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Abstract

The chemical industry is increasingly relying on agents for data acquisition, op-

timization, and simulation. In order to enable efficient management of agents,

Knowledge Graphs (KG) together with agent composition frameworks are there-

fore applied. However, a method to assess the reliability of agents for such sys-

tems is absent. Therefore, this paper proposes a Smart Contract-based agent

marketplace for composition frameworks to estimate the reliability of agents.

In this agent marketplace, we improved the feedback-based reputation system

by leveraging Smart Contracts to eliminate fraudulent ratings and to enable

automation. The marketplace incorporates a rating-dependent payment mech-

anism as well, to further enhance trust. The paper also illustrates how this

marketplace is integrated into the J-Park Simulator (JPS) agent composition

framework for the automated agent selection and transaction.

Highlights

• A novel agent marketplace is built on top of blockchain-based Smart Con-

tracts.

• The agent marketplace is integrated into an agent composition framework,
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to support automated agent selection and payment.

Keywords: Blockchain, Smart Contract, Agent, Agent composition,

Knowledge Graph

1. Introduction

The progress in information technology is changing the field of chemical

engineering at an increasing pace. For example, the number of agents that pro-

vide functions relevant to chemical engineering over the internet or intranet is

increasing. Here we define agents as applications and web services that utilize5

semantic technologies and are accessible on World Wide Web. They are used for

data acquisition, simulation, and optimization. For instance, the two thermo-

dynamic databases NIST chemistry webBook [1] and Mol-Instincts [2] provide

agents that allow retrieval of thermodynamic data.

However, due to the heterogeneity and the increasing number of agents, it10

is challenging to enable their efficient discovery and coordination. A solution

to this problem can be achieved by embedding agents into a Knowledge Graph

(KG) which enables automated management of agents [3, 4]. Knowledge Graphs

are sets of interconnected classes, relations, and instances that are semantically

described, i.e., each distinct piece of information is denoted by a different Uni-15

form Resource Identifier (URI)1. Due to the unique mapping from URIs to

classes or instances, semantic descriptions are explicit and machine-readable.

A collection of the semantic concepts providing vocabularies to build KGs is

called an ontology. Within the KGs, information such as the input/output

(I/O) signatures and prices of agents are described on top of agent ontologies20

such as OntoAgent [4] so that functions, request formats, and other properties

of agents can be interpreted by computer programs. Thus, systems interact-

ing with agents automatically, such as agent composition frameworks and agent

registries, are enabled in KGs.

1https://www.w3.org/Addressing/URL/uri-spec.html
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The J-Park Simulator (JPS) [3, 4] is an example of such a KG and serves as a25

research platform to explore how internet technologies can be used to achieve in-

teroperability between different domains. It contains the semantic descriptions,

based on OntoAgent, of a set of agents across multiple domains. On top of

the agent descriptions, an agent composition framework has been implemented

for the automated creation of composite agents for complex tasks consisting30

of interconnected sub-tasks. A composite agent selects atomic agents, which

carry out only one relatively simple function, from the KG and puts them into

a sequence based on their I/O signature (i.e., the data type of their inputs

and outputs). For example, if one atomic agent takes a coordinate under the

ontology class OntoCityGML:EnvelopeType as its output and returns a city35

name under the class dbo:City, it can be matched with an atomic agent that

takes an instance of dbo:City and returns the population of this city. The agent

composition framework will then compose this two agents to produce a com-

posite agent that returns the city population given a selected coordinate. After

creating a composite agent, the composition framework executes the composite40

agents. The details of the JPS agent composition framework has been described

in this article. [4]

Any composition framework must face the problem of assessing the atomic

agents’ performance and reliability. In other words, the framework needs to

know whether or not an agent can be trusted. For example, the consistency and45

the comprehensiveness of thermochemical data for chemical species, provided

by a thermodynamic database agent, significantly affect the accuracy, predic-

tive performance, and quality of the models that utilize this data [5]. In addi-

tion, agent performance and reliability are important selection criteria within

the agent composition framework when there are multiple functionally identical50

agents available. Therefore, it is critical to provide credible information on the

performance and reliability of the agents.

One of the most traditional ways to endorse the trustworthiness of an entity

(e.g. an agent) is to establish an authority to qualify and monitor the agents so

that their quality and integrity are guaranteed. However, such a solution can55
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not handle the vast number of agents in KGs because investigation and exam-

ination are time-consuming. Another solution is the contract-based solution,

where contracts define the rights and duties of the parties in advance, and the

violation of the terms will lead to consequences. However, the enforcement of

the contracts is challenging due to the large scale of KGs. Besides the scalability60

problem, the two aforementioned solutions rely on human intervention, which

is too slow to cope with the highly automated nature of the agent composition

framework.

Among all the solutions to assess performance and reliability, feedback-based

reputation systems are considered as the most cost-effective and scalable. A65

typical reputation system is administrated by a single party (e.g. a hotel review

website). It collects users’ ratings for a vendor or product after a transaction

and calculates a cumulative rating from all the historical ratings, forming a

quantified reputation score. Such a score allows the users to assess the reliability

of the vendor or the quality of the product before purchase, and hence establishes70

users’ confidence for this purchase [6, 7]. The feedback-based reputation system

is scalable and cheap, as it does not rely on designated institutes to evaluate

the quality of products. As a result, it is adopted by virtually all electronic

commerce platforms. Meanwhile, barely any human intervention is required to

manage such a system [6, 7] and it can operate automatically. Such a solution75

is scalable and compatible with automated systems.

