensitivity analysis of complex 

plant-wide models. 

 

 

 

Figure 9: Comparison of Sobol indices obtained from the original plant model (BSM2) using 
the MC procedure and metamodels (PCE, GPR, and ANN) for the scenario 4. The most 
influential parameters considered in all scenarios are shown for the key plant performance 
indicators: (a) Effluent nitrate (b) Effluent ammonium (c) Effluent quality index (d) Sludge 
production (e) Aeration energy (f) Methane production. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

45 

 

3.4. Comparison of computational cost of different GSA approaches 

In terms of their computational costs, the approaches discussed above 

differ considerably. As the actual elapsed clock time for performing the 

required simulations will vary depending on the simulation and the solver 

settings, the type of processing units, the computing architecture (clusters, 

clouds, etc.), and the computing strategy (level of parallelization), a 

comparison is given in terms of the number of costly model evaluations 

needed, which is listed in Table 5 for each approach. To obtain Sobol 

indices from the Monte Carlo procedure, sampling matrices of size 2000 

were used, which resulted in 78000 plant model simulations for the 

scenario 4 in which 37 parameters were sampled in total. For investigating 

all the scenarios, a total of 164000 plant simulations were performed in 

parallel using a high performance cluster connected to 100 processing 

units. The large size of the matrices is necessary to ensure accurate 

convergence of each sensitivity index of all the investigated parameters. 

Expectedly, the metamodeling based approaches used a significantly lower 

number of original model simulations, which is the size of the experimental 

design they were built from. The incremental algorithm of the framework 

used as few as 100 simulations to build GPR and ANN models for most 

of the outputs of scenarios 1, 2, and 3; however, a larger dataset is 

needed to attain the target cross-validation scores in scenario 4. A total of 

600 original model simulations were used to produce GPR based indices, 
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plus the time spent on performing the Monte Carlo simulations with 

metamodels (around 10 minutes in the cluster), which is negligible 

considering a single plant simulation time of 6 minutes (      . On the other 

hand, PCE models needed a total of 750 simulations without the need for 

Monte Carlo simulations as explained above. The standardized regression 

coefficients are generated using the Monte Carlo simulation results (using 

the BSM2), for which a sample size of 1000 was used for each scenario, 

resulting in 4000 simulations in total. Unlike the Sobol method, the MC 

procedure for SRC does not depend on the number of parameters 

sampled. In general, using metamodels for conducting the scenario 

analysis with BSM2 results in an order of magnitude computational gain 

compared to SRC, and a two orders of magnitude gain compared to the 

Sobol method.  

 

 

 

 

 

 

 

Table 5: Comparison of computational costs of different approaches for global sensitivity 
analysis 

Approach # of plant-wide simulations used Total computational cost  

Scenario 1 Scenario 2 Scenario 3 Scenario 4  
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(     (      (      (      

SRC with MCS 1000 1000 1000 1000             

Sobol indices with 

MCS using BSM2 

18000 44000 24000 78000               

Sobol indices with 

MCS using GPR 

150 100 100 250             

Sobol indices with 

MCS using ANN 

150 100 100 450             

Sobol indices with PCE 250 150 100 250            

 

 

4. Conclusions 

In this work, a new methodology for performing efficient global 

sensitivity analysis using advanced surrogate models is presented and 

demonstrated with four different scenarios covering various kinds of 

epistemic system uncertainties in wastewater treatment plants. The key 

findings of the presented work can be summarized as follows: 

 The proposed framework facilitates gaining valuable insights into 

performance of complex process systems like WWTPs by combining 

advanced GSA methods (such as variance decomposition-based 

Sobol sensitivity analysis) with powerful machine learning algorithms. 

 The Sobol sensitivity method provides more reliable sensitivity 

measures compared to the widely-used SRC method, especially 

when highly nonlinear relations exist between the model outputs of 

interest and the input parameters. When the degree of linearization 
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is low, the SRC method fails to provide correct parameter rankings, 

and therefore should be avoided in plant-wide model applications 

that feature strong nonlinearities between inputs and outputs.  

 In general, compared to MC-based techniques, using surrogate 

models to carry out system-wide GSA of WWTP models yields 

computational gains as large as two orders of magnitude. 

 The easyGSA toolbox provided with the framework expedites the 

process of constructing highly accurate surrogate models, and 

enables performing computationally heavy model-based analysis such 

as global sensitivity analysis and beyond.  

 Polynomial chaos expansion is a particularly efficient technique that 

can be used to calculate Sobol sensitivity indices of complex 

biological systems at a very low computational cost. To further 

increase the accuracy of the PCE-based indices and to cross-

validate them, GPR and ANN type metamodels can also be 

constructed to replace the computationally demanding models in 

Monte Carlo simulations. 

 Influent fractionations, stoichiometric and biokinetic model parameters 

as well as hydraulics and design related parameters are all found to 

be influential in estimating performance metrics of WWTP systems 

when analyzed separately. However, the comparative analysis of all 
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the parameters confirms that the influent parameters are more 

important for most of the plant KPIs. 

Finally, although it has not seen wide use in plant-wide modeling of 

WWTPs, Sobol-based global sensitivity analysis is a powerful tool for 

unveiling the underlying complex parameter dependence of system 

behaviors. The computational cost can be further brought down by exploring 

advanced surrogate modeling techniques, for which the sequential 

framework provides a useful workflow. As the framework is flexible, cross-

validated surrogate models can also be generated for other application 

purposes than global sensitivity analysis, such as process synthesis and 

model-based design optimization, which is an ongoing work. 
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