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Highlights2

• A framework for hybrid modelling of particle processes has been developed3

• A machine learning based soft-sensor is generated for estimation of particle phenomena kinetics4

• The framework requires only limited prior process knowledge5

• The framework has been applied and evaluated in both small and large scale case studies6

• The framework has been implemented using automatic differentiation to speed up model training7
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Abstract15

Particle processes are used broadly in industry and are frequently used for removal of insolubles, product

isolation, purification and polishing. These processes are challenging to control due to their complex dynamics

and physical-chemical properties. With the developments in particle monitoring tools make it possible to

gain real-time insights into some of these process dynamics. In this work, a systematic modelling framework

is proposed for particle processes based on a hybrid modelling concept, which integrates first-principles

with machine-learning approaches. Here, we utilize on-line/at-line sensor data to train a machine learning

based soft-sensor that predicts particle phenomena kinetics by combining it with a mechanistic population

balance model. This approach allows flexibility towards use of process sensors and the model predictions do

not violate physical constraints. Application of the framework is demonstrated through a laboratory-scale

lactose crystallization, a laboratory-scale flocculation, and an industrial-scale pharmaceutical crystallization,

using only limited prior process knowledge.

Keywords: Hybrid modelling, Modelling framework, Machine learning based soft-sensor, Real-time training16

PACS: 07.05.Mh, 07.05.Tp17

1. Introduction18

Particles play a key role in many industrial productions, covering products such as minerals, coatings,19

chemicals, food and pharmaceuticals. Particle processes are typically used for removal of particles, product20

isolation, product purification and/or product polishing. Some examples of these processes are precipitation,21

crystallization, flocculation and emulsification. In general, for all of these processes, the particle properties22

are critical attributes in terms of the final product quality and/or the process efficiency. Depending on the23

specific product and process, the critical particle attributes may vary. However, the ideal particle attributes24

are typically an established specification from an early stage in the product/process development.25

However, it is not straightforward to operate these types of processes with low process variations in26

the presence of disturbances. In many instances, the process kinetics are known to be highly non-linear27

and multi-variable, causing fluctuations in product properties and quality. These variations may in some28

processes result in the requirement for re-processing or even disposal of product. Thus, to transition into a29
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more sustainable production and consumption, as adressed in the UN sustainable development goals [1], it30

is necessary to develop tools that can address these challenges.31

A key step in this development is the ability to monitor particle processes. Various techniques have been32

applied throughout history, starting with sieving analysis and optical microscopy in the early 18th century33

[2], light scattering techniques in the second half of the 19th century [3, 4] and laser reflectance in the late34

20th century [5]. Especially the introduction of laser reflectance as a particle analysis technology has paved35

the road for real-time measurements of particle properties. However, this technique is indirect. Thereby, it36

is prone to loose information on particle dimensions and morphology in analysis of non-spherical particles.37

To accommodate this, there have been significant developments within direct measurement techniques of38

particles over the last 20 years, where dynamic image analysis has been a major focus.39

Today, it is possible to analyse larger populations of particles using real-time particle imaging. The40

images are typically obtained using a confocal microscope combined with a high-speed camera and afterwards41

processed using a segmentation algorithm that identifies each particle. Then finally, for each particle, a42

number of particle property features are extracted [6].43

Several dynamic image analysis sensor solutions have been suggested through the last two decades, where44

a lot of them are also commercially available. In the field of on-line/in-line particle image analysis of particles45

in liquid suspension, both probe based (Mettler Toledo PVM [7]) and flow-cell based methods (Sympatec46

QicPic [8], ParticleTech solution [9]) have been suggested.47

The availability of real-time particle analysis has a great potential in many parts of the development48

and operation of particle processes, and especially in the challenging task of characterizing particle process49

dynamics. Scientists coming from various fields of particle processing have throughout the years carried out50

countless studies on particle kinetics, using medium to low-frequency particle analysis. A large fraction of51

these studies have relied on various empirical and semi-empirical mathematical expressions to describe the52

nature of the kinetics. The empirical expressions have been kept simple to accommodate the low frequency of53

particle analysis data and thereby reducing the risk of model over-fitting. With the opportunity of obtaining54

higher frequency particle analysis data, it is now feasible to use more complex expressions without risking55

over-fitting the kinetic models.56

This has also recently caught attention in other fields of engineering, resulting in an increased usage57

of data-driven modelling approaches, also denoted machine-learning approaches. This includes both purely58

data-driven approaches and hybrid approaches [10, 11]. Especially the concept of hybrid modelling, where59

mechanistic and machine learning models are combined into one model, has been demonstrated with great60

success in various applications. For instance in modelling and optimization of penicillin production [12]61

and in modelling of heat transfer in fixed-bed reactors [13] with many more reviewed by Glassey et al.62

[14]. This type of modelling has recently been pointed out to be one of the most interesting approaches63

to bring artificial intelligence into the field of chemical and biochemical engineering [15]. This is due to a64

number of advantages over purely data-driven methods, including increased robustness towards measurement65
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noise/outliers by ensuring that the model does not violate physical/chemical constraints. Furthermore, it66

allows for utilizing prior knowledge to the extent it is available, whereas the unknowns can be derived using67

mathematically flexible machine learning models.68

Hybrid modelling approaches have previously been applied to a number of different particle systems,69

including crystallization [16, 17, 18] and milling/grinding processes [19]. A selection of these studies are70

listed in Table 1.71

Table 1: A selection of studies on hybrid modelling of particle processes. Bold text indicates the model output that has been

fitted to experimental data. Metod of moments is abbreviated as MoM, Population balance model is abbreviated as PBM

Work System Model Phenomena Model output

Lauret et al. [16] (2001) Crystallization Mass balance Growth (size indep.) Total crystal mass

Galvanauskas et al. [17] (2006) Crystallization MoM PBM, Nucleation, Total crystal mass,

Mass balance Growth (size indep.), Average crystal size (mass),

Agglomeration (size indep.) Coefficient of variation (%)

Akkisetty et al. [19] (2010) Milling Discr. PBM Breakage (size dep.) Particle size distribution

(four size bins)

Meng et al. [18] (2019) Crystallization MoM PBM, Nucleation Crystal mass

Mass balance, Growth (size indep.) Average crystal size (mass),

Energy balance Agglomeration (size indep.) Coefficient of variation (%)

In 2001, Lauret et al. [16] proposed a hybrid mass balance model for a crystallization process. They72

used a neural network to estimate a size independent growth rate for predicting the total crystal mass. To73

estimate the growth rate they used an off-line measured crystal mass in their study.74

In 2006, Galvanauskas et al. [17] proposed a hybrid population and mass balance model for a crystalliza-75

tion process. Here they showed that their approach could outperform a conventional mechanistic reference76

model. Galvanauskas et al. used a neural network to estimate both nucleation and a size independent growth77

rate. The model predictions would result in predicted total crystal mass, average crystal size (based on mass)78

and the coefficient of variation (based on mass). The population balance model was solved using the method79

of moments (MoM). To estimate the nucleation and growth rate, they used off-line measured crystal mass.80

In 2010, Akkisetty et al. [19] presented a hybrid discrete population balance model for a milling process.81

They estimated a size-dependent breakage rate using a neural network. They discretized the particle distri-82

bution into four size bins and used off-line measured particle size distributions to fit the neural network. The83

reason for the low number of bins was not mentioned.84

In 2019, Meng et al. [18] suggested a hybrid mass, energy and population balance model for a crystalliza-85

tion process. Similar to Galvanauskas et al., they used a neural network to estimate both the nucleation rate86

and a size independent growth rate. Furthermore, they added agglomeration to the model, and estimated87

a size independent agglomeration rate in the neural network as well. Apart from the energy balance, their88

proposed model structure was similar to the one suggested by Galvanauskas et al. [17]. To fit the neural89
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network, Meng et al. [18] also used off-line measured crystal mass.90

It is evident from the aforementioned studies, that the suggested models have been strongly focused on91

process variables that historically have been available at a high measurement rate. Thus, in the crystallization92

processes [16, 17, 18], the crystal mass has been used as the observed property, and used to induce phenomena93

kinetics. Only in the milling application by Akkisetty et al. [19], particle size distributions have been used94

to fit the data-driven model.95

The applied population balance models have mainly been calculated using the method of moments,96

reducing the dimensionality of the problem. Only in the milling case by Akkisetty et al. [19], a discretized97

population balance model was used, but with a small number of bins. These decisions were most likely taken98

due to two concerns: to prevent over-fitting of the hybrid models with fairly small training data sets and to99

reduce the computational complexity of training the models.100

With the availability of on-line/at-line particle distribution measurements, it is possible to fit the hybrid101

models directly to the particle properties instead of indirect process variables such as crystal mass etc.102

Furthermore, due to the increased amounts of data, it is also possible to relax some of the simplifying103

assumptions used in the previous hybrid modelling approaches, such as low dimensional population balance104

models. This poses a great opportunity for obtaining new process insights and generating particle models105

with a greater accuracy. Additionally, methods such as automatic differentiation, have significantly reduced106

the computational cost of training machine learning models [20]. These developments allow for faster training107

of the hybrid models, opening up for training the models in real-time and potentially using them as on-line108

models.109

In this work, a systematical hierarchical framework is presented for modelling particle processes. Pro-110

vided that on-line/at-line particle analysis measurements are available, the framework offers a fast modelling111

approach that can provide insights into the kinetics of the physical particle phenomena taking place in a112

particle process. The modelling framework targets particle processes, where particle phenomena mechanisms113

are not well established and the particle phenomena kinetics are expected to have a multivariable nature.114

