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Abstract 31 

Extensive research confirms that feedback is the key to an effective training. However, in many 32 

domains, human trainers, who can provide feedback to trainees, are considered not only a costly 33 

but also a scarce resource. For trainees to be more independent and undergo self-training and 34 

unbiased support, effective automated feedback is highly recommended. We resort to elements 35 

from the theory of data mining to devise a data-driven automated feedback system. The data-36 

enclosing tunnel is a novel concept that may be used to detect deviations from correct operation 37 

paths and be the base for automated feedback. Two case studies demonstrate the viability of this 38 

methodology and its usefulness in industrial simulation scenarios. Case study 1 focuses on the 39 

increase of oil production, whilst case study 2 decreases gas production. The data-enclosing tunnel 40 

is validated and compared with three other assessment methods. These methods are simpler 41 

versions of the data-enclosing tunnel method, as they are three variants of a baseline approach Data 42 

Enclosing Band (DEB), namely DEB1, DEB2, DEB3. The methods accuracy is determined by 43 

calculating how precisely they can classify new data. The data-enclosing tunnel yields the highest 44 

accuracy, 94.3 %, compared to 81.4 %, 62.9 %, and 70 % for DEB1, DEB2, DEB3 respectively. 45 

 46 

 47 

 48 

 49 

 50 
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1 Introduction 55 

Feedback is a crucial factor in effective simulator training. It is possible for trainees to learn from 56 

their errors if they receive clear and timely diagnostic feedback about their performance (Kluge et 57 

al., 2009, Salas et al., 2012). Typically, a trainer is responsible for guiding the trainees through the 58 

simulation task and providing relevant feedback when necessary. Nevertheless, the availability of 59 

expert instructors is decreasing, mainly due to retirement (Komulainen and Sannerud, 2018, Nazir 60 

and Manca, 2015). Therefore, industries are facing the challenge of fulfilling the increased training 61 

demand with a limited number of instructors. This situation could be overcome with the 62 

implementation of simulator training practices that allow the trainees to be more independent so 63 

that the need for expert instructors can be alleviated (Marcano et al., 2019). 64 

One way of helping trainees to be more independent during simulator training consists of offering 65 

real-time automated feedback (Bell et al., 2008, Malakis and Kontogiannis, 2012, Manca et al., 66 

2014). If trainees receive automated feedback, they will not have to rely exclusively on the 67 

instructor. Further, with automated feedback, trainees can receive comments and guidance faster, 68 

since they will not have to wait until the instructor is available. Also, automated feedback allows 69 

remote training, which can represent a cost reduction for industries. If remote training for technical 70 

skills is promoted before on-site training, the time needed in the training center could be 71 

compressed. Thus, costs related to the operators’ mobility could be saved. Automated online 72 

feedback can also motivate operators to train more often by themselves since they will count on 73 

having relevant and prompt guidance, and they will be able to train at their own pace. On the other 74 

hand, automated feedback could also be used as a support tool for novice instructors. It could guide 75 

inexperienced instructors on what kind of feedback to give to the trainees. 76 

Automated feedback for simulator training is not a new concept. Automated feedback has been 77 

already an active topic for research especially in health-care education (Rhienmora et al., 2011, 78 

Sewell et al., 2008). There is also extensive research on intelligent tutoring systems (ITSs) as an 79 

educational tool to help trainees outside the classroom (Mohamed and Lamia, 2018), to learn a new 80 

language (Mahmoud and Abo El-Hamayed, 2016), and even in serious games (Goldberg and Cannon-81 

Bowers, 2015), which are games designed for a training purpose other than pure entertainment. 82 

Gonzalez-Sanchez et al. (2014) indicate that ITSs could become a steady and economic alternative 83 

to human instructors. However, little research can be found specifically on automated feedback for 84 

industrial simulator training (Manca et al., 2014, Speshilov and Khabarov, 2017). Research has been 85 
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done on how to improve operators performance based on the analysis of operational records 86 

(Sebzalli et al., 2000, Lee et al., 2000, Yamashita, 2000). However, these studies did not aim to 87 

develop automated feedback. The operator training simulator market is expected annually to 88 

exceed USD 20 billion by 2025 (Market Study Report, 2019). This gives an overview of the great 89 

importance and extension of this field. Therefore, it is essential to intensify research efforts in the 90 

same area. 91 

This paper presents and discusses a novel data-mining approach to provide automatic feedback to 92 

trainees. Our approach resorts to a novel concept called data-enclosing tunnel, which can be seen 93 

as a data envelope describing the expected evolution of the simulation process. We show that by 94 

using the data-enclosing tunnel we can automatically detect deviations from correct executions 95 

paths and issue an automated corrective feedback to the user. As an industrial large-scale simulation 96 

use case, we consider the dynamic process simulator K-Spice (Kongsberg, 2009), from Kongsberg 97 

Digital. 98 

2 Methodology 99 

Figure 1 shows the different steps of the data-enclosing tunnel methodology. Such a methodology 100 

is based on a data mining approach. Data mining is the process of examining large amounts of data 101 

to discover novel and useful information (Baker, 2010). The steps in the methodology are described 102 

in detail in Sections 2.1-2.8. Every step is primarily based on the researchers’ practical experience 103 

gained during the development of this work. 104 
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 105 

Figure 1. Overview diagram of the methodology for constructing a data-enclosing tunnel. 

