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a b s t r a c t 

The increased complexity of digitalized process systems requires advanced tools to detect and diagnose 

faults early to maintain safe operations. This study proposed a hybrid model that consists of Kernel Prin- 

cipal Component Analysis (kPCA) and DNNs that can be applied to detect and diagnose faults in various 

processes. The complex data is processed by kPCA to reduce its dimensionality; then, simplified data is 

used for two separate DNNs for training (detection and diagnosis). The relative performance of the hy- 

brid model is compared with conventional methods. Tennessee Eastman Process was used to confirm the 

efficacy of the model. The results show the reduction of input dimensionality increases classification ac- 

curacy. In addition, splitting detection and diagnosis into two DNNs results in reduced training times and 

increased classification accuracy. The proposed hybrid model serves as an important tool to detect the 

fault and take early corrective actions, thus enhancing process safety. 

© 2021 Elsevier Ltd. All rights reserved. 

1

a

s

t

k

c

A

c

i

e

(

a

A

s

t

t

F

T

m

2

s

s

1

e

b

1

e  

r

o

d

i

d

a

S

s

c

y  

h

0

. Introduction 

Modern engineering systems have become more sophisticated 

nd complex due to increased interactions between process sen- 

ors and actuators to pursue optimization and automation. The ac- 

uators control critical parameters of the system while the sensors 

eep track of any changes in the system. In some cases, the pro- 

ess fails to operate within safe boundaries due to various faults. 

n unsafe operation may lead to equipment or system failure and 

an eventually result in an accident. To prevent this from happen- 

ng, fault detection and diagnosis methods have been proposed to 

nsure a safe process environment and to maintain product quality 

 Venkatasubramanian et al., 2003b ). 

Fault detection and diagnosis is a monitoring system that is 

imed to identify deviations in the system or its parameters. 

s such, early identification is then followed by corrective mea- 

urements that result in accident prevention or damage mitiga- 

ion. Fault detection and diagnosis can be generalized into quan- 

itative/analytical model-based methods, qualitative model-based 
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098-1354/© 2021 Elsevier Ltd. All rights reserved. 
ethods, and data-driven methods ( Venkatasubramanian et al., 

003b ). Quantitative model-based methods include techniques 

uch as regression parameter estimation ( Wu and Liu, 2017 ), least- 

quares parameter estimation ( Cimpoesu et al., 2013 ; Isermann, 

993 ), linear quadratic estimation ( Amoozgar et al., 2013 ; Huang 

t al., 2012 ), and others. Qualitative based approaches have also 

een thoroughly investigated, such as fault tree ( Antonio et al., 

995 ), functional abstraction ( Ham and Yoon, 2001 ), structural hi- 

rarchy ( Lind, 1999 ), fuzzy logic systems ( Nan et al., 2008 ), di-

ected graph-based methods ( Gao et al., 2010 ). Data-driven meth- 

ds rely on process data to identify operational conditions and 

etect abnormal behaviors. Feature extraction is the crucial step 

n data-driven methods, which focuses on condensing the process 

ata into more practical information. Univariate and multivariate 

pproaches have been deployed to perform data transformation. 

everal multivariate methods have been successful in overcoming 

hortcomings of traditional approaches, such as dynamic principal 

omponent analysis ( Ku et al., 1995 ), independent component anal- 

sis ( Kano et al., 2003 ), modified partial least squares ( Yin et al.,

011 ), and others. Recent years have seen some studies that at- 

empt to link the qualitative-based approaches to the data-driven 

pproaches ( Sarbayev et al., 2019 ). 

As engineering processes get more complex, analytical models 

annot consider the increasing number of highly correlated dy- 

https://doi.org/10.1016/j.compchemeng.2021.107609
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107609&domain=pdf
mailto:fikhan@mun.ca
mailto:fikhan@tamu.edu
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Fig. 1. Methodology to develop a hybrid model for fault detection and diagnosis using deep neural networks. 
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amic system interactions ( Ge et al., 2013 ; Venkatasubramanian 

t al., 2003a ). A recent direction in a data-driven approach has fo- 

used on applying neural networks in fault detection and diagno- 

is tasks. Neural networks showed successful application in com- 

lex classification tasks in various fields, such as speech recogni- 

ion ( Hinton et al., 2012 ), digit recognition ( Kayumov et al., 2020 ),

mage recognition ( Simonyan and Zisserman, 2015 ), and others. It 

as proposed that neural networks have the potential for fault de- 

ection and diagnosis ( Zhang and Zhao, 2017 ). This is possible be- 

ause neural networks consist of a structured network of neurons 

hat can learn sophisticated patterns via nonlinear transformations. 

 faulty operation can be treated as a specific pattern in process 

ata, which a trained neural network will detect. 

