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Abstract 

This paper presents two nonlinear model predictive control based methods for solving closed-

loop stochastic dynamic optimisation problems, ensuring both robustness and feasibility with 

respect to state output constraints. The first one is a new deterministic approach, using the wait-

and-see strategy. The key idea is to specifically anticipate violation of output hard-constraints, 

which are strongly affected by instantaneous disturbances, by backing off of their bounds along 

the moving horizon. The second method is a stochastic approach to solve nonlinear chance-

constrained dynamic optimisation problems under uncertainties. The key aspect is the explicit 

consideration of the stochastic properties of both exogenous and endogenous uncertainties in the 

problem formulation (here-and-now strategy). The approach considers a nonlinear relation 

between uncertain inputs and the constrained state outputs. The performance of the proposed 

methodologies is assessed via an application to a semi-batch reactor under safety constraints, 

involving strongly exothermic reactions. 

Keywords: NMPC, Output-Constraints, Chance-Constraints, Dynamic Real Time Optimisation, 

Batch Processes, Safety. 

1. Introduction 

Model-based process control has become significant during the last few decades (Morari & Lee, 

1999; Qin & Badgwell, 2003; Lee, 2011; Darby & Nikolaou, 2012; Ellis et al., 2014; Mayne, 2014; 

Forbes et al., 2015; Saltik et al., 2018). However, for a quantitative understanding and control of 

time-varying phenomena in process systems, it is essential to relate the observed dynamical 

behaviour to mathematical models. Due to the generally limited quality and quantity of input-

output data used to fit the model, the model will not be an exact representation of the true process. 

Thus, the practical implementation of model-based techniques often leads to a significant 

discrepancy between reality and simulation. These models usually depend on a number of 

parameters whose values are either entirely unknown or only known to a limited degree of 

reliability. Furthermore, often only a part of the system's dynamics can be measured. Therefore, 
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a plant model unavoidably involves uncertainties. They are either endemic due to the external 

disturbances or introduced into the model to account for imprecisely known dynamics.  

These uncertainties or disturbances are often multivariate and correlated stochastic sequences. 

Moreover, the use of feedback control in order to compensate uncertainties cannot ensure 

satisfaction of constraints on open-loop variables. Thus, a closed-loop control requires on-line 

measured values of controlled variables. Many variables in engineering practice cannot, though, 

be measured on-line. These variables often represent the product quality and, thus, their control 

is highly desired and of great importance. To overcome this limitation, measurable variables are 

chosen as controlled variables in order to control the product quality indirectly. This concept is 

schematically illustrated in Figure 1. Here, the measurable output variables y will be controlled at 

their set-points ySP by using the control variables u. On the other hand, control of yC is preferred, 

but, due to the lack of on-line measurement it has to be open-loop. In these cases, yC needs to 

be constrained instead of y. 

 

Figure 1: The open-closed control framework 

To guarantee the product quality, the common procedure in industrial practice is to select an 

extremely conservative set-point value. This implies that the product quality will be unnecessarily 

much higher than specified and, thus, the operation costs will also be much higher than necessary 

as a result. Consequently, an optimal group of set-points for the controllers is needed which are 

neither too conservative, nor too aggressive. In addition, constrained variables for safety or 

environmental considerations are often monitored but not closed-loop controlled. Thus, it is 

required to evaluate the probability of violating these constraints at the decided operating point. 

The restricted industrial acceptance of model-based optimisation techniques is caused by the 

availability of detailed dynamic models (Forbes et al., 2015). Their lack of reliability together with 

the presence of uncertainty has motivated the investigation of process improvement. For this 

purpose, in this paper, chance constrained optimisation is proposed, i.e. the objective function 

(e.g. costs) is improved and the constraints with regard to yC are then to be satisfied with a 

predefined confidence level. Thus, unlike the problem definition above, where controls are 

decision variables, in the closed-loop framework the set-points of the measurable outputs are 

defined as decision variables. The controls will react based on the realisation of the uncertain 

inputs and, thus, they are uncertain variables. Consequently, the consideration of 

uncertainties/disturbances and their stochastic properties in optimisation approaches are 

necessary for robust process control. 
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2. Problem statement 

Batch processing provides greater flexibility in the production of speciality and pharmaceutical 

chemicals. The trend in the chemical industry towards high added value products has increased 

interest in the optimal, model-based control of batch processes. In contrast to continuous 

processes which have been subject to several rigorous optimisation studies, batch and semi-

batch reactors are often still operated using recipes which are based on heuristics and experience 

(Pahija et al., 2013). Due to its ability to include constraints directly in the computation of the 

control moves, nonlinear model predictive control (NMPC) offers advantages for the optimal 

operation of transient chemical plants (Morari & Lee, 1999). However, numerous robust predictive 

controllers suffer from excessively conservative control because they rely upon open-loop 

predictions of future system uncertainty (Kothare et al., 1996; Bemporad & Morari, 1999; Alessio 

& Bemporad, 2009; Kähm & Vassiliadis, 2018a, b, c).  

Open-loop predictions overestimate the uncertainty in future outputs (Lee & Yu, 1997; Ma et al., 

1999; Nagy and Braatz, 2004). Furthermore, since the true process optimum frequently lies on a 

boundary of the feasible region defined by one or more active constraints, the process is inevitably 

forced into an infeasible region due to the uncertainty in the parameters, external disturbances, 

and measurement errors (Chisci et al., 2001; Yu et al., 2014). Thus, the risk of infeasibility at 

every sampling instant represents another critical issue in model predictive control (MPC) 

schemes. Hence, the formulation of soft constraints has become common to handle state output 

constraints, in which penalty terms concerning the constraints are included in the objective 

function. This prevents infeasibility problems by allowing violations of the constraints (Mayne, 

2000; Mayne et al., 2000; Mayne, 2016).  

On the other hand, approaches based upon relaxation are, in fact, inapplicable for processes with 

strict safety restrictions which are not supposed to be violated at any time point. Deterministic 

approaches for handling robustness in MPC (Mhaskar et al., 2005; Saltik et al., 2018) and to 

ensuring state constraint satisfaction via modification of the constraints for steady state processes 

(Dubljevic et al., 2005) have been proposed. Besides, although NMPC can inherently exhibit a 

certain degree of robustness (De Nicolao et al., 2000; Zavala & Biegler, 2009; Griffith et al., 2018), 

for safety-critical transient processes, however, an explicit consideration of uncertainty and 

disturbances is needed. 

2.1. Motivating case study 

A strongly exothermic series reaction conducted in a non-isothermal batch reactor (Figure 2) is 

considered. The reaction mechanism considers a second-order kinetics for the first reaction 

producing B from A, and a first-order kinetics for the undesirable consecutive reaction converting 

B to C. The reaction scheme is given as follows: 

          (1) 
2A B C

K1 K2
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The intermediate product B is deemed to be the desired product. In order to prevent the risk of 

runways, batch reactors are usually equipped with two cooling systems, a jacket around the 

reactor tank and a coil inside the reactor. In this case study, only the dynamics of the jacket 

cooling system is explicitly considered while the temperature of the cooling system inside is used 

as an operational degree of freedom. The rector flowsheet is shown in Figure 2. 

 

Figure 2: Scheme of the semi-batch reactor and its cooling system 

In addition, for safety reasons, the potentially hazardous process is operated in a fed-batch 

manner. However, in industrial practice, the simple feeding strategy with a constant dosing rate 

over the entire batch time is commonly used. 

3. A NMPC-based on-line optimisation approach 

For this purpose, a NMPC scheme is proposed to solve closed-loop dynamic optimisation 

problems, ensuring both robustness and feasibility with respect to output constraints. The main 

concept lies in the consideration of unknown and unexpected disturbances in advance. The novel 

deterministic approach is based on the wait-and-see strategy. The key idea is here to anticipate 

violation of output hard-constraints (safety restrictions), which are strongly affected by 

instantaneous disturbances. Thus, in order to guarantee that the determined optimal operation 

remains safe, safety restrictions are needed to be incorporated explicitly in the NMPC optimisation 

problem model. 

Even though operation at this optimum is preferred, it usually cannot be accomplished with 

simultaneous fulfilment of all constraints, due to the effect of external disturbances. Thus, in this 

section, an NMPC based approach is proposed to implement such an optimal strategy remaining 

safe despite disturbances. 
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The consideration of these output constraints for the control problem in the limited horizon does 

not naturally imply that a feasible operation can be guaranteed at each time point. Poorly defined 

constraints within the moving horizon can lead to a deadlock situation. That means that the 

system is manoeuvred into a situation where the problem is infeasible and cannot be solved with 

the given optimisation variables and their bounds (Helbig et al., 1998). In connection with batch 

reactors a deadlock situation arises when a high educt accumulation takes place in the reactor, 

leading to a heat development which exceeds the system cooling capacity. By this effect, the 

reactor can no longer be controlled, and a runaway reaction results. 

In order to prevent such situations, a predictive optimisation is necessary. This is however limited 

through the horizon length and, thus, is not necessarily enough in order to hold the process within 

a feasible operating region. Previous studies on this issue show that certain restrictions can be 

formulated so as to prevent a deadlock situation. One possibility will be to work with special path 

constraints which consider worst case scenarios. Another alternative assuring feasibility can also 

be the restriction of the allowable deviation from the set-point trajectory. In this work, the main 

aim is to meet the safety constraints under all circumstances. Therefore, deviations from the 

originally determined trajectories to the possible disadvantage of the economic objectives are 

accepted. 

3.1. Dynamic adaptive back-off strategy 

Since the true process optimum often lies on a boundary of the feasible region defined by one or 

more active constraints, the process is forced into an infeasible region due to the uncertainty in 

the parameters, external disturbances, and measurement errors. Thus, the risk of infeasibility at 

every sampling instant represents another critical issue in MPC. Hence, the formulation of soft 

constraints has become common to handle state and output constraints, in which penalty terms 

on the constraints are included in the objective function. This prevents infeasibility problems by 

allowing violations of the constraints. On the other hand, approaches based upon relaxation are, 

in fact, inapplicable for processes with safety restrictions which are not supposed to be violated 

at any time point (thus comprising hard constraints, as opposed to previous ones which are soft 

constraints). Besides, although NMPC can inherently exhibit a certain degree of robustness, for 

safety-critical transient processes an explicit consideration of uncertainty and disturbances is 

strictly required. 

This issue can be explained with an assumed trajectory of the reactor temperature (T-model) in 

Figure 3. This temperature is calculated with the controller model and it depends on the initial 

value T(t0) and on the cooling flow rate strategy within the horizon (0 ≤ t ≤ TP). The cooling flow 

rate is determined through solution of the optimisation problem such that the discrete values of 

the reactor temperature are feasible at the end of each interval, i.e. the maximum allowable 

reactor temperature Tmax is not exceeded. In Figure 3, the values T(j=1) and T(j=2) lie on the 
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boundary of the feasible region, which means that the constraint is active. The implementation is 

represented in Figure 3 at the bottom on the left. 

 

Figure 3: Course of the reactor temperature within the horizon 

The reactor temperature at the end of the first interval differs from the predicted temperature due 

to the measurement and model errors, and the hard-constraint is violated. For the sake of 

demonstration, a poor direction of action has been chosen. This does not mean that a constraint 

violation is always unavoidable. 