2.1 Simulation tool 106 

The simulation tool is a dynamic model of the process. It should have functionalities for saving and 107 

exporting historical data. It should feature training scenarios, and offer the possibility to 108 

create/configure them. If feedback messages cannot be issued within the simulation tool, the tool 109 

should be able to connect with a server and send the data to an external program where the 110 

feedback message can be displayed. 111 
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2.2 Defining a training scenario 112 

The training scenario for automated feedback can be selected from the available ones (in the 113 

simulator) or created from scratch. The training scenario should suggest clear operational goals and 114 

well-defined learning objectives. The performance of the trainee can be tracked based on whether 115 

they are reaching the established goal or not. 116 

2.3 Selection of study variables 117 

The selection of variables to be recorded and monitored depends on the case study. It is advisable 118 

to choose those variables that are related to the operational goals and learning objectives. In 119 

addition, the complexity of the process also plays an important role when it comes to selecting such 120 

variables. Complex processes may require monitoring a large number of variables (Ghosh et al., 121 

2014). In these cases, Key Performance Indicators (KPIs) and Operator Performance Indicators (OPIs) 122 

are valuable tools. Performance indicators can be useful metrics based on the combination of 123 

several variables. KPIs refer to the production efficiency of the industrial process, while OPIs refer 124 

to human performance (Manca et al., 2012, Marcano and Komulainen, 2018). The use of 125 

performance indicators can be useful to simplify the number of variables to study. 126 

2.4 Data collection 127 

Several literature manuscripts highlight the great value that can be found in the analysis of process 128 

operational data (Sebzalli et al., 2000, Yamashita, 2000, Shu et al., 2016). It is worth gathering data 129 

that describe different ways in which a training scenario can be carried out. This data should be rich 130 

enough to document different routes that allow either solving or failing a task so that a useful 131 

feedback tool can be developed based on the analysis of these records. 132 

Since the feedback tool is developed to support trainees, the data collected should record the 133 

performance of actual users when they solve the proposed training scenario. However, sometimes 134 

data from actual users is not available, either because the performance of previous users has not 135 

been recorded, or because the tool is developed for a new scenario that has not been tested yet. In 136 

those cases, the reference data can be generated by implementing an algorithm that makes 137 

different combinations of plausible actions. A repository of several probable actions, good and bad, 138 

should be produced based on the knowledge gathered from observing actual trainees (and possibly 139 

expert users and trainers) using the simulator. The algorithm should randomly choose among 140 



7 
 

several alternatives from the repository and create different combinations of them to solve the 141 

scenario, thus ensuring human unpredictability. 142 

2.5 Data classification 143 

The data gathered from one user corresponds to one sample of the overall data. Each sample 144 

consists of multivariate time series. It is necessary to classify the samples that correspond to good 145 

execution paths and the ones that correspond to bad execution paths, to create balanced groups to 146 

do the training and the validation, i.e. each group should have the same amount of good and bad 147 

paths. The simplest way to do this is to label the data records of the actual user right after they 148 

solved the training scenario. Likewise, in the case of generated data, the data should be classified 149 

as soon as it is created. 150 

Nevertheless, if the data is not labeled as soon it is created, there are different methods to cluster 151 

it based on its characteristics. In order to cluster data, it is necessary to use a notion of similarity. 152 

This can be done by calculating the distance between every possible combination of pairs of 153 

execution paths. Marcano et al. (2018) present a detailed explanation of three different methods 154 

that can be used to calculate the distances between the execution paths, and how the data can be 155 

classified and labeled as good or bad based on these distances. 156 

2.6 Data processing and dimensionality reduction 157 

If the training data is multi-dimensional, it is preferable to reduce the data dimension (Ghosh et al., 158 

2014). In the following, we describe the approach applied in our case studies that use the principal 159 

component analysis, PCA. The PCA analysis must be executed for different time slots that include all 160 

the training data. This allows ensuring that all the samples of the training data are compared with 161 

each other. 162 

Each time slot is defined using the sliding window algorithm (Fumarola et al., 2009). The number of 163 

elements must be chosen according to the window size. If the number chosen is w, this means that 164 

the first time slot covers the range from the first to the wth element of each sample, i.e. the range 165 

[1-(1+w-1)], as shown in Figure 2. The second time slot covers the range from the second to the wth 166 

plus one element of each sample, i.e. the range [2-(2+w-1)], and so forth until the entire time-range 167 

for each sample is covered, [(L-w+1)-L] being the last time slot range, where L is the length of each 168 

sample. The average value of the elements within each range is taken for each sample. Each average 169 
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corresponds to a row in a matrix featuring as many rows as the samples in the training data (see 170 

also Figure 2). The first PCA is calculated for the matrix of the first time slot. The second PCA will be 171 

calculated for the matrix of second time slot, and so forth. The analysis of the data is made with the 172 

PC1s and the PC2s obtained with the PCA calculated for each time slot matrix. The window size 173 

depends on the PCA projection. The number should be adjusted to reduce the noise in the graph of 174 

the scores of PC1 vs the scores of PC2 vs time. Empirical practice shows that the larger the window 175 

size, the smoother the graph will be since in this case more data samples are averaged-out. 176 

However, it is not desirable to use a too large window size, because there is a risk of losing valuable 177 

trending information of the data. Nonetheless, the definition of the optimal window size is a tedious 178 

task. In this study, we opted for an empirical choice of the window size by experimentally trying 179 

different sizes and retaining the value that gave us a smooth curve. 180 

 181 

 182 

Figure 2. Data handling overview. 

