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Abstract

Often functional relationships are well known, but they are too complex to be

used efficiently in optimization problems like scheduling formulations. Hence the

functions are often replaced by data-based surrogate models. Especially, linear

models are often used, since they are easier to solve than non-linear ones. The

use of piecewise linear surrogate models allows for an improved consideration of

nonlinearities. Although, the number of linear elements must be kept small in

order not to lose the advantages of a linear-based formulation. In this work, two

approaches for generating piecewise linear surrogate models are proposed, whe-

reby the basic idea of both approaches is the determination of a reduced set of

data points that provides an appropriate approximation of the original data via

multi-dimensional linear interpolation. The approaches differ in their concepts:

One is a numerical algorithm, the other an optimization-based technique. In

this contribution, these approaches are described and subsequently compared.
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1. Introduction

Data-based surrogate models are compact scalable analytic models that pre-

dict the continuous outputs of complex systems depending on various indepen-

dent input variables, whereby the functional relationship is based on a limited

set of data, originating from either computationally expensive simulations or real5

world applications. Therefore, such models represent a simplified description of

complex systems and thus are suited to improve the computational performance

of large-scale problems while doing parameter studies, sensitivity analyses, and

optimization. Due to this ability, surrogate models have been applied in multi-

ple scientific and engineering disciplines for many years. Simultaneously, various10

approaches have been proposed in literature to generate such simplified models.

These include inter alia: i) Linear and polynomial regression (and variations

thereof: ridge regression (Tikhonov & Arsenin, 1977), least absolute shrinkage

and selection operator (Tibshirani, 1996), and elastic-net regression (Zou &

Hastie, 2005)), ii) support vector machine (Vapnik, 1995), iii) gaussian process15

regression or also referred to as ’Kriging’ (Krige, 1951; Bhosekar & Ierapetritou,

2018), iv) multivariate adaptive regression splines (Friedman, 1991), v) radial

basis functions (Dyn et al., 1986; Fang & Horstemeyer, 2006), vi) random fo-

rest (Hastie et al., 2001; Breiman, 2001), vii) k-nearest neighbor (Hastie et al.,

2001; Papadopoulos et al., 2011), viii) artificial neural network (Hastie et al.,20

2001; Arce-Medina & Paz-Paredes, 2009).

Due to the fact that surrogate modeling approaches are investigated for

many years, there are several reviews (e.g., Wang & Shan (2007),Razavi et al.

(2012),Yang et al. (2016) and Bhosekar & Ierapetritou (2018)), which give de-

tailed explanations of the aforementioned approaches, as well as reports about25

current developments in this field. Therefore, this contribution skips a detailed

overview of these approaches and refers to respective literature.

Applicability for scheduling formulations

Many of the listed approaches are commonly used to predict functional rela-

tionships according to the underlying data points, while having limited or no30
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knowledge about the detailed mechanisms of the approximated system. Howe-

ver, they can also be employed to generate data-based surrogate models as a

simple description of a complex system. For instance, if a functional relations-

hip between input variables x and output y is well-known, but too complex to

be efficiently used in parametric studies, sensitivity analyses, or optimization35

formulations. In particular, by formulating optimization problems this kind of

approach is often applied to solve the problem in feasible computational time,

whereby the selected type of surrogate model mainly determines the kind of

optimization problem (e.g., linear programming (LP), quadratic programming

(QP), non-linear programming (NLP)). The kind of optimization problem in40

turn defines the effort to ensure global optimality, since only if the optimization

problem is convex, a local optimum is also a global optimum. However, only LP

problems are, per definition, always convex, whereas specific requirements have

to be fulfilled in case of QP or NLP problems. Otherwise, non-linear optimiza-

tion problems are likely to have several local optima and thus require greater45

effort to solve them to global optimality.

Due to the fact that linear models are significantly easier to solve than non-

linear ones, linear regression is still a widely used approach to formulate models

for optimization problems such as planning and scheduling formulations. This

can be seen in a review of Zhang et al. (2016b), who lists several works applying50

planning and scheduling formulations for industrial demand side management in

various energy-intensive industries such as aluminum, cement, chlor-alkali, steel,

and air separation. The vast majority of the models reviewed here are formu-

lated as mixed-integer linear programs (MILP) applying a linear description of

the respective industrial process. As in this field of research especially the ope-55

rational planning of cryogenic air separation plants has gathered a high degree

of attention, in the following the main focus is placed on this specific sub-field.

With this focus, in particular the works of Ierapetritou et al. (2002), Karwan

& Keblis (2007), Mitra et al. (2012), are to be mentioned, who introduced and

further developed the concept of operating modes to allow for better modeling60

of the respective industrial process. This mode-based concept is used in many
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works, often in combination with a linear process description (e.g.,Mitra et al.

(2013, 2014); Zhang et al. (2015)). In order to allow for an improved process

description of the industrial process regarding its operational envelope (feasible

region) and the performance within this envelope, Zhang et al. (2016a,b) ex-65

tended this concept by the introduction of so-called Convex Region Surrogate

(CRS) models, which allow the approximation of operating modes with non-

convex feasible regions by a union of convex subregions. More specifically, the

non-convex feasible region – spanned by several operation points – is partitioned

into a set of convex polytopes such that the union of these polytopes describe70

the feasible region, whereby each polytope holds a linear process description.

These CRS models represent a kind of piecewise linear description and thus al-

low for a better approximation of non-linearities in the process behavior, while

keeping the computational complexity at an appropriate level. In this context,

one of our previous contributions (Obermeier et al., 2019) is to be seen, which75

also employs a mode-based formulation and proposes a set of constraints to in-

vestigate the effect of mechanical fatigue on operational planning. Having the

focus on this aspect, the feasible region of the process was considered in a redu-

ced manner (pseudo two-dimensional product space). Nevertheless, this albeit

simple process model also provides a piecewise linear approximation to allow80

for a more precise description of the process behavior.

In a recent review by Tsay & Baldea (2019), the distinction is made between

dynamic and static data-driven approaches to generate surrogate models of pro-

cess dynamics for production scheduling applications. Here, the generation of

CRS models is assigned to the class of static approaches as the resulting models85

capture the steady-state process performance. While this class uses steady-state

data, the approaches in the class of dynamic approaches apply transient process

data in order to construct reduced-order dynamic models, which capture the

process dynamics in scheduling calculations. As Tsay & Baldea (2019) mentio-

ned, such reduced-order dynamic models can also be used in conjunction with90

multi-parametric programming (Oberdieck et al., 2016) for simultaneous sche-

duling and control (e.g., (Burnak et al., 2018)). When addressing this topic
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with linearly constraint quadratic multi-parametric programming problems, a

solution can be generated that describes an optimal scheduling and/or control

action by means of an explicit function. This function has again a piecewise95

affine structure that is valid in polyhedral partitions of the feasible parameter

space, also known as critical regions.

In summary, it can be said that in the vast majority of cases linear process

models are used in planning formulations since they are much easier to solve

than non-linear ones. In the recent years, however, the interest rises to im-100

prove the description of the actually non-linear process behavior by applying

piecewise linear surrogate models, while keeping the computational complexity

manageable. The formulation of CRS models may represent a way to generate

such piecewise linear surrogate models for the static approaches. However, the

partitioning of the feasible region is only triggered by the availability of non-105

convex feasible regions and not by the idea of finding subregions that allow a

piecewise linear approximation with a specific accuracy. Other approaches in

the literature mostly generate non-linear surrogate models and/or are not de-

signed for the use in a mode-based formulation, as the functional region of the

surrogate models is not restricted. However, the later is especially important for110

the description of technical and industrial processes, which have, by their na-

ture, a restricted operational range. Therefore, in the class of static approaches

there is a need for an approach for the generation of surrogate models, which

have a piecewise linear character and describe an industrial process even more

accurately with respect to its operational envelope and performance within this115

envelope.

Focus of this contribution

This contribution focuses on the generation of data-based piecewise linear sur-

rogate models, which allow non-linear functional relationships, such as a process

description, to be considered more accurately in a scheduling formulation than120

with a simple linear surrogate model. For this purpose two approaches are pro-

posed, which can also be assigned the class of static approaches, because they
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are based on steady-state process data. As will be seen later, both approa-

ches also perform a partitioning of the feasible region similar to the CRS model

generation. Unlike CRS generation, however, the partitioning is based on the125

idea of finding subregions that allow for a piecewise linear approximation with

a predefined accuracy. This type of partitioning enables a more precise process

description and can even be seen as a post-processing step of CRS model gene-

ration, which is used to partition the resulting polytopes. Here, the basic idea

of both approaches is to interpret a piecewise linear surrogate models as a set130

of data points forming a mesh consisting of multiple linear elements, whereby

each element is represented by the linear interpolation between its associated

data points. Within a scheduling formulation – based on a mixed-integer linear

programming (MILP) – one of these linear elements can be selected via a binary

variable, whereby a disjunctive programming formulation can be used to reduce135

the combinatorics and to tighten the model relaxation. Therefore, this way of in-

terpreting a piecewise linear surrogate model allows its efficient embedding into

an MILP formulation. Another important point of this interpretation is that

the set of linear elements simultaneously captures the feasible region and thus

no additional equations are required for its description. Moreover, the structure140

of such surrogate models is compatible with a mode-based formulation.