The third diagram on the right in Figure 3 represents the issue which corresponds to the initial 

value for the optimisation problem in the next interval. This value is determined through 

measurement and does not necessarily correspond to the actual process state. In this case, a 

feasible problem solution means that the decision variable (cooling flow rate) is selected in such 

a way that the reactor temperature will lie inside of the feasible region at the end of each interval. 

But, it is also possible that even the maximum system cooling capacity is not able to realise this 

demand. This results in the optimisation problem to become unsolvable. Thus, practical 

implementation of NMPC becomes difficult for any reasonably non-trivial nonlinear system 

(Mayne et al., 2000). However, as illustrated in Figure 3, critical issues are robustness and the 

feasibility of the optimisation problem, i.e. the presence of an input profile that satisfies the 

constraints. 

Thus it may be necessary to back off from the nominal optimal value of the constraints which are 

difficult to measure or to control due to the poor dynamics. These so-called back-off strategies 

(Loeblein & Perkins, 1999; Logist et al, 2011), in which the original path constraint is shifted to 

another value, so that the process always has a certain distrance to the original constraint 

(Puschke, et al. 2017). Various studies investigated their application (Visser et al, 2000; Soliman, 
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et al., 2008; Galvanin, et al., 2009; Shi, et al., 2016; Aydin, et al., 2018; Koller, et al., 2018; 

Maussner & Freund, 2018; Emenike, et al., 2019) by developing ways to tighten violated 

constraints and shrinks the feasible region such as the worst-case scenario of a given process 

will still be feasible despite variations in the constraints.  

In order to guarantee robustness and feasibility with respect to output constraints, despite of 

uncertainties and unexpected disturbances, an adaptive dynamic back-off strategy is introduced 

into the optimisation problem to guarantee that the restrictions are not violated at any time point, 

in particular, in case of sudden cooling failure. These back-offs describe the distance between 

values for nominal optimal computed outputs and the corrections which add conservative 

distances to constraints (Barz et al, 2011). For this purpose, it is necessary to consider the impact 

of the uncertainties between the time points for re-optimisation and the resulting control re-setting 

by setting, in advance, the constraint bounds to be much more severe than the physical ones 

within the moving horizon. 

 

Figure 4: Back-off strategy within the moving horizon 

 

Figure 5: Back-off from active constraints 
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Thus, as shown in Figures 4 and 5, the key idea of the approach is based on backing-off of these 

bounds with a decreasing degree of severity leading then to the generation of a trajectory which 

consists of the modified constraint bounds along the moving horizon (8 intervals). For the near 

future time points within the horizon, these limits (bounds) are more severe than the real physical 

constraints and will gradually be eased (e.g. logarithmically) for further time points. The trajectory 

of these bounds is dependent on the amount of measurement error and parameter variation 

including uncertainty. 

In some cases, the true process optimum lies on the boundary of the feasible region defined by 

the active constraints. Due to the uncertainty in the parameters and the measurement errors, the 

process optimum and the set-point trajectory would be infeasible. By introducing a back-off from 

the active constraints in the optimisation, the region of the set-point trajectory is moved inside the 

feasible region of the process to ensure, on the one hand, feasible operation, and to operate the 

process, on the other hand, still as closely to the true optimum as possible (Figure 5). 

Consequently, the darkened area in Figure 4 illustrates the corrected bounds 𝑦̃𝑚𝑎𝑥 of the hard 

constraints. Here, it should however be noted that due to the tighter bound at the computation of 

the previous horizon, the initial value at 𝑡0 is rather far away from the constraint limit in the feasible 

area. Thus, in the first interval of the current moving horizon, the bound is set at the original 

physical limit to avoid infeasibility. The back-off adjustment starts from the second interval, i.e. 

from the time point on which the next re-optimisation begins. Since there will be more time points 

for re-optimisation and thus for compensating disturbances, for the further remaining intervals 

within the moving horizon 𝑦̃𝑚𝑎𝑥  approaches to the original bound. The size of 𝑦̃𝑚𝑎𝑥  strongly 

depends on parametric uncertainty, disturbances, and the deviation caused by measurement 

errors.  

 

Figure 6: Closed-loop optimisation framework including hard output constraints 

The developed closed-loop optimisation framework is depicted in Figure 6. The concept 

incorporates also a feasibility analysis with regard to the handling of safety constraints. For this 
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purpose, the safety constraints are set at the beginning of each time step. By this means, the 

value of 𝑦̃𝑚𝑎𝑥  can be verified through simulation. 

In case the optimisation algorithm does not find a solution, a trigger is activated that holds the 

current control signal fixed also for the next interval. Another important issue is represented by 

the initial values for the optimisation. Here, the values of the open-loop optimisation are used as 

reference. 

Furthermore, by means of simulation, the constraint tightening (back-off) within the horizon can 

be estimated. This depends, however, on the size and effect of the arising uncertainties. The 

back-off is also to be selected as small as possible in order not to lose optimisation potential. In 

case the required process knowledge is not available, then the back-off is determined in a 

conservative manner. 

3.2. A two-level strategy for optimisation based control 

The size of the dynamic operating region around the optimum (see Figure 6) is affected by fast 

disturbances. These are however, efficiently rejected by the proposed regulatory NMPC-based 

approach. On the other hand, there are, in fact, slowly time-varying non-zero mean disturbances 

or drifting model parameters which change the plant optimum with time (Loeblein & Perkins, 

1999).  

 

Figure 7: Online framework: Integration of NMPC and dynamic re-optimisation 

Thus, a re-optimisation, i.e., dynamic real-time optimisation (D-RTO) may be indispensable for 

an optimal operation. When on-line measurement gives access to the system state, on-line re-

optimisation promises considerable improvement. Moreover, additional constraints can be 

formulated. In this case study, the state information is assumed to be available and parameters 
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are estimated from available measurements. The proposed online framework is illustrated in 

Figure 7. 

This online framework provides a basis for feedback from the process to both the NMPC tracking 

controller and to the trajectory design level. This also means that the developed two-level strategy 

for the transient process relies in principle on the assumption that the existing disturbances can 

be divided into fast and slow time-varying non-zero mean disturbances or drifting parameters.  

The update of new trajectories is however performed on a larger time-scale than the sampling 

time of the controller.  

3.3. Robust chance-constrained NMPC under uncertainty 

Model predictive control has been used extensively in process control engineering. One reason 

for its popularity is the ability to include directly constraints in the computation of the control 

moves. However, since the prediction of future process outputs within an NMPC moving horizon 

is based on a process model involving the effects of manipulated inputs and disturbances on 

process outputs, the compliance with constraints on process outputs is more challenging than 

with the ones on process inputs.  

Moreover, as the model involves uncertainty, process output predictions are also uncertain. This 

results in output constraints violation by the closed-loop system, even though predicted outputs 

over the moving horizon might have been properly constrained.  Consequently, a method of 

incorporating uncertainty explicitly into the output constraints of the online optimisation is needed. 

 

Figure 8: Distribution of the operating points 

Furthermore, as discussed in the previous Section, the true process optimum can lie on the 

boundary of the feasible region defined by one or more active constraints and, thus, it represents 

a risk of infeasibility at every sampling instant. In addition, the dynamic operating region around 

the backed-off optimum is certainly not a rigid shape determined by the corresponding back-offs 

from the safety constraints, but corresponds rather to a distribution of points which are closer to 

the nominal optimum (see Figure 8) and thus leading to a better performance. 

Therefore, in this Section, a new robust NMPC scheme is proposed by means of using the chance 

constrained approach (Li et al., 2008; Arellano-Garcia & Wozny, 2009). Here, in particular, closed-



11 
 

loop stochastic dynamic optimisation problems are solved assuring both robustness and 

feasibility with respect to output constraints. 

The main concept lies in the consideration of unknown and unexpected disturbances in advance. 

The approach considers the nonlinear relation between the uncertain input and the constrained 

output variables. The new controller solves a chance-constrained nonlinear dynamic optimisation 

problem at each execution in order to determine the set of control moves that will optimise the 

expected performance of the system while complying with the constraints. The controller deals 

with model uncertainty and disturbances, which are assumed to be correlated multivariate 

stochastic variables, by replacing the deterministic inequality constraints in the NMPC formulation 

with chance constraints which are to be complied with a predefined probability level.  

The formulation and tuning of individual predefined probability limits of complying with the 

restrictions incorporate the issue of feasibility, and the consideration of trade-off between the 

objective function (profitability) and robustness. Thus, the solution of the problem has the features 

of prediction, robustness and being closed-loop. 

3.3.1. Chance constrained linear MPC 

For linear MPC with single chance constraints, the chance constraints can easily be transformed 

to linear deterministic inequalities where the uncertain variables in the prediction horizon are 

described as random variables with a probability distribution function, and the output constraints 

are formulated as chance constraints. This leads to a QP problem and thus the solution can be 

derived analytically (Schwarm & Nikolaou, 1999). For problems with a joint chance constraint, an 

explicit solution cannot be obtained since the calculation of a joint probability of multivariate 

uncertain variables is needed.  Here, the resulting linear chance constrained MPC problem is 

then transformed into a convex nonlinear optimisation problem so that it can be solved with a 

standard NLP method. It should be noted that even if the uncertain inputs are uncorrelated, the 

outputs are correlated through the linear propagation.  

Linear MPC under probabilistic (chance) constraints have been proposed in (Li et al., 2000; 

Wendt, 2005). In these studies, the distribution of disturbances is considered in the design of 

chance constrained MPC controllers, so that the resulting control performance is more robust 

than that by the conventional MPC design methods. However, unlike the linear case, for nonlinear 

(dynamic) processes the controls have also an impact on the covariance of the outputs 

3.3.2. Chance constrained nonlinear MPC 

In this Section, a chance constrained programming framework is used to propose a robust 

nonlinear model predictive control strategy. The basic idea is to avoid directly computing the 

output probability distribution. Instead, an equivalent representation of the probability is derived 

by mapping the probabilistic constrained output region back to a bounded region of the uncertain 

inputs. Thus, the probability computation of the output constraints is transformed to a multivariate 
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integration in the limited area of uncertain inputs (Li et al., 2008; Arellano-Garcia et al., 2009; Barz 

et al., 2011).  Based on the formulation for the tracking controller discussed in Section 3.1, the 

general chance constrained NMPC problem, which is solved at each sampling time k, can be 

formulated as follows:  

min
𝑉̇𝑐𝑜𝑜𝑙

𝒥(𝑁1, 𝑁2, 𝑁𝑈) = ∑ 𝛿(𝑘) ∙ [𝑦̂(𝑡 + 𝑘|𝑡) − 𝑤(𝑡 + 𝑘)]2𝑁2
𝑘=𝑁1

+ ∑ 𝜆(𝑘) ∙ [∆𝑢(𝑡 + 𝑘 − 1)]2𝑁𝑈
𝑘=𝑁1

 (2) 

s.t. 