2.7 Enclosing tunnel 183 

To construct the enclosing tunnel (Marcano et al., 2018), first, the data projected on the PCA plane 184 

(Figure 3a), corresponding only to the good execution paths, must be observed to identify the points 185 

in time where the data makes drastic changes, this is shown in Figure 3b with the red horizontal 186 

lines. Then, the data must be studied right on each of these points; to do this it should be observed 187 

from the 2D plane formed by the PC1 scores vs the PC2 scores. Next, the points projected on this 188 

plane are framed using the minimal enclosing circle problem (Weisstein, 2018). Figure 3c shows an 189 

example of the first circle built projecting all the data before the first change, that is approximately 190 

from 0 to 50 s. Eventually, there will be as many circles as the points where data changes, as shown 191 
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in Figure 3d. The enclosing tunnel is constructed by drawing a surface around all those circles. Each 192 

colored line in these figures represents a different execution path, i.e. a different way according to 193 

which a training scenario is carried-out. 194 

 195 

 196 

(a)       (b) 197 

 198 

(c)       (d) 199 

Figure 3. Overview of the setup of the data-enclosing tunnel. (a) Projection of the data on the PCA plane. 

(b) Lateral view of the data projected on the PCA plane. (c) Front view of the data projected on the PCA 

plane, first minimum enclosing circle. (d) 3D view of the data projected on the PCA plane and all the 

minimum enclosing circles built. 

2.8 Validation of the tunnel 200 

The dimensionality of the validation data must be reduced using the PCA models obtained with the 201 

training data. Then, the projected validation data should be plotted together with the enclosing 202 

tunnel. Later, it must be determined which execution paths fall inside the tunnel, which ones outside 203 

and for how long. Eventually, together with the data labels, those determine during the classification 204 
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step (Section 2.5), the accuracy of the tunnel can be calculated. Two metrics were established to 205 

determine the accuracy of the enclosing tunnel: 206 

1. Execution paths that fall outside the enclosing tunnel for more than 35 % of the total 207 

scenario time are considered as “bad”. 208 

2. Execution paths that fall outside the enclosing tunnel for more than 50 % of the total 209 

scenario time are considered as “very bad”. 210 

It is worth observing that the 35 % and 50 % values, which denote a bad and very bad execution 211 

path, are empirically chosen. These metrics were tested to evaluate the method performance from 212 

two different perspectives, given that, in some cases, a more flexible metric might be still 213 

acceptable. A more flexible metric means that the trainee can take more time to figure out how to 214 

correct a mistake when they went wrong. Further, depending on the metric used, the difficulty of 215 

the simulation exercise can be controlled. For more experienced trainees, the threshold can be 216 

lowered down to tolerate only small deviations from the optimal path. Finally, the validation results 217 

of the tunnel must also be compared with a state of the art trajectory, which could be used as a 218 

baseline. 219 

3 Case studies 220 

The following paragraphs present how we developed, implemented, and tested the enclosing tunnel 221 

methodology, which is applied to two training scenarios. 222 

3.1 Simulation tool for the case studies 223 

The process simulations used to train the trainees were carried out on K-Spice (Kongsberg, 2009), a 224 

dynamic simulator from Kongsberg Digital. K-Spice enables detailed dynamic simulation of oil and 225 

gas processes and control systems. It is a Windows-based tool designed for different engineering 226 

applications, including operators’ training (Kongsberg, 2009). The training scenarios were simulated 227 

with K-Spice oil and gas production model. The model consists of a three-stage, three-phase 228 

separation train, the utility systems, and emulated control and safety systems (Komulainen and 229 

Løvmo, 2014). 230 
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3.2 Training scenarios 231 

We developed two simple scenarios to strengthen the overall understanding of an oil and gas 232 

production process. The first scenario calls the trainee for increasing the oil production, which is one 233 

of the main goals of an oil production facility. The second scenario calls the trainee for decreasing 234 

the gas production; this situation occurs when it is necessary to control the gas pressure in the 235 

system or the quality of the exported gas. The two training scenarios were defined as follows: 236 

Scenario 1 (SC1): the target is to increase, in 30 min, at least +10 % the oil production flow compared 237 

to the initial conditions of the simulation. 238 

Scenario 2 (SC2): the target is to decrease, in 30 min, 10 % of the gas production compared to the 239 

initial conditions. 240 

The trainee must fulfil the goals without compromising the correct operation of the process; this 241 

means that the changes made by the trainee must not create process upsets such as over-pressuring 242 

the system, overflows, leakages, process shutdown and the like. The trainee should be able to 243 

execute actions that lead to smooth transitions in the system.  244 

3.3 Monitored variables 245 

In the generic oil and gas production model, the sections with the most relevant process information 246 

for the two training scenarios are the wells, the high-pressure separator (HP-separator), the export 247 

pump and the gas export compressor, the oil and gas export sections, and the high-pressure flare 248 

(HP-flare). The monitored variables of these sections are: 1) total sum of outlet flow rates from the 249 

wells; 2) inlet flow rate of the HP-separator; 3) pump power consumption; 4) compressor power 250 

consumption; 5) oil export flow rate; 6) gas export flow rate; and 7) HP-flare flow rate, as shown in 251 

Figure 4. 252 
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 253 

Figure 4. Overview of the generic oil and gas production process and monitored variables. 