The framework is based on the concept of hybrid modelling, where the individual strengths of mechanistic115

modelling and machine learning modelling are combined. The current approach simplifies a particle process116

to consist of up to five general physical particle phenomena; nucleation, growth, shrinkage, agglomeration and117

breakage. The kinetic rates of these phenomena are estimated using a deep neural network, given a number118

of on-line process sensor inputs. By combining the kinetic model with a mechanistic discretized population119

balance model, future particle attributes can be predicted, without the need for investigating the underlying120

phenomena kinetics. The application of the framework is demonstrated through three case studies, including121

a laboratory scale food ingredient crystallization, a laboratory scale flocculation/breakage process, and an122

industrial scale pharmaceutical crystallization.123

The paper is organized as follows: In Section 2, a generic and hybrid particle model is presented based on124

the five general particle phenomena; nucleation, growth, shrinkage, agglomeration and breakage. In Section 3,125
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a hybrid modelling framework is presented and described in detail, going from limited prior process knowledge126

to model predictions. In Section 4, the application of the framework is illustrated on a laboratory scale food127

ingredient crystallization, a laboratory scale flocculation/breakage of inorganic particles and an industrial128

scale pharmaceutical crystallization. Following this, in Section 5, a discussion is given on the presented129

modelling approach, comparing it to previous approaches. Furthermore, its strengths and weaknesses are130

identified, followed by highlighting a number of future opportunities. Finally, the conclusions are summarized131

in Section 6.132

2. Generic particle model133

In this section, a generic hybrid particle process model is presented for a continuous stirred tank reactor134

(CSTR). First, the modelled system is described. Afterwards, the overall model structure is presented and135

followed by a summary of the model equations. Finally, a number of considerations addressing over-fitting136

and under-fitting are discussed.137

2.1. System description138

In the forthcoming text, a hybrid particle process model will be presented containing a solid phase (s)139

and a liquid phase (l). The system is simplified to be behave as a CSTR. As the model is partly data-driven,140

there are a number of requirements related to data-sources that need to be met:141

First of all, an on-line/at-line particle analysis technique is required for obtaining discrete time measure-142

ments of one or more solid phase state variables related to the particle population. These state variables143

are denoted x(s). Furthermore, it is required to have discrete time measurements of one or more liquid state144

variables measured using one or more on-line/at-line/soft sensor(s). The liquid state variables are denoted145

as x(l). Lastly, a number of the measured state variables may be controllable, where one may apply certain146

control actions. The control actions are denoted as z. Note that the measured state variables x = [x(s), x(l)]147

are assumed to be the only variables that impact the process kinetics. Thus, to model the process to a148

satisfactory description of the system, one has to be able to measure the key process variables either directly149

or indirectly. If not, this will adversely affect the predictive qualities of the model.150

2.2. Model structure151

In this framework, a recursive hybrid model structure is used. The overall structure can be seen in152

Figure 1. A machine learning model, h, in this case a deep neural network, takes in the currently measured153

state variables x and the applied control actions z and calculates a number of kinetic rates y. These rates154

are continuously fed to a set of mechanistic models for the solid and liquid state variables respectively. Using155

a variable-step ODE solver, the kinetic rates are calculated for integration time-steps dt until the model has156

been integrated into the future time horizon ∆t.157

To carry out a supervised training of the machine learning model, h, a set of inputs and outputs (also158

called labels in machine learning) are needed. This set can either be obtained by a direct or an indirect159
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Figure 1: Hybrid model structure, where the orange arrow indicates the circular dependency used during model predictions

approach. The direct approach would be to measure the phenomena kinetics of individual particles directly.160

The indirect approach would be to measure the evolution of properties for a population of particles, and161

solve the inverse problem to estimate the kinetics. The direct approach has some practical limitations, as it162

is difficult to observe the properties of a specific particle without altering its processing environment. In this163

work, the indirect approach is used as also done previously in other works [17, 19].164

Given the process states at two time stamps, x(t) and x(t + ∆t), these can be used as input and label165

respectively for fitting/training the overall process model. For training of the machine learning model, h,166

it is assumed that the state variables x and the applied control actions z can be considered constant over167

the given time horizon ∆t. This produces a sequential model structure, where y is constant, which yields168

a training model structure similar to the one used by Galvanauskas et al. [17]. For this assumption to be169

true, it is required that the time-gap ∆t between two samples does not exceed a process specific critical time170

horizon, ∆tcrit. This time horizon is based on the rate of change of the measured state variables x and the171

process kinetics y. On the other hand, the change between the two distributions should also be significant172

enough to detect the changes. This can especially be difficult if the measurements are noisy.173

Note, that this puts a restriction on the applicable sensors that can be used in this framework. First of174

all, they have to operate with a sampling frequency higher than the critical sampling rate vcrit = 1/(∆tcrit).175

Furthermore, the particle analysis method should be capable of measuring a statistically sufficient number176

of particles for each sampling to ensure that the sampling uncertainty is low enough to detect changes from177

sample to sample. Most commercially available on-line/at-line/in-line particle analysis methods are capable178

of fulfilling both criteria for industrial particle processes.179

2.3. Model equations180

With the overall modelling approach presented, the dynamic model equations are now presented. The181

model equations are divided into three sections; the balance equations, conditional equations and constitutive182
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equations, as also shown in Figure 2. The balance and conditional equations related to the particle properties183

are defined by first principles, whereas the constitutive equations rely on empirical relations, derived using184

machine learning methods. The three categories of equations are now presented individually for the proposed185

particle model.186

Dynamic model

Balance equations:
d ҧ𝑥

dt
= 𝑓( ҧ𝑥, ത𝑦, ҧ𝑧)

Conditional equations:
0 = 𝑔 ҧ𝑥, ത𝑦, ҧ𝑧

ҧ𝑥

ҧ𝑥

Constitutive equations:
0 = ℎ ҧ𝑥, ҧ𝑧 − ത𝑦

ҧ𝑧

∆𝑡

Figure 2: Dynamic model structure. Note that the constitutive equations may be calculated inside or outside the dynamic

model depending on whether the model is trained or used for predictions.

2.3.1. Balance equations187

To model the solid phase properties, a set of population balance equations are set up. In this framework,

the main particle population state of interest, is the particle size density distribution. Thus, the particle

state variable x(s) is equal to the particle density variable N . Using a discrete 1-dimensional population

balance model, discretized into m size-bins, the accumulation of particles in each size-bin i can be described

as follows, with a corresponding generation rate expression r
(s)
i :

dx
(s)
i

dt
= f

(s)
i + z

(s)
i =

dNi
dt

+ z
(s)
i = r

(s)
i + z

(s)
i for i = [1;m] (1)

Here, the control action z
(s)
i accounts for a possibly controlled addition/removal of particles.188

Furthermore, a number of balances (possibly pseudo balances) must be set up for the remaining state189

variables x(l). These are highly system specific and require prior process knowledge to set up. A first principles190

model is preferred if available. If this is not possible, one can use one of the following simplications:191

• In case the state-variable j is a tightly controlled variable, where one in practice can approach an ideal192

control: Here the applied control action can be accurately set. This means that the time-derivative of193

the state-variable dx
(l)
j /dt will also be known. This control action information is already supplied in194

the control action vector zj , thus, the pseudo balance becomes:195

dx
(l)
j

dt
= f

(l)
j = zj (2)

• In case no model is available for the state-variable j and the variable is not tightly controlled: assume196

the variable to be a disturbance variable and assume it to be constant, i.e. the time-derivative of the197

state-variable will be given as follows:198

dx
(l)
j

dt
= f

(l)
j = 0 (3)
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Note that these two approaches are rather simplifying assumptions, and should only be used in absence of an199

accurate mechanistic or data-driven model. However, in case that the presented hybrid model is intended for200

on-line modelling purposes, wrongly predicted states can be substituted with new measurements continuously201

during operation, and can thereby reduce the effects of these errors.202

2.3.2. Conditional equations203

The conditional equations here deal with the generation rate expressions r
(s)
i . To define the balance

rate expressions, r
(s)
i , a phenomenological approach is used. The overall generation rate is assumed to be

described as the difference between the sum of particle birth and death rates, respectively, where there is no

spatial dependency due to the assumption of ideal mixing. These originate from up to five physical particle

phenomena including nucleation, growth, shrinkage, binary agglomeration and breakage:

g
(s)
i =

∑

phenomena

(Bphenomena,i −Dphenomena,i)− r(s)
i = 0 for i = [1;m] (4)

The birth and death rates for each of these phenomena can be derived from number and mass balances,204

and can be generalized as shown in Table 2. Here, the number and mass balances have been kept as generic205

as possible to ensure that potentially all kinetic dynamics can be captured. All kinetic related variables are206

lumped together into the overall kinetic rate variable denoted y which is calculated using the constitutive207

equations. The individual kinetic rate variables are listed in Table 3. Here, each individual size-bin will have208

its own kinetic expression, which allows for the highest modelling flexibility. Note that the number of kinetic209

rates in y is depending on which phenomena that are included in the model. Also note that it is possible210

to reduce complexity of the model by assuming bin independent kinetics, where the dimensions of the rate211

variables can be reduced to unity.212

Table 2: Birth and death terms for each of the five particle phenomena: nucleation, growth, shrinkage, agglomeration and

breakage. Description of kinetic rate variables can be found in Table 3.

Birth rate Death rate

Nucleation
Bi=1 = α

Bi 6=1 = 0
Di = 0

Growth Bi = βi−1 · 1
2·∆Li−1

·Ni−1 Di = βi · βi

2·∆Li
·Ni

Shrinkage Bi = γi+1 · 1
2·∆Li+1

·Ni+1 Di = γi · 1
2·∆Li

·Ni
Agglomeration (binary) [21] Bi =

∑j≥k
j,k

(
1− 1

2 · δj,k
)
· ηj,k,i ·Nj · Nk∑

N · εj,k Di = Ni ·
∑
k

Nk∑
N · εi,k

Breakage [21] Bi =
∑
k pk · κk · θi,k ·Nk Di = κi ·Ni

For the particle phenomena agglomeration and breakage, supplementary mass balance conditional equa-213

tions are required for calculating the agglomeration contribution constant η and the breakage related number214

of daughter particles p. These balances can be found in Appendix A.215
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2.3.3. Constitutive equations216

Lastly, the constitutive equations are defined. These come from the machine learning model h. In this217

work, a deep neural network which takes in the state variables x and the control actions z and calculates the218

kinetic rates y is employed. Depending on the choice of phenomena to include in the model, the kinetic rates219

y may include one or more of the variables that are listed in Table 3. The overall kinetic model structure is220

illustrated in Figure 3.221

Table 3: Rate variables for the five particle phenomena assuming bin dependent kinetics. The dimensions of the kinetic rates

can be reduced to unity in case of bin independent kinetics.