𝑥(𝑘 + 𝑖 + 1|𝑘) = 𝑔1(𝑥(𝑘 + 𝑖|𝑘), 𝑢(𝑘 + 𝑖|𝑘), 𝜉(𝑘 + 𝑖))      (2a) 

𝑦(𝑘 + 𝑖|𝑘) = 𝑔2(𝑥(𝑘 + 𝑖|𝑘), 𝑢(𝑘 + 𝑖|𝑘), 𝜉(𝑘 + 𝑖))      (2b) 

𝑃𝑟{𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑘 + 𝑖|𝑘) ≤ 𝑦𝑚𝑎𝑥} ≥ 𝛼 𝑖 = 1, … , 𝑛      (2c) 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑖|𝑘) ≤ 𝑢𝑚𝑎𝑥  𝑖 = 0, … , 𝑚 − 1      (2d) 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘 + 𝑖|𝑘) = 𝑢(𝑘 + 𝑖|𝑘) − 𝑢(𝑘 + 𝑖 − 1|𝑘) ≤ ∆𝑢𝑚𝑎𝑥    (2e) 

Where 𝑔1 are the first-principles model equations describing the dynamic changes of the state 

variables 𝑥, while 𝑔2 describe the state of the constrained variables 𝑦 depending on the control 

variables 𝑢 and the uncertain parameters 𝜉. 

The main novelty of the chance constrained NMPC relies on the explicit inclusion of the 

uncertainties in the problem formulation. The principles of the control strategy are schematically 

depicted in Figure 9. 

 

Figure 9: Principles of chance constrained model predictive control 

Based on the current output variable 𝑦(𝑡) and the input 𝑢(𝑡 − 1) the future N controls will then be 

computed such that the predicted outputs are restricted within the specified bandwidth with a 

given probability. Once the control is implemented including the realisation of the disturbances, 

the new state at the time-point 𝑡 + 1 is accessible. The computation is then repeated in the next 

horizon. 



13 
 

The efficiency of the chance-constrained controller is demonstrated through the application to the 

same case study of the fed-batch reactor under safety constraints discussed throughout this 

paper. The resulting NMPC scheme is also embedded in the on-line optimisation framework 

(Figure 7). For the sake of simplicity, the objective function only includes the quadratic terms of 

the controls, since the outputs are confined by the chance constraints.  

Moreover, the relationship between the probability level and the corresponding value of the 

objective function can also be used here for a suitable trade-off decision between profitability and 

robustness. As previously discussed, tuning the value of 𝛼 is also an issue of the relation between 

feasibility and profitability. However, the general solution of the defined NMPC problem from 

Equation (2) is only able to arrive at a maximum value 𝛼𝑚𝑎𝑥 which is dependent on the properties 

of the uncertain inputs and the restriction of the controls. The value of 𝛼𝑚𝑎𝑥 can be computed 

through a prior probability maximisation step. For this purpose, the following optimisation problem 

is then solved: 

max 𝛼            (3) 

s.t.  𝑔(𝑥̇, 𝑥, 𝑦, 𝑢, 𝜉) = 0,   𝑥(𝑡0) = 𝑥0      (3a) 

 ℎ𝐷(𝑥̇, 𝑥, 𝑦, 𝑢, 𝜉) ≤ 0         (3b) 

 𝑃𝑟{𝑇 ≤ 𝑇𝑚𝑎𝑥} ≥ 𝛼         (3c) 

 𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥         (3d) 

Where 𝑔 represents the model equations, which form the equality constraints, and ℎ𝐷 are the 

deterministic inequality constraints. The maximisation of 𝛼 is equivalent to the computation of the 

highest probability value of complying with the constraint, which can be maximised as an ordinary 

objective function by setting the optimal values of the decision variables 𝑢.  

4. Problem formulation 

4.1. Fed-batch reactor model 

In this case study, a detailed first-principles model of the exothermic fed-batch process is given 

by a set of DAEs based on:  

- Material balances: 

𝑑𝑛𝐴

𝑑𝑡
= −𝜈𝐴 ∙ 𝑘01 ∙ 𝑒

−𝐸1
𝑅𝑇 ∙

𝑛𝐴
2

𝑉
+ 𝑓𝑒𝑒𝑑        (4) 

𝑑𝑛𝐵

𝑑𝑡
= −𝑘02 ∙ 𝑒

−𝐸2
𝑅𝑇 ∙ 𝑛𝐵 + 𝑘01 ∙ 𝑒

−𝐸1
𝑅𝑇 ∙

𝑛𝐴
2

𝑉
        (5) 

𝑑𝑛𝐶

𝑑𝑡
= 𝑘02 ∙ 𝑒

−𝐸2
𝑅𝑇 𝑛𝐵          (6) 

- Reactor energy balance: 

𝑑

𝑑𝑡
[𝑇 ∙ 𝑛𝑆 ∙ ∑ (𝑐𝑝𝑖

∙ 𝑥𝑖)
𝑐𝑜𝑚𝑝
𝑖 ] = 𝑄̇𝑟𝑒𝑎𝑐 + 𝑄̇𝑓𝑒𝑒𝑑 + 𝑄̇𝑐𝑜𝑜𝑙

𝐻𝑇       (7) 
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- Cooling jacket energy balance: 

𝑑𝑇̅𝑐𝑜𝑜𝑙

𝑑𝑡
=

𝑉̇𝑐𝑜𝑜𝑙∙𝜌𝑐𝑜𝑜𝑙∙𝑐𝑝,𝑐𝑜𝑜𝑙∙(𝑇𝑐𝑜𝑜𝑙,𝑖𝑛−𝑇̅𝑐𝑜𝑜𝑙)−𝑄̇𝑐𝑜𝑜𝑙
𝐻𝑇

𝑉𝑐𝑜𝑜𝑙∙𝜌𝑐𝑜𝑜𝑙∙𝑐𝑝,𝑐𝑜𝑜𝑙
       (8) 

- Constitutive algebraic equations 

𝑄̇𝑟𝑒𝑎𝑐 = − ∑ (ℎ𝑖 ∙
𝑑𝑛𝑖

𝑑𝑡
)

𝑐𝑜𝑚𝑝
𝑖 = ∑ [ℎ0𝑖 + 𝑐𝑝𝑖 ∙ (𝑇 − 𝑇0)] ∙

𝑑𝑛𝑖

𝑑𝑡

𝑐𝑜𝑚𝑝
𝑖   𝑖 = 𝐴, 𝐵, 𝐶  (9) 

𝑄̇𝑓𝑒𝑒𝑑 = [ℎ0𝑖 + 𝑐𝑝𝑖 ∙ (𝑇𝐹 − 𝑇0)] ∙ 𝑓𝑒𝑒𝑑        (10) 

𝑄̇𝑐𝑜𝑜𝑙
𝐻𝑇 = −𝑘𝐻𝑇 ∙ 𝐴 ∙ (𝑇 − 𝑇̅𝑐𝑜𝑜𝑙) = −𝑘𝐻𝑇 ∙ (

𝜋∙𝑑2

4
+ 4 ∙

𝑉

𝑑
) ∙ (𝑇 − 𝑇̅𝑐𝑜𝑜𝑙)    (11) 

𝑛𝑆 = 𝑛𝐴 + 𝑛𝐵 + 𝑛𝐶          (12) 

𝑉 =
𝑛𝐴∙𝑀̃𝐴+𝑛𝐵∙𝑀̃𝐵+𝑛𝐵∙𝑀̃𝐵

𝑛𝐴∙𝜌̅̃𝐴+𝑛𝐵∙𝜌̅̃𝐵+𝑛𝐶∙𝜌̅̃𝐶
∙ 𝑛𝑆         (13) 

𝑛𝑆 ∙ ∑ (𝑐𝑝𝑖
∙ 𝑥𝑖)

𝑐𝑜𝑚𝑝
𝑖 = 𝑐𝑝𝐴 ∙ 𝑛𝐴 + 𝑐𝑝𝐵 ∙ 𝑛𝐵 + 𝑐𝑝𝐶 ∙ 𝑛𝐶      (14) 

In these equations V denotes the time-varying reactor volume; 𝑛𝑖 the molar amount of component 

i = A, B, C; T, 𝑇𝐹, 𝑇̅𝑐𝑜𝑜𝑙, 𝑇𝑐𝑜𝑜𝑙 the reactor, dosing, jacket and cooling medium temperatures, 

respectively; ℎ0𝑖 are the specific standard enthalpies; 𝑘𝐻𝑇 the heat transfer coefficient; d the 

scaled reactor diameter; S the heat exchanger surface; 𝑀̃𝑖 the molecular weights; 𝜌𝑖 densities; 

𝑐𝑝𝑖 the heat capacities. Additional data and parameters corresponding to the batch reactor are 

given in Table 1.  

Table 1: Process data and parameter of the exothermic batch reactor 

Parameter Unit Value Parameter Unit Value Parameter Unit Value 

𝜈𝐴  2 𝜌𝐴 g/dm3 
550 𝑘𝐻𝑇 W/dm2/K 10 

𝑇0 K 273 𝜌𝐵 g/dm3 
800 𝑉𝑗𝑎𝑐𝑘𝑒𝑡 dm3 

6.98 

𝑅 J/mole/K 8.31441 𝜌𝐶  g/dm3 
900 𝐹𝑒𝑒𝑑 mole/s  

𝑐𝑝𝐴 J/mole/K 92.3 𝑘01 1/s 500 𝑉̇𝑐𝑜𝑜𝑙 
dm3/s  

𝑐𝑝𝐵 J/mole/K 154.2 𝑘02 1/s 10,000 ℎ0𝐴 J/mole 48,500 

𝑐𝑝𝐶  J/mole/K 173.9 D dm 3 ℎ0𝐵 J/mole 36,500 

𝑀̃𝐴 g/mole 25 𝜌𝑐𝑜𝑜𝑙  g/dm3 900 ℎ0𝐶  J/mole 30,000 

𝑀̃𝐵 g/mole 50 𝑐𝑝,𝑐𝑜𝑜𝑙 
J/g/K 3.1 𝐸1 J/mole 48,890 

𝑀̃𝐶 g/mole 50 𝑇𝑐𝑜𝑜𝑙 
K 298 𝐸2 J/mole 53,000 

The resulting model is comprised of five differential and two algebraic state variables. Moreover, 

there are three time-varying operational degrees of freedom: the feed flow rate into the reactor, 

the cooling flow rate, and the length of the different time intervals. 
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4.2. Physical and safety restrictions 

The consideration of safety aspects, in particular physical safety, is essential. They often 

determine the recipe design procedure and limit the achievable performance. Thus, their 

consideration is required in order to operate the process closer to the existing constraints.  The 

developed model considers both the reactor and the cooling jacket energy balance. Thus, the 

dynamic performance between the cooling medium flow rate as manipulated variable and the 

controlled reactor temperature is also included in the model equations. Thereby, it can be 

guaranteed that later the computed temperature trajectory can be implemented by the controller. 

Furthermore, whilst the reaction proceeds, the reactor’s volume varies so that the computation of 

the corresponding cooling capacity is adapted according to the required cooling jacket area. 

Besides, since the heat removal is limited, the temperature is controlled by the feed rate of 

reactant A (semi-batch operation mode), and the flow rate of the cooling liquid, 𝑉̇𝑐𝑜𝑜𝑙. At the start, 

the reactor partly contains the total available amount of A. The remainder is then fed and its feed 

flow rate is optimised to maximise the yield. However, the accumulation of A at the start of the 

batch time must be prevented, otherwise, as the batch proceeds exhaustion of the cooling system 

capacity cannot be avoided. 

4.2.1. Maximal reactor temperature 

In order to guarantee operability within a specified operating regime it should be assured that the 

occurring heat generated can be discharged through the cooling system at any time. Thus, there 

exists a maximal allowable reactor temperature starting from which the maximum cooling 

performance is no longer enough to run the process within the specified product requirements. 