As mentioned before, both approaches seek a set of data points, which pro-

vides an appropriate approximation of non-linear process description via the

formation of several linear elements. Since the process can be described by a

well-known functional relationship and thus extracted data are only affected by145

numerical noise, a linear interpolation between adjacent points of any data set –

extracted from this relationship – already yields a relatively accurate piecewise

linear approximation of the functional relationship; provided that the given data

set sufficiently captures nonlinearities and the operational envelope. Therefore,

the determination of a set of data points providing an appropriate approximation150

can easily be satisfied by a sufficiently large number of data points. However, a

surrogate model of this kind has a high number of linear elements, thus requires

a high number of binary variables and thus leads to large-scale optimization
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problems, which usually suffer from high CPU times. Hence, the actual idea of

both approaches is to reduce the number data points and thus the number of155

linear elements, and still provide an approximation with sufficient accuracy as

well as the description of the feasible region. Imagining a triangle mesh, which

approximates a 2-dimensional surface function, this means that linear ranges

of the function are captured with large triangles, while non-linear ranges are

captured with many small triangles.160

The paper is organized as follows: The two approaches are described in detail

in section 2. In the subsequent section 3, both approaches are compared with

regard to several criteria: functionality of approach, computational efficiency,

and compactness of resulting surrogate model. The focus here is on an initial

comparison of the proposed approaches and on determining the more promising165

approach. Section 4 demonstrates the scope of these approaches by means of an

exemplary application. Finally, the results are summarized in the section 5.

2. Novel approaches for piecewise linear surrogate models

The subsequently described approaches are designed to generate data-based

piecewise linear surrogate models for later application in scheduling formulations170

based on MILPs. For both approaches, the complex functional relationship

describing a process behavior has to be initially captured in a sufficiently large

amount of data points. Since both approaches generate models, which are based

on linear interpolation, this original set of data points has to cover the relevant

range of the functional relationship or – even better – the entire feasible range175

of the actual application, in order to prevent subsequent updates of the data

set. Ideally, the total range is spanned by evenly distributed data points and

the data resolution is sufficient to capture any non-linearity within. Therefore,

the complex functional relationship has to be used to generate a high number

of data points, whereby the number of data points strongly depends on the180

type of relationship and its number of dimensions. Note that the computational

burden of evaluating the non-linear function is moved towards an one-time, off-
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line problem and can be skipped during optimization. Apart from that, both

approaches are not designed to handle noisy data points, since the focus lies

on the transformation of a well-known functional relationship and not on the185

processing of noisy data obtained in a real-world application.

As mentioned above, the actual idea of both approaches is to reduce the

number of data point of the original set of data in order to determine a reduced

set of data points, which still provides an appropriate approximation of the

original data via linear interpolation. In order to determine such a reduced set,190

this contribution proposes two contrary approaches:

The first one is an adaptation of an algorithm originating from computati-

onal geometry and object modeling, whereby a fine mesh – generated with the

original data – is iteratively reduced by contracting edges of this mesh. During

this iterative mesh reduction (IMRed) the edges to be contracted are selected195

using a quadric error metric proposed in Garland & Heckbert (1997, 1998);

Garland & Zhou (2005).

In contrast to the first approach, the second one is based on a mixed integer

linear programming (MILP) formulation, wherein a mesh – consisting of an a

priori defined number of linear elements – is fitted to the data points. Or in200

other words, this formulation selects a reduced set of data points including only

those points that are required to represent the convex hull of each linear mesh

element. By incrementally increasing the number of elements, this so-called

incremental mesh refinement (IMRef) generates a more and more refined mesh,

which gives a piecewise linear approximation of the functional values.205

These two approaches are described in the following sections by providing a

flow chart for each approach as well as the theoretical fundamentals.

2.1. Iterative mesh reduction

The following section describes the determination of a reduced set of data

points by applying the iterative mesh reduction (IMRed) approach. Initially,210

the basic concept of IMRed is illustrated followed by an outline of the entire

algorithm.
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2.1.1. Basic concept of IMRed

The functional relationship for describing the output y depending on its

input variables x = (x1, x2, . . . , xd) – with x as input vector of dimension d –215

is captured via a piecewise linear surface mesh, which is spanned initially by

the complete set of available data points. Hence, the mesh consists of a set of

linear elements, each representing a linear interpolation between adjacent data

points. These elements are usually referred to as simplices and are spanned

by d + 1 data points forming a d-dimensional vector space, i.e., depending on220

the dimension d these simplices represent different geometrical objects (e.g.,

d = 1: line, d = 2: triangle, d = 3: tetrahedra). Furthermore, the data points

forming such a simplex are usually referred to as vertices and the line between

two of these vertices as edge of this simplex.

The above described surface mesh model represents a highly accurate ap-225

proximation of the functional relationship, provided that a sufficient amount of

data points is used to generate a high-resolution mesh. However, the computa-

tional cost of using such a model in an optimization problem is related to the

mesh resolution, since its modeling requires additional optimization variables

for each vertex and simplex. Consequently, the complexity of the optimization230

problem increases with the resolution of the surface mesh. In oder to reduce

this complexity as well as to maintain a sufficiently accurate approximation of

the functional relationship, the resolution of the mesh is locally decreased by

contracting edges of the original mesh. As illustrated in Figure 1 the number

of vertices as well as the number of simplices is decreased by contracting the235

edge (vi,vj) into one new vertex v. Therefore, the iterative contraction of edges

leads to a surrogate model with reduced complexity, whereby the correct choice

of edges and the position of the respective new vertex ensures an only small

decrease in accuracy of the simplified approximation.
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vi
vj v

Figure 1: Edge (vi,vj) is contracted into one vertex v, whereby the number of vertices assigned
to a triangulated surface mesh (d = 2) is reduced by one.

Choice of edges. For choosing the correct edges the cost of contraction is eva-

luated using a quadric error metric. In its generalized form – as proposed by

Garland & Zhou (2005) – the quadric error is defined as

Qp(z) = z>Az + 2b>z + c (1)

with

A = I−
d∑

i=1

eiei
>, (2)

b = −Ap, (3)

c = p>Ap. (4)

Considering a d-dimensional surface in an n-dimensional space, at any point p240

on this surface an orthonormal basis {e1, . . . , en} can be constructed in such a

way that the tangent space at p is spanned by {e1, . . . , ed} and thereby forming

an affine subspace {ed+1, . . . , en}, which is orthogonal to the tangent space at

p. Having such a surface, the quadric error Qp(z) reflects the geometric error

caused by moving the point p from its current position to a new position z.245

In its definition, it only measures the squared distance of z from point p in

the affine subspace, i.e., the point p can be moved in the tangent directions

{e1, . . . , ed} without any penalty and only movements in the orthogonal sub-
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space {ed+1, . . . , en} are penalized. Note that due to this definition the outer

product eiei
> of each dimension of the tangent space is subtracted from the250

n-dimensional identity matrix I.

In analogy to Garland & Zhou (2005), the generalized quadric error is app-

lied to construct a fundamental quadric to describe the cost of contracting any

edge of the surface mesh. Due to the fact that the mesh represents a complex

of various simplices, first, the fundamental quadric of a single simplex has to

be defined. Any d-dimensional simplex defines a d-dimensional plane that is

characterized by any point p – contained within this simplex – and a set of d

orthonormal tangent vectors {e1, . . . , ed}. This hyperplane represents the afore-

mentioned tangent space at p and thus the fundamental quadric Qp at the point

p can be calculated as specified in equation (1). By defining the fundamental

quadric Qσ of a simplex σ as

Qσ(z) =

∫

p∈σ
Qp(z), (5)

it can be simply formulated as

Qσ = ωσ Qp, (6)

since all points p ∈ σ are located in the same hyperplane. Here, ωσ denotes the

d-dimensional content of the simplex σ, which can be described for instance by

using the exterior product (cf. Garland & Zhou (2005)). For calculating Qp,

any point p on the interior of this content can be applied. Having a simplex

spanned by the set of vertices Vσ ={v0, . . . ,vd}, for instance, the point p can

be defined as barycenter

p =
1

d+ 1

∑

v∈Vσ
v (7)

of the simplex and the set of d orthonormal tangent vectors {e1, . . . , ed} can

be constructed using a Gram-Schmidt orthogonalization (Strang (2006)) of the

edge vectors {(v1 − v0), . . . , (vd − v0)}.
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Subsequently, the fundamental quadric Qσ of a simplex is used to describe

the fundamental quadric Qv of one of its vertices. Since the movement of a

vertex affects not only one simplex but each simplex to whom the vertex is

assigned, the fundamental quadric Qv is formulated as

Qv(z) =
∑

σ∈Sv

Qσ(z)

(d+ 1)
. (8)

Where the set of simplices Sv = {σ|v ∈ Vσ} includes only those simplices to255

whom the vertex v is assigned. Note that the quadric Qσ is normalized by the

number of vertices (d+1), to approximate the content ωσ of each simplex which

is closest to the vertex v.

Since the contraction of an edge represents the movement of its two vertices

vi and vj on a joint new position, the fundamental quadric Qε of any edge ε

can be formulated as

Qε(z) =
∑

v∈Vε
Qv(z), (9)

wherein z denotes the new position and Vε = {vi,vj} the set of vertices that

are assigned to the edge ε.260

This quadric Qε(z) describes the geometric error caused by moving both

vertices of any edge on a new joint position z and thus provides in its definition

an option to evaluate edges according to their cost of contraction. However, the

new position z is not yet defined.