Phenomena rates

Symbol Unit Number of variables Scaling factor

Nucleation α 1/(time · volume) 1 10−3 [-/(µL s)]

Growth β size/time m 10−4 [µm/s]

Shrinkage γ size/time m 10−4 [µm/s]

Agglomeration ε 1/time m · (m+ 1)/2 10−4 [-/s]

Breakage κ 1/time m 10−5 [-/s]

θ 1 m · (m+ 1)/2 N/A

The machine learning model h will have the following input and output sizes, where nsensor,dim is the222

dimension of a given sensor measurement and nphenomena,dim is the dimension of a given set of selected223

phenomena specific kinetic variables (see Table 3):224

input size = 2 ·∑sensor nsensor,dim +m (5)
225

output size =
∑
phenomena nphenomena,dim (6)

First, the particle distribution x(s) is converted into a relative distribution, by normalizing the count226

of particles in each bin with the total count of particles. Then, to ease the network training, a batch-227

normalization is applied to the relative distribution, alongside the remaining process variables x(l) and the228

control actions z. This normalizes the input data to have a batch average of zero and a batch variance229

that equals unity. This ensures that the initial machine learning structure has a non-biased weighting of the230

various process variables, which allows the training algorithm to easily select the most important features.231

The construction of the neural network itself is carried out by using the following rule-of-thumb methods232

by Heaton [22], that relate the network structure to the above calculated input and output sizes:233

• To benefit from automatic feature selection, the number of hidden layers should be more than 2234

• The number of hidden neurons in each layer should be between the size of the input and the size of the235

output236

• The number of hidden neurons should be less than 2 times the input size237
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Figure 3: Example of kinetic model structure

Finally, to reduce training time and ease the convergence, the outputs from the network are multiplied238

with the magnitude of the order of the various phenomena. This step is crucial as the non-scaled neural239

network output will be approximately unity when the dense layers are initialized with random weights. By240

scaling the phenomena rates to their right scale from the start of the training, one can reduce training time241

significantly and prevent early over-fitting. Suggestions for scaling factors can be found in Table 3.242

2.4. Trade-off between under-fitting and over-fitting243

When constructing a partly data-driven model, one always needs to find a reasonable trade-off between244

model simplicity and flexibility. This is the case for conventional mechanistic models, and even more for245

machine learning models. Inverse problems, such as the one that needs to be solved in this modelling246

framework, are in many cases ill-posed, which cause an increased risk of over-fitting. To prevent this, one247

may apply a number of assumptions/simplifications to reduce the problem complexity. However, overly248

simplifying the model will result in under-fitting, where the model is not capable of capturing the observed249

dynamics.250

The major causes for possible over-fitting and under-fitting in the presented hybrid model are summarized251

in Table 4. The number of phenomena and the complexity of these phenomena (bin-dependent or bin-252

independent) are some of the most crucial decisions concerning the mechanistic model. For small volumes253

of training data, one should restrict the choice of modelled phenomena to the most important ones, and254

assume bin-independent phenomena kinetics. For larger volumes of data and/or an on-line data-source, it is255

possible to use a mechanistic model with higher complexity, meaning more phenomena and/or bin-dependent256

phenomena kinetics.257

The same goes for the machine learning model, where the number of model weights (model parameters)258

severely impacts the flexibility of the model, and also the risk of over-fitting and under-fitting. Also, the model259

flexibility/expressivity, determined by activation functions etc., has an impact. The optimal configuration260

needs to be determined on a case by case basis, and may be optimized for each given case either manually261
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Table 4: Selection of factors that impact the risk of over-fitting and under-fitting with the suggested model

Model Data

Mechanistic model - Number of phenomena

- Bin-dependent/bin-independent phenomena rates

- Data quantity

- Data uncertainty

Machine learning model - Number of model weights

- Expressivity of the model structure

- Number of input variables

- Data quantity

- Data uncertainty

or using optimization algorithms to generate the optimal network structure [23].262

Finally, the number and nature of input variables (features) to the machine learning model also needs to263

be carefully selected. However, it has multiple times been shown in literature that newer and more complex264

machine learning models are now capable of carrying out this feature-selection automatically [24]. This265

has especially been illustrated using deep neural networks (DNN) that are capable of extracting the most266

important features from raw data sources like sound spectra [25] and images [26].267

Apart from simplifying the problem, there are other techniques to reduce possible over-fitting. This268

can be done using specific techniques for training/fitting of the hybrid model, including regularization and269

ensembling. In this paper, only regularization will be applied, but in various forms, favouring models with270

smaller model weights, which typically results in smoother functions and less tendency to over-fit in the271

presence of data uncertainty.272

Regularization terms are indirectly added to the loss function, by introducing dynamic zero-mean noise273

during training. This has previously been shown to have the same effect as a Tikhonov regularization term274

in the loss function [27]. The noise is added to the training data, including both the inputs and labels.275

Furthermore, regularization is applied by means of early stopping. Here, the validation error is continuously276

monitored during training and used as a terminating criterion when it starts to increase. This prevents the277

machine learning model from finding overly complex relations, and stops it from over-fitting further.278
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3. Modelling framework279

In the following section, the proposed modelling framework is presented step by step. The framework280

consists of six main steps, which are illustrated in Figure 4 alongside the overall data-flow. The six main281

steps are: system specification, setting up model structure, data acquisition, data pre-processing, model282

training/validation and model prediction. There is a possibility of continuously refining the model by cycling283

between data acquisition, data pre-processing and model training, enabling on-line modelling applications.284

The steps are described individually in the following sub-sections.285

Process

Step 1
System 

specification

Step 2
Model 

structure

Step 3
Data 

acquisition

Step 5
Model 

training/
validation

Explained
validation
variation

> 0?

Step 6
Model 

predictions
Step 4 

Data pre-
processing

Process insights

Yes

No

Model hyper-
parameters

Optional: Refine model

Training model

Training data

Validation data
Time series database

Particle attribute

Phenomena

Discretization

Sensor classes

Prediction modelSensor details

Figure 4: Outline of generic modelling framework with overall data and workflow.

The presented modelling framework has been implemented and tested in the open-source tool, Tensorflow286

[28], developed by the Google Brain Team. This tool was chosen as it is one of the most comprehensive287

open-source tools available for building customized neural networks. Furthermore, it supports implementing288

customized differential equation models, where automatic differentiation can be used for backpropagation289

when training. This increases the computational speed significantly, allowing for real-time training during290

process operation. Source code for the whole modelling framework is available from GitHub [29].291

3.1. Step 1: System specification292

The first step is to make the overall system specification. This includes specifying the particle attribute of293

interest and the attribute discretization. This is followed by selection of the dominating particle phenomena.294

Lastly, all the relevant and experimentally available process sensors (at-line-, on-line- and/or soft-sensors)295

are screened and classified.296

3.1.1. Task 1.1: Specify particle attribute of interest297

In this task, the particle size attribute of interest is to be specified. The selected particle attribute298

needs to be measurable using an on-line/at-line particle analysis method, with a measurement frequency299
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higher than vcrit (see definition in Section 2.2). For FBRM measurements, this may be chord-length, and300

for image analysis methods, it may be a Feret diameter. Furthermore, the on-line/at-line particle analysis301

method should be capable of measuring particles in the size range of interest with a resolution that allows for302

tracking the size-evolution. If the available particle analysis method is not applicable, then this framework303

will not be applicable and cannot be used for this case.304

3.1.2. Task 1.2: Specify dominating particle phenomena305

In this task, the dominating particle phenomena must be selected amongst the following five phenomena:306

nucleation, growth, shrinkage, agglomeration and breakage. The decision should be based on prior process307

knowledge on the particle process of interest. Enabling everything from a single particle phenomenon to all308

five phenomena is possible. However, one should note that the problem becomes increasingly ill-posed when309

more particle phenomena are considered, which increases the risk of over-fitting. Thus, the recommendation310

is to only select the most important particle phenomena. As a guideline, the typical dominating particle311

phenomena for a number of industrial particle processes can be found in the supplementary material, section312

C.313

3.1.3. Task 1.3: Specify particle attribute discretization314

In this task, a discretization scheme must be specified for the chosen particle attribute in Task 1.1.315

An algorithm for scheme selection and calculation is shown in Algorithm 1.1. Two different discretization316

schemes, one linear and one non-linear, and their corresponding equations for calculation of the discretization317

characteristics can be found in the supplementary material, section D.318

Algorithm 1.1: Selection and calculation of discretization scheme

1. Specify the typical attribute bounds based on prior process insights: Lmin and Lmax

2. Specify the number of discretizations m using Rice’s rule [30] in a slightly modified edition,

where N is the approximate number of analysed particles in a single sample:

m ≈ 3 ·N1/3

3. Select the type of discretization scheme for the particle attribute.

- If dominated by growth and/or shrinkage: use a linear grid

- If dominated by agglomeration and breakage: use a nonlinear grid

4. Calculate bin mid-points (Li), bin widths (∆Li) and bin edges (Xi) using the above chosen

discretization scheme

Note: Note that the bin widths should here be coarser than the resolution of the chosen particle

analysis technique, if not, revise and adjust the number of discretizations m in step 2 accordingly
319

3.1.4. Task 1.4: Specify process sensors320

In this task, the process sensors need to be selected and categorized. An algorithm for this procedure321

is summarized in Algorithm 1.2. A more thorough sensor selection is not necessary at this point, as an322

automatic feature extraction is used in the presented modelling approach.323
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Algorithm 1.2: Process variable screening and categorization algorithm

1. List all experimentally relevant and available process variables measurable from on-line/at-

line/soft-sensors

2. For each available process variable:

(a) Is the measurement frequency higher than vcrit?