Hence, there is an upper bound according to the critical reactor temperature which should not be 

exceeded at any time point during the whole batch process. Consequently, the following condition 

results: 

𝑄̇𝑟𝑒𝑎𝑐(𝑇𝑚𝑎𝑥) ≤ |𝑄̇𝑐𝑜𝑜𝑙
𝐻𝑇,𝑚𝑎𝑥(𝑇𝑚𝑎𝑥)|        (15) 

This implies that in each time point it must be possible to lower both the reactor temperature and 

the cooling jacket temperature with the maximum available cooling flow rate in order to fulfil 

condition (13). This leads to: 

𝑑𝑇

𝑑𝑡
≤ 0 and 

𝑑𝑇̅𝑐𝑜𝑜𝑙

𝑑𝑡
≤ 0          (16) 

In this case, the relations given in (14) are inserted in Equations (7) and (8), respectively, to obtain: 

𝑇̅𝑐𝑜𝑜𝑙
𝑚𝑖𝑛 = 𝑇̅𝑐𝑜𝑜𝑙 ≤

−𝑄̇𝑟𝑒𝑎𝑐

𝑘𝐻𝑇∙(
𝜋∙𝑑2

4
+4∙

𝑉

𝑑
)

+ 𝑇        (17) 

𝑉̅𝑐𝑜𝑜𝑙
𝑚𝑖𝑛 ≥

𝑄̇𝑟𝑒𝑎𝑐

𝜌𝑐𝑜𝑜𝑙∙𝑐𝑝,𝑐𝑜𝑜𝑙∙(𝑇𝑐𝑜𝑜𝑙,𝑖𝑛−𝑇̅𝑐𝑜𝑜𝑙)
        (18) 
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Equation (17) indicates the minimal required cooling jacket temperature in order to comply with 

condition (16), while Equation (18) denotes the required minimal cooling pump capacity in order 

to remove the reaction heat. This issue is illustrated in Figure 10. 

In particular, Figure 10 shows that once the reactor temperature exceeds 300 K, a sufficiently 

large gradient exists for heat removal over the cooling jacket. Moreover, the required minimum 

temperature of the cooling medium in the cooling jacket is higher than the cooling inlet 

temperature. Additionally, for lower reactor temperatures the necessary pump capacity is rather 

low, though it escalates for higher reactor temperatures reaching its maximal value of 0.3 l/s at 

365 K, which is predefined by the pump design. Thus, the maximal permitted operating 

temperature for the reactor can be specified explicitly. 

 

Figure 10: Simulated minimal cooling jacket temperature and cooling pump capacity 

 

Figure 11: Simulated minimal cooling jacket temperature and cooling pump capacity 
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The results in Figure 11 correspond to the case when the reactor is charged with the entire amount 

of reactant A and the cooling system is switched off. As soon as the reactor temperature reaches 

a certain temperature, the cooling pump will be put into operation at full capacity. 

In the first case (T=356 K) represented in Figure 11, it can be seen that the reactor temperature 

can be lowered with a slight delay, and it achieves the maximum value of 358 K. On the other 

hand, if the pump starts up when the reactor temperature is at 360 K, a further temperature rise 

cannot be stopped and the reactor is no longer controllable. Finally, a runaway cannot be avoided 

by switching on the pump at 369 K. 

4.2.2. Safety restrictions to avoid runaways 

The operation of the fed-batch reactor requires not only operability within specified operating 

regimes but also in non-specified regimes. Since the reaction is strongly exothermic, great care 

is necessary in order to ensure that the determined operation remains safe. In this study, the 

particular scenario of a sudden cooling failure is taken into account. However, since the time 

instant of a possible failure is not known a priori, a safety constraint is incorporated which has to 

be satisfied during the whole operating path. This implies verification through dynamic simulation 

at every time point. Thus, based on the thermal explosion theory used for the analysis and design 

of reaction processes under safety considerations, the adiabatic temperature rise, ∆𝑇𝑎𝑑 is 

considered to deal with the dynamics of the cooling system failure (Abel et al., 2000). However, 

since the maximum achievable temperature after failure is primarily of interest at any time point, 

once a runaway has started, it can be assumed that the feed is stopped immediately and that the 

reaction will carry on under adiabatic conditions. Consequently, the heat produced by the reaction 

will cause a temperature rise whose extent depends on the momentary concentrations, reactor 

temperature, cooling jacket temperature, the heat capacity of the reactor content, as well as on 

the reactor heat generation. This can be calculated by a stationary energy balance around the 

reactor assuming adiabatic conditions. Thus, with the reactor temperature, T, in progress, the 

adiabatic end temperature, 𝑇𝑎𝑑 can then be described as follows: 

𝑇𝑎𝑑 = 𝑇(𝑡) + ∆𝑇𝑎𝑑          (19) 

It results that: 

𝑇𝑎𝑑 =
∑ [ℎ0𝑖+𝑐𝑝𝑖∙(𝑇−𝑇0)]

𝑐𝑜𝑚𝑝
𝑖

𝑐𝑝𝐶∙(𝑛𝐶+
𝑛𝐴

2
+𝑛𝐵)+𝑉𝑐𝑜𝑜𝑙∙𝜌𝑐𝑜𝑜𝑙∙𝑐𝑝,𝑐𝑜𝑜𝑙

+
𝑉𝑐𝑜𝑜𝑙∙𝜌𝑐𝑜𝑜𝑙∙𝑐𝑝,𝑐𝑜𝑜𝑙∙𝑇𝑐𝑜𝑜𝑙+(𝑛𝐶+

𝑛𝐴
2

+𝑛𝐵)∙(𝑐𝑝𝐶∙𝑇0−ℎ0𝐶)

𝑐𝑝𝐶∙(𝑛𝐶+
𝑛𝐴

2
+𝑛𝐵)+𝑉𝑐𝑜𝑜𝑙∙𝜌𝑐𝑜𝑜𝑙∙𝑐𝑝,𝑐𝑜𝑜𝑙

  (20) 

Hence, Equation (20) represents a further algebraic relation which can be used also to restrict the 

variable 𝑇𝑎𝑑 by a temperature limit converting the dynamic treatment of the cooling system failure 

to a path constraint. In order to emphasise this issue, the development of the reactor temperature, 

the cooling jacket temperature as well as the reaction performance are illustrated in Figure 12 

considering the current feed amount in the reactor (500 moles of reactant A) and a switched-off 

cooling.  
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Due to the stationary balance, the instantaneous increase of the temperature is not covered. The 

heat produced, however, is transferred relatively fast to the cooling jacket reaching temperature 

compensation. 

 

Figure 12: Batch heating-up procedure with switched-off cooling 

Furthermore, the maximum possible temperature without heat dissipation to the environment is 

683 K. Because of the heat transfer to the cooling jacket, the adiabatic end temperature of the 

reactor content plus cooling jacket is 564 K. On the other hand, if the initial feed amount of reactant 

A is reduced, for instance to 240 moles, then the end temperature will be decreased to 497 K. 

Thereby, it becomes clear that supplying reactant A during the batch is the most appropriate 

operation mode in order to comply with the safety constraints because of its sensitivity to the 

adiabatic end temperature. By this means, the initial amount of reactant A represents also an 

additional degree of freedom. 
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Figure 13: Simulation of cooling failure 

Thus, Equation (20) represents a regulation for the reactor operation. If this regulation/constraint 

is complied with, it can be then guaranteed that in case of a cooling failure, the reactor will not 

exceed a certain stationary final temperature at any time point. Figure 13 shows the simulation 

results for 𝑇𝑎𝑑 = 500 K and a cooling failure after 2,364 seconds with subsequent switch-off of 

the cooling pump. 

This implies that the limitations of the cooling system (pump capacity) can be taken into account 

explicitly for the optimisation. In addition, both maximum temperature constraints have to be 

enforced during the complete batch time. The selected cooling medium is Aral Farolin U, which 

can be used for a temperature range from -10 to 320 0C. Therefore, it does not represent a source 

of danger in non-specified operating regimes. 

4.3. Optimisation problem formulation 

The optimal operational strategy for the semi-batch reactor is now to be calculated such that the 

physical and safety restrictions derived in the previous Section are also considered. Moreover, 

the open-loop optimal control problem needs to be solved first, and represents a prerequisite for 

the consecutive optimisation with moving horizons involved in NMPC. The objective function is 

chosen depending on the nature of the problem. Thus, there are, in general, two practical 

optimisation problems related to batch operation: maximisation of product concentration in a fixed 

batch time, or minimisation of batch operation time subject to end point constraints in order to 

determine an optimal reactor temperature profile.  

The first problem formulation is applied to a situation where the increase of the desired product 

amount is required while the batch operation time is fixed. This is due to the limitation of complete 
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production line in a sequential processing. However, in some circumstances, we need to reduce 

the duration of batch run to allow the operation of more runs per day. This requirement leads to 

the minimum time optimisation problem. 

In this problem definition, both issues are combined, thus, the objective is to maximise the 

production of compound B at the end of the batch (CBf) while reducing the total batch time, tf: 

𝑚𝑖𝑛
𝑉́𝑐𝑜𝑜𝑙,𝑓𝑒𝑒𝑑,∆𝑡,𝑛𝐴0

(−𝐶𝐵𝑓 + 𝜆 ∙ 𝑡𝑓)   with 𝜆 =
1

70
      (21) 

subject to the equality constraints, i.e. process model Equations (4) – (14), as well as path and 

end point constraints, as outlined immediately next. The numbers in brackets [.] to the left denote 

the current number of constraints. The parameter λ is a weighting factor between the two terms 

(production of compound B at the end of the batch and the total batch time), whose value was 

determined through trial-and-error simulations. 

First, a limited available amount of reactant A, which is to be converted by the final time, is fixed 

to: 

[1]   𝑛𝐴,𝑡𝑜𝑡𝑎𝑙(𝑡𝑓) = 𝑛𝐴0 + ∫ 𝑛𝐴(𝑡)𝑑𝑡
𝑡𝑓

𝑡0=0
= 500 mole     (22) 

At the final batch time, the reactor temperature must not exceed a limit in order to include also 

the shut-down procedure: 

[2]  𝑇(𝑡𝑓) ≤ 303 K         (23) 

The safety restrictions are defined as path constraints. The adiabatic end temperature is used 

amongst others to determine the temperature after failure, as indicator for the educt accumulation, 

as operation mode regulation, and as process monitoring aid. Handling this constraint ensures 

that even in the extreme case of a total cooling failure no runaway will occur. 

[3-42]  𝑇(𝑡) ≤ 356 K         (24) 

[43-82]  𝑇𝑎𝑑(𝑡) ≤ 500 K        (25) 

In addition, in order to prevent too large fluctuations of the control variables, the feed and cooling 

flow rate changes from time interval to interval are restricted to an upper bound. This has a 

positive effect on the convergence of the optimisation problem, particularly with regard to the initial 

values for the optimisation run. However, these limitations can also be modified during the 

optimisation run. For instance, close to the end of the batch process only the absolute amount of 

heat discharged is of interest for the maximisation of product B. Thus, the allowed changes of the 

cooling flow rate between the neighbouring time intervals are smaller. 

[83-122] ‖𝛥𝑉̇𝑐𝑜𝑜𝑙‖ ≤ 0.05        (26) 

[123-162] ‖𝛥𝑓𝑒𝑒𝑑‖ ≤ 0.2         (27) 
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The optimisation problem definition includes also the vector of states with known initial condition, 

x0. The decision variables are the feed flow rate into the reactor (0 – 3 mole/s), the cooling flow 

rate (0 – 0.3 l/s), the length of the different time intervals (with values between 60 and 180 

seconds) as well as the initial amount of A, 𝑛𝐴0, in the reactor.  