However, the current implementation suffers from persistent problems of

rating fraud, from both users and administrators [8, 9, 10], which discredits the

reputation system. Firstly, the higher ratings lead to more profit [11] so the

users (e.g., vendors on e-commerce platforms and agent providers in KGs) may80

insert unjustly high ratings to promote a product or service and inject unfairly

low ratings to demote competitors. In this case, the ratings will fail to reflect

the quality of the products. One of the existing solutions is to analyze the

ratings and filter out the malicious ones. Many filters have been built for this

purpose [12, 13, 14]. However, when the profit of creating a fraudulent rating85

surpasses its cost, the well-funded dishonest rating could be deliberately masked
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as a regular one, making it harder to distinguish malicious ratings. For the case

of KGs, the commercial agents involved are usually of high value. For example,

in our use case the Dispersion agent is built on top of a proprietary Atmospheric

Dispersion Modeling software with a substantial cost per license. Consequently,90

the profit per call will be high too. Therefore, if a feedback-based reputation

system is implemented for the composition framework, it is even more likely to

encounter fraudulent ratings from agent providers. Secondly, the mainstream

designs of reputation systems are centralized, which means the functions of

cumulative score calculation and score look-up, and score storage, are controlled95

by designated administrators who could also behave dishonestly. For example,

an administrator may take bribery from an agent provider to tamper with the

scores of their agent. Clearly, the countermeasures against fraud from agent

providers are no longer applicable.

With the advent of blockchain technology, some decentralized designs are100

proposed to address this problem. A blockchain, which will be further illus-

trated in Section 2.2, provides tamper-proof and decentralized storage of data.

Since a blockchain is managed without a central authority, several blockchain-

based decentralized reputation systems have been created. Dennis and Owen [15]

proposed a blockchain-based P2P reputation system for file transaction. Car-105

boni [16] designed an incentive-based feedback reputation model on top of the

Bitcoin blockchain. These designs successfully established reputation systems

without centralized control over them while guaranteeing the integrity of repu-

tation records. However, the mentioned models could not implement functions

such as score calculation and service searching without a centralized third party,110

as a blockchain could only provide decentralized management of data but not

the implementation of functions. For example, the calculation of the cumulative

score is exposed to manipulation by this third party. Consequently, the scores

are still vulnerable to dishonest behaviour.

In order to implement a score calculation in decentralized ways, the blockchain-115

based Smart Contract, which will also be explained in detail in Section 2.2,

is proposed to provide decentralized control over the implementation of func-
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tions [17]. Calvaresi et al.[18] proposed a reputation system in which the cumu-

lative performance score of an agent is automatically calculated and managed by

the Smart Contract and stored in the blockchain. This solution takes it one step120

further; it not only guarantees that the performance records are tamper-proof

but also secures the integrity of the calculation of the cumulative score. Klems

et al. [19] also provided a Smart Contract-based solution for a decentralized ser-

vice marketplace, which integrates functions such as match-making, transaction

settlement, and dispute resolution. However, both solutions rely on feedback125

from users. Consequently, although the Smart Contract-based solution prevents

the risk of fraud from administrators, it still exposes the reputation system to

the risk of rating frauds from users.

In conclusion, to the best of our knowledge, a mechanism to provide a credi-

ble agent performance record that could cope with the highly automated nature130

of an agent composition framework and the large scale KGs, as well as being

resistant to fraudulent ratings from both users and administrators, is absent.

The purpose of this paper is:

• To present a novel design of a Smart Contract-based feedback reputation

system that allows an agent composition framework in a KG to assess the135

reliability of agents while ensuring that the design is scalable, compatible

with highly automated systems, and invulnerable to rating fraud from

both users and administrators.

• To demonstrate a use case which integrates the agent marketplace with

the JPS agent composition framework to facilitate its agent selection.140

The remaining parts are structured as follows. Section 2 explains the tech-

nologies leveraged by the agent marketplace. Section 3 illustrates the design

and implementation of the Smart Contract-based agent marketplace in detail.

Section 4 demonstrates how we integrated this agent marketplace with the JPS

agent composition framework. Section 5.2 provides plans for future improve-145

ment of the work, in relation to the limitations discussed in Section 5.1. Section 5

outlines the conclusions of this paper.

6



2. Background

In this section we provide some information on the J-Park Simulator (JPS)

and Ethereum Smart Contracts. The JPS will provide the environment in150

which we built our use case and demonstrated the effectiveness of our solu-

tion. Ethereum Smart Contracts is the specific technology we have chosen to

develop our solution and the section below summarises some key features useful

to understand the technical aspects of the paper.

2.1. J-Park Simulator155

Large cross-domain systems such as industrial symbioses, chemical plants,

and cities are constituted by components such as power generators, storage

tanks, and buildings, which are from diverse domains. In order to achieve

complex tasks including running simulations and optimizations, and coordina-

tion of multiple components, the relevant data, knowledge, and models must160

be integrated. However, the communication friction due to the heterogeneous

conventions across domains hinders such an integration. Therefore, JPS is de-

veloped to provide a data management common ground for those components

and enable semantic interoperability so that cross-domain integration can be

enabled.165

For example, on top of JPS, Zhou et al. [20] proposed a methodology to use

ontologies for the modeling and management of eco-industrial parks and their

components. They also applied such a methodology to increase the efficiency

of intra-plant waste heat utilization. The waste heat utilization between chemi-

cal plants on Jurong Island in Singapore is hindered due to the communication170

friction between them caused by the heterogeneous terminologies. With the

explicitness of ontology descriptions, intra-plant waste heat utilization oppor-

tunities could be more easily found. In addition, Devanand et al. [21] gave an

example of using the JPS cross-domain KG to access financial and geographi-

cal information of potential sites for the optimal placement of a small modular175

reactor. Such an approach is enabled by the KG’s capability to effectively in-

corporate cross-domain data and provide convenient access to them.
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Figure 1: The JPS KG and agents: a) The JPS KG (blue layer) contains both the agent

ontology (left) and the domain ontologies (right). b) Each ontology includes the terminology