Note: a typical vcrit for a particle process is within the range of 0.05 min−1 to 1 min−1,

corresponding to a measurement every 1 to 20 minutes

- If yes, proceed to next step

- If no, the process variable measurement is not applicable. Return to 2. for next sensor

(b) Can the measured process variable be tightly controlled?

Note: The process state is only tightly controlled if it is possible to control the state close

to the ideal setpoint

- If yes, categorize the sensor as manipulated process variable

- If no, proceed to next step

(c) Can the measured process variable be predicted using an available mechanistic model?

- If yes, categorize the sensor as modelled process variable

- If no, categorize the variable as a disturbance variable
324

3.2. Step 2: Set up model structure325

The particle model is now set up using the specifications supplied in step 1. First, the kinetic model is set326

up, followed by setting up the dynamic model, and finally connected to the training and prediction models.327

3.2.1. Task 2.1: Set up kinetic rate model328

In this task, the neural network kinetic rate model, denoted y = h(x, z), is set up. The procedure is329

summarized in Algorithm 2.1.330

Algorithm 2.1: Setting up the neural network kinetic rate model model

1. Calculate input and output dimensions of the neural network using Equation (5) and Equa-

tion (6), based on selected phenomena and process variables in Task 1.2 and 1.4 respectively

2. Specify hyper-parameters using the following guidelines:

- Use a minimum of 3 neural network layers to benefit from automatic feature selection

- The number of neurons in a layer should be between the size of the input and the size of the

output

- The number of neurons in a layer should be less than 2 times the input size

Note: The hyper-parameters need to be determined by heuristics, and can be subject to fine-

tuning based on the model performance observed in the model validation/evaluation step. This

includes choice of activation functions and scaling factors of the various kinetic rates

3. Set up the network structure based on the hyper-parameters, using a batch-normalization layer

as the first layer in the network
331

3.2.2. Task 2.2: Set up training and prediction model332

In this task, the dynamic model is set up for the state variables x. This includes the model for the particle333

density variables N and the measured liquid state variables x(l). Algorithm 2.2 shows the process of setting334
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up the equations for calculating the right hand side of the ordinary differential equation system for the state335

variables x.336

Algorithm 2.2: Setting up the dynamic mechanistic model of the state variables

1. Obtain the kinetic rate variables y.

- Training phase: Obtain as a constant parameter, based on initial conditions by calling the

machine learning model h(x0, z0).

- Prediction phase: Obtain the parameter for each ODE-solver time-step, by calling the machine

learning model h(x, z).

2. Calculate the birth and death rates, Bi,phenomena and Di,phenomena.

Note: Only calculate for the selected phenomena in Task 1.2 for each size-bin defined in Task

1.4, using the kinetic rate variables y. Use the generalized birth and death rates presented in

Table 2.

3. Calculate the generation rate expression r
(s)
i using Equation (4):

4. Calculate the overall number balances dNi

dt using Equation (1):

5. For each remaining state variable j, calculate
dx

(l)
j

dt = f
(l)
j :

- If manipulated process variable: assume f
(l)
j = z

(l)
j

- If modelled process variable: provide system specific model for f
(l)
j

- If disturbance process variable: assume constant f
(l)
j = 0.

337

The dynamic model obtained from Algorithm 2.2 is solved using a variable step ODE-solver. The input338

variables for the dynamic model ODE-solver, in both the training phase and prediction phase, are the initial339

states x(t), the control actions z and a prediction horizon ∆t, where the output consists of the future states340

of x(t + ∆t). Furthermore, when used for training, the dynamic model will be fed with a set of constant341

kinetic rates y, coming from outside the dynamic model. When used for predictions, the kinetic model is342

evaluated for each internal time-step generated by the ODE-solver.343

3.3. Step 3: Acquire time series data from process344

In this step, time series data are gathered from the process sensors that were specified in Task 1.1. As the345

quantity of data here can end up being rather large, and in some cases needs to be accessed from multiple346

clients (e.g. for simultaneous model training, predictions, optimization etc.), it is advised to store this in a347

specifically allocated database. A suggestion for such database structure can be seen in the supplementary348

material, section E. From now on, this collection of data will be denoted D.349

During process operation the current process sensor readings are collected with a given frequency v, higher350

than the critical frequency vcrit. All process sensor readings, including the particle analysis, have to be taken351

at the same time, thus it is recommended that the process sensor readings are available on-line/at-line and352

electronically accessible. Particle analysis data should be stored in particle-wise manner, where each detected353

particle is recorded with its corresponding measured atrribute(s), where the available measured atrribute(s)354

depends on the chosen particle analysis method.355
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For every measurement point, all sensor measurements are saved alongside the time-stamp of the measure-356

ment. Note that the modelling framework allows for varying measurement frequency v throughout the data357

acquisition in case of various measurement delays e.t.c. Also note that the highest possible measurement358

frequency vmax is determined by the sensor with the lowest measurement frequency, as all measurements359

should be taken at the same time. This procedure can be repeated for multiple batch operations, providing360

more data to the model.361

3.4. Step 4: Prepare time series data for model training/validation362

In this step, the time series data are now pre-processed for training and validating the model. First, for363

each batch of data acquired in step 3, the corresponding time series data needs to be transformed into binary364

pairs between the measurements with time stamps ti and tj , where ti < tj . Algorithm 4.1 describes this365

process. The training data set is here denoted T and the validation data set is denoted V. The subscripts366

input and labels denote the model inputs and output/labels respectively.367

Algorithm 4.1: generating training and validation data

1. For each batch operation stored in D:

(a) Is the batch used for training or validation?

- For training, save data in T
- For validation, save data in V

(b) For each binary measurement pair k and l, where tk < tl:

i. Calculate ∆t = tl − tk
ii. If v = 1

∆t is higher than vcrit proceed to next step. If not, return to (b) with a new

binary measurement pair.

iii. Save ∆t in Tinput or Vinput
iv. Calculate the particle size density distribution N for time point ti, using the chosen

discretization scheme for particle attributes from step 1, the particle feature data and

the sample volume Vref. Save N in Tinput or Vinput.
v. For all process variables in x(l), save the current value at the time point tk in Tinput or

Vinput.
vi. For all process variables in x(l), calculate the corresponding control action vector z and

save this control action vector in Tinput or Vinput
- If manipulated variable: use the time-derivative of the variable:

z
(l)
j =

x
(l)
j (tl)− x(l)

j (tk)

∆t

- If modelled or disturbance variable: set z
(l)
j = 0.

vii. Repeat iv. for time-point tk and save this value in Tlabels or Vlabels.
368

3.5. Step 5: Model training369

In this step, the training model from step 3, is fitted to the generated training data obtained from step370

4. An algorithm for carrying out this training is presented in Algorithm 5.1. Formally, the training is an371
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optimization problem that can be described as follows, where w is the vector of machine learning model372

parameters in the machine learning model h:373

min
w
loss(model(Tinput), Tlabels) (7)

During model training, the model performance is validated/evaluated based on a validation data-set, as374

described in Algorithm 5.2.375

Algorithm 5.1: training the machine learning model h.

1. Select an optimization method for training the machine learning model

Note: It is here advised to use a gradient descent based method, like the Adam optimizer (adap-

tive moment estimation)

2. Specify a loss function loss which transforms the multi-objective optimization to a single-

objective optimization.

Note: One can use one of the following objective functions, based on the amount of particle

analysis measurement noise

- Particle analysis with low noise: Use a scaled L1 norm of the absolute particle density Ni,

where nsamples is the number of samples in the training set:

loss ≡
nsamples∑

k=1

m∑

i=1

∣∣∣∣∣
Nprediction
i −N target

i∑m
k=1N

target
k

∣∣∣∣∣

/
nsamples (8)

- Particle analysis with medium noise: Use a L1 norm of the relative particle density Ni/
∑
iNi,

where nsamples is the number of samples in the training set. Note that this method will only

provide reliable predictions of the relative particle density distribution, as the overall particle

density
∑
iNi is not trained in this approach:

loss ≡
nsamples∑

k=1

m∑

i=1

∣∣∣∣∣
Nprediction
i,k∑
iN

prediction
i,k

−
N target
i,k∑

i,kN
target
i

∣∣∣∣∣

/
nsamples (9)

3. Optional: Apply one or more regularization methods to reduce the risk of over-fitting and

improve generalization.

4. Run training until convergence
376

Two regularization methods are here recommended for reducing over-fitting during model training, in-377

cluding early stopping and applying noise during training. For early stopping, the validation loss must be378

calculated for each epoch (see Algorithm 5.2 for procedure), where the training is stopped when the loss on379

the validation dataset starts to increase.380

Furthermore regularization is introduced by generating gaussian zero-mean noise for each optimization381

iteration and introduce it to the input and output training data, corresponding to measurement uncertainties,382

if these can be measured or estimated. For the measured particle distributions, the inherent sampling383

uncertainty related to sample-based particle analysis techniques is used to estimate the uncertainty. The384

uncertainty here corresponds to the statistical error of sampling with replacement. Assuming an unbiased385

measured particle size distribution, this uncertainty becomes [31]:386

σi =

√√√√
(
Ni · (1−Ni/

∑

i

Ni

)
(10)
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The noise introduced to both inputs and labels, has a standard deviation equal to this uncertainty.387

Note that when using gradient descent based methods, the gradient ∇error(w) is likely to be too com-388

putationally heavy to evaluate using classical numerical approaches, which makes it infeasible to carry out389

model training if the number of machine learning parameters is too high. This problem can be resolved if390

the model structure is implemented in a programming framework that supports automatic differentiation,391

where backpropagation can be used to significantly speed up these evaluations. I.e. the computational cost392

of calculating the gradient of a single value loss function using a numerical finite-differences method, is at393

least O(2 ·n), where n is the number of weights. With backpropagation, using automatic differentiation, this394

cost is O(1). The improvement over numerical approaches is especially evident in this framework, as solving395

the set of ODEs can be computationally heavy by itself.396

Algorithm 5.2: model validation/evaluation during model training

1. Calculate the loss for the model prediction and the reference loss when using a persistence

method (no-change model), using the validation data, V:

lossmodel = loss(xprediction = model(Vinput), xtrue = Vlabels)

lossreference = loss(xprediction = Vinput, xtrue = Vlabels)