The dynamic optimisation problem is solved using the sequential approach, where the variables 

space is divided into state x and control space u. Therefore, only the control or independent 

variables are optimised by the NLP solver (e.g. SQP). The large-scale DAE system is discretised 

with the orthogonal collocation on finite elements, thus, the differential and algebraic (dependent) 

variables are solved throughout the integration of the DAEs with the Newton method, and the 

required sensitivities computed based on the interval gradient information (Li et al., 1998). The 

control variables are set as piecewise constant. 

The problem is solved assuming 40 time intervals, which results in 121 decision variables for the 

entire optimisation horizon. 

4.4. Optimal nominal solution 

In this Section, the open-loop optimal results are presented. In the nominal optimisation the 

uncertainty is ignored. Figure 14 shows the resulting nominal trajectories of the feed and cooling 

flow rate. During the first few time intervals, the feed flow rate is determined at higher values such 

that the constraints (24) and (25) are not violated. After a certain feed amount has been added, 

the feed flow rate is drastically reduced. This ensures a fast ignition of the reaction and a quick 

conversion. 

As soon as the reactor temperature is about to reach its limit value the cooling and, in particular 

the feed flow rate are again increased. At this time the conversion is sufficiently fast to prevent 

the accumulation of A. After 2,500 seconds, when the total feed amount has been supplied, the 

reactor temperature increases rapidly again and arrives at its maximum allowable value where it 

evolves along its upper limit during a long time period (Figure 15). Subsequently, in order to 

comply with the shut-down end-point constraint (23), the cooling rate is increased progressively. 

 

Figure 14: Optimal nominal trajectories of the feed and cooling flow rates 
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Figure 15: Optimal profiles of the components amount, the reactor temperature and the cooling 

jacket temperature at nominal optimum 

The time-dependent amount of different components, the reactor as well as the cooling jacket 

temperature are depicted in Figure 16.  

From Figures 15 and 16, it can be seen that the safety restrictions and the feed flow rate determine 

the reactor temperature evolution. Furthermore, the adiabatic end temperature is decisive during 

the first half of the process run, while in the second part the process is operated almost with 

maximum reactor temperature until the shut-down period starts. The change of the different time 

interval lengths can also be noticed, as illustrated in Figure 14. The sum of all 40 time intervals 

represents the total time. The duration of each individual interval has however a detrimental effect 

on the applied operational strategy. 

 

Figure 16: Trajectory of the adiabatic end temperature at nominal optimum 

The evolution of the adiabatic end temperature for the nominal operation is depicted in Figure 16. 

It can be seen that the adiabatic end temperature reaches its upper limit right from the start and 

remains at this value during the heating process with switched-off cooling (up to 1,500 seconds) 

and maintains this value through a large part of the batch time. By this means, the reactor 

temperature and, in particular, the adiabatic end temperature is an active constraint over a large 
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time period. This poses a potential risk of violation when uncertainty is involved: although 

operation at this nominal optimum is desired, it typically cannot be achieved with simultaneous 

satisfaction of all constraints due to the influence of uncertainties and/or external disturbances. 

However, the safety constraints should not be violated at any time point. Thus, in this section, two 

methods based on a NMPC scheme are proposed to implement such an optimal strategy despite 

disturbances solving closed-loop dynamic optimisation problems assuring robustness with 

respect to state output constraints within an online framework. 

4.5. NMPC simulation results 

Batch processing offers greater flexibility in the production of speciality and pharmaceutical 

chemicals. Thus, the trend in the chemical industry towards high added value products has 

increased interest in the optimal model-based control of batch processes (Bonvin & François, 

2017). Due to its ability to include directly constraints in the computation of the control moves, 

NMPC presents major advantages for the optimal operation of transient chemical plants. 

Moreover, it provides a systematic methodology to handle constraints on manipulated and 

controlled variables, and is not being limited to a certain model structure (Allgöwer et al., 1999). 

The principle of MPC is shown in Figure 17. The model predictive controller uses a process model 

to predict the future, and then computes the future control trajectory that optimises a performance 

objective based on the sum of squares of the differences between model predicted outputs and 

a desired output variable trajectory over a prediction horizon solving an open-loop optimisation 

problem.  

 

Figure 17: Principles of model predictive control 

The value for the control move at the current sampling instance is implemented, i.e. the 

manipulated variables of the first time interval are applied. At the next sampling instance, new 

measurements are collected and the control calculation is repeated. Thus, the time window is 

shifted into the future where the whole procedure is repeated (Figure 18). These steps update the 

control move calculations to consider the latest measurement information. However, most of the 

research efforts have mainly been directed towards the regulation problem for stationary 
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problems. Recently, a growing number of works have studied the application of MPC to batch and 

semi-batch processes.  

 

Figure 18: Close-loop optimisation with the moving horizon 

However, most of the processes are nonlinear and while linear models are good approximations 

if the process is kept close to an operating point, this is not the case when the process changes 

operating point or is subject to large perturbations (Camacho & Bordons, 1999).  

4.5.1. Open-loop strategy implementation 

Based on the open-loop optimal control trajectories of the critical state variables (see Section 4.4), 

in this Section, a deterministic NMPC scheme is implemented for the exothermic fed-batch 

process. In order to implement the open-loop strategy, the 40 intervals from the open-loop 

optimisation are divided into small intervals with the same length.  This is accomplished by a 

developed multiple-time-scaling strategy which is based on the orthogonal collocation method 

over finite elements in time. In this strategy, the large time intervals are to be long enough for the 

practical realisation, as well as for the reduction of the computation time in the sensitivity 

calculation for the optimisation. In order to keep the continuity of the variables, the last collocation 

point is used as the starting point of the next interval. Furthermore, small time intervals are 

adjusted in the simulation and their length is kept more flexible to guarantee the convergence in 

the Newton iteration. In case of non-convergence, a step length adjustment will be activated to 

reduce the step length until convergence is achieved. Moreover, the last collocation point of a 

small time interval must be one of the collocation points of the large time interval. Simulation 

studies have shown that one advantage of the collocation method is that the solutions of state 

variables at the same time point are almost independent of the step length, therefore, the state 

variables of those large intervals can be used to compute the sensitivities. Thus, the gradient 

calculation has to be done only at the end of one large time interval. As a result, both the number 

of decision variables and the computation time for the sensitivity calculation can be significantly 

reduced.  

The time length values for these intervals with regard to the decision variables are taken from the 

off-line optimisation results. The strategy is applied for both discretisation and implementation of 
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the optimal policies according to the controller’s discrete time intervals (6 – 12 seconds), hence 

the length will not be lower than 6 seconds. Thereby, applying this procedure will result in a 

number of around to 600 – 700 intervals.  

 

Figure 19: Division of the time interval length based on the multiple-time-scaling approach 

In Figure 19, the approach is illustrated systematically. In contrast, the values of the temperature 

for the beginning of each new interval are interpolated linearly from the previous values of the off-

line optimal trajectory. 

In Figure 20, the open-loop strategy implementation according to the feedforward strategy is 

presented, i.e. the reactor is operated with the optimal trajectories of the feed and cooling flow 

rate determined by the off-line deterministic optimisation. However, during the course of a typical 

batch, process variables swing over wide ranges of values, and process dynamics go through 

significant changes due to nonlinearity. Furthermore, batch processes are characterised by 

significant uncertainties, a certain number of noisy measurements, and the fact that the controlled 

properties are usually not measured on-line.  

 

Figure 20: NMPC scheme for the tracking control problem 

Thus, in order to show the sensitivity to disturbances the model described in Section 4.1 is 

extended to include also the catalyst activity, a. Thereby, a further factor of influence on the 

system is realised. For this purpose, a simple approach is used to describe a homogeneous 

distributed catalyst in the system considered. The catalyst is assumed to influence the main 

reaction 2𝐴 → 𝐵, primarily. So far it was assumed that the total amount of reactant A is available 

for the reaction, this is however not the case if the reaction is catalysed. In fact, using a catalyst 

typically assumes a decrease of the catalyst activity with usage, and therefore a limited 

conversion of the available educt A. This is mainly attributed to the fact that the reaction takes 
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place on the catalyst surface and this is not fully available in the course of the reaction any longer. 

In a simplified form, the catalyst activity can be described as a relationship between the current 

reaction rate and the reaction rate with the fresh catalyst (t = 0). However, if the deactivation 

mechanism is more complex, the catalyst deactivation kinetics can then not be described 

independently from the reaction kinetics (non-separable kinetics). In this case study, the catalyst 

activity is considered directly as a factor of the reaction term in the component balances. The 

reaction term of the reaction A to B results in: 

𝑟𝐴−𝐵
′ = −𝑎(𝑡) ∙ 𝑘(𝑇) ∙ 𝑐𝐴         (28) 

The kinetics of the catalyst activity is described as follows: 

𝑑𝑎𝐴−𝐵

𝑑𝑡
= −𝐾𝑑𝑒𝑐𝑎𝑦 ∙ (𝑎𝐴−𝐵)2 ∙

𝑛𝐴

𝑉
         (29) 

Where 𝐾𝑑𝑒𝑐𝑎𝑦 and 𝑎𝐴−𝐵 denote the catalyst decay rate and the catalyst diminution, respectively 

(second order) (Fogler, 1999).  

Furthermore, the inlet temperature of the cooling medium into the cooling jacket has been 

assumed so far to be a constant parameter during the off-line optimisation. However, due to 

weather or heat input through the cooling pump depending on its momentary performance, the 

inlet temperature is rather subject to fluctuations. The impact of these changes on the feedforward 

strategy is depicted in Figure 21, which illustrates the simulation results of the batch operation for 

an increment of only 2 K with respect to the cooling inlet temperature from originally 298 K to 300 

K.  

 

Figure 21: Simulation results of the open-loop strategy implementation with ∆𝑇𝑐𝑜𝑜𝑙,𝑖𝑛 = 2K 

Here it becomes obvious that the operating conditions deviate significantly from the nominal 

optimal conditions determined in the open-loop optimisation. In particular, the reference 
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trajectories of the educt A in the reactor and the reactor temperature at each time point differ from 

the simulated trajectories. This has evidently an effect on the yield. However, although operation 

at the nominal optimum is desired, it typically cannot be achieved with simultaneous satisfaction 

of all the constraints involved, because of the influence of external disturbances (Loeblein & 

Perkins, 1999). Thus, an NMPC based approach is proposed to implement such an optimal 

strategy despite the presence of disturbances. 

4.5.2. Closed-loop optimisation 

In this Section, a nonlinear model predictive controller is implemented which assures the 

compliance with the operating conditions tracking the path of the reference trajectory. The feed 

flow rate control is not included in the closed-loop. Based on simulation studies, the reactor 

temperature is extremely sensitive to model uncertainty and disturbances. Its impact on the 

reaction rate is crucial for the course and conversion of the reaction. Thus, the moving horizon 

tracking controller will then increase the system robustness against external disturbances at some 

extent. 

The process/plant model, is discretised using the orthogonal collocation method with three points 

per finite element in time. The model includes now the following disturbances: the catalyst decay 

and the fluctuations of the inlet cooling temperature, which are assumed to be constant 

parameters within the NMPC process model.  The NMPC process model is discretised with the 

implicit Euler method. Due to the short horizon and the small intervals, both large deviation and 

error reproduction are not expected. Thus, with constant step length, the computation time can 

be reduced. This is particularly important with regard to the simulation and the gradient 

computation for the optimisation. It should be noted that the time required for the solution of the 

optimisation problem is directly proportional to the interval length and the number of intervals 

within the moving horizon. 