(green boxes) and the instances (pink nodes for agent instances and blue nodes for domain

ontologies). c) The agent layer (pink layer) includes an agent composition framework, which

creates and executes composite agents. d) Agents in action are triangles. The black solid

arrows represent the mapping between the same agents on the two layers and the blue arrows

denote the data stream between the agents and the domain ontologies.
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To constitute the JPS cross-domain KG, a set of ontologies are developed or

incorporated that contain structured and connected knowledge and data that are

represented semantically, i.e. classes and individuals are denoted by Uniform180

Resource Identifiers (URIs). As each URI uniquely points to a distinct class

or individual (e.g. dbr:Cambridge2 and dbr:Cambridge, Massachusetts3 denote

“Cambridge” in the UK and the US), the data representation is explicit and

unambiguous. The explicitness also makes the data and knowledge machine-

readable. A collection of the explicitly declared classes and individuals are185

referred to as an ontology [22]. Furthermore, a collection of interconnected

ontologies integrated for a certain purpose is considered as a KG according to

our understanding.

As shown in Figure 1, the JPS KG consists of the domain ontologies and the

agent ontology. The domain ontologies are utilized to model knowledge, data,190

and entities in a wide range of fields. For instance, OntoCAPE [23] is inte-

grated to describe concepts and individuals that are related to chemical process

engineering. Starting from OntoCAPE, OntoEIP [20] is developed to model

eco-industrial parks. Moreover, OntoCityGML, OntoKin, and OntoEngine [24]

are included to cover the field of city modeling, chemical kinetics, and internal195

combustion engines. These ontologies are used collectively to provide knowledge

and data for cross-domain simulation and optimization.

However, these ontologies must be continuously managed and updated due

to the dynamic nature of the real-world components such as cities, eco-industrial

parks and industrial cooperation systems. Therefore, agents for data acquisi-200

tion, optimization, simulation, etc. are implemented to update and maintain the

KG. To enable semantic access of those agents for other components on the JPS

platform, semantic individuals of the agents are described by the OntoAgent [4]

ontology. For an agent instance, OntoAgent describes its I/O signature by as-

signing domain ontology classes to its inputs and outputs, so that machines can205

2http://dbpedia.org/resource/Cambridge
3http://dbpedia.org/page/Cambridge,_Massachusetts
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interpret the agent’s function, discover agents according to I/O requirements,

and also make I/O-based matchmaking between agents.

On top of the semantic description, an agent composition framework is im-

plemented in the JPS KG. Such a framework can automatically discover, select,

and arrange agents from the KG in order to generate a composite agent to fulfill210

complex tasks. Given a user-defined I/O requirement for the composite agent,

the framework will iteratively discover and match agents based on their I/O to

fill the gap between the given I/O requirement. For example, the upper part of

Figure 7 demonstrates the structure of a composite agent that takes reaction

mechanism and region as inputs and produces air dispersion as the output. The215

atomic agents, which provide the intermediate steps in this complex task, are

connected according to their I/O to constitute a composite agent that simulates

air dispersion within a particular area.

However, in a composite agent generated by the framework, it is possible

that there are multiple agents providing the same functions. Therefore, an op-220

timization module is also implemented in the framework. The optimization

module selects out the optimal agent among those that are functionally identi-

cal by ranking them with regard to their performance scores. However, due to

the lack of a scalable and secure approach to provide a reference for agent selec-

tion, those functionally identical agents are assigned with arbitrary performance225

scores before we successfully implemented the outcome of this paper.

In addition, the framework comes with an execution agent, which is able

to automatically execute the composite agent after the optimization process.

It executes the atomic agents by constructing and sending an HTTP request

according to the semantically described grounding information of the agents. By230

feeding the outputs of an upstream agent to the connected downstream agents,

the execution agent executes all the atomic agents in sequence to produce the

output(s) of the composite agent.
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2.2. Blockchains, Ethereum Smart Contracts and Oraclize

In this paper, we implement the Smart Contract-based agent marketplace on235

top of the Ethereum blockchain to address the problem of supplying a credible

agent performance record in the JPS. Ethereum [25, 17] is a blockchain that

is designated to support the deployment of Smart Contract-based decentralized

applications (DAPPs). The main purpose of this paper is to demonstrate a

proof-of-concept implementation. Therefore, since the Ethereum blockchain is240

a rather well-known public blockchain with sufficient documentations, we believe

this public platform is particularly suitable for the implementation in this paper.

The same as other mainstream blockchains, the Ethereum blockchain is a

chain of data blocks shared on a P2P network. Each of the blocks contains245

the hashed transaction record or other general data within a specified period

as well as the hashed previous block, namely the previous hash. As a result,

if the data within a block is modified, its hash will then fail to match to the

subsequent block’s previous hash. Therefore, by iteratively verifying whether a

block’s previous hash is in accord with the prior block, which only takes minimal250

computational power, a user on the blockchain could verify the integrity of all

the records stored on a blockchain. Consequently, to modify the data on a

specific block while not failing the integrity check, one must re-calculate the

previous hash of all the subsequent blocks.

Besides this, Ethereum and many other blockchains implement proof-of-work255

systems to increase the difficulty of recalculating hashes of the whole blockchain.

The proof-of-work systems increase the amount of computation required to cre-

ate a new block so that an enormous amount of computational power or time

is necessary to recalculate the blockchain. As a result, the historical records in

the blockchain are secured.260

Furthermore, each node on the P2P blockchain network keeps a full copy

of the blockchain, and a new block can only be appended to the blockchain if

the majority of the nodes have verified the block. Therefore, the authority of

validating new records can not be easily seized by a malicious party.
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Thus, by its design, the data stored on a blockchain is tamper-proof, and265

a blockchain can be implemented without a centralized authority. Figure 3 il-

lustrates the structure of a blockchain. The tamper-proof and decentralized

data storage of the blockchains enabled a series of applications in the chemical

industry. For instance, Sikorski et al. [26] proposed a machine-to-machine elec-

tricity market in the context of the chemical industry built on the MultiChain270

blockchain.

