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Abstract

Reinforcement learning (RL) is a control approach that can handle nonlinear stochastic optimal
control problems. However, despite the promise exhibited, RL has yet to see marked translation
to industrial practice primarily due to its inability to satisfy state constraints. In this work we aim
to address this challenge. We propose an “oracle”-assisted constrained Q-learning algorithm that
guarantees the satisfaction of joint chance constraints with a high probability, which is crucial for
safety critical tasks. To achieve this, constraint tightening (backoffs) are introduced and adjusted
using Broyden’s method, hence making the backoffs self-tuned. This results in a methodology that
can be imbued into RL algorithms to ensure constraint satisfaction. We analyze the performance
of the proposed approach and compare against nonlinear model predictive control (NMPC). The
favorable performance of this algorithm signifies a step towards the incorporation of RL into real
world optimization and control of engineering systems, where constraints are essential.

Keywords: Machine Learning, Batch Optimization, Process Control, Q-learning, Dynamic
Systems, Data-Driven Optimization

1. Introduction

The optimization of nonlinear stochastic processes poses a challenge for conventional control
schemes given the requirement of an accurate process model and a method to simultaneously
handle process stochasticity and satisfy state and safety constraints. Recent works have explored
the application of model-free Reinforcement Learning (RL) methods for dynamic optimization
of batch processes within the chemical and biochemical industries [37, 47]. Many of these
demonstrate the capability of RL algorithms to learn a control law independently from a nominal
process model, but negate proper satisfaction of state and safety constraints. In this work,
we propose constrained Q-learning, a model-free algorithm to meet the operational and safety
requirements of constraint satisfaction with high probability.
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1.1. Model-Free Reinforcement Learning

RL encompasses a subfield of machine learning, which aims to learn an optimal policy for a
system that can be described as a Markov decision process (MDP). Importantly, MDPs assume
the Markov property, such that the future transitions (dynamics) of the process are only dependent
upon the current state and control action, and not upon the process history [52].

Dynamic programming (DP) methods provide exact solution to MDPs under knowledge
of the exact process dynamics [4] . A subset of RL algorithms are known as action-value (or
Q-learning) methods. These methods are closely related to DP, but instead, learn an approximate
parameterization of the optimal action-value function independently of explicit knowledge of
the exact dynamics [50]. This is achieved by sampling the response of the underlying Markov
process, eliminating the requirement for explicit assumption regarding the stochastic nature of the
system. This is a particularly powerful concept in the domain of process control and optimization,
given the inherent uncertainties and (slow) non-stationary dynamics often characteristic of process
systems [49, 37].

The field of model-free reinforcement learning extends beyond action-value methods; two
other approaches exist in the form of policy optimization [24, 51] and actor-critic [16, 26] methods.
The relationships between the different sub-classes of RL algorithms are expressed by Fig. 1. The
following analysis proceeds with reference to that Figure. Action-value methods explicitly learn a
parameterization of the action-value function, whereas policy optimization methods implicitly
learn the value space and instead learn and parameterize a policy directly [46]. Typically, policy
optimization approaches deploy a Monte Carlo method to gain estimate of the value-function
corresponding to the current policy parameters. This provides a search direction for further policy
improvement. However, policy optimization methods tend to follow on-policy learning rules,
which means that data collected under a given policy may only be used for one learning update
before being discarded [50]. On-policy learning, combined with dependency on the use of a
Monte Carlo method for evaluation of the search direction, provides significant sample complexity.
Actor-critic methods partially reduce the associated sample complexity by explicitly learning a
parameterization of the action-value function (the critic) as well as a policy (the actor) - removing
dependency on Monte Carlo sampling [52]. In essence, the parameterization of the action-value
function enables conceptualisation of actor-critic methods as those algorithms at the intersection
of policy optimisation and action-value methods. Via this analysis, the apparent benefit of action-
value methods is of reduced sample-complexity. This is further improved when experience replay
is integrated [41], enabling saving of data observed in previous simulations for future learning
updates. As such, this directs focus in the analysis provided by the following section, where
review of action-value function approximation in chemical engineering is presented.

1.2. Action-Value Function Approximation in Chemical Engineering

In recent years, there has been a growing interest in the development of RL controllers in
the domain of chemical and biochemical processing and this is reflected by the rapid growth of
literature in the area. The interest is primarily generated by two attractive properties - reduced
sample complexity and the ability to integrate experience replay [7]. There are two classes of RL
algorithms which leverage value function approximation: actor-critic, and action-value methods.
The use of the two approaches is reviewed in the following discussion.