 

Figure 22: NMPC scheme for the tracking control problem 

As shown in Figure 22, in order to implement the developed recipe, the length of the diverse time 

intervals are first adjusted through the multiple-time-scaling approach. The NMPC controller 

receives then the discrete set-point trajectory determined via open-loop optimisation. However, 

the performance of the model based control approach relies on the proper estimation of current 
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and future states. Thus, at the end of each corresponding time interval and in time-discrete 

distance the controller is updated with the current process state. This occurs through 

measurements at the beginning of each interval (Figure 23).  

 

Figure 23: Tasks during the current interval 

For this purpose, the values of the components’ amounts, and the reactor and cooling jacket 

temperatures are required in order to describe fully the process state. Since the measurements 

(here the current values from the process simulation) can commonly not be measured accurately, 

in this case study these values are corrupted with white noise which for the component amount 

is 8% and for the temperature is 2% of their mean (nominal) values. Subsequently, they are 

smoothed with a first order filter. By this means, fast disturbances can efficiently be rejected by 

the controller. 

In case the available time within the interval is not sufficient to solve the NMPC problem, a trigger 

is activated that holds the current control signal for the next interval. Furthermore, as stated 

before, proper state estimation is crucial for the success of the NMPC application. Extended 

Kalman filter (EKF) has been widely used in process control applications, however its 

performance strongly depends on the accuracy of the model (Nagy & Braatz, 2003; 2004). To 

avoid highly biased model predictions, some of the model parameters are estimated together with 

the states. In this case study, the state information is however assumed to be available. For further 

details concerning the state estimation, we refer to the paper of Haseltine & Rawlings (2005). 

4.5.3. Tracking problem without safety restrictions 

For the online optimisation of the semi-batch process, the momentary criteria on the restricted 

controller horizon with regard to the entire batch operation are insufficient. Therefore, the original 

objective (19) must be substituted by an appropriate alternative that can be evaluated on the local 

NMPC prediction horizon: 

min
𝑉̇𝑐𝑜𝑜𝑙

𝒥(𝑁1, 𝑁2, 𝑁𝑈) = ∑ 𝛿(𝑗) ∙ [𝑦̂(𝑡 + 𝑗|𝑡) − 𝑤(𝑡 + 𝑗)]2𝑁2
𝑗=𝑁1

+ ∑ 𝜆(𝑗) ∙ [∆𝑢(𝑡 + 𝑗 − 1)]2𝑁𝑈
𝑗=𝑁1

 (30) 

Accordingly, the cooling flow rate becomes now a manipulated variable while the resulting time-

variant reactor temperature is taken as reference trajectory. In Equation (30), the first summation 

of the function stands for the task of keeping as close as possible to the calculated open loop 

optimal trajectory of the critical variables 𝑦̂  (e.g., the reactor temperature, which can be measured 

easily online), whereas the second summation term corresponds to control activity under the 
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consideration of the systems’ restrictions described above in Equations (22) – (27). Moreover, the 

control and prediction horizons are chosen equal, to avoid large deviations of the predicted 

quantities from their set-points due to the transient character of the process.𝑁1 and 𝑁2 denote the 

number of past and future time intervals, respectively, while 𝑁𝑈 stands for the number of controls. 

Both the prediction TP and the control horizon TC are comprised of 8 intervals. The corresponding 

parameters of the objective function are given in Table 2.  

Table 2: Objective function parameters 

TP    prediction horizon  8 intervals      

TC    control horizon  8 intervals 

      MV variation weighting factor   3000 

      offset weighting factor   (Tp-j)  with =0.7 

The parameters of the objective function in Table 2 are determined in such a way that the best 

possible control quality can be achieved compensating for disturbances and model uncertainties. 

Thus, in order to examine the robustness of the developed strategies, diverse disturbance 

scenarios are integrated simultaneously. The inlet temperature fluctuations are simulated with a 

sinusoidal oscillation of +/-5 K around its nominal value of 298 K and a period duration of 1,500 

seconds. In order to include the impact of the catalyst activity decay, an initial catalyst activity is 

considered with a(t = 0) = 100 % and a specific decay rate of 𝐾𝑑𝑒𝑐𝑎𝑦= 0,000006.  

Thus, a gradual deactivation of the catalyst is simulated with a final reduced activity of 70% at the 

process end. Moreover, white noise with a maximum deviation of 8% for the component amounts 

and 2% for the temperature are assumed. The time constant of the filter is 15 seconds.  

 

Figure 24: NMPC-based control of the exothermic fed-batch reactor under several disturbances 

without safety restrictions 
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Figure 25: Trajectories of the cooling flow rate with regard to open and closed-loop optimisation 

for the first scenario 

Despite several disturbances, the NMPC simulation results show almost perfect tracking 

regarding the reference temperature, in particular, after 2,000 seconds from the start of the 

process. The deviations at the beginning are due to the lower catalyst activity in combination with 

a smaller heat development as assumed in the open-loop optimisation. Thus, the difference 

between the reference trajectory and the actual reactor temperature is not based on the control 

activity. On the contrary, the controller responds rather appropriately extending the heating period 

until the reference trajectory is reached. 

However, without considering safety restrictions the implemented controller features some 

deficiencies. Figures 26 and 27 show the results for another scenario using the same parameters 

from Table 2. In this case study, the inlet cooling temperature (Tcool,in = 301 K) and the catalyst 

activity, a = 105 % are assumed to be time-invariant representing the case of model mismatch.  

 

Figure 26: NMPC-based control with time-invariant values for the catalyst activity and the inlet 

cooling temperature 

Treference

T
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Figure 27: Trajectories of the cooling flow rate with regard to open and closed-loop optimisation 

for the second scenario 

As a consequence, the reactor temperature is generally higher than the one in Figure 24. This is 

due to the controller model errors. The controller assumes a lower heat development and a higher 

cooling capacity than the ones actually arising in the implementation. 

At the beginning of the heating process, the cooling pump is activated although the inlet cooling 

medium temperature still runs above the reactor temperature (Figure 27). In general, during the 

entire batch process the reactor temperature often lies above the reference trajectory and, as a 

result, it also exceeds the maximum allowed reactor temperature. This means that the reactor is 

operated in a forbidden region, where safety restrictions are not fulfilled. 

Consequently, the controller quality essentially depends on the model accuracy. In other 

simulated scenarios even a runaway cannot be avoided. However, in a typical batch, process 

variables swing over wide ranges and process dynamics go through significant changes. 

Moreover, batch processes are characterised by significant uncertainties, a number of noisy 

measurements, and the fact that the controlled properties are typically not measured on-line. 

Therefore, the potential advantages one expects of a MPC system are likely to lead to be 

cancelled due to the impact of uncertainties, leading to significant tracking errors. Thus, in order 

to guarantee that the determined optimal operation remains safe, safety restrictions are needed 

to be incorporated explicitly in the control scheme. 

4.6. Dynamic adaptive back-off strategy simulation results 

In this section, the safety restrictions described in Section 4.1 are now explicitly considered in the 

NMPC-based control of the exothermic batch process including Equations (24) and (25).  

On the one hand, an end constraint on the adiabatic temperature which guarantees that the 

temperature evolution does not exceed a critical safety limit, even in a case of cooling system 

failure. On the other hand, an upper limit on the reactor temperature which assures operability 

within specified operating regimes, according to the maximum available pump performance. Both 
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constraints are to be enforced during the entire batch time and are formulated as hard-constraints 

in the optimisation problem. 

In the nominal optimisation of the exothermic fed-batch reactor, safety restrictions have been 

considered. They are formulated both as path and end time point constraints. The open-loop 

resulting trajectories of the reactor temperature and the adiabatic end temperature are depicted 

in Figures 15 and 16. It can be observed that during a large part of the batch processing duration 

both states variables evolve along the upper limit. The adiabatic end temperature, in particular, is 

an active constraint over a large time period. Even though operation at this optimum is preferred, 

it usually cannot be accomplished with simultaneous fulfilment of all constraints, due to the effect 

of external disturbances. Thus, in this section, an NMPC based approach is proposed to 

implement such an optimal strategy remaining safe despite disturbances. 

As previously illustrated in Figures 15 and 16, the true process optimum lies on the boundary of 

the feasible region defined by the active constraints. Thus, the safety constraints for the adiabatic 

end temperature and the reactor temperature within the moving horizon are now reformulated as 

follows: 

𝑇(𝑗) ≤ 365 − 𝑇̃𝑚𝑎𝑥 ∙ 𝛼(𝑗−2)           (31) 

𝑇𝑎𝑑(𝑗) ≤ 365 − 𝑇̃𝑎𝑑,𝑚𝑎𝑥 ∙ 𝛼(𝑗−2)        (32) 

With 𝑗 = 2, … ,8; 𝛼 = 0.5; 𝑇̃𝑚𝑎𝑥 = 4 K; and 𝑇̃𝑎𝑑,𝑚𝑎𝑥 = 3 K. 

For the formulation of the NMPC-based online optimisation, the parameters of the objective 

function (28) are also taken from Table 2. The hard-constraints and their back-offs, which are now 

to be included in the optimisation problem are formulated in Equations (31) and (32), respectively. 

The manipulated variable is again the cooling flow rate. In order to compare the performances of 

the open-loop nominal solution and the nominal NMPC with the proposed dynamic adaptive back-

off strategy, different disturbances have been considered.  

In order to show the relevance of the developed closed-loop optimisation framework, the 

robustness of the developed strategies considering the safety restrictions is illustrated in Figures 

28 and 29. The optimal policies guarantee the constraints compliance both for nominal operation 

as well as for cases of large disturbances (e.g., sudden cooling failure at any time-point). To 

emphasise this fact, diverse strong disturbances have been realised simultaneously. The inlet 

cooling temperature fluctuations are simulated with a sinusoidal oscillation of +/-5 K around its 
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nominal value of 298 K and a period duration of 1,500 seconds. 

 

Figure 28: NMPC-based control of the exothermic fed-batch reactor considering safety 

restrictions under several disturbances 

Moreover, an initial catalyst activity is considered with a (t = 0) = 100 % and a specific decay rate 

of 𝐾𝑑𝑒𝑐𝑎𝑦 = 0.0000015. Thus, the final reduced activity is 86% at the process end. Moreover, all 

measurements are corrupted with white noise with a maximum deviation of 2% for the 

temperature and 8% for the component amounts. 

As depicted in Figure 28, the reactor temperature evidently differs from the reference temperature 

(hashed area). Due mainly to the lower reaction performance, the reactor temperature fails to 

keep up with the reference temperature during the heating process.  