However, blockchains only provide the secure and decentralized storage of

data. In order to enable more complex blockchain-based applications, blockchains

must also support secured and decentralized code implementation. Therefore,

on top of these features of proof-of-work blockchains, some blockchains are275

starting to support a blockchain-based Smart Contract. The major ones are

Bitcoin [27] and Ethereum [28]. However, the Bitcoin blockchain only provides

a limited set of functionalities for their Smart Contracts [29]. Therefore, we

chose to implement the agent marketplace on top of the Ethereum blockchain,

which is of higher versatility. On the Ethereum blockchain, Smart Contracts are280

bytecodes that are published on the blockchain via transactions; therefore, the

same as other data on the blockchain, the bytecodes are inherently tamper-proof.

Currently, Solidity4 is the main language used to develop Ethereum Smart Con-

tracts. The Ethereum blockchain includes Ethereum Virtual Machines (EVMs).

The EVMs, which are installed on each node locally, assure that for the same285

code executed, the same result is produced. Therefore, with EVMs and the

tamper-proof nature of the Smart Contracts code on the blockchain, carrying

out of the functions of the Smart Contract can not be intervened with. As a

result, Smart Contracts serve as trustworthy and autonomous nodes to enforce

activities on the blockchain.290

Identical to other nodes on the blockchain, Smart Contracts are assigned

with blockchain addresses (in the form of a hexadecimal number) so that they

can receive transactions from other nodes. Smart Contracts can possess Ether,

4https://solidity.readthedocs.io/en/v0.5.11/
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the cryptocurrency on the Ethereum blockchain, and make transactions to other

nodes too. This feature allows Ethereum Smart Contracts to carry out tasks295

that involve financial transactions.

Another feature of the Ethereum Smart Contracts is that they can store

data. Each variable declared in the code of the Smart Contract is assigned with

an address on the blockchain. By making a transaction, the Smart Contract

updates the variable value, and the nodes with permissions can read the value300

of the variable locally through the Smart Contract. This feature allows the

Smart Contracts to manage a database that stores general data, for example,

the performance scores of agents.

However, compared with traditional applications, the Smart Contract-based

DAPPs have some restrictions due to the blockchain infrastructure. For in-305

stance, Smart Contracts are not allowed to make direct HTTP requests to the

Internet, to guarantee the predictability of activities on the blockchain. One of

the criteria for the credibility of a blockchain is that all the state changes on

it can be precisely reproduced based on the transaction records. However, an

HTTP request may return different results with the same input. As a result,310

the Smart Contracts cannot receive any data, including the result of an HTTP

call, other than explicit transactions from other nodes on the blockchain.

Therefore, the Oraclize [30] service is used to make delegated HTTP requests

for the Smart Contracts. The Oraclize service sets up Smart Contracts to receive

the call for making HTTP requests from other Smart Contracts. The Oraclize315

Smart Contract will then pass the requests through transactions to the Oraclize

servers, which are also nodes on the blockchain, to make the HTTP requests off

the blockchain. After the result of the HTTP request is returned, the Oraclize

server will deliver it to the Oraclize Smart Contract. Finally, the Oraclize Smart

Contract will return the result to the calling Smart Contract. As a result, the320

Smart Contract could make HTTP requests indirectly via the Oraclize service.

In addition to the features of Smart Contracts themselves, some tools are

implemented to test and inspect them. Besides the Ethereum main blockchain
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network, Ethereum also provided a test network named Rinkeby5. On the main

network, Ethers are acquired from mining and purchasing; therefore, the Ethers325

are of real-world market value. To avoid financial losses while testing Smart

Contracts, we deployed and hence tested our Smart Contract on the Rinkeby test

network. On the Rinkeby network, Ethers are arbitrarily assigned to accounts

and therefore of no real-world value.

Moreover, websites such as Etherscan are tools for inspecting Smart Con-330

tracts. As shown in Figure 2, through the Etherscan website, one can investigate

the address and the bytecode of the Smart Contract. If the developer has up-

loaded the source code of the Smart Contract, it also verifies whether the source

code accords with the bytecode published.

We have now introduced all elements to present our solution to the ear-335

lier defined problem of a secure agent scoring system within our development

platform JPS.

5https://www.rinkeby.io
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Figure 2: The screenshot of a Smart Contract information page: a) In the red box is the

address of the contract, which is a hexadecimal number. Knowing this address, other nodes

on the blockchain can make transactions to the contract or call its functions. b) Within the

green box, it shows that this Smart Contract is verified, in the sense that its compiled bytecode

published on the blockchain accords with the source code. c) In the gray box is the source

code of this contract submitted by the author, which is written in Solidity language.
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3. Agent marketplace

In order to address the aforementioned fraudulent rating problem of the

current feedback-based reputation systems, we augment Smart Contracts to340

provide quantified data with the aim of, firstly, evaluating the trustworthiness

of the agent; secondly, selecting the optimal agent among functionally identical

ones; and, thirdly, introducing a payment mechanism to facilitate a financial

transaction between participants after invocation of the chosen agent. The two

systems then constitute an agent marketplace that provides most of the core345

functions for agent selection, evaluation, and employment as shown in Figure 3.

One major difference between our design and the tradition centralized designs of

reputation-systems is to leverage Smart Contracts as unbiased and autonomous

third parties to provide ratings and avoid fraudulent ratings from human users.