Actor-critic methods have been applied widely, given their explicit parameterisation of a
policy (actor) and the associated sample efficiency induced via parameterisation of a value
function (critic). In [15] an actor-critic method for pH control of wastewater from an industrial
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Figure 1: The landscape of model free reinforcement learning (RL). Model free RL can be broadly constituted by policy
optimization and action-value methods with the intersection of the two characterised by actor-critic methods. The figure
does not exhaustively detail the different algorithms, but rather broadly describes those approaches that are dominant
within each respective class. The use of bubbles with no description denotes those algorithms not detailed for the sake of
conciseness.

electroplating process is proposed and benchmarked against a proportional-integral-derivative
(PID) controller. Similarly, in [21], the authors present an actor-critic based RL framework for
optimal PID controller tuning, including a mechanism for antiwindup. In [59], the authors propose
a framework to augment the actor-critic algorithm (Deep deterministic policy gradient, DDPG)
with nonlinear model predictive control (NMPC). The framework is then demonstrated on two
case studies, both of which highlight the framework’s ability to provide marked improvements
in the efficacy of offline policy training, relative to a vanilla implementation of DDPG. In [49],
the authors identify the potential benefits of a data-driven RL controller with respect to ease of
system re-identification and demonstrate the application of an actor-critic algorithm to a number
of case studies including control of a high purity distillation column.

For action-value methods to be deployed in continuous control spaces, they typically require
augmentation with a further optimization method for determining the optimal control [43], and
currently, very efficient optimization algorithms exist [56, 33] to facilitate this. Action-value
methods are particularly attractive given they generally encompass the most sample efficient of
algorithms in the RL toolbox. In [44], a Q-learning approach was applied for nanostructure and
nanosurface design. Similarly, [60] proposes a Q-learning method for the purpose of molecular
design. In [19], the authors integrate a Q-learning method with Aspen Plus for control of a
downstream separation process, demonstrating improved performance relative to open loop
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operation. In [22] an action-value method is proposed in the context of process scheduling and in
[23] the authors demonstrate the application of action-value methods for the control of stochastic,
nonlinear processes. The above have shown good success in chemical process optimization
and control providing basis for further use of action-value methods and development of ’saving
focused’ learning strategies. However, for RL methods to be deployed in many instances of
process engineering, they must satisfy constraints (with high probability in the stochastic setting).
This is the challenge that the current work addresses.

1.3. Related Work
As highlighted in [25], there exists relative inertia in application of RL to industrial control

problems. Specifically, in the chemical and biochemical process industries, the development
of RL methods to guarantee safe process operation and constraint satisfaction would enhance
prospective deployment of RL-based systems in the scope of optimization and control. The
literature documents a number of approaches to safe constraint satisfaction that typically augment
a pure model-free RL-based controller, with a separate system that has basis in direct optimal
control. Such augmented systems are broadly constituted by barrier function [9, 53, 8] and safety
filter methods [12, 55]. The deployment of these approaches dictates a nominal description of the
process dynamics, method to handle process stochasticity and often impose nontrivial policy or
value learning rules. The aspect of model dependency particularly dampens the initial attraction
of an RL approach within the context of process control.

Other works have explored the development of methods for safe constraint satisfaction by
leveraging the value framework provided by MDPs, preserving performance independent of a
process model. These methods either add penalty to the original reward function (objective) for
constraint violation [23, 54] or augment the original MDP to take the form of a constrained MDP
(CMDP) [3]. If approached crudely, the former approach introduces a number of hyperparmeters,
which are typically chosen on the basis of heuristics and have bearing on policy optimality. This
is also discussed in [2, 14]. The latter approach is underpinned by the learning of surrogate cost
functions for each individual constraint combined with appropriate adaptation of the policy [2]
or value learning rule. Both approaches ensure constraint satisfaction only in expectation [45],
which is insufficient for control and optimization of (bio)chemical processes. As most engineering
systems are safety critical, satisfaction of constraints with high probability is a necessity. In view of
this problem, [42] present an approach which combines the CMDP concept with consideration of
worst case realisations of process uncertainty, in an attempt to robustify the framework. However,
the approach is only demonstrated empirically in a discrete domain (almost all industrial problems
are continuous) . In the same rationale, a Lyapunov-based approach is proposed in [10], where a
Lyapunov function is found and the unconstrained policy is projected to a safety layer allowing the
satisfaction of constraints in expectation. However this is not the optimal trade-off, as the closest
action is not necessarily optimal. Additionally, the satisfaction of constraints in expectation is not
sufficient for the most real-world applications. A similar approach is also presented in [18], where
a lyapunov function is identified, but for the purpose of safe exploration. This is not necessarily
directly applicable to the process industries, where online exploratory control decisions pose
high operational risk and the fact that operational constraints are not explicitly considered. More
recently, work has been proposed in [34], based on the augmented lagrangian. However, the
method negates the inclusion of state and control dependency within the penalty term, instead
appending the penalty in a crude form of credit assignment, therefore implicitly neglecting an
aspect of the RL problem. It is likely that this approach leads to conservative control policies. The
method presented in [36], provides a mechanism for the state and control dependency desired.
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The work presented here, leverages similar concepts but in the context of action-value function
learning, improving the data-efficiency of the algorithm alongside other advantages discussed
herein.