3.4 Data collection for the case studies 254 

The monitored and recorded data was generated with an algorithm that ensures the creation of 255 

different execution paths for the training scenarios. The algorithm chooses an execution path based 256 

on random selections from several possible actions. The actions are defined based on the 257 

observations and results gathered from the simulator training sessions mentioned in (Marcano et 258 

al., 2017). Only one main action, with a maximum of two subsequent actions, can take place per 259 

execution path. For SC1, the delay options between the subsequent actions are set to 15, 45, 60, 260 

120, and 180 s. Indeed, during the simulator training sessions, we noticed that the participants did 261 

not wait more than 3 min (i.e., 180 s) to make changes in the simulation. 262 

For SC2, the delays for the first action were the same as for SC1. Conversely, the delays between 263 

the first action and the subsequent actions were set to 180, 240, and 300 s to provide enough time 264 

for the trainees to evaluate the percentage change of the gas flow rate. 265 

The algorithm chooses an execution path as follows: 266 

1. The first action is taken randomly among the main options. 267 

2. Whether the first action is followed by one, two or no more actions is also decided randomly. 268 

3. Depending of the total amount of selected actions, a delay value is also randomly chosen for 269 

each action. 270 

4. If the final combination of actions and delays is different from previous configurations, the 271 

execution path is saved. Otherwise, go back to step one. 272 

The main actions of each scenario studied are explained below. 273 
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3.4.1 Scenario 1: Increase oil production 274 

Below five possible actions that the trainees may execute attempting to solve the scenario are 275 

explained. There exist other possibilities, but the ones chosen are those that were observed more 276 

often during the simulator training sessions mentioned in (Marcano et al., 2017). 277 

 278 

1. Increasing the flow from a well 279 

Increasing the flow from a well is the right decision when trying to increase oil production; 280 

this can be done by opening a choke valve. We assumed that if the first decision of the 281 

trainee is to open a choke valve, then, the following actions, if any, should be to open more 282 

choke valves. Once the first choke valve is opened, the algorithm decides randomly whether 283 

one, two, or no more valves will be further opened. The opening range of the choke valves 284 

is also a random decision between two options: 85 % and 100 %. In the simulation, all those 285 

choke valves that are open, are set at 75 % opening. 286 

 287 

2. Decreasing the flow from a well 288 

As a rule, decreasing the flow from a well is an incorrect approach as the oil production is 289 

expected to increase. To decrease the flow from a well, the trainee has to close a choke 290 

valve. If the trainee is confused and closes a choke valve by mistake, the next actions might 291 

be closing even more valves. However, the trainee may notice the error and try to fix it by 292 

reopening the closed valve and opening an extra one. The algorithm decides randomly 293 

whether the action of closing a choke valve is followed by one, two, or no more actions. In 294 

case of one more action, this could be either closing another valve or reopening the one that 295 

was closed. In case of two subsequent actions, these would be to reopen the closed valve 296 

and open an extra one. How much a choke valve is closed is also a random decision between 297 

two options: 0 % and 65 %. As far as the opening range is concerned, the same above 298 

conditions apply. 299 

 300 

3. Opening an Emergency Shutdown (ESD) valve 301 

The simulator training sessions discussed in Marcano et al. (2017) allowed noticing that some 302 

participants opened an ESD valve mistaking for a choke valve. Given that opening an ESD 303 

valve is a rare mistake, we did not define subsequent actions for it. 304 

 305 
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4. Increasing the pressure set point of the HP-separator 306 

Opening the HP-separator outlet valve may occur due to a misconception. Indeed, some 307 

trainees think that by increasing the outlet flow from the HP-separator, the oil production 308 

would increase as well. The next step is to choose whether to proceed with one, two, or no 309 

more actions. If two actions are chosen, these are set to be the opening of two choke valves. 310 

If only one more action is selected, this can be opening either a choke valve or an ESD valve. 311 

 312 

5. Opening the outlet control valve of the HP-separator 313 

Increasing the pressure of the HP-separator leads the system to switch on the high-pressure 314 

flare. This action allows accounting for execution paths with a negative environmental 315 

impact. In case of only one following action, this can be opening either a choke valve or an 316 

ESD valve. In case of two following actions, both of them will be opening a choke valve. 317 

3.4.2 Scenario 2: Decrease gas production 318 

In the following, we describe four possible actions that the trainees may execute attempting to solve 319 

the scenario. There are further possibilities, but the ones chosen are those that were observed to 320 

be more intuitive for the trainees as commented in (Marcano et al., 2017). 321 

 322 

1. Decreasing the flow from a well 323 

Decreasing the opening of a choke valve from 75 % to 60 % is the right decision when trying 324 

to decrease 10 % of the initial gas production. If this happens, it will be enough to reach the 325 

goal, so no more actions will follow. However, a trainee might consider fully closing a choke 326 

valve or moving to values that might not be suitable for reaching the scenario’s goal. 327 

Therefore, they will have to reopen the choke valve. Then, if the trainee opens the valve too 328 

much, they might have to close it again. Several options are defined to cover most of the 329 

aforementioned alternatives; these are presented in Table 1. 330 

 331 

 332 

 333 

 334 
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Table 1. Defined options when the first action is closing a choke valve. 

Sequence condition 
Close choke valve 

down to (%) 
Reopen choke 

valve up to (%) 
Reclose choke valve 

down to (%) 

If only first action 60 - - 

If first action 
followed by one 

action 

0 
40 - 

60 - 

40 
50 - 

60 - 

70 60 - 

If first action 
followed by two 

actions 

0 40  
40 50 60 
70 65  

   (-) Not applicable 335 

 336 

2. Increasing the flow from a well 337 

Increasing the flow from a well is an incorrect approach when the gas production needs to 338 

be decreased. If the trainee is not sure of what they are doing, they might make this mistake. 339 

On the other hand, the trainee could notice the error and try to fix it by closing the opened 340 

valve. One, two, or no more actions may follow the opening of a choke valve. Table 2 shows 341 

the available options for this case. 342 

Table 2. Defined options when the first action is opening a choke valve 

Sequence 
condition 

Open choke valve 
up to (%) 

Close choke valve 
down to (%) 

Reopen choke valve 
up to (%) 