In addition, Blockchain-based Smart Contracts are published on Blockchains,350

as introduced in Section 2.2, one can investigate and verify whether the Smart

Contracts implemented accord to their source code. As a result, any dishonest

or biased code within the Smart Contracts can be spotted. Therefore, malicious

behaviour from the team that implement or administrate the agent marketplace

can be prevented.355

The Smart Contracts making up this agent marketplace are developed in

the Solidity6 language and published on the Ethereum Rinkeby test network.

3.1. Reputation system

As mentioned above, building the reputation system based on users’ feedback

may lead to frauds. However, the features of the tamper-proof code and the360

decentralized execution of the blockchain-based Smart Contracts have enabled

a solution to this problem. With these two features, Smart Contracts are used

to call agents, to evaluate agent performance, and to manage reputation records

independently and hence to prevent fraudulent feedback.

6https://solidity.readthedocs.io/en/v0.4.24/
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Figure 3: The Smart Contract-based agent marketplace: a) The agent marketplace (the green

layer) is established with Smart Contracts on top of a decentralized blockchain infrastructure

(the gray layer), which is updated and validated by a number of connected nodes collectively.

b) The Smart Contracts are compiled bytecode published on a blockchain (black arrows). In

this agent marketplace, functions including transactions to users and agents, agent record

lookup, and agent performance evaluation are implemented with Smart Contracts.

As illustrated in Figure 4, to employ an agent, the user (the agent compo-365

sition framework) needs to call the invoke() function, providing the Ethereum

address of the agent (a hexadecimal number that points to the agent provider’s

Ethereum account) and the input data for the request. Subsequently, the Smart

Contract will check the user’s deposit balance with the check deposit() func-

tion. If the balance is sufficient, the Smart Contract will make an HTTP call370

through function call(), which will search for the agent URL according to

the given Ethereum address, compose an HTTP request, and finally delegate

the request to the Oraclize service. As introduced in the Background section,

the Oraclize service allows Ethereum Smart Contracts to make HTTP requests

17



through it for the agents. When the HTTP request for the agent returns the375

results, the reputation Smart Contract will receive it via the callback() func-

tion, which will then return the result to the user.

Simultaneously, the evaluate performance() function will be triggered

to evaluate the performance of this agent invocation based on the result re-

ceived. This function will then calculate the performance score on top of a380

domain-specific agent evaluation matrix, which varies between different reputa-

tion Smart Contracts for different agents, and the returned result. For example,

the weather agents are evaluated based on their comprehensiveness of data. In

the agent composition case, to create a composite agent to simulate the pol-

lutant dispersion in an urban area, weather agents are expected to provide a385

series of weather data including the wind direction, wind speed, temperature,

precipitation, etc. Since the more factors are taken into consideration, the more

precise the simulation is, whether a weather agent provides a comprehensive set

of weather data is the most critical factor in its performance evaluation matrix.

In this case, the evaluate performance() function goes through the seman-390

tically structured weather data and counts the URIs of the data entries such

as wo:hasPrecipitation7. The number of the data entries involved would be the

performance score in this simple example. Such an automated and independent

performance evaluation is only enabled when the agents are part of the KG. As

mentioned above, the agents within the KG share common ground for data ex-395

change and are interoperable. As a result, agents from different sources do not

have the problem of heterogeneous I/O format. Therefore, the Smart Contracts

to evaluate them could do this based on their outputs by the same method, as

shown in the function evaluate performance().

Subsequently, this function updates the reputation records of this agent and400

triggers the payment mechanism, which the next subsection will introduce in

detail.

7https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/WeatherOntology.owl#hasPrecipitation
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Figure 4: UML diagram for the agent reputation system: a) The process of performance

evaluation starts from the user making a request to invoke an agent, providing the hexadecimal

address of the agent (invoke(agent addr,data)). b) With sufficient deposit, the contract will

delegate the invocation of the agent to the Oraclize service, which returns the result with

proof of authenticity. Based on the result, the Smart Contract will make an evaluation of

the performance and then update the new cumulative score. From this point, the payment

mechanism will be triggered, which is illustrated in Figure 5 c) In the case of an insufficient

deposit, the contract will notify the user.

3.2. Payment mechanism

The payment mechanism is made after the invocation, which is proportional

to the performance evaluated and is conducted automatically by the Smart Con-405

tracts. Such an implementation is enabled by the feature of Ethereum Smart

19



Contracts being able to receive and transfer funds from and to other Ethereum

accounts. Meanwhile, such a design enables the payment mechanism to pay

the users compensation when the performance is lower than a certain thresh-

old or the agent fails to provide a service. This feature further enhances the410

user’s trust in the agents as they would automatically receive financial compen-

sation for poor agent performance. Figure 5 demonstrates the working flow of

the payment mechanism and Appendix A.2 shows the Solidity source code of

the implementation. In addition, considering the large-scale of the Knowledge

Graph and the substantial number of agents operating on top of it, it is highly415

likely that many of them are proprietary and come with charges. Therefore, a

payment system is a necessary component of the agent marketplace.

The payment system is based on a deposit system. Both the agents and users

are required to register and pay a deposit in order to join the agent marketplace.

The registration processes are implemented in function register as agent()420

and function register as user . An agent must provide its URL and the price

for each invocation to register and pay a deposit defined by the Smart Contract.