Modified neural networks have been successfully applied to 

erform fault detection and/or diagnosis ( Heo and Lee, 2018 ; Ince 

t al., 2016 ; Su et al., 2020 ; Tang et al., 2019 ; Wen et al., 2018 ) of

arious processes ranging from Tennessee Eastman process to mo- 

or lifetime estimation. However, most of these works dealt with 

ow-dimensionality data, which is suitable for neural networks. 

hen the complexity of data increased, the computations became 

ime expensive and inapplicable to complex equipment/systems. In 

ddition, Tang et al. (2019) suggested that hybrid models that com- 

ine data preprocessing models with neural networks might in- 

rease the detection accuracy, but it has not been tested before. 

inally, limited work has been done to support dynamic data, and 

ssues of dealing with increase in the dimensions of the data ma- 

rix and interpretability of the data analytics are a common chal- 

enge among them ( Dong and Joe Qin, 2018 ). 

This work proposes a hybrid method that deals with high- 

imensionality data and performs fault detection and diagnosis. 

ernel Principal Component Analysis (kPCA) was used as the first 

tep of our model: this can process nonlinear data and reduce its 

imensionality with minimal loss of variability. Then, we trained 

 deep neural network (DNN) for fault classification as the second 

tep. We separated fault detection and diagnosis into consecutive 

eep neural networks to simplify the tuning process and reduce 

raining time. Although both kPCA and DNN were used in litera- 

ure for fault detection and diagnosis purposes ( Maki and Loparo, 

997 ; Navi et al., 2018 ), a combination of both has not yet been

xplored. 

We used the digit classification dataset as a substitute due to its 

igh dimensionality, which allowed us to monitor classification ac- 

uracy for different model configurations. Then, we applied the hy- 

rid model to the Tennessee Eastman Process (TEP) to confirm the 

ffectiveness in detecting and diagnosing various process faults. 

The remaining part of this paper is organized as follows. 

ection 2 presents an overview of the hybrid model and provides a 
n

2 
rief background on kPCA, fault detection and diagnosis, and Deep 

eural Networks. The performance of the proposed hybrid model 

s discussed via a case study in Section 3 . Section 4 contains an

nalysis and discussion of the results of the case studies. Finally, 

ection 5 concludes the work and gives recommendations for fu- 

ure work. 

. Methodology to develop the hybrid model 

.1. Process overview 

Fig. 1 shows that the process consists of three steps: feature re- 

uction using kPCA, fault detection and fault diagnosis using two 

eep Neural Networks (DNN) N I and N II respectively. The kPCA 

tep is used as a feature reduction step that transforms the dataset 

o that the neural network can process more accurately. The first 

eural network N I distinguishes faults from normal operation, and 

he second neural network N II differentiates the faults by nature. 

he resulting hybrid model can detect and diagnose faults from 

omplex datasets. Fault detection and fault diagnosis can be con- 

ucted simultaneously or separately. Simultaneous detection and 

iagnosis are a classification task that is efficient in some situa- 

ions. Only one neural network needs to be trained in that case, 

nd therefore the training time is reduced, and all data is used for 

iagnosis without loss. However, the accuracy of such a model is 

ighly dependent on the dataset. If a dataset is dominated by one 

ategory, there is a high chance of misclassification towards that 

lass. In fault detection and diagnosis, this will usually be the is- 

ue since we are interested in the minority (faulty operation). The 

verall accuracy of the model will be high, but so will the num- 

er of false positives. If the data is evenly distributed between op- 

rational conditions and different types of faults, the performance 

f this network will be acceptable. However, this is not the usual 

ase in industrial processes. Therefore, we split fault detection and 

ault diagnosis into separate classification models using two sepa- 

ate DNN for each. 