If only main 
action 

85 - - 

100 - - 

If main action 
followed by 
one action 

85 
0 - 

50 - 

100 
0 - 

50 - 

If main action 
followed by 
two actions 

85 
0 

20 

60 

50 60 

100 
0 

20 

60 

50 60 

     (-) Not applicable 343 

 344 

 345 

 346 
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3. Closing the Emergency Shutdown (ESD) valve of a well 347 

The trainee can choose to close the ESD valve of a well. This action would decrease the gas 348 

production significantly more than 10 %. Consequently, this is an incorrect procedure. 349 

Closing the ESD valve of a well drastically affects the gas flow. Therefore, only one 350 

subsequent action may follow this one, and this is reopen the ESD valve. 351 

 352 

4. Closing the Emergency Shutdown (ESD) valve from the HP-separator to the Contactor 353 

The trainee may be mistaken and think that if the gas flow from the HP-separator decreases 354 

then the gas production drops too. Therefore, they might reduce the opening of the ESD 355 

valve of the HP-separator that regulates the flow to the Contactor. Then, when noticing that 356 

this decision barely affects the gas production flow, they might continue closing the valve 357 

until the gas accumulates in the system, the pressure increases, and finally the high-pressure 358 

flare is operated. 359 

3.5 Classification of the case studies data 360 

For SC1, 75 different samples were generated, of which two-thirds were used for training and one-361 

third for validation, i.e. 50 samples for training and 25 for validation. The training and validation sets 362 

had a balanced number of good and bad execution paths. The data used for the first scenario was 363 

not labelled as soon as it was generated, so it was classified using hierarchical clustering, and later 364 

labelled as good or bad. A detailed explanation of how the data was classified can be found in 365 

(Marcano et al., 2018). 366 

For SC2, 200 different samples were generated, of which 65 % were used for training and 35 % for 367 

validation, i.e. 130 samples for training and 70 for validation. Again, we ensured that each group 368 

had a balanced number of good and bad execution paths. The data used for the second scenario 369 

was labelled as soon it was generated. 370 

3.6 Data processing and dimensionality reduction of the case studies 371 

The time moving average in SC1 was calculated using a window size of 35 elements. Conversely, the 372 

most suitable window size for SC2 was of 20 elements. As mentioned in the methodology (see 373 

Section 2.6) the size of the moving average is adjusted until the graph of the scores of PC1 vs the 374 

scores of PC2 vs time is smooth, based only on empirical observation of the graph. This is done to 375 
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decrease the noise in the curves, distinguish each path clearly, and later build the data-enclosing 376 

tunnel. Figure 5a and Figure 6a show the curves of the training data scores of PC1 vs the scores of 377 

PC2 vs time, for SC1 and SC2 respectively. The figures show the distribution of the data. It can be 378 

seen that the curves form clusters in some areas of the graph. Some of these clusters correspond to 379 

good execution paths and some to bad execution paths, although it is easier to appreciate the 380 

groups in Figure 5a since fewer data are used for SC1. Each colored line in the figures corresponds 381 

to a different execution path generated as explained in Section 3.4. 382 

 383 

 384 

     (a)              (b) 385 

Figure 5. (a) SC1 – Scores from PC2 vs Scores from PC1 vs Time / (b) SC1 – Data-enclosing tunnel and 

training data. 

 386 

     (a)            (b) 387 

Figure 6. (a) SC2 – Scores from PC2 vs Scores from PC1 vs Time / (b) SC2 – Data-enclosing tunnel and 388 

training data. 389 
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3.7 Enclosing tunnels of the case studies 390 

The enclosing tunnel designed for SC1 has five different radiuses, Figure 5b shows the SC1 training 391 

data plotted together with its corresponding data-enclosing tunnel. The tunnel designed for SC2 has 392 

eleven different radiuses; Figure 6b presents the SC2 training data plotted together with its related 393 

data-enclosing tunnel. The data enclosing tunnels were created only using the good execution 394 

paths, as explained in Section 2.7. Figures 5b and 6b present the tunnels plotted with all the training 395 

data to show that the curves inside the tunnel are the good execution paths and the curves outside 396 

the tunnels are the bad execution paths. 397 

3.8 Validation of the tunnels of the case studies 398 

As indicated in the methodology, the validation of the tunnel was made by calculating how many of 399 

the execution paths in the validation data ended correctly inside or outside the enclosing tunnel. 400 

Figure 7a and Figure 7b show the tunnels from each scenario plotted together with the validation 401 

data. 402 

 403 

     (a)              (b) 404 

Figure 7. Data-enclosing tunnel and validation data: (a) SC1 (b) SC2. 

Nevertheless, with the aim of having different benchmarking points, we developed a method more 405 

straightforward than the enclosing tunnel. We created a data enclosing band, which evaluates 406 

separately each studied variable, without dimensionality reduction. The main idea was to develop 407 

a simpler method that could be executed faster and with lower efforts, so that the performance of 408 

the data-enclosing tunnel, which is a more complex method, could be compared to a simpler one. 409 
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The idea of an enclosing band is also known as confidence band. Two different implementations can 410 

be found in Skelton and Willms (2014) and Lee and Hyun (2011). 411 

 412 

The construction of the band consists in choosing or defining a reference path from the good 413 

execution paths. Once a reference path is established, the data-enclosing band is created by setting 414 

a limit above and below the reference path. The enclosing band was generated three times, each 415 

one with a different and simpler approach than the previous one. All of them were compared with 416 

the tunnel. Each of the three approaches for developing the enclosing band is explained in the 417 

following. 418 

3.8.1 Data Enclosing Band: Approach 1 (DEB1) 419 

1. Reference path: it was defined by running a curve fitting procedure for each of the studied 420 

variables. The curve fittings were run using only the good execution paths of the training 421 

data, as only the good execution paths were used to build the enclosing tunnel. Figure 8a 422 

and Figure 8b show the curve fitting for the variables oil production and gas production of 423 

SC1 and SC2, respectively. 424 

 425 

      (a)                 (b) 426 

Figure 8. (a) SC1 – DEB1 – Curve fitting of the variable oil production / (b) SC2 – DEB1 – Curve fitting of the 

variable gas production. 