The address of the Ethereum node that registers this agent will be recorded as

the Ethereum address of the agent; such an address will serve as the identi-

fier of this agent within the agent marketplace. A user also needs to make a425

deposit. Subsequently, the Smart Contract will include them in the agents or

user list and update the list on the blockchain. These lists are also accessible

to other nodes on the blockchain through functions get all agents address()

and get agent record() so that other nodes could look up the agents’ reputa-

tion records.430

Since the Smart Contract can make an unbiased evaluation and cannot be

manipulated, it can be trusted to control the deposit of users and agents and

make the payment by itself through the blockchain’s secured financial transac-

tion layer. When a call to the agent and the according evaluation is completed,

the Smart Contract will calculate the amount of payment with the function435

calculate payment() and then make the transfer via the built-in transfer()

function of the Smart Contract.
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Figure 5: UML diagram for registration and payment mechanism: a) To register, the user

must pay a deposit to the contract through the register as user(deposit) function. (The $

sign denotes a payable function). b) An agent register with its HTTP URL and its price

for one invocation besides the deposit. c) The transaction is triggered when the invocation

process is finished and the agent performance is evaluated. Based on the score, the contract

will calculate the amount of payment or compensation and then conduct the transaction.

4. Use case

This use case demonstrates how we implemented the agent marketplace in

the JPS to provide credible reference for performance-based agent selection.440

As introduced in Section 2, Background, the JPS agent composition frame-

work needs to select the optimal agent when there are multiple functionally-

identical ones available in the JPS KG. However, before implementing the out-
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come of this paper, it faces the problem of the absence of credible sources of the

agents’ performance and reliability. Because of the vast number of agents in the445

JPS KG, the distributed nature of their implementation, the dynamic nature of

their performance, and the automated nature of the composition framework, it

is impossible to evaluate their performance through an institute or to use con-

tracts to guarantee their performance. Although the feedback-based reputation

system offers a scalable solution for the problem, it is not suitable for the JPS450

agent composition framework as it is vulnerable to fraudulent ratings. A con-

siderable number of JPS agents are high-value simulation/optimization agents,

such as “Dispersion agent” and “Engine Emission agent”

As a result, if a feedback-based reputation system is implemented for the

JPS agent composition framework, there is a high risk of rating fraud against455

it.

Therefore, the agent composition framework is connected to the the Smart

Contract-based agent marketplace for the access of agent performance records.

As shown in Figure 6, the Smart Contract-based agent marketplace will store

and manage the performance record of the agents within the JPS KG, provide460

the agent composition framework the access to these records, and automati-

cally evaluate the performance of an agent after its execution under the agent

composition framework.

As shown in Figure 7, in this use case the composite agent required has the

inputs “Reaction Mechanism” and “Region” and its output is the type “Air465

Dispersion”8. Such a composite agent can be used to evaluate the suitability

of proposed installation locations of a new power plant or chemical plant, or to

assist evacuation planning in case of an emergency such as tank leakage. Eight

agents are put into the composition result but there is a redundancy when it

comes to the agents that provide the weather data in a particular city. The three470

weather agents built on top of three different weather services accordingly. The

8which is temporarily represented by the class “Table” as the air dispersion class is under

development.
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Figure 6: The integration with the JPS agent composition framework: the agent marketplace is

then applied to the JPS project to provide performance score lookup, performance evaluation,

and transaction functions. a) The grey arrows represent the Smart Contracts reading QoS

scores from or updating them to the blockchain. b) The blue arrows denote the delegated

invocation of agents though the Smart Contracts.

three weather agents are named as Weather agent A,B and C. The agents wrap-

ping around these web services take the URIs of cities and return detailed and

semantically restructured weather data including wind velocity, temperature,

precipitation, etc. However, despite their identical I/O signature, there is a475

difference in the comprehensiveness of weather data, which is the most critical

evaluable factor affecting the quality of weather data and hence the simulation.
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Therefore, we implemented a Smart Contract in the agent marketplace that

evaluates weather agents based on their data comprehensiveness. This paper

aims to demonstrate a proof-of-concept implementation of agent marketplace480

on top of Smart Contracts, which is a rather new technology. Therefore, we

decided to keep the use case as simple as possible. As a result, the evaluation

of weather agents, which are relatively simple, based on single criterion. As the

focus of this paper is to use Smart Contracts to prevent fraudulent ratings, we

suppose that the specific evaluation matrix is less important here. Additionally,485

although the evaluation of weather agents is based on one criterion, evaluation

matrices with multiple criteria can also be implemented. Moreover, the agent

marketplaces can implement multiple alternative matrices focusing on different

aspects of the agent performance to cope with various needs from agent users.

To make both the agent composition framework and the three weather agents490

members of the agent marketplace, the agent framework is assigned with an

Ethereum Rinkeby test network account with a sum of mock funds. Three

independent Rinkeby accounts are also set up for the weather agents. Then,

we manually registered the agent framework as a user and the weather agents

as service providers and deposited a nominal amount of Ether for the user495

(the framework) and the agents. In addition, to connect the agent instance

in the JPS and their records within the agent marketplace, we extended the

OntoAgent ontology. A new property, ontoagent:hasBlockchainAddr9, is added

to OntoAgent, which stores the Rinkeby network address of the agent.

After such a setup, the framework can now look up the performance records500

of three weather agents (as shown in Figure 7) and execute them through the

Smart Contract. During the optimization process, the framework first queries

the KG with SPARQL and retrieves the agents’ Rinkeby addresses. With the

addresses, the framework then calls the Smart Contract to look up the scores

of the agents and ranks the agents according to the scores. Finally, the agent505

with the highest score will be kept. According to the cumulative score generated

9http://www.theworldavatar.com/ontology/ontoagent/#hasBlockchainAddr
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Figure 7: A screenshot of the agent composition framework integrated with the agent mar-

ketplace: a) The agent marketplace provides QoS scores for all three weather agents for the

optimization of the composition result (top). b) The new performance evaluation result will

be updated to the contract (bottom). The pie chart demonstrates the market share of the

three weather agents.

based on previous evaluations, Weather agent C is selected.

After the optimization of the composite agent, the framework proceeds to
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the execution phase. To execute an agent, the agent composition framework

sends the HTTP request to invoke the Weather agent C to the Smart Contract.510

Through Oraclize, the Smart Contract will make an HTTP request to the agent.