1.4. Contribution

To our knowledge, no approach has been proposed which achieves constraint satisfaction with
high probability for action-value methods. In this work, we propose an action-value method, which
guarantees constraint satisfaction with high probability. Here, we first learn an unconstrained actor
and surrogate constraint action-value functions. We then subsequently construct a constrained
action-value function as a superimposition of the unconstrained actor with the surrogate constraints
(in the form of a constrained optimization problem). The constrained actor is iteratively tuned, as
learning proceeds, via localised backoffs [6, 28, 40] to penalize constraint violation. Conceptually,
backoffs provide a policy variant shaping mechanism to ensure high probability satisfaction [32].
Tuning comprises a Monte Carlo method to estimate the probability of constraint violation under
the policy combined with Broyden’s root finding method. Specifically, Broyden’s method is used
to update the backoff values. Importantly, the dimensionality of the tuning problem is equivalent to
the number of operational constraints imposed upon the problem providing a scale-able algorithm.
Given the constrained actor action-value function and the fast inference associated with neural
networks, efficient optimization strategies may be deployed for determination of the optimal
control. Further, the algorithm proposed incorporates the use of an experience replay memory
store, promoting interpretation of the method as a saving algorithm [7]. This is particularly
important in the scope of continual learning and improvement of the policy once deployed to
the real process [41]. The work is arranged as follows; the problem description is formalized in
section 2, the methodology proposed in section 3 and demonstrated empirically in section 4 via
two benchmark case studies.

2. Problem Statement

2.1. Reinforcement Learning in Process Engineering

Using reinforcement learning directly on an industrial plant to construct an accurate controller
would require prohibitive amounts of data due to the random initialization of the policy. As
such the initial training phase would require a model of the process dynamics, which could
either be a data-driven or based on first principles. Additionally, the policy may be warm-started
by techniques such as behavioral cloning or apprentice learning [31]. This would also ensure
that safety violations do not occur in the real plant. The simplified workflow shown in Fig. 2
starts with either a randomly initialized policy or a policy that is warm-started by an existing
controller and apprenticeship learning [1]. Preliminary training is performed using closed-loop
simulations from the offline process model (notice that a stochastic model can be used). Here,
the resulting control policy is a good approximation of the optimal policy of the real plant,
which is subsequently deployed in the real plant for further training online. Importantly, system
stochasticity is accounted for and the controller will continue to adapt and learn to better control
and optimize the process, hence addressing plant-model mismatch [13, 57, 35]. It is thought
a number of processes with uncertain, nonlinear dynamics would particularly benefit from the
maturation of RL-based controllers [46]. These include biochemical reaction systems [37], multi-
phase separations as well as those with complex rheological behaviours. However, it should be
emphasised that essentially any process common to industry could benefit.
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Figure 2: Schematic representation of RL for chemical process optimization (Adapted from [37]).

2.2. Stochastic Optimal Control Problem
We assume that the stochastic dynamic system in question follows a Markov process and

transitions are given by
xt+1 ∼ p (xt+1 | xt,ut) , (1)

where p(xt+1) is the probability density function of future state xt+1 given a current state xt ∈ Rnx

and control ut ∈ Rnu at discrete time t, and the initial state is given by x0 ∼ px0 (·). Without loss of
generality we can write Eq. (1) as:

xt+1 = f (xt,ut,dt,p) , (2)

where p ∈ Rnp are the uncertain parameters of the system and dt ∈ Rnd are the stochastic
disturbances. In this work, the goal is to maximize a predefined economic metric via a policy π (a
function that outputs a control ut given state xt) subject to constraints. Consequently, this problem
can be framed as an optimal control problem:

P(π(·)) :=



maxπ(·) E
{
J
(
x0, . . . , xt f ,u0, . . . ,ut f

)}
s.t.
x0 ∼ px0 (x0)
xt+1 ∼ p (xt+1 | xt,ut)
ut = π (xt)
ut ∈ U
P

(⋂t f

t=0 {xt ∈ Xt}
)
≥ 1 − ω

∀t ∈ {0, . . . , t f }

(3)

where J is the objective function, U is the set of hard constraints for the controls and Xt denotes
constraints for states that must be satisfied. In other words,

Xt =
{
xt ∈ Rnx | g j,t (xt) ≤ 0, j = 1, . . . , ng

}
, (4)

with ng being the total number of constraints to be satisfied, and g j,t being the jth constraint to
be satisfied at time t. Joint constraint satisfaction must occur with high probability 1 − ω where
ω ∈ [0, 1]. Herein, we present a Q-learning algorithm that allows to obtain the optimal policy
which satisfies joint chance constraints.
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2.3. Q-learning