2. Calculate the explained variation metric, based on calculated persistence method and model

loss:

explained variation =
lossreference − lossmodel

lossreference

3. If explained variation > 0, the model can be said to be predictive, and suitable for predictions. If

not, there can be multiple causes, including lack of information coming from the chosen sensors

in step 1, wrong choice of phenomena in step 1, under-fitting/over-fitting due to chosen model

hyper-parameters in step 2, and last but not least, lack of data in step 3. One should here

reconsult steps 1, 2 and/or 3, following this order.
397

3.6. Step 6: Generate process predictions398

In this final step, process predictions are carried out. Using the trained machine learning model, the399

prediction model implemented in Step 2 can be used directly to make predictions into a future time horizon400

∆t, where the only needed specifications are the initial states x and the control actions as a function of time401

z(t).402

In case that on-line data is available, it is possible to continuously refine the hybrid model, and thereby403

transforming it into an on-line model. This can be done by using incremental learning, which is also a404

rising topic when using machine learning for classification problems [32]. Here, every time a new data-point405

becomes available, steps 3 to 5 are repeated. This results in a constantly growing dataset Tinput which the406

model can be trained upon. From a computational power point of view, it may be desirable to limit the size407

of the training-data by continuously removing older data-points as new data become available. This will at408

the same time introduce a ’forgetting’ behaviour, suitable for particle processes where batch-to-batch drifting409
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may be present.410

4. Case studies411

In this section, three case studies of particle processes are examined using the framework presented in Sec-412

tion 3. The three case studies consist of a laboratory scale crystallization of lactose, a laboratory flocculation413

and breakage of silica particles suspended in water and an industrial scale pharmaceutical crystallization.414

Examples of segmented microscopy images from the three case studies can be seen Figure 5. An overview of415

the case studies is presented in Table 5.416

Table 5: An overview over the three case studies that have been examined using the presented modelling framework

Lactose crystallization Silica flocculation Pharmaceutical crystallization

Type Cooling crystallization pH induced flocculation Anti-solvent crystallization

Scale Lab Lab Industrial

Particle analysis method Flow cell (on-line) Titer plate (at-line) Titer plate (at-line)

Measured variables Temperature pH Temperature, pH, Conductivity

Controlled variables Temperature pH Temperature, pH

Number of batches [-] 2 16 5

Approx. batch duration [hr] 4 1 5

Measurement frequency [min−1] [0.17; 0.33] 0.2 [0.15; 0.23]

100 µm

(a) Lactose crystals

200 µm

(b) Silica flocks

250 µm

(c) Pharmaceutical crystals

Figure 5: Segmented microscopy images from the three case studies. The coloring of the particles is random and only there to

illustrate the segmentation.

In all case-studies, a non-invasive image-analysis solution (developed by ParticleTech Aps, Farum, Den-417

mark) was used for particle analysis. The solution consists of a microscope imaging unit, a sampling unit418

and a software that includes both segmentation and feature-extraction algorithms. The equipment can be419

used for on-line, at-line and off-line applications. It uses the FluidScopeTM technology [33] that allows for420

scanning particles in a volume of liquid. This is done by capturing and z-stacking a number of 6.25◦ tilted421

images.422

When used as an on-line sensor, the particles are analysed using a flow cell, which is situated in the423

microscope imaging unit. To analyse the particles, a liquid sample is pumped from the process tank to424
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a flow cell, using the ParticleTech sampling unit. When the sample has reached the flow cell, the flow is425

stopped, and the images are captured. After imaging, the sample can potentially be sent back to the process426

tank, if there are no concerns regarding contamination etc. In an at-line or off-line setting, a sample would427

be manually taken from the process tank and pipetted to a microtiter plate, which is then placed in the428

microscope imaging unit and the images are captured hereafter.429

The images are processed in the associated software, where the images are stitched together forming a430

best-focus microscopy image, ensuring that the floating particles are in focus. Afterwards, the best-focus431

image is analysed using the included segmentation algorithm, identifying each individual particle, which is432

then processed using a feature-extraction algorithm. This results in a table with the recorded features for433

each individual particle. The process is shown in Figure 6.434

(a) (b) (c)

Figure 6: Particle analysis route using image analysis, consisting of (a) imaging, (b) segmentation and (c) feature extraction. A

small selection of the particle features extracted by the ParticleTech software are shown in (c), where the solid white and orange

lines are indicating the FeretMin and FeretMax diameters respectively. The dashed lines are the corresponding FeretMin90 and

FeretMax90 diameters.

At the time of writing, it takes approximately 30-60 seconds to sample, record images, segment and435

extract the particle features in on-line applications using this equipment, depending on the analyzed volume436

and the number of particles present. For at-line applications, this may take up to 5 minutes due to the437

manual handling of the sample.438

In the following sections, the three case studies are presented individually, including details on experi-439

mental setup, sampling method, measurement frequencies, a summary of the kinetic model structure, model440

training and model predictions. The details of the case studies can furthermore be found summarized in the441

supplementary material, section B. Note that in the following, the dynamic model has been solved using the442

5th order Runge-Kutta method with adaptive step size control [34]. Furthermore, the Adam method [35]443

has been used for training in all cases, using a batch-size of 50 training entries per optimization iteration.444

Source code for the whole modelling framework, including Tensorflow models, can be found on GitHub [29].445

All models have been trained and benchmarked using a 1.6 GHz quadcore CPU (Intel i5-8250U).446
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4.1. Laboratory scale lactose crystallization447

In this section, a study of a laboratory scale cooling crystallization of lactose in water is presented,448

where only temperature and particle size distribution were measured during the process at an average sample449

frequency of 0.3 min−1, corresponding to a measurement every 3-6 minutes. This particular case study serves450

the purpose of comparing the performance of the hybrid modelling framework with conventional modelling451

approaches.452

To do so, additional prior process knowledge is needed, such as knowledge on the solubility of lactose in453

water as a function of temperature and the crystal density. The solubility and crystal density has previously454

been examined and reported in the litterature [36, 37], making it possible to calculate the super saturation in455

a given experiment using a first principles model. This enables the use of traditional kinetic expressions for456

modelling of particle phenomena such as nucleation and growth. In other words, the amount of prior process457

knowledge allows for using conventional modelling methods.458

The crystallization was carried out in a stirred beaker, where the crystals were analysed on-line using459

the ParticleTech flow cell system. After analysing the liquid samples, with crystals in suspension, they were460

returned to the beaker to keep the volume constant. The vessel temperature was monitored using an in-line461

thermometer. The cooling was carried out by natural convection to the surroundings from approximately462

65 ◦C to approximately 20 ◦C. The initial lactose concentrations were 0.37 g/g water in both crystallization463

experiments. A segmented microscopy image of the produced lactose crystals can be seen in Figure 5a.464

In total, two batch operation experiments were carried out. Batch 1 contained 41 data-points and batch465

2 contained 82 data-points, yielding in total 123 data-points of corresponding particle distributions and466

temperature measurements. As both experiments lasted approximately 4 hours, the measurement frequencies467

were here v = 0.17 min−1 and v = 0.33 min−1 in batch 1 and 2 respectively.468

In this case study, it is decided in Task 1.1 to model the particle size distribution based on the FeretMean469

diameter, corresponding to the distribution of the mean diameter of the crystals. Temperature and FeretMean470

measurements can be seen in Figure 7, where only the median FeretMean diameter measurements, also called471

D50 FeretMean, have been plotted for illustration purposes.472

From Figure 7, it should be noted that the temperature profiles for the two experiments are somewhat473

similar. However, the D50 FeretMean measures end up being rather different in the end of the two exper-474

iments. This already now indicates that the temperature measurement may not be enough to fully explain475

the kinetic phenomena. Also note that the rapid fluctuations in measured particle sizes in the last part of476

the batches are due to a high density of crystals. This makes image segmentation difficult and makes it more477

likely to detect multiple crystals as one.478

In Task 1.2, it is assumed that the crystallization is dominated by only two particle phenomena; nucleation479

and bin-dependent growth. The exclusion of shrinkage is justified by the fact that the temperature is only480

decreasing during the experiments, which will only decrease the lactose solubility, and therefore not promote481

dissolution/shrinkage of the crystals.482
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Figure 7: Overview of the sensor readings from the two lactose batch crystallizations

In Task 1.3, the particle size distribution is discretized using a linear discretization scheme (see supple-483

mentary material, section D) as the process is mainly dominated by particle nucleation and growth. The484

upper and lower size bins are set to be Lmax = 80 µm and Lmin = 5 µm respectively based on prior process485

knowledge. Note that all detected particles with a FeretMean diameter below 5 µm have not been accounted486

for, as most of the detected particles of this size were impurities and not crystals. The impurities were here487

mainly fat and other residues from the milk where the lactose was originally isolated from. As the image488

analysis equipment is set to provide measurements of approximately 1000 particles from a single image, the489

number of discretizations m is chosen to be m = 3 · 10001/3 = 30 following the modified Rice-equation.490

It is assumed that the temperature can be controlled tightly, qualifying it to be classified as a manipulated491

variable in Algorithm 1.2, Task 1.4. This was not the case with this particular setup. However, in an industrial492

setting of the same crystallization, one would most likely be able to apply a relatively tight temperature493

control.494

The kinetic model is generated using Algorithm 2.1 in Task 2.1, resulting in a neural network model that495

consists of 4 dense neural layers in total, where the two first layers have exponential linear units (eLU) as496

activation functions, and the last two have linear activation functions. The number of units for each of the497

four layers are here chosen to be 32, 32, 32, and 31, resulting in 4,255 machine learning model parameters498

wi in total. The rest of the model equations are set up following Algorithm 2.2 in Task 2.2, by using the499