In this use case, the Smart Contract will pay the Oraclize a service fee for this

request. Therefore, the agent invoked will be charged an extra fee by the Smart

Contract.

When the Smart Contract receives the weather data provided by the weather515

service, it will then make a performance evaluation based on the completeness of

the data (e.g., some weather agents include cloud coverage data while others do

not). By going through the weather data and comparing the attributes included

in the result with a predefined list, the Smart Contract then comes up with a

score reflecting the comprehensiveness of the weather data. As shown from520

Line 36 in Appendix A.1, the Smart Contract searches for the URIs of the data

properties such as wo:hasHumidity and counts the number of data properties

contained in the result returned. Since the maximum number of data properties

returned is seven, the number of data properties will be divided by seven for

normalization. (In fact, Solidity currently only supports the storage of integers;525

the performance scores are therefore in the form of large integers in the actual

implementation. However, to better demonstrate the design, we simplified the

scores to float numbers in this paper.)

Subsequently, the Smart Contract will calculate and update the new cumu-

lative performance score of the agent as shown in Line 38 in Appendix A.1.530

The performance score of this invocation is 4.28 out of 5 because the weather

agent only returned six properties out of seven. Therefore 85% of the price,

which is 0.085 Ether, will be transferred to the weather agent by the Smart

Contract, as the Ethereum Smart Contracts are able to transfer Ether to other

nodes. Figure 7 contains a message showing that a payment is made to the535

agent’s hexadecimal Ethereum account address by the Smart Contract. More-

over, Figure 8 demonstrates the output produced by the composite agent.
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Figure 8: A screenshot of the visualization of the air dispersion simulated by the composite

agent.

5. Conclusion

This paper presents the Smart Contract-based agent marketplace, which is

able to provide access for the agent composition framework to estimate the540

reliability of agents within a KG. Thanks to its design, the agent marketplace is

clearly compatible with the highly automated nature of the agent composition

framework, invulnerable from the fraudulent ratings from both other users and

administrators, and scalable enough to fit a vast number of agents within a

KG. Also, the paper demonstrates the application of the agent marketplace545

within the JPS in order to support the JPS agent composition framework for

agent selection and payment. In conclusion, the main contribution of this paper

is to illustrate that Blockchain-based Smart Contracts can serve as absolutely

trustworthy and unbiased third parties for evaluating agents operating on top

of a Knowledge Graph, with a proof-of-concept implementation.550

5.1. Limitations

Firstly, although the blockchain-based Smart Contract has been widely ap-

plied in many fields, it is still a rather immature technology. Take the Ethereum

framework and the Solidity language as examples; both of them have been crit-
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icized for a series of known bugs [31]. The immaturity of the technology raises555

risks for the agent marketplace. For example, the Solidity language is still under

development and this may lead to the possibility of being hacked, hence Smart

Contracts may not be reliable. However, we trust that this technology will be

largely improved in the future as it is so promising.

Secondly, although Smart Contracts’ transparency enhanced users’ trust of560

the agent marketplace, it also exposes any loopholes in the marketplace. Never-

theless, with the advent of more testing and validation tools, Smart Contracts

could be further improved in the aspect of resistance against attacks.

Thirdly, this work is built on the assumption that the agents representing

cyber resources can be evaluated by computer programs given the data returned565

by the agents. However, such an assumption is not applicable for all scenarios.

For example, to evaluate an agent that forecasts stock market prices, the accu-

racy of the forecast is the most critical parameter. However, it is not possible

to calculate the accuracy based on the data returned by the agents. As a re-

sult, some agents can not be included in the agent marketplace without further570

consideration, e.g. looking at past performance.

Lastly, the proof-of-work mechanism of the blockchain inevitably causes a

time delay for transactions, because the update to the blockchain must be val-

idated. Consequently, when the agent marketplace is implemented on top of

a proof-of-work blockchain, it is not suitable for agents that are response-time575

sensitive.

5.2. Outlook

In the future, the Knowledge Graph will include semantic instances of the

agent marketplaces for different types of agents. As mentioned before, we en-

vision that for a certain category of agents there will be a designated agent580

marketplace implemented, since the standard for evaluating different types of

agents will vary. Therefore, when there are multiple types of agents in the KG,

the composition framework needs a way to automatically locate the agent mar-

ketplace for a certain category of agents. We believe that by creating semantic
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instances of the marketplace containing explicit indications about the type of585

agents it registers, the agent composition framework will be able to discover a

suitable agent marketplace using the agent ontology.

Moreover, the agents within the marketplace are currently restricted to those

representing cyber resources such as the capacity for simulation or optimization.

This is because of the lack of measures to collect untampered data to evaluate590

agents representing physical resources. For example, in order to evaluate the

performance of a transportation agent, sensors for location and status of the

cargo are needed; however, it is difficult to prevent fraudulent behaviours such

as manipulation of the sensor signal. We propose that by embedding Smart

Contracts into the firmware of physical devices such as sensors, and integrating595

them into the blockchain network, the sensors could serve as unbiased estimators

of the performance of a physical activity (e.g., whether a storage tank has been

filled) in the future. Consequently, the scope of the agent marketplace could be

further extended.
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List of abbreviations605

HTTP Hypertext Transfer Protocol

URL Uniform Resource Locator

URI Uniform Resource Identifier

UML Unified Modeling Language

JPS J-Park Simulator

KG Knowledge Graph

SPARQL SPARQL Protocol and RDF Query Language
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Appendix A. Appendices

Appendix A.1. Solidity code for the reputation system710

1 ...