.2. Step 1. Reducing the dimensionality of input data with kernel 

rincipal component analysis (kPCA) 

This technique aims to reduce the complexity of the input 

ataset to be used for the training of neural networks by reducing 

ts dimensionality. Principal Component Analysis is commonly used 

or this purpose. It is an effective data modeling tool that can ex- 

ract latent variables from complex datasets while maximizing the 

ata variation. However, the basic PCA cannot efficiently separate 

onlinear data. In this work, an extension of PCA, called kPCA, will 
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3

l

e

e used to handle linearly inseparable datasets. This method uses 

he integral operator kernel function to transform data in higher- 

eature space and then perform PCA Schölkopf et al., 1998 ) This is 

ossible due to a “kernel trick”, which allows us to avoid calcula- 

ions in the feature space and to use dot product between points 

o find principal components Eqs. (1) –(12) . 

First, we map data into a higher feature space ф using Eq. (1) .

 ( i ) → �( X ( i ) ) (1) 

Then, the covariance matrix is transformed into Eq. (2) . 

 = 

1 

N 

N ∑ 

i =1 

�( X ( i ) ) �( X ( i ) ) 
T (2) 

By denoting a dot product between datapoints in the mapped 

pace as K (elements of the kernel), we perform eigendecomposi- 

ion for kPCA Eq. (3) . 

λa = Ka (3) 

Where N is the number of observations, λ is eigenvalues, and 

 is eigenvectors. 

However, we must first “centralize” the kernel Eq. (4) K → K 

’ 

 

′ = K − 1 N K − K 1 N + 1 N K 1 N (4) 

 N is defined in Eq. (5) : 

 N = 

1 

N 

(5) 

Now, centralized kernel K’ can be used to perform kPCA, and 

imilar to basic PCA, we can use the eigenvalues to determine the 

ariability of each principal component. Some of the widely used 

ernels are polynomial, radial basis function, sigmoid, Gaussian, 

xponential, and others ( Zhang, 2015 ). There is a trial-and-error 

rocedure of trying different kernel functions that can affect the 

erformance of kPCA. 

Challenges of kPCA. 

The major issue with kPCA is that the kernel K is a N-by-N ma- 

rix, and for large datasets, this step may require a lot of resources 

RAM and CPU). This method does not allow for dynamic analy- 

is, as the addition of any data requires the calculation of kernel 

atrix from scratch. 

In practice, a 16GB RAM computer can handle a dataset con- 

aining roughly 30,0 0 0 data points. For datasets beyond this size, 

odifications to kPCA are required. As for dynamic datasets, there 

xist extensions of kPCA, such as TP-IKPCA ( Zhao et al., 2019 ), 

hich can handle both large and incremental datasets. 

.3. Step 2. Classifying input data as faulty or faultless, i.e., fault 

etection 

Fault detection is an integral part of improving the reliability 

nd safety of a system. In this paper, we train a Deep Neural Net- 

ork (DNN) to detect faults among process data. This is an exam- 

le of supervised learning as it requires labeling of process data. 

e treat fault detection as a simple classification problem because 

rtificial neural networks have been widely used for classification 

roblems. They consist of several interconnected layers, which pass 

nformation from one layer to another with some modifications. 

A deep neural network has an input layer, output layer, deci- 

ion layer, and hidden layer (one or more). The input layer receives 

nput data in the form of a table. While the neural network can 

ork with raw data, a considerable improvement can be achieved 

hrough initial data processing. Normalization of a dataset is ap- 

lied to scale the numeric values to a common range without dis- 

orting the differences in the data. This helps with performance of 

he machine learning model and also improves its stability. There 
3 
re various normalization techniques, such as scaling to a range, 

og scaling, clipping, and more. In this paper, we apply normaliza- 

ion based on the mean and standard deviation of the data Eq. (6) .

 n ( i ) = 

X ( i ) − μ

σ
(6) 

Where X(i ) and X n (i ) are raw and normalized data. Calculations 

re applied to each row of the dataset. μ and σ are data mean and 

tandard deviation, calculated over the entire dataset. 

Normalized data is then passed to the input layer, which con- 

ists of the same number of nodes as the number of features in 

he dataset. 

Data from the input layer is then passed to the hidden layer and 

ransformed into different sets of higher features through a non- 

inear function. Eq. (7) shows Rectified Linear Unit function (ReLU) 

hich is commonly used for classification problems because of the 

ase of training and greater accuracy it provides, and will be used 

n this work ( Agarap, 2018 ): 

eLU ( x ) = max ( 0 , x ) (7) 

Hidden layer transformations are a set of matrix calculations 

hat involve weights, data, and biases, with added ReLU function. A 

ropout layer is added after each hidden layer for regularization of 

he neural network to prevent overfitting of the model ( Srivastava 

t al., 2014 ). 