 427 

2. Data scaling: the training data was grouped per variables, one matrix for each variable. Given 428 

that in both of our case studies seven variables were monitored, there were seven matrices 429 

with as many columns as samples in the training data of each case study. The mean values 430 
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and the standard deviations of each of the matrices were calculated. These parameters were 431 

used later to scale the reference path and the validation data. 432 

3. Enclosing band: after establishing the reference path and scaling, the following step was to 433 

design the enclosing band. In this approach, the band was created by summing up and 434 

subtracting from the scaled reference path the radiuses of the tunnel. Figure 9a and Figure 435 

9b show the enclosing band together with the scaled validation data of SC1 and SC2, 436 

respectively. Figure 9a corresponds to the scaled variable, oil production, of SC1. Figure 9b 437 

corresponds to the scaled variable, gas production, of SC2. 438 

 439 

 440 

    (a)               (b) 441 

Figure 9. Data enclosing band and validation data (a) SC1 – DEB1 – Variable: Scaled oil production / (b) SC2 

– DEB1 –Variable: Scaled gas production. 

3.8.2 Data Enclosing Band: Approach 2 (DEB2) 442 

1. Reference path: it was chosen from the good execution paths of the training data. The 443 

reference was selected by observing the execution paths of one variable only. The observed 444 

variable was the one that represents better the achievement of the scenario objective. The 445 

variable observed in SC1 was the oil production, while for SC2 it was the gas production. 446 

Figure 10a and Figure 10b show the reference paths for SC1 and SC2, respectively. 447 
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 448 

    (a)        (b) 449 

Figure 10. (a) SC1 – DEB2 – Chosen reference path among the oil production paths / (b) SC2 – DEB2 – 

Chosen reference path among the gas production paths. 

2. Data scaling: it was done as in DEB1. 450 

 451 

3. Enclosing band: after choosing the reference path and scaling, the enclosing band was 452 

created by summing up and subtracting from the scaled reference path the radiuses of the 453 

tunnel. Figure 11a and Figure 11b show the enclosing band together with the scaled 454 

validation data of SC1 and SC2, respectively. It can be noticed that the results with DEB1 and 455 

DEB2 seem to be very similar, even though the reference paths were established differently. 456 

 457 

 458 

    (a)                (b) 459 

Figure 11. Enclosing band and validation data (a) SC1 – DEB2 – Variable: Scaled oil production / (b) SC2 – 460 

DEB2 –Variable: Scaled gas production. 461 
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3.8.3 Data Enclosing Band: Approach 3 (DEB3) 462 

1. Reference path: it is the same as in DEB2 (see Figure 10a and Figure 10b) for the chosen 463 

reference path. 464 

 465 

2. Data scaling: the data was not scaled. 466 

 467 

3. Enclosing band: it consists in creating the enclosing band using a generic factor. The factor 468 

was calculated by assuming that the tunnel radiuses were scaled data. The radiuses were 469 

transformed into “actual variables” using the scaling parameters determined in the previous 470 

two approaches. Once the radiuses were converted into their version of each of the seven 471 

variables, the resulting matrix was compared with the chosen reference path to determine 472 

the relationship between them. By doing so, a factor was calculated for each of the two 473 

training scenarios. The average between the two factors was taken to get a final generic 474 

value, which was 15 %. The enclosing band was created by summing up and subtracting 15 % 475 

from the reference path. Figure 12a and Figure 12b show the enclosing band together with 476 

the validation data of SC1 and SC2, respectively. 477 

 478 

(a)          (b) 479 

Figure 12. Enclosing band and validation data (a) SC1 – DEB3 – Variable: Oil production / (b) SC2 – DEB3 – 

Variable: Gas production. 

3.8.4 Validation of the enclosing bands 480 

For each of the case studies, there were seven bands, one for each of the monitored variables. 481 

Therefore, to validate the enclosing band, first, the percentage of residence of each variable path 482 

within its corresponding band was calculated. The validation of the bands is also based on the 483 
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metrics established for the enclosing tunnel (see Section 2.8). If any of the variables falls outside of 484 

its associated band more than 35 or 50 % of the total time, the execution path related to such 485 

variable is classified as bad. Next, the validation of the enclosing band follows the same way as the 486 

tunnel one. Based on the known labels of the validation data, i.e. knowing which of the paths are 487 

good and which ones bad, the enclosing band is validated by calculating how many of the execution 488 

paths in the validation set ended correctly inside or outside the band. 489 

3.8.5 Comparison of the methods 490 

Table 3 and Table 4 present the different accuracies obtained for each of the methods studied. We 491 

consider four subgroups of classification: 1) True Positives (TPs), which denote the good execution 492 

paths that fall inside the tunnel/band; 2) True Negatives (TNs), which denote bad execution paths 493 

that fall outside the tunnel/band; 3) False Positives (FPs), which refer to bad execution paths that 494 

fall inside the tunnel/band; and 4) False Negatives (FNs), which refer to good execution path that 495 

fall outside the tunnel/band. The accuracy is defined as follows: 496 

 497 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 498 

 499 

Table 3 reports the accuracy of SC1 that is the same for all the methods when Metric 1 is used (a 500 

path is considered bad if it falls outside the tunnel/band more than 35 % of the total time). In case 501 

of Metric 2 (a path is considered bad if it falls outside the tunnel/band more than 50 % of the total 502 

time), DEB1 and DEB2 have a lower accuracy while the accuracy of the enclosing tunnel and DEB3 503 

remain the same. 504 

The results of SC2 are notoriously different from those of SC1. When it comes to SC2, Table 4 shows 505 

that the tunnel method is the most accurate regardless of the implemented metric. 506 

Table 3. Comparison of the accuracy of the methods for SC1. 