Position of new vertices. The geometric error caused during edge contraction

essentially depends on the position onto which both vertices of the edge are

moved to. Therefore, the position is ideally chosen in a way that causes the

lowest possible geometrical error. Since Qε(z) can also be transformed in the

quadric form

Qε(z) = z>Aεz + 2bε
>z + cε, (10)
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the ideal position z∗ at which Qε(z) is minimal (i.e., ∇Qε(z∗) = 0) is defined

as

z∗ = −Aε
−1bε. (11)

However, if the matrix Aε is not invertible, this analytical solution is not pos-265

sible. An example of this would be if all hyperplanes – considered during the

construction Qε(z) are parallel. Then Aε becomes singular and thus no unique

optimal position exists. In such a case, the position is chosen from a set of

predefined positions (here: position of both vertices vi, vj as well as position of

(vi + vj)/2) by evaluating the minimal Qε. Finding the new position by using270

equation 11 or by selecting the best position of a set of predefined positions is

hereinafter referred to as the standard method.

Note that this standard method of choosing the position is suitable for po-

lygonal models possessing a closed surface. However, in case of surface models

with open boundaries this will cause degradation of all boundaries (cf. Garland275

& Zhou (2005)). Unfortunately, the models described in section 2.1.1 represent

such open-bounded surface models, since these are an approximation with a li-

mited functional range. Consequently, in this contribution choosing the position

z is modified by introducing a classification. Depending on this classification,

the position z is chosen by either using the standard method or by complying280

with certain restrictions.

The classification and its restrictions are subsequently described on the basis

of the surface mesh depicted in Figure 2. This figure shows the 2-dimensional

functional range of a surface mesh consisting of 2-dimensional simplices (triang-

les).285

In order to classify the edges of a mesh, the vertices have to be classified

initially. For this purpose, the following classes are defined:

• Outer vertices V O:

Considering the convex hull Conv(V ) of all vertices V , V O describes

the set of all vertices that are assigned to the border of the convex hull

13
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V O = {v1, v2, v3, v4, v5, v9, v10, v11, v12, v13, v14},
V H = {v1, v4, v5, v9, v10, v14} ⊆ V O,
V B = {v2, v3, v11, v12, v13} ⊆ V O,
V I = {v6, v7, v8};
EI = {ε13},
EO = {ε1, ε2, ε3, ε4, ε11, ε16, ε24, ε25, ε26, ε27, ε28},
EH = {ε4, ε11, ε16, ε24} ⊆ EO,
EB = {ε2, ε26, ε27} ⊆ EO,
EC = {ε14, ε17} ⊆ EO,
EM = E \ {EI, EH, EB, EC};

x1

x2

Figure 2: Functional range of a 2-dimensional surface mesh for illustrating classification.

∂Conv(V );

V O = {v|v ∈ ∂Conv(V )}. (12)

• Hull vertices V H:

V H denotes a subset of V O containing vertices that are essential to span

the convex hull Conv(V );

V H = {v|v /∈ Conv(V \ {v})} ⊆ V O. (13)

• Boundary vertices V B:

Subset of V O for which is valid:

V B = V O \ V H ⊆ V O. (14)

• Inner vertices V I:

All vertices of V that are not included in V O are referred to as inner

vertices

V I = V \ V O. (15)
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Based on this classes of vertices the set of edges E can be classified into the

following classes:

• Inner edges EI:

EI = {ε|Vε ⊆ V I}. (16)

By definition inner edges are not located on the boundary of the functional290

range, thus there are no restrictions during choosing the position z. The-

refore, the best position can be determined by using the standard method

as described above.

• Outer edges EO:

EO = {ε|ε ∈ ∂Conv(V )}. (17)

Consequently, both vertices of these edges are assigned to the set V O. As

defined above, V O consists of two subsets and thus the set EO can be295

distinguished in three subsets: a subset of EO that contains edges having

i) exclusively hull vertices or ii) exclusively boundary vertices, or iii) both

classes of vertices. Subsequently, the first two subsets are described as

well as the respective restrictions regarding the choice of z. The latter

subset is outlined as part of a more generalized class at a later point in300

this section.

• Hull edges EH:

EH = {ε|ε ∈ EO, Vε ⊆ V H}. (18)

No contraction of these edges is permitted since a movement of its vertices

causes a modified convex hull, generally associated with a reduction of the

functional range. For instance the contraction of ε16 in Figure 2 always

leads to a modified convex hull regardless of the chosen position z.305

• Boundary edges EB:

EB = {ε|ε ∈ EO, Vε ⊆ V B}. (19)
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In contrast to hull vertices, boundary vertices can be moved without mo-

difying the convex hull provided that the vertex is moved along the border

of the convex hull. With respect to the contraction of a boundary edge,

the assumption is made that the optimal position for z lies on the re-

spective edge. Hence, the position z – lying on the boundary edge – is310

chosen by evaluating a set Z of permitted positions; more precisely, a set

of three positions, containing the position of each boundary vertex vi, vj

as well as the position of (vi + vj)/2. In case of the boundary edge ε2 (in

Figure 2), this means that Qε(z) is calculated for the positions z = v2,

z = v3 and z = (v2 +v3)/2. The position with the lowest value for Qε(z)315

is used to evaluate the edge ε2 with respect to the cost of contraction.

• Crossing edges EC:

EC = {ε|ε /∈ EO, Vε ⊆ V O}. (20)

This set describes edges that cross the convex hull. The contraction of

such edges leads to a constriction of the functional range and thus the

contraction of crossing edges is not permitted. In analogy to EO, set EC

can formally be distinguished into three subsets. However, this distinction320

is not necessary, since the restriction – no contraction is permitted – is

valid for all subsets.

• Mixed edges EM:

EM = E \ {EI, EH, EB, EC}. (21)

With respect to the contraction of a mixed edge, it is considered that the

vertices show different priorities regarding the preservation of the functi-

onal range. Hull vertices have a high, boundary vertices a medium, inner325

vertices a low priority (V H > V B > V I). For instance, considering ε1 in

Figure 2, the new position z has to be z = v1, since the hull vertex v1 is

essential for the convex hull Conv(V ). Or, in case of ε6, the inner vertex

v6 has to be moved on the position z = v2 to prevent a constriction of the
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functional range. Consequently, the position z of a mixed edge is defined330

as the vertex vi of the respective edge (vi, vj) with vi having a higher

priority than vj (vi > vj).

By applying this classification and the class depending restrictions during the

choice of z, the open boundaries of the surface model are preserved. Therefore,

the approach can now be deployed on models as described in section 2.1.1.335

2.1.2. Algorithm IMRed

The described basic concept is integrated into an algorithm, which iteratively

selects and contracts an edge until a defined termination criterion has been

reached. The algorithm of the IMRed approach is illustrated Figure 3, including

the following main steps:340

1. From the inserted set of data points a surface mesh is generated. Conside-

ring data points in an n-dimensional space representing a d-dimensional

functional relationship (d < n), a d-dimensional surface mesh can be cre-

ated as combination of various simplicies. The set of simplices S can be

determined by performing a Delaunay triangulation (Barber et al., 1996)345

within the d-dimensional subspace of data points. This mesh describes the

(n − d)-dimensional output y = (yd+1, . . . , yn) within the d-dimensional

functional range as linear interpolation between the vertices of the re-

spective simplex depending from the input x = (x1, x2, . . . , xd).

2. A reduced set of edges E− = E \ {EH, EC} is selected, since there are350

edges among the set of all edges E – such as the class of hull and crossing

edges – for which no contraction is permitted.

3. All edges in the set E− are evaluated regarding the geometrical error cau-

sed by contracting the respective edge. For this purpose, the fundamental

quadric Qε(z) of every edge ε ∈ E− is calculated, determining the position355

z as described in section 2.1.1.

4. The edge showing the lowest value of Qε(z) is contracted by moving its

vertices (vi,vj) to the position z. For this purpose, the vertices vi and vj
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are replaced by the new position z in each simplex that contains at least

one of these vertices, thereby leading to a reduced number of vertices as360

well as the degeneration of at least one simplex.

5. The removal of a data point results in the generation of a modified surface

mesh which likely shows higher deviations in representing the functional

relationship. In oder to describe this deviation, the output y/v calculated

using the modified surface mesh is compared for each vertex v in the

original set of vertices V ∗. More precisely, the mean relative deviation

ε̄ =

∑
v∈V ∗

|(y∗
v−y/v)|
y∗
v

|V ∗| . (22)

is applied, whereby |V ∗| denotes the cardinality of the original set V ∗.

Note that from an implementation point of view, ε̄ does not need to be

calculated by evaluating the deviation at each individual vertex v in the

set of vertices V ∗. Instead, this must be done only for those vertices where365

the surface mesh is affected by the edge contraction. For all other vertices,

this evaluation is superfluous, since a single edge contraction only changes

the surface mesh locally.

The deviation ε̄ is applied as criterion to control the IMRed approach. As long

as ε̄ ≤ ˇ̄ε the modified surface mesh is iteratively modified further, whereby the370

steps 2.) to 5.) are repeated cyclically. In doing so, ε̄ increases and thus reaches

the point where ε̄ > ˇ̄ε. When this criterion is met, the algorithm returns the

surface mesh of the previous iteration cycle and stops. Note that ˇ̄ε denotes an

upper limit of the mean relative deviation – set by the user prior to the start of

the algorithm – and thus the mesh of the previous iteration is returned in oder375

to not violate the upper limit ˇ̄ε. By applying the IMRed approach, a modified

set V / is generated showing a reduced number of vertices (|V /| < |V ∗|) as well

as a mean relative deviation ε̄ < ˇ̄ε.
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Input: Set of data points

1. Surface mesh generation

2. Selecting set of edges

3. Calculation of Qε(z)

4. Contraction of edge with
lowest Qε(z)

5. Evaluating mean relative
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ε̄ > ˇ̄ε

Output: Reduced set of points

Stop

yes

no

Figure 3: Flowchart of the algorithm IMRed.
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2.2. Incremental mesh refinement

In the following section the incremental mesh refinement (IMRef) approach is380

depicted, which also determines a reduced set of data points, but being contrary

to the afore-described IMRed approach. At the beginning of the section, the

basic concepts of IMRef are outlined followed by a description of the detailed

algorithm.