Tensorflow implementation by [29].500

Training and validation data are generated using Algorithm 4.1 with a critical measurement frequency501

of vcrit = 0.05 min−1. Batch 2 is here used for training and batch 1 for validation. This forms in total 546502

samples in the training data-set and 142 validation samples. The reason for the large difference in sample503

sizes in the two batch operations, is due to a higher measurement frequency in batch 2. It should here be504

noted that only one batch operation for training and one for validation is rather low, which also may impact505

the predictive qualities of the hybrid model.506
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The L1 norm (Equation (9)) of the relative particle number density is used as the objective function in507

the training, when applying Algorithm 5.1. The explained variation metric is plotted in Figure 8a for training508

with and without regularization respectively to illustrate the effect of the regularization methods by applying509

Algorithm 5.2.510

0 10 20 30 40 50
Epochs [-]

60

50

40

30

20

10

0

10

Ac
cu

ra
cy

 [%
]

Training (regularization)
Validation (regularization)
Training (no regularization)
Validation (no regularization)

(a) Explained variation metric during training

20 40 60 80
Particle size, FeretMean [µm]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R
el

at
iv

e 
nu

m
be

r d
en

si
ty

 [-
]

Prediction at t = 0.0 hrs
Prediction at t = 2.0 hrs
Prediction at t = 3.0 hrs
Prediction at t = 4.0 hrs
Measured at t = 4.3 hrs

(b) End-of-batch predictions using hybrid model

Figure 8: Model training and predictions for laboratory lactose crystallization

From the training graph in Figure 8a, it can be seen that the model training without regularization at first511

captures the correct process dynamics, but after approximately 30 epochs, the validation loss stagnates and512

starts to over-fit the training data. This is partly mitigated with regularization methods where noise is added513

during the model training and early-stopping is utilized. Here it is evident that the maximum explained vari-514

ations for the validation data is higher than without regularization, indicating a better generalization. Using515

the implementation available on GitHub [38], model training takes approximately 7 seconds for processing516

the 546 training entries for one iteration (one epoch). In total, it takes 7 minutes to train the model from517

scratch, using early stopping and regularization.518

The predictive capabilities of the hybrid model are illustrated in Figure 8b. Here, a number of end-of-519

batch simulations have been run for predicting the particle size distribution of batch 1 (validation batch) using520

initial conditions from four different time-points during the batch operation. Overall the predicted particle521

size distributions fit relatively well with the measured final distribution. However the rate of nucleation522

seems to be overestimated, resulting in wrong predictions of the number of particles in the lower size-bins.523

Furthermore, the growth rate seems to be underestimated slightly, resulting in an underestimation of the524

number of particles in the larger size-bins.525

To compare the hybrid model performance, the corresponding predictions based on a conventional mecha-526

nistic crystallization model can be seen in Figure 9. The conventional model consists of a population balance527

model equal to the hybrid model, but using conventional simpler kinetic models for primary nucleation, sec-528

ondary nucleation and growth. Furthermore, a mass balance and solubility model have been implemented,529

using solubility parameters and density factors obtained from literature [36, 37]. In total 6 kinetic model530
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parameters and one shape parameter were fitted using the same data as the hybrid model. Model equations531

for the reference model and the estimated parameters can be found in the supplementary material, section532

A. The parameter fitting here took 38 seconds.533
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Figure 9: Conventional crystallization model predictions vs hybrid model predictions for lactose crystallization

From Figure 9, it can be seen that the quality of the hybrid model prediction of the final particle size534

distribution performs only slightly better than the reference prediction using the conventional mechanistic535

crystallization model.536

It should be noted that the model performances are not completely comparable, as the validation data537

was used in the hybrid model to determine the optimal stopping of the model training, whereas the parameter538

fitting in the mechanistic model did not benefit from the validation data. On the other hand, the hybrid539

model did not utilize any prior information on solute concentration and solubility.540

4.2. Laboratory scale flocculation and breakage541

In this section, a case study is presented of a laboratory scale shear-induced flocculation of silica particles,542

where pH and particle size distributions were measured during the experiments. It is in this case harder to543

model the process with a conventional mechanistic model due to the lack of fundamental understanding of544

the kinetic phenomena. This does however not hinder the use of the hybrid model, where the kinetic rate545

expressions relies less on prior process knowledge and more on the available process time-series data.546

The flocculation was carried out in a stirred 200 mL reactor by Applikon biotechnology, where the547

flocculation was carried out at various pH values, adjusted at the start of each batch. All the experiments548

were carried out with a constant stirring speed of 200 RPM. The experiments were carried out on 0.02549

wt/wt % silica-water suspensions that had been ultra-sonicated for 15 minutes. The dry silica particles550

(size 0.5 µm to 10 µm) used for these experiments had here been washed beforehand to remove potential551

impurities. The washing procedure here included three rounds of washing with demineralized water, ethanol,552

and demineralized water for respectively 10 minutes, two hours, and 10 minutes. At last, the silica particles553

had been dried for 24 hours at 95 ◦ C in an oven.554
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During experiments, particle samples were analysed with a frequency of 0.2 min−1, corresponding to555

every 5 minutes for one hour. The particle analysis was carried out at-line, by using a syringe to transfer556

liquid suspension to a titer plate and subsequently analysed in the image analysis equipment. The pH was557

furthermore monitored using an in-line pH probe. In total 11 batch operations were carried out. The stirring558

speed has been kept constant throughout all experiments. A segmented microscopy image of flocculated silica559

particles can be seen in Figure 5b.560

In Task 1.1, it is decided to model the diameter of the equivalent circle (EQPC) distribution. To do this,561

it is assumed that the volume of the silica flocs corresponds to a sphere with the diameter of the measured562

EQPC. pH and D90 EQPC measurements are illustrated in Figure 10, where only the 90% fractile EQPC563

diameter measurements (D90 EQPC) have been plotted for illustration purposes. It can be seen that only two564

of the batches were dominated by flocculation (batch 1 and 2) indicated by an increasing D90, whereas the565

rest of the experiments were dominated by breakage indicated by a slightly decreasing D90. The presented566

data-set for this study is significantly larger with respect to number of batches when compared to the lactose567

crystallization study, which increases the likelihood that the hybrid model can capture the process kinetics.568
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Figure 10: Overview of the sensor readings from the 11 batch flocculations.

To model this process, it is assumed in Task 1.2 that the process is dominated by breakage and agglom-569

eration, where both phenomena are set to be bin-dependent.570

In Task 1.3, the particle size distribution is discretized using a non-linear discretization scheme (see sup-571

plementary material, section D) as the process is mainly dominated by particle agglomeration and breakage.572

The upper and lower size bins are set to be Lmax=30 µm and Lmin=2 µm respectively. As the image analysis573

equipment has been set to provide measurements of approximately 1000 particles per image, the number of574

discretizations m has been chosen to be m = 3 · 10001/3 = 30 following the modified Rice-equation.575

It is assumed that the pH can be controlled tightly, qualifying it to be classified as a manipulated variable576

in Algorithm 1.2, Task 1.4. It should here be noted that the volume effects due to pH adjustments are not577

included in the model.578
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By applying Algorithm 2.1, the kinetic model is set up to consists of 4 dense layers, where the first two579

have exponential linear units (eLU) as activation functions, and the last two have linear activation functions.580

The number of units for each of the four layers is set to 32, 40, 50, and 960 respectively, resulting in 51,984581

machine learning model parameters wi. As in the previous case study, the rest of the model equations are582

set up following Algorithm 2.2 in Task 2.2, by using the Tensorflow implementation by [29].583

Training and validation data are generated using Algorithm 4.1, where the critical measurement frequency584

of the process is assumed to be vcrit = 0.0625 min−1. This forms in total 263 samples in the training data-set585

and 93 validation samples, where batch 2, 6 and 11 are used as validation data and the rest for training. The586

L1 norm of the relative volume density (Equation (9)) is chosen in Algorithm 5.1 as the objective function.587

The relative volume density is here used instead of the relative number density to better capture both588

agglomeration and breakage. The explained variation metric can be seen plotted in Figure 11 for training589

with regularization, where a maximal validation accuracy score is 32% on a volume basis. It should be noted590

that the sampling uncertainty of the particle analysis measurements is rather high for this case study, as the591

changes from measurement to measurement are relatively subtle.592

0 25 50 75 100 125 150 175
Epochs [-]

20

10

0

10

20

30

Ac
cu

ra
cy

 [%
]

Training
Validation

Figure 11: Explained variation metric during training

Using the implementation available on GitHub [38], model training here takes approximately 15.6 min-593

utes to train the model from scratch (134 epochs), using early stopping and regularization. The predictive594

capabilities of the hybrid model are illustrated in Figure 12a, where end-of-batch simulations for batch 11595

have been carried out, using initial conditions from two different time points during the batch operation.596

Note that batch 11 was mainly dominated by breakage and not flocculation. This is also accurately predicted597

by the hybrid model.598

Contrary to batch 11, batch 2 did exhibit flocculation. To illustrate the quality of the estimation of the599

agglomeration, end-of-batch simulations for batch 2 are plotted in Figure 12b. Note that the two end-of-600

batch predictions are practically identical, where the prediction at t=0.5 hours is predicting slightly lower601

density of the highest size-bin. It can be seen that the hybrid model predicts the particle size distribution to602

a good extent, however with a slight underestimation of particles in the upper size bins. The prediction error603
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may be explained by two factors; measurement uncertainty as the number of larger particles is relatively low604

compared to smaller particles, and the fact that pH may not be able to solely explain the phenomena. One605

could therefore consider to include additional process variables that may have an effect on the phenomena606

rates.607
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Figure 12: Model predictions for laboratory flocculation and breakage. Note that the relative density plots are on a volume

basis

It should be noted that no flocculants/coagulants were dosed to the system. In order to provide appro-608

priate surfaces for the particles to agglomerate reliably, it is most likely necessary to use a flocculant, for609

instance a polymer. For future experiments, it could therefore be interesting to use polymer dosage as an610

additional process variable.611

4.3. Industrial scale pharmaceutical crystallization612

In this section, a study of a an industrial scale pharmaceutical crystallization is presented. The name of613

the compound is not to be mentioned here due to confidentiality. The crystallization is carried out in an614

industrial scale crystallization tank, where pH and temperature are measured and regulated to facilitate the615

crystallization of the rod-shaped crystals which can be seen in the segmented microscopy image in Figure 5c.616