 

Figure 29: Optimal trajectory of the adiabatic temperature and the cooling flow rate with regards 

to open and closed-loop optimisation 

Moreover, since the controller does not have a direct influence on the feed supply, in case of 

imminent danger of exceeding the adiabatic end temperature, the controller can only lower the 

reactor temperature. Thus, as shown in Figure 29, 𝑇𝑎𝑑 reacts very sensitively during the time 

period when the feed flow is mainly supplied (1,500 – 2,500 s). Furthermore, since the heat 

T

Treference
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removal and the trajectory of the feed flow rate are determined in such a way that for a large part 

of the operating time the process is run close to the feasible bounds, a higher activity of the 

controller can be observed in Figure 29. Thus, as the manipulated variable changes several peaks 

arise, which  appear within those ranges where the constraints are active. These peaks are mostly 

caused by measurement noise. This is also the result of increasing the educt amount in the 

reactor and thus raising the potential in the reactor. Although in the reference trajectory a 

temperature reduction is provided, it is however not sufficient since a large amount of the educt 

has been accumulated due to the slower reaction as originally assumed. However, the constraint 

with regard to the adiabatic end temperature will then be violated if the reactor temperature is not 

lowered. The now lowered reactor temperature implies though a diminished reaction performance 

such that this effect will again be strengthened. 

The explicit inclusion of the safety restrictions has both advantages and disadvantages. The main 

advantage is obviously the guarantee of compliance with the safety regulations at each time point 

during the operation. In general, the consideration of output constraints leads to an increased 

activity of the manipulated variable. This is due to the relatively short horizon of the controller and 

the relatively large influence of the uncertainties. However, the temperature control is effectively 

implemented and the process is now robust regarding the compensation for fast disturbances 

and, thus, guaranteeing operability within specified operating regimes. The highest priority is 

though given to the fulfilment of the safety restrictions. This implies that the operating conditions 

can quickly deviate from the reference conditions if there is any risk of exceeding the adiabatic 

end temperature. This arises primarily due to the changes in catalyst activity. In other words, the 

effects of slow disturbances or drifting parameters cannot be compensated satisfactorily. 

However, feasibility and robustness in particular with respect to output constraints have been 

achieved by the presented dynamic backing-off strategy. On the other hand, in order to 

compensate for such disturbances, in the following Section the implementation of a second, 

higher level to the framework in Figure 6 is proposed (see Figure 7). This is definitely necessary 

since the selected operating conditions by the controller do not imply an optimal global solution 

for the operation. This is amongst others due to the rather limited control time horizon, the tracking 

of a given reference trajectory as well as the restricted actions which primarily concerns the 

cooling flow rate. 

4.7. A two-level strategy for optimisation based control 

In order to compensate slow disturbances, the on-line dynamic re-optimisation problem is 

automatically activated three times along the batch process time according to a trigger defined as 

the maximum allowable bounded difference, ∆𝑇, between the actual reactor temperature and the 

temperature reference trajectory (see Figure 30a).  

New recipes resulting from this are then updated as input to the on-line framework. Due to the 

different trigger time-points the current D-RTO problem progressively possesses a reduced 
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number of variables within a shrinking horizon (Nagy & Braatz, 2003). However, as a result of this 

and a catalyst contamination, the final total batch time increases. But, despite the large model 

mismatch and the absence of kinetic knowledge, nearly perfect control is accomplished. 

Thus, the resulting NMPC scheme embedded in the on-line re-optimisation framework is viable 

for the optimisation of the semi-batch reactor recipe while simultaneously guaranteeing the 

constraints compliance, both for nominal operation as well as for cases of large disturbances 

(e.g., cooling failure situation at any time-point). The proposed scheme yields almost the same 

profit as the one of the off-line optimisation operational profiles (see  

Table 3). 

Table 3: Nominal optimal and NMPC simulation results under the consideration of several 

uncertainties and disturbances 

 𝐶𝐵𝑓 [mol] 𝐶𝐶𝑓 [mol] 𝑡𝑓 [s] 

Nominal open-loop optimisation 152.5 37.8 4,434 

NMPC / unconstrained  141.0 28.8 4,434 

NMPC / safety restrictions / dynamic back-off strategy 127.9 12.8 4,434 

NMPC / safety restrictions / dynamic back-off / D-RTO 148.8 36.8 4,892 

The real output variables and the current estimated catalyst activity are handed over to the re-

optimisation step as constant values for the triggered optimisation run at the corresponding time-

point. The information about the remaining or already employed educt A is crucial. This issue 

changes the total amount of A, 𝑛𝐴,𝑡𝑜𝑡𝑎𝑙, to be still supplied and, therefore, the equality constraint, 

defined in Equation (22), needs to be readjusted.  
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Figure 30: Implementation results of the online re-optimisation: a) Reference and optimal 

reactor temperature; b) Open and closed-loop optimal cooling flow rate; c) Open and closed-

loop optimal feed flow rate 

However, both the online optimisation and the controller use the imperfect model as also assumed 

in the open-loop optimisation (Section 2.5.1). In Figure 30 (a-c), the implementation results of the 

online optimisation in comparison with the nominal open-loop optimisation are shown.  

The resulting new reference trajectories are updated three times during the batch run, at 1,700, 

2,450 and 3,450 seconds. The different strong disturbances considered are again the oscillation 

of the inlet cooling temperature, a catalyst contamination with 𝐾𝑑𝑒𝑐𝑎𝑦 = 0,0000021, as well as 

perturbed measurements with white noise. The objective function of the D-RTO is the same as 

the one defined in Equation (21). From the results in Figure 30 (a-c) it is evident that a substantial 

improvement of the product yield can be obtained by re-optimising the operating conditions. 

However, the required total time of operation has increased. An alternative to counter this problem 

might be to adapt suitably or restate the objective function of the D-RTO based on the new arising 

process conditions. 

4.8. Robust chance-constrained NMPC under uncertainty 
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The performance objective function from Equation (33) is now redefined as follows: 

𝑚𝑖𝑛
𝑉́𝑐𝑜𝑜𝑙

𝐽(𝑁𝑈) = ∑ [∆𝑢(𝑡 + 𝑘 − 1)]2𝑁𝑈
𝑘=𝑁1

        (33) 

This objective is subject to the entire first principles model as described in Section 2.1. In addition, 

in order to compare the performance of the chance constrained NMPC with the dynamic adaptive 

back-off strategy, the constraint regarding the process shut down is not included in the nominal 

open-loop optimisation. Furthermore, while the hard-constraint with regard to the adiabatic end 

temperature in Equation (32) is still included, the safety restriction in Equation (31) corresponding 

to the maximum allowable reactor temperature is now formulated as a chance constraint within 

the moving horizon: 

𝑃𝑟{𝑇(𝑘 + 𝑖|𝑘) ≤ 𝑇𝑚𝑎𝑥 = 365𝐾} ≥ 𝛼        (34) 

The decision variable here is the cooling flow rate as well.By solving the problem in Equation (34), 

a value of 𝛼𝑚𝑎𝑥 = 96.7% is achieved for the runaway reaction case study considered in this work. 

In order to identify the potential of the proposed approach, the main disturbance assumed is the 

catalyst activity with a variance of 15%. 

However, the use of this strategy for a transient process with the consideration of uncertainties in 

advance has a great impact for those NMPC problems where the reference trajectory is very close 

to a defined upper bound of the constrained output at some time-periods. In order to find further 

improvement of the operation due to the stochastic approach, the chance-constrained approach 

and the deterministic dynamic adaptive back-off strategy are compared. 

 

Figure 31: Reactor temperature trajectory for the back-off and chance-constrained NMPC 

strategies 

The resulting trajectories of the reactor temperature concerning both strategies are illustrated in 

Figure 31. It can be seen that the reactor temperature trajectory based on the back-off strategy 

reaches early a stationary value caused by the fixed bounds of the temperature formulated in the 

corresponding optimisation problem. The temperature curve of the chance-constrained approach 

shows several changes with lower values of temperatures compared to the back-off strategy just 
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after the heating period, and higher values after the total feed amount has been supplied (see 

Figure 32). This is caused by the fact that, when accounting for uncertainties in advance, the 

stochastic approach takes into consideration the reactor’s temperature sensitivity to uncertain 

parameters. 

Due to the higher sensitivities, the stochastic approach implements a more conservative strategy 

after 1,600 seconds, and, thus, the operation may achieve more robustness than the back-off 

strategy. Towards the end of the process, the decrease of sensitivities is used for a close 

approach to the maximum allowable reactor temperature and thus leading to a better objective 

value.  

 

Figure 32: Optimal cooling flow rate for the back-off and chance-constrained strategies and the 

given feed supply 

Moreover, different confidence levels can be assigned to different time periods within the moving 

horizon by using single chance constraints. Consequently, a decreasing factor (i.e., a lower 

confidence level, 𝛼 for the future periods within the horizon) can be introduced. As a result, the 

process operation will be as close as possible to the constrained boundaries. Thus, the chance-

constrained strategy leads to an improvement of both robustness and the objective value. 

Furthermore, it enables a better quantification of how to implement a tuneable policy of 

satisfaction of the underlying safety constraints (how to get close to them). The chance-

constrained strategy would allow for a better optimisation objective function value due to the 

constraints being less conservatively over-satisfied, as is the case of the back-off heuristic policy. 

5. Conclusions 

Model-based process control of transient processes has become very important for industrial 

applications during the last few decades. However, transient processes are inherently dynamic 

and are characterised by the fact that some of the controlled properties are commonly not 

measured on-line. Moreover, since nonlinear models are derived from input-output data, which 

inevitably contain significant bias and variance, the uncertainties and disturbances are required 

to be quantified and considered explicitly in the controller design and analysis. As demonstrated 
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for the semi-batch reactor under safety restrictions, the potential advantages of a model-based 

control system are otherwise likely to lead to significant tracking errors if these uncertainties and 

disturbances are not rigorously quantified and included in the optimisation problems involved for 

controlling the underlying processes. 

In this work, two methods are introduced which are based on nonlinear model predictive control 

(NMPC) schemes to solve closed-loop dynamic optimisation problems in an online framework. 

The key idea lies in the consideration of unknown and unexpected disturbances in advance (i.e. 

anticipating, in particular, violation of output hard-constraints, which are strongly affected by 

instantaneous disturbances).  

The first method introduced is realised by means of an adaptive backing off of their bounds along 

the moving horizon with a decreasing degree of severity with increasing time, leading then to the 

generation of a trajectory consisting of the modified constraint bounds. However, this trajectory is 

dependent on the amount of measurement error and parameter variation, including uncertainty. 

In addition, for the integration of dynamic real-time optimisation and control of transient processes, 

a two-stage strategy is considered which is characterised by a second, higher level corresponding 

to a dynamic optimisation problem and a first, lower level related to a tracking control problem. 

The second method considers the chance-constrained control approach, where the known 

properties of some major disturbances can be integrated in the NMPC formulation. These are 

described with stochastic distributions, which can be estimated from historical data. Moreover, 

the influence of the uncertain variables on the output constraints propagates through the nonlinear 

process with the evolution in time. The solution of the chance-constrained NMPC problem has 

the features of prediction, robustness and being closed-loop. Due to the properties of the moving 

horizon, the developed control strategy is extended to on-line optimisation under uncertainty. 

Thus, a novel concept based on a nonlinear MPC scheme has been introduced to solve closed-

loop stochastic dynamic optimisation problems assuring efficiently both robustness and feasibility 

with respect to input and, in particular, to output constraints. The formulation of individual pre-

defined probability limits of complying with the restrictions incorporates the issue of feasibility and 

the contemplation of a trade-off between profitability and reliability.  

In order to demonstrate the performance of the developed concepts and the efficiency of the 

proposed online framework, both schemes are applied for the on-line optimisation of a semi-batch 

non-isothermal reactor under safety (hard-) constraints and the influence of several disturbances.  