2.2.1. Basic concepts of IMRef385

The method of incremental mesh refinement is an approach for determi-

ning a set of linear elements L whose combination represents a piecewise linear

approximation of the original functional relationship satisfying at least a pre-

defined accuracy. In order to satisfy the latter, each element - describing only

a part of the functional range - is fitted to the respective data points using a390

mixed integer linear programming (MILP) formulation. The MILP formulation

as well as its basic idea is described as follows.

The underlying concept of the IMRef approach is the partitioning of the

original data set V ∗ into subsets, each capturing the output y with one linear

element λ. In analogy to the first approach, these elements represent different

geometrical objects (e.g., d = 1: line, d = 2: triangle, d = 3: tetrahedra)

depending on the dimension d of the input x = (x1, x2, . . . , xd). These linear

elements can be created by clustering simplices originating from a surface mesh

that is initially generated using the data set V ∗. In this sense, the binary

variables

yσ,λ = {0, 1} ∀σ ∈ S, ∀λ ∈ L (23)

are introduced characterizing the assignment of any simplex σ to a linear element

λ, whereby a simplex can be assigned to only one linear element. This can be

expressed by the following logical formulation:

∨̇

λ∈L
(yσ,λ = 1) ∀σ ∈ S. (24)
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This disjunction can be reformulated as the following constraint:

∑

λ∈L
yσ,λ = 1 ∀σ ∈ S. (25)

Furthermore, at least one simplex must be assigned to each linear element to

ensure its utilization and thus an effect of the predefined number of elements

l = |L| on the resulting approximation. This statement can be written as

∨

σ∈S
(yσ,λ = 1) ∀λ ∈ L, (26)

or reformulated as

∑

σ∈S
yσ,λ ≥ 1 ∀λ ∈ L. (27)

By assigning each simplex to one of the linear elements in the set L, the functi-

onal range is partitioned into l sub-ranges. Consequently, the functional range

of each linear element is determined by the binary variables yσ,λ. For captu-

ring the information contained in the vertices of each simplex further binary

variables are required. Therefore, the binary variables

yv,λ = {0, 1} ∀v ∈ V ∗, ∀λ ∈ L (28)

are added to the MILP formulation characterizing the assignment of any vertex

v to a linear element λ. These binary variables are linked with the binary

variables yσ,λ, since the assignment of any simplex σ to one element is equivalent

to the assignment of all of its vertices v ∈ Vσ to exactly this element and vice

versa. This statement can be written as

yσ,λ ⇔ yv,λ ∀σ ∈ S, ∀v ∈ Vσ, ∀λ ∈ L, (29)

or by the following constraints using propositional logic (Raman & Grossmann,
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1994):

⇒ : yσ,λ ≤ yv,λ ∀σ ∈ S, ∀v ∈ Vσ, ∀λ ∈ L; (30)

⇐ : yσ,λ ≥
∑

v∈Vσ
yv,λ − (|Vσ| − 1)︸ ︷︷ ︸

≡ d

∀σ ∈ S, ∀v ∈ Vσ, ∀λ ∈ L. (31)

Due to these constraints a vertex is clearly assigned to one specific linear element

according to the assignment of its simplex. Despite of this and of having a fixed

number of assigned simplices, the number of assigned vertices within one linear

element may vary, since one specific vertex v is probably included in various sets

Vσ, i.e., adjacent simplices assign fewer vertices to a linear element λ than locally

distributed simplices. The clustering of adjacent simplices is thus encouraged by

restricting the number of assigned vertices depending on the number of assigned

simplices:

|Vσ|︸︷︷︸
≡ (d+1)

≤
∑

σ∈S

∑

v∈Vσ
yv,λ ≤ |Vσ|+

∑

σ∈S
yσ,λ − 1 ∀λ ∈ L. (32)

The lower bound is defined by the number of vertices that are assigned to an

element when exactly one simplex belongs to it. Consequently, the lower bound

is given by |Vσ| = d + 1. For adding adjacent simplices at most one additional395

vertex is required and thus the upper bound can be formulated as shown in

equation (32).

In addition to the previously introduced binary variables, another set of

binary variables

yv,λ̃ = {0, 1} ∀v ∈ V ∗, ∀λ̃ ∈ L̃ (33)

is added to the MILP in order to capture all vertices that are assigned to more

than one linear element. Note that these points form a set of cutting elements

L̃, whereby each cutting element λ̃ has the dimension (d− 1) and lies between

two linear elements λ. Therefore, the number of cutting elements |L̃| is given
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by

|L̃| =
(
l

2

)
=

l!

2!(l − 2)!
. (34)

Due to the fact that this equation is only valid for l ≥ 2 and that the modeling

of cutting elements is not reasonable for l < 2, all formulation in connection

with cutting elements are only added to the MILP if l ≥ 2. The necessity of400

these cutting elements as well as their binary variables will be explained later

on.

For any cutting element λ̃ ∈ L̃ describing the intersection of the respective

linear elements λi and λj , the logical statement

yv,λ̃ ⇔ yv,λi ∧ yv,λj ∀v ∈ V ∗, ∀λ̃ ∈ L̃, (35)

applies, which can be reformulated as follows:

yv,λ̃ ≤ yv,λi ∀v ∈ V ∗, ∀λ̃ ∈ L̃; (36)

yv,λ̃ ≤ yv,λj ∀v ∈ V ∗, ∀λ̃ ∈ L̃; (37)

yv,λ̃ ≥ yv,λi + yv,λj − 1 ∀v ∈ V ∗, ∀λ̃ ∈ L̃. (38)

Due to theses constraints a vertex can only be assigned to a cutting element λ̃,

if this vertex is simultaneously assigned to the two respective linear elements λi

and λj and vice versa. This in turn means that each vertex v can be assigned

exactly to one linear element λ, unless it is also assigned to a cutting element.

Hence, the additional equality constraint

∑

λ∈L
yv,λ = 1 +

∑

λ̃∈L̃

yv,λ̃ ∀v ∈ V ∗ (39)

may be added to the MILP.

By means of the afore-described constraints, the set V is partitioned into |L|
subsets (linear elements) and |L̃| intersections (cutting elements) based on the

assignment of the binary variables yσ,λ, whereby the output y of each vertex
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v within any subset is approximated using a linear element λ. These elements

describe the approximated output y/v,λ of any vertex v in the respective element

λ as a linear function of all its input variables xv and thus can be generally

formulated as

y/v,λ = αλ +

d∑

δ=1

βδ,λ · xv,δ ∀v ∈ V ∗, ∀λ ∈ L, (40)

where αλ and βδ,λ are parameters fitting each linear element to the output of

its vertices.405

The combination of all these linear elements generates a piecewise linear

approximation of the set V ∗. However, additional restriction regarding the

determination of αλ and βδ,λ have to be added to obtain a continuous description

of the functional range. For this purpose, continuity has to be ensured at the

intersection of two linear elements λi and λj , i.e., the approximated outputs

y/v,λi and y/v,λj of both elements have to be equal. However, this equality

condition has to be valid only if the vertex v lies in the intersection of two linear

elements. This equality condition is, hence, extended by two slack variables χ+

v,λ̃

and χ−
v,λ̃

being assigned to the respective cutting element:

y/v,λi = y/v,λj + χ+

v,λ̃
− χ−

v,λ̃
∀v ∈ V ∗, ∀λ̃ ∈ L̃. (41)

These slack variables are only forced to be equal to zero, if the vertex v is as-

signed to the cutting element λ̃. If this requirement is not fulfilled, the slack

variables can be greater or equal to zero. This logical expression can be formu-

lated as

0 ≤ χ+

v,λ̃
≤ Ψ ·

(
1− yv,λ̃

)
∀v ∈ V ∗, ∀λ̃ ∈ L̃, (42)

0 ≤ χ−
v,λ̃
≤ Ψ ·

(
1− yv,λ̃

)
∀v ∈ V ∗, ∀λ̃ ∈ L̃, (43)

using the afore-defined binary variables yv,λ̃ as well as a big-M parameter Ψ

with a sufficiently high value.
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By applying these constraints, the combination of all linear elements forms a

continuous piecewise linear surrogate model approximating the set V ∗. In order

to generate a surrogate model representing the best possible approximation

while using a predefined number of linear elements, an appropriate objective

function has to be formulated for the MILP. Here, the objective function is

based on the relative deviation εv,λ, which can be defined as

εv,λ =
|(yv − y/v,λ)|

yv
∀v ∈ V ∗, ∀λ ∈ L (44)

for each v ∈ V ∗ regarding the respective linear element λ. However, this formu-

lation has to be modified in order to be used in the MILP formulation. Instead

of the norm, two linear inequality constraints are applied, avoiding any non-

differentiabilities:

εv,λ ≥
(yv − y/v,λ)

yv
∀v ∈ V ∗, ∀λ ∈ L, (45)