Q-learning is a model-free reinforcement learning algorithm which trains an agent to behave
optimally in a Markov process [58]. The agent performs actions to maximize the expected sum of
all future discounted rewards given an objective function J(·), which can be defined as

J =

t f∑
t=0

γtRt (xt,ut) , (5)

where γ ∈ [0, 1] is the discount factor and Rt represents the reward at time t given values xt and ut.
In the context of process control, the agent is the controller, which uses a policy π(·) to maximize
the expected future reward through a feedback loop. Interaction between the agent (or controller)
and system (in this case, a simulator) at each sampling time returns a value for the reward R that
represents the performance of the policy.

In Q-learning, for a policy π an action-value function can be defined as

Qπ(xt,ut) = Rt+1 + γmax
ut+1

Qπ (xt+1,ut+1) (6)

with Qπ (xt+1,ut+1) being the expected sum of all the future rewards the agent receives in the
resultant state xt+1. Importantly, the Q-value is the expected discounted reward for a given state
and action, and therefore the optimal policy π∗ can be found using iterative updates with the
Bellman equation (Eq. (6)). Upon convergence, the optimal Q-value Q∗ is defined as:

Q∗ (xt,ut) = Ext+1∼p

[
Rt+1 + γmax

ut+1
Q∗ (xt+1,ut+1)

∣∣∣ xt,ut

]
(7)

Q (xt,ut) can be represented by function approximators such as neural networks, Gaussian process
[11], tree-based regressors [38] amongst others. In this work, the Q-function is approximated
with a deep Q-network (DQN) Qθ parameterized by weights θ [29]. Here, the inputs specifically
include the state xt, the corresponding time step t and control ut. The DQN is trained with the use
of a replay buffer that addresses the issue of correlated sequential samples [27]. Huber loss is used
as the error function [17, 30]. Initial exploration is encouraged using an ε-greedy policy starting
with high ε values, which is decayed over the course of training to ensure eventual exploitation
and convergence to the optimal policy.

3. Methodology

Our proposed approach can be found in Algorithm 1. Firstly, the Q-network (Qθ) and the
constraint networks (G j,φ) and their respective buffers were initialized (Steps 1 and 2). Here, each
constraint network G j,φ corresponds to a neural network that learns the oracle values for the jth
constraint. Subsequently, MC roll-outs of the process (Step A) generated Q-values (Step b) and
oracle values ĝ j,t (Step c), which were stored in the respective buffersD and G j. The oracle ĝ j,t

(Step c) is defined as the maximum level of violation to occur in all current and future time steps
in the process realization as shown in Eq. (9), and will be further discussed in Section 3.1. In the
MC roll-outs (Step a), actions are chosen as shown in Fig. 3 (a), by optimizing a fitness function
(sub-problem in Algorithm 1) that comprises predictions by these neural networks to ensure that
chosen actions satisfy constraints while maximizing reward. This can be framed as the following
constrained optimization problem:
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(a) (b)

Figure 3: Flow chart for (a) choosing action u to satisfy constraints while maximizing reward (b) adjustment of backoffs.

max
u

Qθ (x,u)

s.t.
G j,φ (x,u) + b j,t ≤ 0, j = 1, . . . , ng

(8)

where b j,t are the backoffs which tighten the former feasible set Xt stated in Eq. (4). The
nominal case with backoff b j,t = 0 corresponds to the absence of tightening. This is further
explained in Section 3.2 Neural networks (Qθ and G j,φ) have been trained by random sampling
from the replay/constraint buffers (Steps B and C in Algorithm 1), followed by performing a
gradient optimization to learn weights θ and φ (Step D). After training using Algorithm 1, the
optimal Q-network Q∗θ and constraint networks G j,φ are obtained.

Subsequently, we perform constraint tightening using backoffs as described in Fig. 3 (b) such
that constraint satisfaction occurs with desired probability of 1 − ω as in Eq. (3), which will be
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discussed in Section 3.2.
Algorithm 1: Oracle-assisted constrained Q-learning

1. Initialize replay bufferD of size sD and constraint buffers G j of size sG, j = 1, . . . , ng

2. Initialize Q-network Qθ and constraint networks G j,φ with random weights θ and φ,
j = 1, . . . , ng

3. Initialize ε and backoffs b j,t

4. for training iteration = 1, . . . , M do
A. for episode = 1, . . . , N do

Initialize state x0 ∼ px0 (x0) and episode E
a. for t = 0, . . . , t f do

With probability ε select random control ut

otherwise select ut = maxu Qθ (xt,ut) | G j,φ (xt,ut) + b j,t ≤ 0, j = 1, . . . , ng