Method 
Metric 1: 35 % 

outside is “bad” 
Metric 2: 50 % 

outside is “very bad” 

 FP FN TP TN 
Acc. 
(%) 

FP FN TP TN 
Acc. 
(%) 

SC1 Tunnel 3 0 12 10 88 3 0 12 10 88 
SC1 DEB1 3 0 12 10 88 5 0 12 8 80 
SC1 DEB2 3 0 12 10 88 6 0 12 7 76 
SC1 DEB3 0 3 9 13 88 0 3 9 13 88 

 507 
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Table 4. Comparison of the accuracy of the methods for SC2. 

Method 
Metric 1: 35 % 

outside is “bad” 
Metric 2: 50 % 

outside is “very bad” 

 FP FN TP TN 
Acc. 
(%) 

FP FN TP TN 
Acc. 
(%) 

SC2Tunnel 4 0 35 31 94.3 10 0 35 25 85.7 
SC2 DEB1 13 0 35 22 81.4 18 0 35 17 74.3 
SC2 DEB2 9 17 18 26 62.9 15 0 35 20 78.6 
SC2 DEB3 21 0 35 14 70.0 21 0 35 14 70.0 

 508 

The subgroups of classification can also be analyzed with a confusion matrix. A confusion matrix is 509 

a table that describes the performance of a classification method on a set of test data for which the 510 

true values are known (Data School, 2014). Figure 13 shows how to read a confusion matrix. The 511 

values in the diagonal (green boxes) are the correct classifications, i.e. the true positives and the 512 

true negatives. The final values in the diagonal (yellow box), correspond to the overall correct 513 

classifications, i.e. the accuracy, and the overall incorrect classifications. The values outside the 514 

diagonal (red boxes) correspond to misclassifications, i.e. false positives and false negatives. Reading 515 

the confusion matrix vertically, the results presented in the last row of the first column refer only to 516 

the actual number of good execution paths. One can observe both the percentage of good execution 517 

paths that were classified correctly and the percentage of good execution paths that were 518 

misclassified. The same is true for the last row of the second column, but this case refers only to the 519 

actual number of bad execution paths. By reading the confusion matrix horizontally, the values 520 

shown in the last column of the first row refer to the total amount of predicted positives. One can 521 

observe the percentage of correct and incorrect positives. With reference to the last column of the 522 

second row, these values refer to the total amount of predicted negatives. One can observe the 523 

percentage of correct and incorrect negatives. Figures 14, 15, 16, and 17 respectively show the 524 

confusion matrix of each of the methods using Metric 1, for SC2. 525 

 526 
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 527 

Figure 13. Explanation of the confusion matrix. 

 528 

 529 

Figure 14. SC2 – Confusion matrix of the data-enclosing tunnel using Metric 1. 

 530 
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 531 

Figure 15. SC2 – Confusion matrix DEB1 using Metric 1. 

 532 

 533 

Figure 16. SC2 – Confusion matrix DEB2 using Metric 1. 

 534 
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 535 

Figure 17. SC2 – Confusion matrix DEB3 using Metric 1. 

4 Discussion 536 

This work presented a methodology for constructing a data-enclosing tunnel to be used as an online 537 

feedback tool for simulator-training scenarios. Also, two case studies of the proposed methodology 538 

were developed. A data-enclosing tunnel was built for two different training scenarios to 539 

demonstrate the usefulness and viability of the methodology presented and to validate it. 540 

Given that we did not have available actual user data, the data was generated with an algorithm. 541 

The SC1 data was not labeled as soon the data was generated. Therefore, a clustering method was 542 

used. On the other hand, the data used for the second scenario was labeled as soon as it was 543 

generated. Moreover, the data generated for the second scenario was larger than the first one. 544 

To validate the tunnels built for each of the training scenarios, we determined how many of the 545 

execution paths in the validation data ended correctly either inside or outside the tunnel based on 546 

the data labels. Besides, we developed a simpler method, an enclosing band. The enclosing band 547 

aims to compare our data-enclosing tunnel method with another that represents the state of the 548 

art. There is not much research related to online feedback for simulator training based on the 549 

evaluation of good execution paths, something similar to it can be found in (Alamehtä, 2018). We 550 

developed a simpler method that works in a 2D plane without dimensionality reduction, which 551 

means that all the variables are studied individually. 552 
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Table 3 shows the accuracy results obtained for SC1. In case of Metric 1, the same accuracy, 88 %, 553 

was obtained with all the methods studied. With Metric 2, the accuracy of DEB1 and DEB2 was 554 

lower. This can be explained by observing the number of false positives, which increases in both 555 

cases with Metric 2. Given that Metric 2 has a higher tolerance towards the time an execution path 556 

can fall outside the tunnel/band without being considered bad, some execution paths get 557 

misclassified. The tunnel and DEB3 have the same accuracy using both metrics. The lack of variation 558 

in the accuracy of the methods for SC1 can be due to the size of the data, which could be considered 559 

small, given that it had only 50 samples for training and 25 for validation. Consequently, SC1 is a 560 

rather simple problem, and the information that is possible to get from the data is obtained with all 561 

the tested methods. 562 

On the other hand, the accuracy results achieved for SC2 are more versatile (see Table 4). The results 563 

obtained with Metric 1 show that the data-enclosing tunnel is the most accurate among the four 564 

methods. In addition, DEB1 is more accurate than DEB2. We can argue that the accuracy of DEB1 is 565 

higher since the reference path used to create the enclosing band was determined more 566 

meticulously than for DEB2. A curve fitting represents better the general behavior of many curves 567 