εv,λ ≥ −
(yv − y/v,λ)

yv
∀v ∈ V ∗, ∀λ ∈ L. (46)

In the objective function only those deviations εv,λ are required, for which the

vertex v is assigned to the linear element λ. This may be achieved by defining

a modified relative deviation expressed by the formulation

ε̆v,λ = εv,λ · yv,λ ∀v ∈ V ∗, ∀λ ∈ L. (47)

For integrating this non-linear description in the MILP formulation, the two

cases

yv,λ = 1 ⇒ ε̆v,λ = εv,λ:

ε̆v,λ ≤ εv,λ ∀v ∈ V ∗, ∀λ ∈ L, (48)

ε̆v,λ ≥ εv,λ − Ω(1− yv,λ) ∀v ∈ V ∗, ∀λ ∈ L; (49)
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yv,λ = 0 ⇒ ε̆v,λ = 0:

ε̆v,λ ≤ Ω · yv,λ ∀v ∈ V ∗, ∀λ ∈ L, (50)

ε̆v,λ ≥ 0 ∀v ∈ V ∗, ∀λ ∈ L; (51)

are distinguished by applying another big-M parameter Ω with a sufficiently

high value. Using this modified relative deviation, an appropriate objective

function for the MILP can be formulated as

min
yσ,λ,yv,λ,yv,λ̃,

αλ,βδ,λ

Obj =
∑

λ∈L

∑

v∈V ∗

ε̆v,λ, (52)

wherein the binary variables yσ,λ, yv,λ, yv,λ̃ and the continuous variables αλ, βδ,λ410

are adjusted to minimize the sum over all modified relative deviations ε̆v,λ. Note

that due to the formulation of the objective function all relative derivations of

vertices – being assigned to a cutting element – are considered several times and

thus have a higher weight in the objective function. This is, however, negligible

as long as the following two points are satisfied: i) The set V ∗ contains a high415

number of vertices and ii) the surrogate model is created applying a low number

of linear elements.

By having specified the objective function as well as the afore-described

constraints, the MILP is complete and can be solved to determine a piecewise

linear surrogate model using an a priori defined number of linear elements.420

2.2.2. Algorithm IMRef

The described basic concept is integrated into an algorithm which incremen-

tally increases the number of linear elements, this way, generating a more and

more refined mesh. By means of Figure 4 the algorithm of the IMRef approach

is described, including the following main steps:425

1. The input set of data V ∗ is used to generated a surface mesh. This process

step is done analogous to the mesh generation step in the IMRed algorithm
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(cf. section 2.1.2).

2. Based on the generated mesh, the optimization model of the previous

section is created, initially using only one linear element (l = 1) as well as430

starting values for the big-M parameters Ψ and Ω.

3. On solving the MILP, the binary variables yσ,λ, yv,λ, yv,λ̃ (yv,λ̃ only if

l > 1) and the continuous variables αλ, βδ,λ are adjusted to minimize the

objective function, thereby leading to a surrogate model that represents a

piecewise linear approximation of the input set of data.435

4. The quality of this surrogate model is primarily influenced by the number

of linear elements l, but also by the values of the big-M parameters Ψ and

Ω. For this reason, both parameters Ψ and Ω are evaluated with respect to

the obtained solution of the optimization model. If the parameters affect

this solution, the parameters have to be adjusted and step 3.) has to be440

repeated subsequently.

5. The mean relative deviation ε̄ is calculated according to equation (22) to

evaluate the surrogate model.

As with the IMRed approach, ε̄ is applied as convergence criterion to control

the IMRef approach’s accuracy. As long as ε̄ > ˇ̄ε, the number of linear elements445

l is increased by 1 (l = l + 1). Thereon the steps 2.) to 5.) are repeated. In

doing so, the mean relative deviation ε̄ decreases, since the MILP formulation

applies more and more linear elements to capture non-linearities in the data set.

Therefore, the algorithm at some point meets the criterion ε̄ ≤ ˇ̄ε. At this point,

the algorithm returns a set containing the hull vertices of each linear element,450

i.e., only such vertices of each linear element that are relevant to describe the

piecewise linear approximation of the original data set V ∗. In this way the

IMRef approach also generates a set V / showing a reduced number of vertices

(|V /| < |V ∗|) as well as a mean relative deviation ε̄ < ˇ̄ε.

Note that the a-priori specification of the number of linear elements l – using455

an algorithm – allows for a compact formulation of the optimization problem
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having the objective to minimize barε. Whereas, alternative formulations, e.g.

where ε̄ is constraint to less than ˇ̄ε while minimizing the number of linear ele-

ments l, result in larger and more complex formulations, which also require an

algorithmic approach. The latter is due to the fact that the underlying MILP460

formulation assigns simplices to linear elements by using binary variables and

that these variables must be defined previous to the model construction. Hence,

such an alternative formulation requires an a-priori defined maximum of linear

elements, combined with an algorithm for controlling this maximum and large

model formulations that lack in the tightness of their model relaxation.465

Start

Input: Set of data points

1. Surface mesh generation

2. Generation of MILP

3. Solving of MILP

4. Evaluating Ψ, Ω

Ψ, Ω correct?Adjust Ψ, Ω

5. Evaluating mean relative
deviation ε̄

ε̄ ≤ ˇ̄ε Increase of l

Output: Reduced set of points

Stop

yes

no

yes

no

Figure 4: Flowchart of the algorithm IMRef.
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3. Functional check and comparison of approaches

In this chapter, the developed approaches are applied to several generic data

sets V ∗ describing various functional relationships. In doing so, both approaches

are compared and assessed based on the following aspects:

1. Functionality of approach:470

The functionality of each approach is evaluated by applying it to data

sets, where the resulting surrogate model is known in advance, i.e., these

data sets originate from piecewise linear functions. Thus the resulting

surrogate model must be congruent with the respective piecewise linear

function in order to guarantee functionality.475

2. Computational efficiency:

In order to evaluate the performance of each approach, it is applied to data

sets originating from piecewise linear functions but with different cardi-

nality |V ∗|. Therefore, the performance of an approach can be evaluated

by investigating the rise of the computation time as a function of |V ∗|.480

3. Compactness of the obtained surrogate models:

Here, the compactness of the resulting surrogate model is characterized

by the number of data points that are required to describe it. This num-

ber depends on i) the desired accuracy of the surrogate model (i.e., the

specified upper limit of ˇ̄ε), ii) the non-linearity of the original functional485

relationship, and iii) the efficiency of the chosen approach. Hence, this

aspect is evaluated for each approach by investigating the accuracy of the

respective surrogate model as a function of the number of assigned data

points, while having specified the same generic data set for both approa-

ches.490

Both approaches are implemented in Python 2.7. Pyomo (Hart et al., 2011,

2017) was applied as modeling environment for the optimization model of the

IMRef approach and the commercial solver Gurobi 7.5 has been used to solve
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the MILPs. All calculations have been performed on an Intel®Core(TM) i5-

4300M machine at 2.60 GHz with four cores and 8 GB RAM running Windows495

7 Enterprise. All MILP formulations of the IMRef approach have been solved

to a relative optimality gap of 1× 10−4 .

3.1. Piecewise linear functional relationships

For generating the data sets V ∗, two piecewise linear functional relationships

(PLFs) are applied, differing in the dimension d of the input variable x =

(x1, x2, . . . , xd). The first function (PLF-1) represents a part of a trapezoid

function of dimension d = 1 and is defined in the interval 100 ≤ x1 ≤ 400 as:

y(x1) =





200 for 100 ≤ x1 ≤ 200,

−x1 + 400 for 200 < x1 < 300,

100 for 300 ≤ x1 ≤ 400.

(53)

The second functional relationship (PLF-2) is a constant extension of the function

PLF-1 in a second dimension. Being specified in the interval 100 ≤ x1 ≤ 400,

100 ≤ x2 ≤ 200, PLF-2 can be defined as:

y(x1, x2) =





200 for 100 ≤ x1 ≤ 200, 100 ≤ x2 ≤ 200,

−x1 + 400 for 200 < x1 < 300, 100 ≤ x2 ≤ 200,

100 for 300 ≤ x1 ≤ 400, 100 ≤ x2 ≤ 200.

(54)

These PLFs are discretized using various step sizes, in order to generate

several data sets V ∗. For instance, the discretization of PLF-1 using a step size500

µ = 50 results in a data set V ∗ with seven equidistantly distributed data points

at the position x1 ∈ {100, 150, . . . , 350, 400} and thus a cardinality of |V ∗| = 7.

Table 1 lists for both PLFs the cardinality |V ∗| of the generated data sets |V ∗|
depending on various step sizes µ.

Note that the step sizes are chosen in a way that each edge of the PLFs505

is explicitly captured by a data point in the generated data set. In doing so,
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Table 1: Cardinality |V ∗| for all data sets V ∗ – generated via discretization of both PLFs
applying various step sizes µ.

Step size µ |V ∗| using PLF-1 |V ∗| using PLF-2

100 4 8
50 7 21
25 13 65
20 16 96
10 31 341
5 61 1281
2 151 7701
1 301 30401

the linear interpolation between adjacent data points within any data set V ∗

is equivalent to the original PLF. In addition, all generated data sets V ∗ –

independent of their cardinality – can be reduced to an altered data set V /̄,

which contains only those data points, which are at least required to represent510

the PLF via linear interpolation. This altered data set V /̄ is equivalent to the

data set V ∗ of each PLF that was generated by applying a step size of µ = 100.