(Sub-problema)
Execute control ut and observe reward Rt and new state xt+1
Store transition (xt, ut, Rt, xt+1) in E

b. Extract Q-values from E and store datapoint (xt, ut, Qt) inD
c. Extract oracle-constraint values from E using:

ĝ j,t = maxt′≥t

[
g j,t′

]
, j = 1, . . . , ng

d. Store datapoint (xt, ut, ĝ j,t) in G j, j = 1, . . . , ng

B. Sample random minibatch of datapoints of size G (xt, ut, Qt) fromD
C. Sample random minibatch of datapoints of size H j (xt, ut, ĝ j,t) from G j

D. Perform a gradient-descent type step (e.g. Adam optimizerb) on Qθ and G j,φ and
update weights θ and φ

E. Decay ε using ε = D1ε
F. Decay backoffs using b j,t = D2b j,t

Output: Optimal Q-network Q∗θ and constraint networks G j,φ, j = 1, . . . , ng

aSub-problem: A derivative-free algorithm (e.g. evolutionary or Bayesian optimization) is used to optimize the
nonconvex constrained Q-function using fitness function f (u) = Qθ(u) +

∑
j C j min

(
0,−(G j,φ(u) + b j,t)

)
where g j,t is the

jth constraint violation at time t, and b j,t is the corresponding backoff. C j are large values to ensure large negative fitness
values for controls that lead to constraint violation.

bAny other partial, or full optimization step can be used here.

3.1. Oracle-assisted Constrained Q-learning

Q-learning, when unconstrained, may offer little practical utility in process optimization due
to unbounded exploration by the RL agent. For instance, an unconstrained policy may often result
in a thermal runaway leading to a safety hazard in the process. As such, herein constraints g j,t are
incorporated through the use of an oracle ĝ j,t which is formulated as

ĝ j,t = maxt′≥t

[
g j,t′

]
(9)

with g j,t being the jth constraint to be satisfied at time t, and the oracle ĝ j,t is determined by
the maximum level of violation to occur in all current and future time steps t′ in the process
realization.

The intuition behind this framework is as follows: Imagine a car (agent) accelerating towards
the wall with the goal of minimizing the time it takes to reach some distance from the wall
(objective) without actually crashing into the wall (constraint). Accelerating the car without
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foresight causes it to go so fast that it cannot brake and stop in time, causing it to crash into the
wall (constraint violated). As such, there is a need for foresight to ensure constraint satisfaction.

Effectively, the framework shown in Eq. (9) is akin to an oracle (or fortune-teller peeking into
a crystal ball) advising the agent on the worst (or maximum) violation that a specific action can
cause in the future given the current state. These values are easily obtained using Monte-Carlo
simulations of the system. Analogous to the way a Q-function gives the sum of all future rewards,
the oracle provides the worst violation in all future states if a certain action is taken by the agent,
hence imbuing in the agent a sense of foresight to avoid future constraint violation.

Similar to the Q-function, constraint values are represented by neural networks G j,φ with state
and action as input features. However, the subtle difference between the two is that the state
representation of the input for G j,φ involves time-to-termination t f − t instead of time t for the
case of batch processes.

3.2. Constraint Tightening
To satisfy the constraints with high probability, constraints are tightened with backoffs [6, 39]

b j,t as:
Xt =

{
xt ∈ Rnx | g j,t (xt) + b j,t ≤ 0, j = 1, . . . , ng

}
(10)

where b j,t are the backoffs which tighten the former feasible set Xt stated in Eq. (4). The result of
this would be the reduction of the perceived feasible space by the agent, which consequently allows
for the satisfaction of constraints. Notice that the value of the backoffs necessarily imply a trade-
off: large backoff values ensure constraint satisfaction, but renders the policy over-conservative
hence sacrificing performance. Conversely, smaller backoff values afford solutions with higher
rewards, but may not guarantee constraint satisfaction. Therefore, the values of b j,t are the
minimum value needed to guarantee satisfaction of constraints.