In terms of future work, the back-off scheme is proposed to be developed further in terms of a 

theoretical-algorithmic point of view, as a first step.  In particular, there is no rigorous scheme as 

yet by which the back-off envelopes of bounds on process outputs can be tailored so as to have 

a predefined impact on the process performance.  Nor have there been any special 

methodologies been proposed in the open literature to design these envelopes of tighter bounds 

so as to guarantee a level of satisfaction of constraints in the presence of uncertainties and 
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disturbances with known statistical properties.  Thus this is a first important aspect we wish to 

explore in the near future, so as to provide rigorous theoretical analysis for its properties, and 

practical implementation guidelines which will be very important for practical industrial 

applicability. 

The second area we would like to explore, in particular within the framework of implementing 

chance-constrained schemes, as per our second proposed method in this work, is intensification 

of batch systems with the inclusion of newly presented theoretical work on MPC schemes with 

stability constraints, such as in the recently published original work by Kähm & Vassiliadis (2018a, 

2018b, 2018c). 

In conclusion, we are confident that the work presented in this paper constitutes not only a novel 

and integrated approach towards dealing with online advanced control algorithms, but also to 

extend them to include process uncertainties in a rigorous and satisfactory manner, paving the 

way for a multitude of novel contributions soon. 

6. References 

Abel, O., Helbig, A., Marquardy, W., Zwick, H., Daszkowski, T., 2000, Productivity optimisation of 

an industrial semi-batch polymerisation reactor under safety constraints, Journal of Process 

Control 10 (4), 351-362 

Alessio, A. & Bemporad, A., 2009, A survey on explicit model predictive control, in Nonlinear 

model predictive control. Lecture notes in control and information sciences, vol. 384, Springer, 

Berlin, 345-369 

Allgöwer, F., Badgwell, T.A., Qin, J.S., Rawlings, J.B., Wright, S.J., 1999, Nonlinear predictive 

control and moving horizon estimation – An introductory overview, in Advances in Control, 

Springer, London, 391-449 

Arellano-Garcia, H. & Wozny, G., 2009, Chance constrained optimisation of process systems 

under uncertainty: I. Strict monotonicity, Computers and Chemical Engineering 33 (10), 1568-

1583 

Aydin, E., Bonvin, D., Sundmacher, K., 2018, NMPC using Pontryagin’s minimum principle-

application to a two-phase semi-batch hydroformylaton reactor under uncertainty, Computers and 

Chemical Engineering 108, 47-56 

Barz, T., Wozny, G., Arellano-Garcia, H., 2011, Robust implementation of optimal decisions using 

a two-layer chance-constrained approach, I&EC Research 50 (9), 5050-5063 

Bemporad, A. & Morari, M., 1999, Robust model predictive control: A survey, in Robustness in 

identification and control, Springer, London, 207-226 

Bonvin, D. & François, 2017, Control and optimisation of batch chemical processes, in Coulson 

and Richardson’s Chemical Engineering, Fourth Edition, Vol. 3b: Process Control, 441-503 



41 
 

Camacho, E.F. & Bordons, C., 1999, Model predictive control, Springer, Berlin 

Chischi, L., Rossiter, J.A., Zappa, C., 2001, Systems with persistent disturbances: predictive 

control with restricted constraints, Automatica 37 (7), 1019-1028 

Darby, M.L. & Nikolaou, M., 2012, MPC: Current practice and challenges, Control Engineering 

Practice 20, 328-342 

De Nicolao, G., Magni, L., Scattolini, R., 2000, Stability and robustness of nonlinear receding 

horizon control, in Nonlinear Model Predictive Control. Progress in systems and control theory, 

Vol. 26, Birkhäuser, Basel, 3-22 

Dubljevic, S., Mhaskar, P., El-Farra, N.H., Christofides, P.D., 2005, Predictive control of transport-

reaction processes, Computers and Chemical Engineering 29, 2335-2345 

Ellis, M., Durand, H., Christofides, P.D., 2014, A tutorial review of economic model predictive 

control methods, Journal of Process Control 24, 1156-1178 

Emenike, V.N., Xie, X., Schenkendorf, R., Spiess, A.C., Krewer, U., 2019, Robust dynamic 

optimisation of enzyme-catalyzed carboligation: A point estimate-based back-off approach, 

Computers and Chemical Engineering 121, 232-247 

Fogler, H.S., 1999, Elements of chemical reaction engineering, Prentice Hall Int. London 

Forbes, M.G., Patwardhan, R.S., Hamadah, H., Gopaluni, R.B., 2015, Model predictive control in 

industry: Challenges and opportunities, IFAC-PapersOnLine 48-8, 531-538 

Galvanin, F., Barolo, M., Bezzo, F., Macchietto, S., 2009, A backoff strategy for model-based 

experiment design under parametric uncertainty, AIChE Journal 56 (8), 2088-2102 

Grifith, D.W., Biegler, L.T., Pathwardhan, S.C., 2018, Robustly stable adaptive horizon nonlinear 

model predictive control, Journal of Process Control 70, 109-122 

Haseltine, E.L. & Rawlings, J.B., 2005, Critical evaluation of extended Kalman filtering and 

moving-horizon estimation, I&EC Research 44 (8), 2451-2460  

Helbig, A., Abel, O., Marquardt, W., 1998, Model predictive control for on-line optimisation of semi-

batch reactors, Proceedings of the 1998 American Control Conference, 1695-1699 

Kähm, W. & Vassiliadis, V. S., 2018, Optimal Lyapunov Exponent Parameters for Stability 

Analysis of Batch Reactors with Model Predictive Control, Computers and Chemical Engineering 

119, 270–292 (2018a) 

Kähm, W. & Vassiliadis, V. S., 2018, Stability criterion for the intensification of batch processes 

with model predictive control, Chemical Engineering Research and Design 138, 292–313 (2018b) 

Kähm, W. & Vassiliadis, V. S., 2018, Thermal stability criterion integrated in model predictive 

control for batch reactors”, Chemical Engineering Science 188, 192–207 (2018c) 



42 
 

Koller, R.W., Ricardez-Sandoval, L.A., Biegler, L.T., 2018, Stochastic back-off algorithm for 

simultaneous design, control and scheduling of multiproduct systems under uncertainty, AIChE 

Journal 64(7), 2379-2389 

Kothare, M.V., Balakrishnan, V., Morari, M., 1996, Robust constrained model predictive control 

using linear matrix inequalities, Automatica 32 (10), 1361-1379 

Lee, J.H., 2011, Model predictive control: Review of the three decades of development, 

International Journal of Control, Automation and Systems 9 (3), 415-424 

Lee, J.H. & Yu, Z., 1997, Worst-case formulations of model predictive control for systems with 

bounded parameters, Automatica 33 (5), 763-781 

Li, P., Arellano-Garcia, H., Wozny, G., Reuter, E., 1998, Optimisation of a semibatch distillation 

process with model validation on the industrial site, Industrial and Engineering Chemistry 

Research 37, 1341-1350 

Li, P., Wendt, M., Wozny, G., 2002, A probabilistically constrained model predictive controller, 

Automatica 38 (7), 1171-1176 

Li, P., Arellano-Garcia, H., Wozny, G., 2008, Chance constrained programming approach to 

process optimisation under uncertainty, Computers and Chemical Engineering 32 (1-2), 25-45 

Loeblein, C. & Perkins, J.D., 1999, Analysis and structural design of integrated on-line 

optimisation and regulatory control systems, AIChE Journal 45 (5), 1030-1040 

Logist, F., Houska, B., Diehl, M., Van Impe, J.F., 2011, Robust multi-objective optimal control of 

uncertain (bio)chemical processes, Chemical Engineering Science 66, 4670-4682 

Ma, D.L., Chung, S.H., Braatz, R.D., 1999, Worst-case performance analysis of optimal batch 

control trajectories, AIChE Journal 45 (7), 1469-1476 

Maussner, J., Freund, H., 2018, Efficient calculation of constraint back-offs for optimisation under 

uncertainty: A case study on maleic anhydride synthesis, Chemical Engineering Science 192, 

306-317 

Mayne, D.Q., 2000, Nonlinear model predictive control: Challenges and opportunities, in 

Nonlinear model predictive control. Progress in systems and control theory, Vol. 26, Birkhäuser, 

Basel, 23-44 

Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M., 2000, Constrained model predictive 

control: Stability and optimality, Automatica 36, 789-814 

Mayne, D.Q., 2014, Model predictive control: Recent developments and future promise, 

Automatica 50, 2967-2986 

Mayne, D.Q., 2016, Robust and stochastic model predictive control: Are we going in the right 

direction?, Annual Reviews in Control 41, 184-192 



43 
 

Mhaskar, P., El-Farra, N.H., Christofides, P.D., 2005, Robust hybrid predictive control of nonlinear 

systems, Automatica 41 (2), 209-217 

Morari, M. & Lee, J.H., 1999, Model predictive control: past, present and future, Computers and 

Chemical Engineering 23, 667-682 

Nagy, Z.K. & Braatz, R.D., 2003, Robust nonlinear model predictive control of batch processes, 

AIChE Journal 49 (7), 1776-1786 

Nagy, Z.K. & Braatz, R.D., 2004, Open-loop and closed-loop robust optimal control of batch 

processes using distributional and worst-case analysis, Journal of Process Control 14, 411-422 

Pahija, E., Manenti, F., Mujtaba, I.M., 2013, Optimisation of batch and semi-batch reactors, 

Computer Aided Chemical Engineering 32, 739-744 

Pushke, J., Zubov, A., Kosek, J., Mitsos, A., 2017, Multi-model approach based on parametric 

sensitivities – A heuristic approximation for dynamic optimisation of semi-batch processes with 

parametric uncertainties, Computers and Chemical Engineering 98, 161-179 

Qin, S.J., Badgwell, T.A., 2003, A survey of industrial model predictive control technology, Control 

Engineering Practice 11, 733-764 

Saltik, M.B., Özkan, L., Ludlage, J.H.A., Weiland, S., Van den Hof, P.M.J., 2018, An outlook on 

robust model predictive control algorithms: Reflections on performance and computational 

aspects, Journal of Process Control 61, 77-102 

Schwarm, A.T. & Nikolaou, M., 1999, Chance-constrained model predictive control, AIChE 

Journal 45 (8), 1743-1752 

Shi, J., Biegler, L.T., Hamdan, I., Wassick, J., 2016, Optimisation of grade transitions in 

polyethylene solution polymerisation process under uncertainty, Computers and Chemical 

Engineering 95, 260-279 

Soliman, M., Swartz, C.L.E., Baker, R., 2008, A mixed-integer formulation for back-off under 

constrained predictive control, Computers and Chemical Engineering 32, 2409-2419 

Visser, E., Srinivasan, B., Palanki, S., Bonvin, D., 2000, A feedback-based implementation 

scheme for batch process optimisation, Journal of Process Control 10, 399-410 

Wendt, M., 2005, Untersuchung zur stochastischen Online Optimierung kontinuierlicher 

Destillationsprozesse unter Unsicherheiten, PhD Thesis, Berlin University of Technology, 

Germany 

Yu, S., Reble, M., Chen, H., Allgöwer, F., 2014, Inherent robustness properties of quasi-infinite 

horizon nonlinear model predictive control, Atuomatica 50, 2269-2280 

Zavala, V.M. & Biegler, L.T., 2009, The advanced-step NMPC controller: Optimality, stability and 

robustness, Automatica 45 (1), 86-93 