Figure 5 illustrates the reduced data set V /̄ of both piecewise linear functional

relationships PLF-1 and PLF-2.
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Figure 5: Illustration of the data sets V /̄ for PLF-1 (left) and PLF-2 (right).

By applying the proposed approaches (IMRed or IMRef) to the data sets515

V ∗, a reduced data set V / is returned, which is identical to the respective data

set V /̄, independently of the chosen approach and data set V ∗. This functional

check provides evidence that both approaches perform as they were designed

and thus allows for further evaluations.
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For comparing the computational efficiency of both approaches, the com-520

putation time until the set V / is returned is investigated as a function of the

cardinality |V ∗|. Figure 6 shows the rise of the computation time, applying the

approaches to the data sets V ∗ generated with PLF-1.
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Figure 6: Computation time of IMRed approach ( ) and IMRef approach ( ) plotted over the
cardinality |V ∗| of all data sets V ∗ generated via discretization of the functional relationship
PLF-1.

As can be seen here, both approaches show an exponential increase of the

computation time t with increasing cardinality |V ∗|. However, the increase is525

more pronounced in the IMRef approach. Consequently, the IMRed approach

shows a higher computational efficiency considering the results of the functional

relationship PLF-1.
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Figure 7: Computation time of IMRed approach ( ) and IMRef approach ( ) plotted over the
cardinality |V ∗| of all data sets V ∗ generated via discretization of the functional relationship
PLF-2.

Figure 7 shows a similar behavior of the computational efficiency for the two-

dimensional functional relationship PLF-2. However, the rise of the computation530

time t with increasing cardinality |V ∗| is significantly stronger, especially looking

at the results of the IMRef approach. This is due to the fact, that in higher

dimensions d the number of simplices |S| – generated during the surface mesh

generation – increases non-linearly with the cardinality |V ∗|. This in turn causes

a higher number of edges and associated calculation steps in terms of the IMRed535

approach as wells as a higher number of variables and equations in terms of the

IMRef approach. Particularly in the IMRef approach, this results in a significant

increase in the computation time t.

This effect is intensified by the fact that the size of the optimization pro-

blem increases additionally with each linear element L needed to approximate540

the functional relationship. Additional dimensions are usually associated with

non-linearities and thus the need of more linear elements for their approxima-

tion. The piecewise linear approximation of data describing high-dimensional or

highly non-linear functional relationships, therefore, requires a high number of

linear elements and thus leads to the generation of large-scale MILPs in case of545

the IMRef approach. Based on the computational performance observed in the
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two previous examples (PFL-1 and PLF-2), it can already be seen that there is

only a very limited applicability of the IMRef approach to real-world applicati-

ons, as these usually have a higher complexity in terms of dimensionality and

non-linearity.550

It can be concluded from the afore-described results that in terms of com-

putational efficiency, the IMRed approach is superior to the IMRef approach,

since the computation time of the latter approach increases more exponentially

depending on various parameters such as cardinality |V ∗| and dimension d. Alt-

hough, the IMRed approach shows a superior behavior, the results – shown in555

Figure 6 and Figure 7 – obviously show that both approaches suffer from the

phenomenon – commonly referred to as the curse of dimensionality (Bellman,

2015). This phenomenon describes that the number of data points required for

appropriately capturing a functional relationship increases exponentially with

the number of dimensions d. The exponential increase of data points in turn560

reinforces the rise in the number of simplilices |S| generated during the surface

mesh generation. As described above, in higher dimensions this leads to very

high number of edges and associated calculations steps in terms of the IMRed

approach and high number of variables and equation in terms of the IMRef

approach. Therefore, the performance of both approaches obviously drops with565

increasing dimensionality. This is largely due to the curse of dimensionality

that affects all data-based approaches and thus also the IMRed and IMRef ap-

proach.

3.2. Non-linear functional relationships

In analogy to section 3.1, two non-linear functional relationships (NLFs) –

differing in their dimension d – are used to generate data sets V ∗ capturing

a non-linear behavior. The first function (NLF-1) represents a segment of a

circular arc in the dimension d = 1 and is defined in the interval 100 ≤ x1 ≤ 200

as:

y(x1) = 100 +
√

10000− (x1 − 100)2 for 100 ≤ x1 ≤ 200. (55)
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The second functional relationship (NLF-2) is once again a constant extension

of the one-dimensional function in a second dimension. Being specified in the

interval 100 ≤ x1 ≤ 200, 10 ≤ x2 ≤ 30, NLF-2 can be defined as:

y(x1, x2) = 100 +
√

10000− (x1 − 100)2 for 100 ≤ x1 ≤ 200, 10 ≤ x2 ≤ 30.

(56)

The NLFs are illustrated in Figure 8.570
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Figure 8: Illustration of the both NLFs; NLF-1 (left) and NLF-2 (right).

In order to generate exemplary data sets V ∗ – capturing the non-linearity of

each NLFs with equidistantly distributed data points – the NLFs are discretized

using a homogeneous step size of µ = 10: This results in case of NLF-1 in a

data set with cardinality |V ∗| = 11 and in case of NLF-2 in a second set with

|V ∗| = 11× 3 = 33.575

Obviously, the more linear elements the approximating surrogate model con-

sists of, the better the approximation will be. The application of an additional

linear element and thus of more data points in the data set V / leads to a dis-

crete reduction of the smallest achievable mean relative deviation ε̄†. In order

to compare both approaches regarding the compactness of their surrogate mo-580

dels, this smallest achievable relative deviation ε̄† is investigated as a function

of the number of points that are assigned to the set V /, i.e., as a function of

the cardinality |V /|.
Figure 9 shows the decrease of ε̄† with increasing cardinality |V /| for the

one-dimensional function NLF-1. Note that a surrogate model with |V /| = 11585
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can contain all points in the set V ∗ and thus can accomplish a mean relative

deviation of ε̄ = 0. Although both approaches generate such a surrogate model

with ε̄ = 0, the resulting point can not be depicted in Figure 9. Hence, ε̄† is only

depicted for the discrete values |V /| ∈ {2, 3, . . . , 9, 10}. As can be seen here, the

IMRef approach shows lower values for ε̄† when the surrogate model has a low590

number of data points (i.e., |V /| � |V ∗|), whereas the IMRed approach shows

better results when a high number of data points are assigned to the surrogate

model (i.e., |V /| < |V ∗|). This is due to the general design of each approach

and can be best explained by looking at the surrogate models with |V /| = 2

and |V /| = 10.595

For |V /| = 2 the IMRed approach is forced to maintain the two hull ver-

tices V H due to the introduced classification, i.e., the surrogate model repre-

sents only a linear interpolation between the vertices (x1, y) = (100, 200) and

(x1, y) = (200, 100). Whereas the IMRef approach determines two optimal

points (at the position x1 = 100 and x1 = 200 with optimal y-values), whose600

linear interpolation forms a straight line showing the lowest ε̄ regarding the

points in set V ∗.

When looking at the surrogate model with |V /| = 10 the drawback of the

IMRef approach becomes evident: The more linear elements are used, the more

the optimization is affected by the discretization initially applied to the NLF,605

since the position of each point has to be one of the vertices v ∈ V ∗. Here, the

equidistant discretization is not ideal for capturing the functional relationship

of a segment of a circular arc and thus the compactness of the resulting surro-

gate model decreases with increasing cardinality |V /|. By contrast, the IMRed

approach can contract two vertices on a position that is not assigned to one610

vertex v ∈ V ∗ and, therefore, can counter the discretization-related problem.

Consequently, the IMRed approach is superior with regard to the model com-

pactness when it comes to surrogate models showing a very low mean relative

deviation ε̄.
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Figure 9: Smallest achievable mean relative deviation ε̄† using IMRed approach ( ) or IMRef
approach ( ) plotted over the number of data points (|V /|) assigned to the reduced set V /

for the functional relationship NLF-1.

In analogy to the one-dimensional functional relationship, the NLF-2 is used615

to compare both approaches regarding the compactness of their surrogate mo-

dels applying them to a two-dimensional function. The results are depicted in

Figure 10.

The data set V ∗ of NLF-2 represents a threefold of the set of NLF-1, only

differing in the second dimension. Therefore, the middle set can be reproduced620

by a linear interpolation between the other two sets and thus a surrogate model

with |V /| = 22 can describe the V ∗ of NLF-2 with a mean relative deviation

of ε̄ = 0. Both approaches produce such a surrogate model with ε̄ = 0. On

the other hand, at least four vertices are necessary to span the total functional

range of NLF-2. Hence, ε̄† is depicted for discrete values in the range of |V /| ∈625

{4, 5, . . . , 20, 21}.
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Figure 10: Smallest achievable mean relative deviation ε̄† using IMRed approach ( ) or IMRef
approach ( ) plotted over the number of data points (|V /|) assigned to the reduced set V /

for the functional relationship NLF-2.

Here two aspects stand out: The IMRef approach only generates surrogate

models with even cardinality |V /| and these models always show a lower ε̄†

compared with the respective models of the IMRed approach. The former aspect

arises from the fact that the IMRef approach is an optimization based approach.630

Therefore, this approach recognizes the fact, that the best way to describe

the constant extension of NLF-2 is the addition of linear elements showing a

constant behavior in the respective dimension. This behavior, however, can only

be achieved by simultaneously adding two vertices to the set |V /|. Whereas the

step-by-step contraction of vertices in the IMRed approach removes vertices one635

by one and thus also generates surrogate models with uneven cardinality |V /|.
In contrast to IMRef, the IMRed approach does not generate linear elements

showing a constant behavior in dimension x2, since each contraction is based on

a locally defined quadratic error metric. Instead, multiple elements are used to

approximate the constant behavior leading to a higher mean relative deviations640

ε̄. This becomes clearer when looking at Figure 11, which shows surrogate

models of both approaches having a cardinality |V /| = 12.
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Figure 11: Illustration of V ∗( ) and surrogate models with |V /| = 12 describing NLF-2;
generated with IMRed approach (left) and IMRef approach NLF-2 (right).