To determine the desired backoffs, the cumulative distribution function (CDF) F of the oracle
ĝ j,t is approximated using sample average approximation (SAA) with S Monte Carlo (MC)
simulations to give its empirical cumulative distribution function (ECDF) F̂S where

F̂S (0) ≈ F(0) = P
(
ĝ j,t ≤ 0

)
(11)

hence F̂S (0) is the approximate probability for a trajectory to satisfy a constraint. We can therefore
pose a root-finding problem such that we adjust the backoffs b j,t to find:

F̂S (0) − (1 − ω) = 0 (12)

We solve Eq. (12) via the quasi-Newton Broyden’s method [20] given its fast convergence
near optimal solutions. Where ω is a tunable parameter depending on the case study, such that
constraint satisfaction occurs with high probability 1 − ω as shown in Eq. (3). Alternatively, the
empirical lower bound of the ECDF can be forced to be 1 − ω, and guarantee with confidence
1 − ε that P

(
ĝ j,t ≤ 0

)
≥ 1 − ω. Note that this constraint tightening takes place directly during the

constraunction of G j,φ, j = 1, ..., ng

4. Case Studies

4.1. Case Study 1
This case study pertains to the photoproduction of phycocyanin synthesized by cyanobacterium

Arthrospira platensis. Phycocyanin is a high-value bioproduct, and serves its biological role by
10



increasing the photosynthetic efficiency of cyanobacteria and red algae [6]. In addition, it is used
as a natural colorant to substitute toxic synthetic pigments in cosmetic and food manufacturing.
Moreover, it possesses antioxidant, and anti-inflammatory properties.

The dynamic system comprises a system of ODEs from [6] that describes the evolution of
concentration (c) of biomass (x), nitrate (N) and product (q) under parametric uncertainty. The
model is based on Monod kinetics, which describes the growth of microorganism in nutrient-
sufficient cultures, where intracellular nutrient concentration is kept constant because of rapid
replenishment. Here, a fixed volume fed-batch is assumed. The controls are light intensity (u1 = I)
and inflow rate (u2 = FN). The mass balance equations are as follows:

dcx

dt
= um

I
I + ks + I2/ki

cxcN

cN + KN
− udcx

dcN

dt
= −YN/X

umI
I + ks + I2/ki

cxcN

cN + KN
+ FN

dcq

dt
=

kmI
I + ksq + I2/kiq

cx −
kdcq

cN + KNq

(13)

This case study and parameter values are adopted from [6]. Uncertainty in the system is
two-fold: First, the initial concentration adopts a Gaussian distribution, where [cx,0, cN,0] ∼
N([1.0, 150.0], diag(10−3, 22.5)) and cq(0) = 0. Second, parametric uncertainty is assumed to
be: ks

(µmol/m2/s) ∼ N(178.9, σ2
ks

), ki
(mg/L) ∼ N(447.1, σ2

ki
), kN

(µmol/m2/s) ∼ N(393.1, σ2
kN

) where the

variance σ2
i = 10% of its corresponding mean value. This type of uncertainty is common in

engineering settings, as the parameters are experimentally determined, and therefore subject to
confidence intervals after being calculated through nonlinear regression techniques. The objective
function is to maximize the product concentration (cq) at the end of the batch, hence the reward is
defined as:

Rt f = cq,t f (14)

where t f is the terminal time step. The two path constraints are as follows: Nitrate concentration
(cN) is to remain below 800 mg/L, and the ratio of bioproduct concentration (cq) to biomass
concentration (cx) cannot exceed 11.0 mg/g for high density biomass cultivation. These constraints
can be formulated as:

g1,t = cN − 800 ≤ 0 ∀t ∈ {0, . . . , t f }

g2,t = cq − 0.011cx ≤ 0 ∀t ∈ {0, . . . , t f }
(15)

The control inputs are subject to hard constraints to be in the interval 0 ≤ FN ≤ 40 and 120 ≤
I ≤ 400. The time horizon was set to 12 with an overall batch time of 240 h, and hence giving
a sampling time of 20 h. The Q-network Qθ consists of 2 fully connected hidden layers, each
consisting of 200 neurons with a leaky rectified linear unit (LeakyReLU) as activation function.
The parameters used in Algorithm 1 for training the agent are: ε = 0.99, b1,t = −500, b2,t = −0.05,
sD = 3000, sG = 30000, M = 2000, N = 100, G = 100, H1 = 500, H2 = 1000, D1 = 0.99 and
D2 = 0.995. Upon completion of training, validation was conducted via the trained policy with
respect to the Q function. The policy is optimized through an evolutionary strategy [48] given its
nonconvex nature, as discussed in Algorithm 1 and Fig. 3 (a).

After completion of training using Algorithm 1, the backoffs are adjusted to satisfy Eq. (12)
with S = 1000 and ω = 0.01, with backoffs at all time-steps t being constant. The constraint
satisfaction is shown in Fig. 4, where the shaded areas represent the 99th to 1st percentiles. Here,
we elucidate the importance of applying backoffs to the policy: As shown in Fig. 4 (a), even
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(a) (b)

Figure 4: Case Study 1: Constraints g1,t (a) and g2,t (b) when backoffs are applied (green), and when they are absent (red)
with probabilities of violation Pv within the parentheses. Inset: Zoomed-in region where violation of constraints occur.
Solid lines represent the expected values. Shaded areas represent the 99th to 1st percentiles.