(DEB1) than only one curve chosen randomly from the lot (DEB2). DEB2 and DEB3 are the less 568 

complex of the four methods. Indeed, the accuracies obtained with these methods are the lowest. 569 

With reference to the results obtained with Metric 2 (Table 4), once again the data-enclosing tunnel 570 

is the most accurate of the four methods. However, the accuracy of the tunnel with Metric 2 571 

decreases. With reference to the number of false positives, it is possible to observe that a more 572 

flexible metric for SC2 leads to a larger number of misclassifications of the bad paths. The same 573 

happens with DEB1 (Table 4). On the contrary, the accuracy of DEB2 increases when Metric 2 is 574 

used, which indicates that having a more flexible metric for this case helps classifying correctly those 575 

execution paths that with Metric 1 did not fall within the right category, i.e. the number of true 576 

positives of DEB2 increases when using Metric 2. In case of DEB3, the accuracy remains the same 577 

with any metrics, which was also the case for SC1. This can be ascribed to the simplicity of DEB3 that 578 

does not allow achieving differences in the accuracy of the method when varying the metric. 579 

The variety of the results obtained for SC2 may also be due to the size of the data, which in this case 580 

is larger than the one for SC1, having 130 samples for training and 70 for validation. In general, 581 

based on the results with SC2 which have a notorious variability, it is worth observing that the tunnel 582 

is the most accurate of all the investigated methods based on any of the two metrics, with DEB3 583 

being the less accurate. 584 
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It was noticed that the number of execution paths to study has an important impact on the results. 585 

The higher the number of samples, the more variations can be observed in the performance of the 586 

different tested methods. By increasing the number of samples, it is possible observing that the 587 

data-enclosing tunnel is the most robust of all the methods studied. DEB1, which is based on curve 588 

fitting, is the second more consistent method. Hence, one can argue that the more elaborate the 589 

technique, the better the accuracy results. 590 

The monitored variables play an essential role in the implementation of each of the proposed 591 

methods. It is crucial to select the most relevant variables that can build a clear view of the process 592 

status and of the scenario objectives, to be able to construct a data-enclosing tunnel/band that will 593 

make an accurate evaluation of the data and consequently, effective feedback can be delivered to 594 

the trainees. 595 

Finally, labelling the data as soon it is generated has a significant influence on the amount of work 596 

needed to implement the proposed methods. If the data is tagged right away, this facilitates the 597 

workflow for the data classification. It is highly recommended for those working with simulator 598 

training, to save the trainees’ records and add a description of their performance so that in the 599 

future it will be easier to handle that data. 600 

5 Conclusions 601 

The methodology presented in this work was effectively implemented in two case studies. We 602 

demonstrated how to use the methodology and how to follow each of the related steps with an 603 

application to two industrial cases, which were developed with the dynamic process simulator K-604 

Spice, from Kongsberg Digital. We presented the data mining results from each of the scenarios: 605 

classification, processing, and dimensionality reduction of the data. Further, different situations that 606 

the user might encounter when using the methodology were illustrated, as well as how to deal with 607 

such conditions as non-labeled data from the beginning or not available data from actual users of 608 

the simulator. 609 

The two data-enclosing tunnels developed for each of the case studies were validated and compared 610 

with three other simpler methods. It was noticed that the size of the data had a significant influence 611 

on the accuracy of the methods. 612 
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When executing the data mining process, the larger the data the larger amount of information that 613 

can be extracted from it and more variability can be observed among the results. The complexity of 614 

the methods also has a significant influence on their accuracy. The most elaborate and complex 615 

methods had more substantial accuracy than the simplest ones. This means that the data-enclosing 616 

tunnel is the most accurate of all the methods evaluated, which indicates that the tunnel is the 617 

method that could detect more efficiently if a trainee deviates from the good execution paths. 618 

On the other hand, even though less accurate, the simplest approach also has some advantages. As 619 

long as there are not so many variables to be evaluated individually (in our case studies we had 620 

seven) when it refers to reaction time, the simplest method (DEB3) would be the fastest in detecting 621 

when the trainee is deviating from the good execution path, given that the data neither needs to be 622 

reduced nor scaled. However, since the simplest method is less accurate, using it encompasses the 623 

risk of not giving any feedback to the trainee when they are taking wrong actions. Further, as 624 

mentioned above, it is also advisable to consider the number of monitored variables. Complex 625 

processes require a large number of variables to be monitored, the larger the number of variables, 626 

the longer the time that will be needed to determine if they do not fall inside the established limits 627 

of the enclosing band. This would not be the case of the data-enclosing tunnel, given that it has the 628 

advantage of dimensionality reduction. Nevertheless, further work needs to be done to evaluate 629 

and corroborate these hypotheses. 630 

Moreover, future work also includes the development and testing of a user interface for the 631 

deployment of an automated feedback tool. The interface should show guiding messages using 632 

natural language so that the trainee does not have to read a number of values on the screen. The 633 

testing of the tool should be carried out with actual trainees that could provide their opinion on 634 

their user experience. 635 
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