Although Figure 10 might give the impression that the IMRef approach

might be superior in terms of compactness of the resulting surrogate model for

high-dimensional applications, this is not the case per se. As observed with the645

NLF-1, the IMRef approach is strongly influenced by the discretization initially

applied to the NLF, in order to generated the data set V ∗. In case of the NLF-

2, the IMRef approach benefits both from the orientation of the points in the

data set and from the fact that they are evenly distributed. This allows for the

generation of cutting elements λ̃ forming straight lines (in case of d = 2) through650

the functional range and thus the generation of linear elements λ, which differ

in their fitting parameters αλ and βδ,λ.
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Figure 12: Sketch illustrating the dependency of the surrogate model generated by IMRef
approach on discretization; Surrogate model resulting from beneficial discretization (top);
Surrogate model resulting from unfavorable discretization (bottom).

To make this dependency on the discretization more evident, Figure 12 ske-

tches the results of applying the IMRef approach to sets of 9 data points. These

points describe in a minimalistic and simple way a two-dimensional piecewise655

linear function consisting of two linear elements. At the top of this figure a case

with a beneficial discretization is shown, i.e., the points are evenly distributed

and the orientation matches the shape of the piecewise linear function. This

enables the IMRef approach to generate a surrogate model consisting of two

linear elements and one cutting element. At the bottom of Figure 12 another660

case is shown where only the data point in the middle is slightly shifted, while

the orientation is basically the same. As a consequence, the data points pre-

viously formed the cutting element cannot form a straight line. This in turn

means that two linear elements must have the same fitting parameters αλ and

βδ,λ, since the equations (41) to (43) enforce continuity. Therefore, a larger665
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set of cutting elements and thus of linear elements is needed to allow for linear

elements with different fitting parameters. The latter is necessary to describe

the piecewise linear function. So the resulting surrogate model and its com-

pactness strongly depends on the discretization, as with the IMRef approach,

each vertex in V / must match the position of a data point in the original data670

set V ∗. This is clearly a major disadvantage of the IMRef approach, since with

more complex functional relationships (i.e., higher dimensionality and degree of

non-linearities) the generation of a beneficial data set V ∗ becomes the problem

itself.

This leads to the conclusion that the IMRef approach is superior with respect675

to the compactness of the resulting surrogate models only if a small number of

linear elements is required to approximate the functional relationship and/or

the generated data set V ∗ is beneficial regarding the position of its data points.

3.3. Summary and applicability

In the previous sections the approaches were applied to simple and under-680

standable examples in order to present the basic concept of both approaches

in a comprehensible way and to enable a comparison. Despite their simplicity,

these examples allow the following conclusions:

The IMRef approach is an optimization-based approach that considers all

data points and can therefore provide more accurate surrogate models compa-685

red to the locally based IMRed approach when it comes to a rough estimation

employing only a few linear elements. However, the performance of the IMRef

approach slows down exponentially with increasing dimensionality and increa-

sing degree of non-linearity, as more and more linear elements are needed for

the approximation, causing time-consuming solving of numerous large MILPs.690

The latter is reinforced by its strong dependency on the discretization used to

generated the data set V ∗. Especially for higher dimensional problems, this

can lead to surrogate models with low compactness, which in turn require the

solving of numerous large-scale MILPs. As a consequence, the IMRef applica-

tion is only limited applicable to real-world applications, which generally show695
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a higher complexity in terms of dimensionality and degree of non-linearities.

In comparison, the IMRed approach has a higher applicability to real-world

applications, as its performance is less strongly dependent on the complexity of

the problem. Although higher complexity leads to more evaluation and calcula-

tion steps, the complexity of each of these steps does not increase. Furthermore,700

the IMRed approach is limited to just retaining some of the vertices in V ∗ and

is therefore less dependent on the initial data set. Although the error quadric

is valid for any dimensional problem, the presented classification in its current

form is primarily designed to allow for an initial comparison of both approaches,

with the focus on the application to one- and two-dimensional problems. The-705

refore, the classification probably needs to be generalized for use with higher

dimensional problems.

In summary, the IMRed approach represents the more promising approach.

Therefore, in the following section an exemplary application of this approach is

given, although it is limited to a two-dimensional problem.710

4. Exemplary application

Subsequently, the IMRed approach is applied to an industrial example –

described in Obermeier et al. (2019) – to make its scope of application more

evident. Here, a mixed-integer linear programming based discrete-time sche-

duling model for power-intensive processes is proposed, which allows for the715

operational planning of a single air separation unit (ASU) while considering

mechanical fatigue. While Obermeier et al. (2019) considers the feasible region

of the plant in a reduced manner to keep the optimization model simple, the

IMRed approach provide a way to generate a more precise description of the

feasible region. As the IMRed approach is data-based, a set of data points – or720

more precisely, operation points (OPs) – is first of all required to capture the

feasible region of the respective ASU. For this purpose a highly detailed simu-

lation model, which is implemented in Linde’s in-house simulator OPTISIM®,

is used to generate numerous, efficiency-optimized, steady-state OPs. As des-
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cribed in Obermeier et al. (2019), this simulation model does not only contain725

equations for capturing the basic heat and mass balance, but also detailed equa-

tions for capturing the realistic behavior of the installed equipment in off-design

operation. Consequently, a set of OPs – generated with this simulation model

– can capture the realistic behavior of the respective ASU (steady-state) within

its operational envelope (feasible region) as well as its boundaries. To ensure730

this, a reasonably large set of data points is created, which is evenly distributed

over the entire feasible range and captures any non-linearity of the simulation

model sufficiently (as recommended at the beginning of section 2). Note that

such a simulation model must be replaced by a surrogate model, as it is too

complex to be used directly in such a scheduling formulation.735

For this exemplary application, the OPs are regarded in a simplified manner

as three-dimensional data points, which are located in a two-dimensional pro-

duct space and have a corresponding power consumption each, i.e., n = 3 and

d = 2. Figure 13 shows the plant’s performance within this two-dimensional

product space in the form of the generated data (278 OPs). These data points740

capture the mode of regular operation (reg), which is considered in the mode-

based formulation of Obermeier et al. (2019) by only 4 OPs. In this previous

contribution, these 4 OPs are used to form a piecewise linear surrogate model

consisting of three one-dimensional linear elements, which form a path through

the product space of the reg mode. This path of lines represents the product745

space only pseudo two-dimensionally. In order to enable a real two-dimensional

representation, the lines are replaced by triangles, i.e., by two-dimensional linear

elements. Consequently, the subregions of the reg mode are spanned via inter-

polation between three instead of two points, whereby each of these subregions

is characterized by one binary variable in analogy to the scheduling formulation750

proposed in Obermeier et al. (2019). The application of a Delaunay triangu-

lation on the 278 OPs results in a highly accurate piecewise-linear surrogate

model consisting of 511 linear elements. These elements could be used in the

scheduling formulation, as the combination of these already forms an accurate

and continuous description of the entire product space. In this form, however,755
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embedding the surrogate model into the scheduling formulation requires a high

number of binary variables and thus leads to a large-scale optimization problem

with high computational costs. That is due to the fact that the scheduling

formulation is based on a disjunctive programming formulation (cf. Obermeier

et al. (2019)) and thus a binary variable must exist for each linear element and760

time step to specify the active linear element at any time step. In contrast, the

surrogate model resulting from the IMRed approach requires only 35 elements

(cf. Figure 13 (right)), while having specified ˇ̄ε = 0.3% as upper limit of the

mean relative deviation. Consequently, the scheduling formulation is more com-

pact and thus shows smaller computational costs. Plus, these 35 linear elements765

also entirely cover the operational envelope, which was originally spanned by

the 278 OPs, and thus allowing for a complete description of the product space.
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Figure 13: Performance of ASU in two-dimensional product space; set of OPs generated with
detailed simulation model (left), and surrogate model resulting from IMRed approach (right).

In case this surrogate model is used in the aforementioned scheduling for-

mulation to evaluate the Case A-w/o defined in Obermeier et al. (2019), the

operational profile depicted in Figure 14 is obtained. This case represents a770

scenario in which operational planning is carried out with the objective of re-

ducing operational expenditures, without taking into account any additional

constraints regarding mechanical fatigue. For further details on Case A-w/o,

please refer to the case definition in our previous contribution. However, in

deviation from this definition, in this contribution the plant is operated at one775

operating mode only (reg mode), in order to keep the focus on the generated

surrogate model.
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Figure 14: Optimized operational profile based on Case A-w/o defined in Obermeier et al.
(2019). With the exception that the plant is only operated in its regular operating mode
(reg). The electricity price as well as the optimized power consumption and production rate
is presented for the observation period (January, 2016, European Energy Exchange).