2 event Insufficient_deposit(address user_address , uint256

balance);

3 event Callback_Received(address requester_address , bytes32

query_id , string result);715

4

5 function _call(address _agent_address , string memory _data)

public{

6 string memory _URL = agent_map[_agent_address ].URL;

7 bytes32 _query_id = oraclize_query("URL", join_URL(_URL ,720

_data));

8 }

9

10

11 function __callback(bytes32 _myid , string memory _result ,725

address _sender_address) public {

12 require (msg.sender == oraclize_cbAddress ());

13 emit Callback_Received(_sender_address , _myid , _result);

14 }

15730

16 function invoke(address agent_address , data) {

17 if (check_deposit){

18 call(agent_address , data);

19 }

20 else{735

21 emit Insufficient_deposit(msg.sender , user_map[msg.

sender ]. deposit_balance);

22 }

23 }

24740

25

26 function check_deposit(address _user_address , address

_agent_address) private returns (boolean sufficient){

27 return user_map[_user_address ]. deposit >= agent_map[

_agent_address ]. price;745
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28 }

29

30 function evaluate_performance(string memory _result , address

_user_address , address _agent_address) private {

31 /*750

32 Domain specific algorithm for evaluation

33 */

34

35 uint score = 0;

36 if (_result.find("wo:hasHumidity")){755

37 score = score + 1;

38 }

39

40 if (_result.find("wo:hasWindDirection")){

41 score = score + 1;760

42 }

43

44 if (_result.find("wo:hasWindSpeed")){

45 score = score + 1;

46 }765

47

48 if (_result.find("wo:hasCloudCoverage")){

49 score = score + 1;

50 }

51770

52 if (_result.find("wo:hasTemperature")){

53 score = score + 1;

54 }

55

56 if (_result.find("wo:hasPrecipitation")){775

57 score = score + 1;

58 }

59

60 if (_result.find("wo:hasAtmosphericPressure")){

61 score = score + 1;780

62 }

63

64 score = score / 7 * 50000;
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65

66 agent_map[_agent_address ]. invocation_counter =785

67 agent_map[_agent_address ]. invocation_counter + 1;

68 calculate_payment ();

69

70 agent_map[_agent_address ]. total_score =

71 agent_map[_agent_address ]. total_score + score;790

72

73 user_map[_user_address ]. invocation_counter =

74 user_map[_user_address ]. invocation_counter + 1;

75 }

76795

77 function join_URL(string memory _URL , string memory _data)

private pure returns (string memory result ){

78 return string(abi.encodePacked(_URL ,_data));

79 }

80 ...800

Appendix A.2. Solidity registration and transaction

1

2 ...

3 uint public minimum_deposit_for_agent = 2 ether;

4 uint public minimum_deposit_for_user =0.2 ether;805

5 uint public default_score = 45000;

6 address [] agent_address;

7

8

9 mapping(address=>agent) agent_map;810

10 mapping(address=>uint) user_deposit_map;

11

12

13 struct agent {

14 uint score;815

15 uint deposit_balance;

16 uint invocation_count;

17 string URL;

18 bool validity;

19 uint price;820
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20 }

21

22

23 function register_as_agent (string memory _URL , uint _price)

24 public payable returns (bool _succeed){825

25 if(msg.value >= minimum_deposit_for_agent){

26 if(! agent_map[msg.sender ]. validity)

27 { // register the new vendor

28 agent_map[msg.sender ]. deposit_balance = msg.value;

29 agent_map[msg.sender ]. validity = true;830

30 agent_map[msg.sender ].URL = _URL;

31 agent_map[msg.sender ]. invocation_count = 0;

32 agent_map[msg.sender ]. score = default_score;

33 agent_map[msg.sender ]. price = _price;

34 agent_address.push(msg.sender);835

35 return true; }

36 }

37 return false;

38 }

39840

40

41 function register_as_user () public payable returns (bool

_succeed)

42 {

43 return user_deposit_map[msg.sender] = msg.value;845

44 }

45

46 ...

47 uint public commission_charge = 0.01 ether;

48 uint public compensation_charge = 0.1 ether;850

49 uint public default_score = 45000;

50 uint public full_payment_score = 40000;

51 uint public half_payment_score = 30000;

52 uint public compensation_score = 20000;

53 ...855

54

55 function calculate_payment(uint score , address payable

_user_address , address payable _agent_address) private{
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56 uint price = agent_map[_agent_address ].price;

57 if (score >= full_payment_score) // make full860

make_payment_or_compensation

58 {

59 _payment = price + commission_charge;

60 deduce_deposit(user_map , _user_address , _payment);

61 _agent_address.transfer(price);865

62

63 }

64 else if (score >= half_payment_score){

65 _payment = price/2 - commission_charge;

66 deduce_deposit(user_map , _user_address , _payment);870

67 _agent_address.transfer(price /2);

68

69 }else{

70 _payment = compensation_charge - commission_charge;

71 deduce_deposit(agent_map , _user_address , _payment);875

72 _user_address.transfer(compensation_charge);

73 }

74 }

75

76 function deduce_deposit(mapping _map , address _payer_address ,880

uint _payment) private {

77 _map[_payer_address ]. deposit_balance = _map[_payer_address

]. deposit_balance - _payment;

78 }

79885

80 function get_all_agents_address () public view returns(address []

memory _vendors_address)

81 { return agent_address; }

82

83 function get_agent_record(address _agent_address)890

84 public view returns(uint _score , uint _invocation , bool

_validity , uint _price){

85 return (agent_map[_agent_address ].score ,

86 agent_map[_agent_address ]. invocation_count ,

87 agent_map[_agent_address ].validity , agent_map[895

_agent_address ]. price);
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88 }

89

90 function top_up_deposit () public payable{

91 agent_map[msg.sender ]. deposit_balance =900

92 agent_map[msg.sender ]. deposit_balance + msg.value;

93 }
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