Furthermore, conductivity was measured during process operation.617

In this case, the solubility of the pharmaceutical is not fully characterized as it is in the lactose case study.618

Without this prior process knowledge, it is not possible to use conventional expressions using the degree of619

saturation to estimate the kinetic rates of the various particle phenomena. However, as also mentioned in620

the flocculation case study, the lack of prior process knowledge does not hinder the use of the hybrid model,621

where the kinetic rate expressions relies less on prior process knowledge and more on the available process622

time-series data.623

At-line sampling of the crystals was used due to GMP regulations, where samples where taken from a624

sample valve located at the bottom of the tank. The samples were transferred to a titer plate and diluted625
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with crystal-free mother liquor to ensure a good image analysis segmentation. In total, five batch experiments626

were carried out (4-5 hours each), forming in total 272 data-points of corresponding particle distributions,627

temperature, pH and conductivity. Due to the manual sampling required in the at-line setup, small samples628

(≤ 0.5 mL) were withdrawn with an average frequency of 0.2 min−1, corresponding to a measurement every629

4-5 minutes.630

In Task 1.1, it is decided to study the FeretMax diameter is to be modelled, which corresponds to the631

length of the crystal. pH, temperature, conductivity and D50 FeretMax measurements (median FeretMax632

diameters) are illustrated in Figure 13.633
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Figure 13: Overview over the sensor readings from the particle sensor and the three other process sensors

Compared to the case study of lactose crystallization, this dataset contains more batches with varying634

process conditions. Furthermore, this case has multiple measured process variables compared to only one in635

both the lactose crystallization case and the flocculation/breakage case. It is therefore expected that it will636

be possible to explain the process dynamics in this study relatively well.637

In the following, it is assumed that the liquid volume is not changing during the process operation. In638

other words, the volume effects originating from pH control are neglected. Furthermore, it is assumed that639

29

                  



the reactor is well-mixed, which is not fully valid due to the size of the crystallizer. Thus, the induced640

kinetic expressions will be based on a tank-averaged basis instead of the local conditions. The crystal size641

distribution may also be different than the tank average, as the samples were only withdrawn from a single642

location in the tank.643

In Task 1.2, it is assumed that the process is dominated by nucleation, growth and shrinkage, where644

growth and shrinkage are set to be bin-dependent. The reasoning behind the inclusion of shrinkage comes645

from the fact that no prior knowledge on solubility of the given compound is available. Furthermore, the646

solute concentration is not known either, and may fluctuate during the experiment. As growth and shrinkage647

will counteract each other, it is assumed that a specific bin can either grow or shrink - not both at the same648

time.649

In Task 1.3, the particle size distribution is discretized using a linear discretization scheme (see supple-650

mentary material, section D) as the process is mainly dominated by particle nucleation and growth. The651

upper and lower size bins are chosen to be Lmax = 120 µm and Lmin = 5 µm respectively based on prior652

process knowledge. The typical number of particles analysed with the image analysis applied settings is653

approximately 1000, thus following the modified Rice’s rule, the number of discretizations m is chosen to be654

m = 3 · 10001/3 = 30.655

Using Algorithm 1.2, in Task 1.4, pH and temperature are classified as manipulated variables, whereas656

conductivity is categorized as a disturbance variable.657

By using Algorithm 2.1, the kinetic model is set up to consist of 4 dense neural layers, where the first two658

have exponential linear units (eLU) as activation functions, and the last two have linear activation functions.659

The number of units for each of the four layers is 36, 40, 50, and 61 respectively. With this model structure,660

there are 8,117 machine learning model parameters wi to be estimated during model training. As in the two661

previous case studies, the rest of the model equations are set up following Algorithm 2.2 in Task 2.2, by using662

the Tensorflow implementation by [29].663

Training and validation data are generated using Algorithm 4.1, where the critical measurement frequency664

of the process is assumed to be vcrit = 0.05 min−1. This forms in total 1142 samples in the training data-set665

and 371 validation samples, where batch 5 is used for validation data and the rest for training. The L1 norm666

of the relative particle number density (Equation (9))is here used as the objective function in Algorithm667

5.1. The explained variation metric can be seen plotted in Figure 14a for training with regularization using668

Algorithm 5.2.669

From the training graph in Figure 14a, the explained variation metric can be seen to be above 30% on a670

number basis, which clearly indicates that the hybrid model has been able to capture a significant part of the671

experimentally measured process dynamics. Training of the model takes 50 epochs, corresponding to a total672

time for training with regularization of approximately 37.5 minutes starting from scratch. The predictive673

capabilities of the hybrid model are illustrated in Figure 14b, where end-of-batch particle size distribution674

simulations have been carried out for batch 5 (validation batch) based on initial conditions from four different675
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Figure 14: Model training and predictions for industrial pharmaceutical crystallization

time points during the batch operation.676

It can be seen that the trained hybrid model predicts the dynamics of the validation batch quite well for the677

three last predictions. This cannot be said about the initial prediction at t=0, which largely overestimates the678

growth rate and nucleation rate. The reason for this lies in the overly simplified modelling of the conductivity679

as a constant process variable. This is confirmed by the effect being present in the initial prediction where the680

conductivity changes rapidly and then stabilizes for the rest of the process. To avoid this model inaccuracy,681

it would be beneficial to either include a model for this process variable or leave it out entirely and accept a682

slightly lower explained variation.683

5. Discussion and perspectives684

It is evident from the three presented case studies, that the modelling framework suggested in this work685

has a minimum requirement of data with respect to both quantity and quality. This is not a surprise, as a686

greater part of the model is data-driven compared to first-principles approaches.687

Thus, for smaller amounts of data (i.e. range 1-2 batches), as in the lactose crystallization case, it has been688

demonstrated that there is little to no benefit of applying the hybrid particle model framework. However, it689

may still be desirable to use a generic hybrid approach as the one presented in this work, in cases where it690

is only possible to measure process variables that have an indirect impact on the particle phenomena. For691

instance the pharmaceutical crystallization where solubility information and measures of solute concentration692

were lacking. If it is not possible to measure any process variables, one will have to resort to first principles693

modelling.694

For larger amounts of data (i.e. range >2 batches), and in cases where the critical process variables can695

be measured/predicted, it is possible to apply the hybrid particle model framework with success. This was696

the case for the pharmaceutical crystallization where it opened up for modelling particle systems with limited697
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prior process knowledge, which is one of the major strengths of the hybrid model. It was also shown possible698

to predict the dynamics of the flocculation/breakage of silica particles to a good extent, using only pH as699

process variable.700

To improve the model performance, it is however evident that one may have to introduce more knowledge701

to the hybrid model, by introducing more first principles models in algorithm 2.2, as also has been done in702

previous works on hybrid modelling of particulate systems [17, 18]. This could potentially help out faulty703

predictions, as seen in the case study of the pharmaceutical crystallization, where a process variable was704

assumed constant when in reality it is not.705

It could also be relevant to introduce more first principles modelling on a molecular level, for cases such as706

flocculation and breakage. These processes are multiscale processes that take place from nano-scale up and707

beyond microscale. It is therefore reasonable to think that a more precise understanding of the nano-scale708

interaction between the primary particles can greatly enhance the modelling accuracy of the process beyond709

microscale. This could potentially transform the hybrid model presented here to a hybrid multiscale design710

methodology, adding more insights on the kinetics governing the system. In order to have a phenomenological711

understanding of the process, one could for instance use computational chemistry to estimate the surface712

interactions between particles and between particles and solution. The data generated from such calculations713

could then be used as a soft sensor to provide the neural network with more data which will enhance the714

kinetic predictions. As an example, for the presented flocculation case, changing pH has an impact on715

the surface charge of the silica particles by protonation/deprotonation of surface silanol groups. This will716

change the interaction between those particles. To this end, a solid/liquid interfacial tension (IFT) model717

can be developed to estimate the surface free energy of particle-particle and particle-solution interfaces. The718

method for the calculation of solid/liquid IFT uses density functional theory (DFT) calculations combined719

with the COSMO-RS implicit solvent model [39, 40]. The corresponding method for liquid-liquid interfaces720

has been published [41]. The balance of surface free energies gives the strength of attractive interaction721

between particles in solution and the energy required for agglomerates to break apart and make smaller722

particles (breakage), a property that is very difficult to measure directly. Those energies can thus be utilized723

as soft sensors for the estimation of kinetic parameters within the hybrid model to more precisely predict the724

behavior of the system.725

One concern that may prohibit the use of the presented framework, lies in the cost of particle analysis726

equipment. Currently, it may pose a considerable capital investment, which may not be proportional to the727

increased accuracy/faster model development speed. However, with an increasing amount of producers of728

on-line/at-line particle analysis equipments, it is expected that the price will for such equipment will drop in729

the coming years.730

It is the authors expectation that the increased availability of on-line/at-line particle analysis, and the731

use of hybrid model structures as the one presented in this work, poses great opportunities in several tasks732

in the production life-cycle. A number of examples are presented below, where a majority of these are tasks733
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where traditional modelling may be opted out due to the development cost of a mechanistic model.734

This includes initial screening of optimal processing conditions and the characterization of new particulate735

processes. In these cases, the kinetics have not been established, which makes it infeasible to set up a mech-736

anistic model to carry out model based design of experiments (MBDoE). As it has been shown in this work,737

it is computationally feasible to train such a hybrid model in real-time, by using automatic differentiation.738