(a) (b)

Figure 5: Case Study 1: Constraints g1,t (a) and g2,t (b) when backoffs are applied (green), and for NMPC (blue) with
probabilities of violation Pv within the parentheses. Inset: Zoomed-in region where violation of constraints occur. Solid
lines represent the expected values. Shaded areas represent the 99th to 1st percentiles.

Table 1: Case Study 1: Comparison of probabilities of constraint violation Pv and objective values of different algorithms

Algorithm Violation probability Pv Objective (cq,t f )

Oracle Q-learning with backoffs 0.01 0.166
Oracle Q-learning without backoffs 0.82 0.169
NMPC 0.53 0.168

though it may seem at face value that g1,t values for both methods are similar, the zoomed-in
region (in the inset) clearly shows that oracle Q-learning without backoffs (red) results in a high
probability of constraint violation (Pv = 0.77), with parts of the red shaded regions exceeding zero.
The violation probabilities Pv in Fig. 4 and 5 correspond to the fraction of 400 MC trajectories
that violate a certain constraint. Gratifying, when backoffs are applied (green) in Fig. 4 (a), all
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constraints are satisfied (Pv = 0), as shown by all the green shaded regions staying below zero.
In the same vein, in Fig. 4 (b), applying backoffs resulted in a drastic reduction of constraint

violation from Pv = 0.24 to 0.01. This is expected since the backoffs are adjusted using ω = 0.01
in Eq. (3). The objective value, represented by the final concentration of product cq, are 0.166 and
0.169 for oracle Q-learning with and without backoffs, respectively. Consequently, this indicates
that a small compromise in objective value can result in high probability of constraint satisfaction,
where violation probability is reduced from 0.82 to 0.01 (in boldface) upon applying backoffs as
shown in Table 1.

In addition, the performance of the oracle Q-learning algorithm with backoffs has been
compared with that of nonlinear NMPC using the nominal parameters of the model, which is one
of the main process control techniques used in chemical process optimization and hence serves as
an important benchmark.

Although NMPC achieves a slightly higher objective value (Table 1), it fares poorly in terms
of constraint satisfaction as shown in blue Fig. 5 (a) and (b) where probabilities of violation are
12 and 53% for g1 and g2, respectively. This is unsurprising, since NMPC is only able to satisfy
constraints in expectation, which means that in a stochastic system, loosely speaking, violation
occurs 50% of the time. On the other hand, oracle Q-learning with backoffs violated a constraint
only 1 % of the time (boldface in Table 1). Therefore, it is clear that this algorithm offers a more
effective means of handling constraints compared to NMPC.

It is also noteworthy to contrast the proposed method with policy-based methods. Previous
work in the group [36] involves policy optimization, which has its own benefits, such as avoiding
an online optimization routine, this however, comes with the drawback of being unable to handle
constraints naturally. On the other hand, value-based methods, as proposed in this paper, have an
inner optimization loop, which allows them to handle constraints easily with mature algorithms
from the numerical optimization community. Therefore, value-based methods can be better
tailored to satisfy constraints.

4.2. Case Study 2
The second case study involves a challenging semi-batch reactor adopted from [5], with the

following chemical reactions in the reactor catalyzed by H2SO4:

2A
k1A
−−→
(1)

B
k2B
−−→
(2)

3C (16)

Here, the reactions are first-order. Reactions (1) and (2) are exothermic and endothermic, re-
spectively. The temperature is controlled by a cooling jacket. The controls are the flowrate of
reactant A entering the reactor and the temperature of the cooling jacket T0. Therefore, the state
is represented by the concentrations of A, B, and C in mol/L (cA, cB, cC), reactor temperature in K
(T ), and the reactor volume in L (Vol). The model of the physical system can be found in [5].

The objective function is to maximize the amount of product (cC · Vol) at the end of the batch.
Two path constraints exist. Firstly, the reactor temperature needs to be below 420 K due to safety
reasons and secondly, the reactor volume is required to be below the maximum reactor capacity
of 800 L and therefore:

g1,t = T − 420 ≤ 0 ∀t ∈ {0, . . . , t f }

g2,t = Vol − 800 ≤ 0 ∀t ∈ {0, . . . , t f }
(17)

The time horizon is fixed to 10 with an overall batch time of 4 h, therefore the sampling time is 0.4
h. Parametric uncertainty is set as: θ1 ∼ N(4, 0.1), A2 ∼ N(0.08, 1.6× 10−4), θ4 ∼ N(100, 5). The
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initial concentrations of A, B and C are set to zero. The initial reactor temperature and volume are
290 K and 100 L, respectively.