As expected, production rates and thus energy consumption are reduced

in times of higher energy prices, while they are increased in times of lower

energy prices (cf. Figure 14). Furthermore, the operational planning is no780

longer limited to a pseudo two-dimensional description of the product space,

i.e., a wide variety of OPs can be used. Nevertheless, only OPs are applied,

which can be described by the 4 linear elements highlighted in Figure 15. This

is mainly due to the fact that in Case A-w/o a steady sales volume (red

marked point in Figure 15) is assumed to keep the example simple. Hence, only785

those linear elements are used with which, on average, a sufficient production

can be guaranteed and at the same time the most cost-effective operation can
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be achieved. For instance, the OP with minimal power consumption (green

marked point in Figure 15) and the respective linear element is not used even

when energy prices are high. This is because the power consumption does not790

reduce linearly with the production volume. Therefore this OP has the minimum

power consumption, but its specific power consumption in terms of product

volume is higher compared to other OPs. This becomes obvious when looking at

Figure 14, as OPs with almost minimal power consumption are used here, which

nevertheless still have relatively high production volumes. Consequently, the795

green marked OPs represents an inefficient OP and thus is not used. In contrast,

in times of low energy prices, the OP with maximum power consumption (blue

marked point in Figure 15) is used, since also high production rates can be

achieved with it.
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Figure 15: Surrogate model resulting from IMRed approach with depiction of specific opera-
tion points and highlighting of those linear elements which are actively used in the optimized
operational profile (Case A-w/o).

As this example illustrates, the IMRed approach represents a way to gene-800

rate piecewise linear surrogate models. These provided a more accurate repre-

sentation of the functional behavior than using a linear approximation (which is

commonly applied in scheduling and planning formulations, cf. section 1), while

keeping the computational complexity at an appropriate level by using as few li-

near elements as necessary. This is proven by Table 2, which lists characteristics805

of three surrogate models and their associated optimization problems. Before

taking a closer look at this table, note that the figure in this table are averages,

as the scheduling problem is decomposed into smaller optimization problems
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(cf. Obermeier et al. (2019)). The first line of this table shows that using a sim-

ple linear approximation as a surrogate model leads to optimization problems810

of small size. These MILPs can be solve in less than one second. However,

the mean relative deviation ˇ̄ε of a surrogate model – applying only one element

to approximate the non-linear behavior of the ASU – is 2.4%. Replacing this

linear approximation with a surrogate model consisting of 35 elements, reduces

the mean relative deviation ˇ̄ε by 2.1% and increases the solution times by an815

average of 4.5s due to the larger size of the optimization problems. However, a

further reduction of ˇ̄ε by 0.3% requires the use of 511 elements and thus leads

to an disproportional rise of the solution time. Consequently, the surrogate mo-

del generated with the IMRed approach (35 linear elements) allows for higher

accuracy while keeping the solution time at a still acceptable level.820

Table 2: Characteristics of a surrogate model and the associated optimization problem using
1, 35, or 511 linear elements.

Number of
linear elements

ˇ̄ε
in %

Number of
variables1

Number of
constraints1

Solution time2

in s

1 2.4 2000 3500 0.5
35 0.3 30000 26000 5
511 0.0 430000 245000 500

1 Rounded number in the respective optimization problem;
2 The averaged over all optimization problems resulting from the moving

horizon approach.

5. Conclusions

In this contribution two approaches have been proposed for transforming

well-known, but complex non-linear functional relationship into a piecewise li-

near approximation that can be embedded in linear programming optimization

problem (e.g., a scheduling problem). This allows for a more precise approxima-825

tion of the functional relationship than the commonly used linear approxima-

tion, while keeping the computational complexity of the resulting optimization

problem on an appropriate level.
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The basic idea of both approaches is the determination of a reduced set of

data points that provides an appropriate approximation of the original data via830

linear interpolation. In this form the approximation is ideally suited for linear

based optimization problems using disjunctive programming formulations. Both

approaches differ significantly in their underlying concepts: The first one is an

adaptation of a numeric algorithm originating from computational geometry

and object modeling, whereby a fine mesh is iteratively reduced by contracting835

edges of this mesh. Here referred to as iterative mesh reduction (IMRed). In

contrast to the first approach, the second one is based on a mixed integer linear

programming formulation. A mesh – consisting of an a priori defined number of

convex linear elements – is fitted to the data points. By incrementally increasing

the number of elements, this so-called incremental mesh refinement (IMRef)840

generates an approximation with steadily increasing accuracy.

Both approaches were applied to generic data sets and consequently compa-

red assessing each approach in terms of the aspects: i) functionality, ii) computa-

tional efficiency, and iii) compactness of resulting surrogate models. Regarding

the first aspect it was shown that both approaches generate valid surrogate845

models. In order to evaluate the second aspect, each approach was applied to

several data sets showing an increasing cardinality, i.e., a rising number of data

points. Here, it was found that the IMRef approach shows a stronger exponen-

tial rise of the computation time with increasing cardinality, especially in data

sets having more independent input variables. It was concluded that in terms850

of computational efficiency the IMRed approach appears superior to the IMRef

approach. In this contribution, the third aspect is characterized by the num-

ber of data points, which are assigned to the resulting surrogate model. This

number depends on i) the desired accuracy of the surrogate model, ii) on the

non-linearity captured by the data set, and iii) the efficiency of the respective855

approach. Therefore, the third aspect was evaluated for each approach by in-

vestigating the accuracy of the surrogate model as a function of the number of

assigned data points, while having specified a fixed generic data set. Here it

was concluded that the IMRef approach may be superior with respect to the

48

                  



compactness of the resulting surrogate model. Unfortunately, this is only the860

case if the approximation consists of a very small number of linear elements

and/or the distribution of the data points in the original data set is beneficial

for the approach, since the IMRef approach is strongly dependent on the posi-

tion of each data point. As result of this assessment, it can be concluded that

the IMRed approach is the more promising approach when it comes to use in865

real-world applications.

The IMRed approach uses a classification of the edges in order to prevent

a degradation of open boundaries. However, in its current form this classifi-

cation is primarily intended to allow for an initial evaluation of the proposed

approaches. In future work, this classification shall be more generalized to ren-870

der it applicable to higher dimensional data sets. Besides, the approach shall

be applied to data of a complex non-linear functional relationship to generate a

piecewise linear approximation being used in a linear programming optimization

problem. In doing so, it can be evaluated how the results as well as the compu-

tational performance of the optimization problem is affected by the piecewise875

linear surrogate model and its chosen accuracy.
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Nomenclature

General — Vectors

v Vertex/data point of simplex

x Vector of input values of functional relationship

y Vector of output values of functional relationship885

General — Indices

i Index of first vertex v or linear element λ

j Index of second vertex v or linear element λ

General — Sets

S Set of all simplices σ890

V Set of all vertices v

V ∗ Original set of all vertices

V /̄ Set of vertices required to represent PLFs

V / Resulting set of all vertices showing a reduced number of vertices

Vσ Set of vertices of simplex σ895

General — Parameters

ε̄ Mean relative deviation

ε̄† Smallest achievable mean relative deviation

ˇ̄ε Upper limit of mean relative deviation

µ Homogeneous step size900

d Dimensionality of the input vector x

n Dimensionality of the total space

t Computation time

IMRed — Vectors

bε Vector for defining fundamental quadric of edge ε in its generalized905

form

b Vector for defining fundamental quadric in its generalized form

e Orthonormal basis

p Point in n-dimensional space
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z∗ Ideal new position/point in n-dimensional space910

z New position/point in n-dimensional space

v New vertex resulting from edge contraction

IMRed — Matrices

Aε Matrix for defining fundamental quadric of edge ε in its generalized

form915

A Matrix for defining fundamental quadric in its generalized form

I Identity matrix

IMRed — Indices

σ Simplex

ε Edge of a simplex σ consisting of two vertices920

IMRed — Sets

E Set of all edges

E− Reduced set of all edges

EB Set of boundary edges

EC Set of crossing edges925

EH Set of hull edges

EI Set of inner edges

EM Set of mixed edges

EO Set of outer edges

Sv Set of simplices to whom the vertex v is assigned930

V B Set of boundary vertices

V H Set of hull vertices

V I Set of inner vertices

V O Set of outer vertices

Vε Set of vertices which are assigned to the edge ε935

IMRed — Parameters

ωσ The d-dimensional content of the simplex σ

c Parameter for defining fundamental quadric in its generalized form
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cε Parameter for defining fundamental quadric of edge ε in its gene-

ralized form940

Qp(z) Fundamental quadric Qp at the point p reflecting the geometric

error caused by moving the point p to the position z

Qv Fundamental quadric of one vertex v of a simplex σ

Qσ Fundamental quadric of a simplex σ

Qε Fundamental quadric of edge ε945

IMRef — Vectors

xv Vector of input values of any vertex v

y/v,λ Vector of approximated output values of any vertex v in the re-

spective element λ

IMRef — Indices950

δ Dimension

λ Linear element

σ Simplex

λ̃ Cutting element

IMRef — Sets955

L̃ Set of cutting elements λ̃

L Set of linear elements λ

IMRef — Parameters & Variables

αλ Constant fitting parameter for linear element λ

βδ,λ Fitting parameter for linear element λ specific for dimension δ960

ε̆v,λ Modified relative deviation at vertex v regarding linear element λ

χ+

v,λ̃
Positive slack variable at vertex v being assigned to respective cut-

ting element λ̃

χ−
v,λ̃

Negative slack variable at vertex v being assigned to respective

cutting element λ̃965

εv,λ Relative deviation at vertex v regarding linear element λ

Ω Big-M parameter controlling modified relative deviation ε̆v,λ

Ψ Big-M parameter controlling the slack variables χ+

v,λ̃
and χ−

v,λ̃
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y Binary variable

l Number of linear elements in L970
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