The kinetic model can hereby continuously be adapted to new measurements, allowing modelling in the very739

early phases of process development, and even during process operation.740

Process optimization and control is another field that could potentially benefit from adaptive modelling741

approaches, such as the presented hybrid particle model. Especially with the lower cost of initially applying742

a hybrid model, it is possible to start using a model predictive control and/or model based optimization from743

an earlier point in the process development.744

Finally, one could potentially enable process design, process scale-up, and even integrated process design745

and control, based on the hybrid model if design aspects/parameters are incorporated into either the mech-746

anistic or data-driven part of the presented hybrid model. This could potentially be applied for non-linear747

systems with complex dynamics, such as biotechnology and food production processes, which also recently748

have been pointed out as potential future fields where integrated approaches could benefit considerably to749

enterprise-wide sustainability [42]. One would however not use the presented hybrid model to reduce compu-750

tational costs, but rather for the investigation of complex systems where the process kinetics are unknown.751

In all of the above applications, model certainty, reliability and transparency are crucial for the use in752

real-life applications. This still remains a major frontier for application of data-driven approaches in critical753

decision making. Even for hybrid modelling approaches as presented here, where the back-bone consist of754

first-principle models. It however also requires significant changes within legislation and regulations. This is755

especially relevant for the use of machine learning in process control of food and pharmaceutical productions.756

In the current FDA (Food and Drug Administration) and EMA (European Medicines Agency) legislations,757

the use of machine-learning and artificial intelligence in production is still not fully supported. However, this758

is one of the current major focus points, where multivariate data analysis and model predictive control are759

highlighted as some of the crucial steps in the transition from batch to continous processing [43].760

For the presented framework, in its present form, it may provide sufficient reliability and transparency761

for the initial process screenings and process characterizations of a given particle process. However, when762

it comes to process scale-up and process control, it may be necessary to add trust, for instance through763

uncertainty calculations. Thus, for future works, it could be interesting to look into the use of probabilistic764

data-driven models instead of plain neural networks. One could also think of utilizing bootstrapping methods765

such as neural network ensembling where multiple neural networks are trained in parallel and their individual766

outputs are used to estimate the certainty of the model predictions.767
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6. Conclusions768

In this work, a modelling framework has been proposed for particle processes. The framework allows769

for a versatile modelling of particle processes, based on mainly qualitative process knowledge of the process770

phenomena and on-line/at-line sensor measurements.771

The proposed modelling approach combines mechanistic modelling of the particle phenomena with a772

machine learning based soft-sensor for estimating particle phenomena kinetics. Here, the soft-sensor approach773

allows for varying the number and nature of the process sensor inputs.774

The application of the framework has been demonstrated through three case studies covering a laboratory775

scale crystallization, a laboratory scale flocculation and breakage of inorganic particles and an industrial scale776

crystallization. Here it has been demonstrated that using only limited prior process knowledge and on-line/at-777

line particle analysis measurements, it is possible to capture and model the kinetics of various phenomena,778

including nucleation, growth, shrinkage, agglomeration and breakage.779

The hybrid model has been evaluated and compared to conventional particle phenomena modelling, where780

it was demonstrated that the hybrid model performs equally good as conventional models when the amount781

of training data is limited, but requiring less process insights than in conventional models.782

The framework has been implemented using automatic differentiation for training of the hybrid model,783

enabling computationally fast training, which makes it possible to train the hybrid model in real-time, which784

is required if the hybrid model is to be used in an on-line modelling setting.785

By extending the hybrid model with model uncertainty calculations, it is expected that this model frame-786

work can be applied in various process development and operational tasks where deriving a model is opted787

out today. This includes model based process design, model based optimization and model based control.788
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[32] F. M. Castro, M. J. Maŕın-Jiménez, N. Guil, C. Schmid, K. Alahari, End-to-end incremental learning,865

in: Proceedings of the European Conference on Computer Vision (ECCV), 233–248, 2018.866

[33] oCelloScope technology, BioSense Solutions ApS, URL https://biosensesolutions.dk/867

wp-content/uploads/2017/05/oCelloScope-technology.pdf, 2017.868

[34] L. F. Shampine, Some practical runge-kutta formulas, Mathematics of computation 46 (173) (1986)869

135–150.870

[35] D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization .871

[36] R. A. Visser, Supersaturation of alpha-lactose in aqueous solutions in mutarotation equilibrium., Neth.872

Milk Dairy J. .873

[37] R. J. Lewis, Hawley’s Condensed Chemical Dictionary, John Wiley & Sons, Inc., 2007.874

[38] R. F. Nielsen, N. A. Kermani, L. la Cour Freiesleben, K. V. Gernaey, S. S. Mansouri, Novel strategies for875

predictive particle monitoring and control using advanced image analysis, in: A. A. Kiss, E. Zondervan,876

R. Lakerveld, L. zkan (Eds.), 29th European Symposium on Computer Aided Process Engineering,877

vol. 46 of Comput. Aided Chem. Eng., Elsevier, 1435–1440, doi:10.1016/B978-0-12-818634-3.50240-X,878

2019.879

[39] A. Klamt, Conductor-like screening model for real solvents: a new approach to the quantitative calcu-880

lation of solvation phenomena, J. Phys. Chem. 99 (7) (1995) 2224–2235, doi:10.1021/j100007a062.881

[40] A. Klamt, V. Jonas, T. Bürger, J. C. Lohrenz, Refinement and parametrization of COSMO-RS, J. Phys.882

Chem. A 102 (26) (1998) 5074–5085, doi:10.1021/jp980017s.883

[41] M. P. Andersson, M. V. Bennetzen, A. Klamt, S. S. Stipp, First-principles prediction of liquid/liquid884

interfacial tension, J. Chem. Theory Comput. 10 (8) (2014) 3401–3408, doi:10.1021/ct500266z.885

[42] M. Rafiei, L. A. Ricardez-Sandoval, New frontiers, challenges, and opportunities in integration of886

design and control for enterprise-wide sustainability, Comput. Chem. Eng. 132 (2020) 106610, doi:887

10.1016/j.compchemeng.2019.106610.888

[43] Quality Considerations for Continuous Manufacturing, Food and Drug Administration, 2019.889

37

                  



Nomenclature890

Symbol Description Unit

B Birth rate [1/(s µL)]

D Death rate [1/(s µL)]

f Balance equations -

F Dynamic ODE model -

g Conditional equations -

h Machine learning model -

i Bin index [-]

j Sensor index [-]

k, l Sample index [-]

L Characteristic dimension µm

loss Model loss/error function defined in Algorithm 5.1 -

m Number of discretizations [-]

N Particle property density distribution [1/(µL)]

n Vector size [-]

p Number of daughter particles [-]

r Generation rate [1/(s µL)]

t Time [s]

V Volume [µL]

v Frequency [1/s]

w Machine learning parameter -

X Bin edges µm

x State variable -

y Kinetic phenomena rate -

z Control action -

D Database of time series measurements -

T Training data -

V Validation data -

Epochs Iterations a dataset has been processed in optimization -

MoM Method of moments -
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Symbol Description Unit

α Nucleation rate [1/(s µL)]

β Growth rate [µm/s]

γ Shrinkage rate [µm/s]

δ Kronecker delta [-]

η Agglomeration contribution constant [-]

ε Agglomeration rate [1/s]

θ Relative daughter particle distribtution [-]

κ Breakage rate [1/s]

σ Standard error [-]
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Appendix A. Supplementary mass balances891

In this section, supplementary mass/volume balances are supplied. For both agglomeration and breakage,892

the particle volume needs to be estimated for each particle bin. Thus, one has to specify an expression that893

links the characteristic measured size Li to the particle volume Vi.894

Appendix A.1. Agglomeration895

For agglomeration, an overall mass balance/volume balance is required. Here, in case of particles belonging

to size bins j and k, with volume of Vj and Vk form an agglomerate that has a volume V = Vj + Vk. This

agglomerate may lie in-between two size bins i and i + 1. As it is a requirement that the total particle

volume stays constant during such phenomena, we use a contribution constant ηj,k,i that ensures that if the

agglomerate lies between two size bins, the total particle volume is divided out to the two closest size bins,

such that the total volume balance is fulfilled:

V = Vj + Vk = ηj,k,i · Vi + ηj,k,i+1 · Vi+1 (A.1)

where the following summation criterion is required:

ηj,k,i + ηj,k,i+1 = 1 (A.2)

Thus, the contribution constant ηj,k,i can be calculated as follows:

[ηj,k,i, ηj,k,i+1] =





[
Vj+Vk−Vi+1

Vi−Vi+1
,
Vi−Vj−Vk

Vi−Vi+1

]
, Vi < V < Vi+1

[0, 0] , otherwise
(A.3)

For agglomerations that results in particles larger than the size bin i = m, the following equation is used, to

ensure a constant volume/mass:

ηj,k,i =
Vj + Vk
Vi

, Vi ≤ Vj + Vk AND i = m (A.4)

Appendix A.2. Breakage896

For particle breakage, an overall mass balance/volume balance is also required. When a particle from size

bin i, with a volume of Vi breaks into a number of daughter particles belonging to size bins k = [1, i], the

total particle volume should remain constant. In other words, the sum of daughter volumes should add up to

the original particle volume. This can be written as the following volume balance, where θk,i is the fraction

of the volume of particles from size-bin i that goes to the formation of particles in size-bin k, and pi is the

number of daughter particles formed during the breakage of the particle in size-bin i:

Vi = pi ·
∑

k

θk,i · Vk (A.5)

By solving for the number of daughter particles pi, the following expression is obtained:

pi =
Vi∑

k θk,i · Vk
(A.6)
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Note that θk,i here represents the volumetric daughter particle distribution, and it is subject to two con-

straints. First of all, the fractions distributed to the size bins k should add up to unity for a given breakage

of a particle of size i:

∑

k

θk,i = 1 for i = [1;m] (A.7)

and in the case of k > i, the fractions should be zero, as it is not possible to have a particle breakage forming

a larger particle than the original particle:

θk,i = 0 for k > i (A.8)

Thus, the matrix θk,i is a lower triangular matrix, consisting of m·(m+1)
2 values.897
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