In this case study, due to its more challenging nature in terms of constraint satisfaction
compared to the first case study, the backoffs have been adjusted to satisfy Eq. (12) using ω = 0.1
in Eq. (3). We observe that backoffs again proved to be necessary to ensure high probability of
constraint satisfaction. From the inset of Fig. 6 (a), we can see that without backoffs the policy
violates g1 41% of the time, and this probability is reduced to 9% when backoffs are applied. The
same applies for g2 in Fig. 6 (b) where Pv is completely eliminated from 3% to 0% using backoffs.

(a) (b)

Figure 6: Case Study 2: Constraints g1,t (a) and g2,t (b) when backoffs are applied (green), and when they are absent (red)
with probabilities of violation Pv within the parentheses. Inset: Zoomed-in region where violation of constraints occur.
Solid lines represent the expected values. Shaded areas represent the 95th-5th percentiles for (a) and 99th-1st percentiles
for (b).

(a) (b)

Figure 7: Case Study 2: Constraints g1,t (a) and g2,t (b) when backoffs are applied (green), and for NMPC (blue) with
probabilities of violation Pv within the parentheses. Inset: Zoomed-in region where violation of constraints occur. Solid
lines represent the expected values. Shaded areas represent the 95th-5th percentiles for (a) and 99th-1st percentiles for (b).

To compare the performance of NMPC with oracle Q-learning with backoffs in the context of
this case study. The average runtime to solve for an individual control for the oracle Q-learning
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Table 2: Case Study 2: Comparison of probabilities of constraint violation Pv and objective values of different algorithms

Algorithm Violation probability (Pv) Objective (cC,t f · Volt f )

Oracle Q-learning with backoffs 0.09 532
Oracle Q-learning without backoffs 0.44 680
NMPC 0.66 714

approach (0.03 ± 0.01 s) is faster than NMPC (0.4 ± 0.1 s). This can be attributed to the fact that
MPC relies on a model-based optimization, whereas our approach has already learnt this offline.
Moreover, it is noteworthy that chemical systems are rarely deterministic in nature, hence limiting
the applicability of NMPC. In a stochastic system, NMPC often struggles in terms of constraint
handling. This can be clearly seen in Fig. 7 (a), where the MPC trajectories only satisfy g1 in
expectation (blue line), hence resulting in high levels of violations (66%). Intriguingly, for g2
the NMPC trajectory in Fig. 7 displayed little variation, resulting in only small probability of
violation (6%).

In terms of objective values, unlike the first case study, oracle Q-learning with backoffs saw a
significant decrease in objective value in Table 2 after applying backoffs. This is expected because
we further restrict the feasible space of the controller leading to a more conservative solution,
hence exhibiting a trade-off between constraint satisfaction and objective value.

This trade-off is justified as the NMPC solution results in 66% probability of constraint
violation (Table 2). In the context of a chemical plant, the NMPC solution is infeasible due to the
high risk. Process operation in such industries necessitates that these probabilities are minimized
as safety is of utmost importance in chemical engineering. This provides basis for the use of RL
in the process industries.

On the other hand, for oracle Q-learning, it can been seen that the probability of constraint
violation has been significantly improved from 66% (for NMPC) to 9% (boldface in Table 2).
Clearly, oracle Q-learning offers an effective means of not only satisfying constraints in expectation
(green lines in Fig. 6), but more importantly with high probability (all green shaded areas below
zero).

However, it is worth noting that this algorithm is based on Q-learning, which is expected to
take longer time to train than MPC, particularly because it requires backoffs to be tuned. This is a
direct consequence of shifting the computation time from online to offline. Indeed, such a tradeoff

can be justified as this guarantees robust constraint satisfaction online with fast computation time,
which is crucial in many safety critical engineering applications.

5. Conclusions

In this paper we propose a new reinforcement learning methodology for finding a controller
policy that can satisfy constraints with high probability in stochastic and complex process systems.
The proposed algorithm - oracle-assisted constrained Q-learning - uses constraint tightening by
applying backoffs to the original feasible set. Backoffs restrict the perceived feasible space by the
controller, hence allowing guarantees on the satisfaction of chance constraints. Here, we find the
smallest backoffs (least conservative) that still guarantee the desired probability of satisfaction
by solving a root-finding problem using Broyden’s method. Results show that our proposed
methodology compares favorably to nonlinear model predictive control (NMPC), a benchmark
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control technique commonly used in the industry, in terms of constraint handling. This is expected
since NMPC guarantees constraint satisfaction only in expectation (loosely speaking constraints
are satisfied only 50% of the time), while our algorithm ensures constraint satisfaction with
probabilities as high as 99% as shown in the case studies. Being able to solve constraint policy
optimization problems with high probability constraint satisfaction has been one of the main
hurdles of the widespread use of RL in engineering applications. The promising performance
of this algorithm is an encouraging step towards applying RL to real-world industrial chemical
processes, where constraints on policies are absolutely critical due to safety reasons.
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