The output of each hidden layer is calculated as shown in Eq. 

8) : 

 O = w i H i + b i (8) 

here H O is the output of a hidden layer, H i is the input of that 

ayer, w i and b i are weight and bias vectors. The output of one 

idden layer is passed as input to the following hidden layer. 

The output of the last hidden layer is collected into an Out- 

ut Layer that has the same number of nodes as required classes. 

hese values are then transformed into probabilities through a de- 

ision layer Eq. (9) , such as softmax function ( Goodfellow et al., 

016 ): 

 c = 

e y ∑ 

e y 
(9) 

here y is a vector coming from the output layer of the DNN and 

 c is the probability assigned to each category c. In the case of 

ault detection, there are only 2 categories: faulty and faultless op- 

ration. The output layer classifies the input data into a category 

ased on the highest probability from P c . We define accuracy as 

he number of correctly classified data points Eq. (10) : 

cc = 

# of clas sified labe ls 

# of true labe ls 
× 100% (10) 

In some applications, we are concerned with the number of 

alse negatives and false positives. In this work, we will use both 

he accuracy calculation stated above and a confusion matrix that 

hows the number of actual and predicted samples for each cate- 

ory in one figure ( Ting, 2017 ). 

The process of training the network includes the calculation of 

he weight and bias matrices. Initially, when all values are taken 

t random, the performance of the network is intolerable. We im- 

rove the model through the backpropagation technique, which in- 

olves recalculation of weights and biases based on the difference 

etween predicted and actual output. This difference is called cost 

unction, and the backpropagation method tries to minimize it. 

Besides choosing the type of backpropagation, we also need to 

elect an appropriate hidden layer structure. We do this by select- 

ng different combinations of several layers. In this work, 2 and 

 hidden layers with various numbers of nodes were tested. The 

ayer structure needs to be complex enough to capture the nonlin- 

ar patterns within the data and have greater capacity to prevent 
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Fig. 2. A selection of images of 10 handwritten digits. Each image is 28 × 28 pixels. 
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nderfitting; but simultaneously, a structure that is too complex 

ay lead to longer training times and an overfitting that prevents 

t from generalizing to a test dataset. 

Both static and dynamic data can be used in DNN. In case of 

ynamic data types, a “SequenceInputLayer” was used to accept 

 dataset containing temporal data, and long short-term memory 

idden layers were used due to their capability of processing se- 

uential data types. 

.4. Step 3. Classifying faulty data into fault types, i.e., fault diagnosis 

Fault diagnosis is an extension to fault detection and can also 

e performed using DNNs. The procedure for fault diagnosis is the 

ame as in fault detection except for the output layer. The output 

ayer in this step consists of nodes depicting fault type. Each fault 

s treated as a class, and we simply perform a classification task. 

he performance of this model is primarily measured by the con- 

usion matrix and classification accuracy Eq. (11) . The performance 

f both networks is combined to calculate overall performance: 

verall Performance = 

# predicted faults 

# actual faults 

×# predicted fault type 

# actual fault type 
× 100% (11) 

The outcome of this step greatly depends on the accuracy of the 

revious step. This requires careful tuning of both models, which 

ranslates into an increased amount of time needed to set up the 

ybrid model as there are twice more parameters to configure. 

.5. Integrating all models to produce a hybrid model 

Combining all steps, we get a hybrid model which can detect 

nd diagnose faults from complex data ( Fig. 1 ). The first step is

eeded in case the dimensionality of the dataset is too great. The 

rst step can be omitted otherwise. Then, consecutive deep neu- 

al networks perform classification tasks to detect faults and then 

lassifying them by types. All steps are implemented in MatLab 

onsequently, and the model is tested with new data. 

. Applications of the hybrid model 

In this section, we discuss the application of the hybrid model 

o classify the MNIST handwritten digits dataset, which is a bench- 

ark for neural network classification problems ( LeCun and Cortes, 

010 ). We provide different network setups and training options 

nd compare their accuracies to determine their performance. 

hen, we train the hybrid model to detect and diagnose faults in 

he Tennessee Eastman (TE) process ( Rieth et al., 2017 ). For illus- 

rative purpose, we trained the model to differentiate between 4 

ault types and a non-faulty operation. 

.1. MNIST dataset 

MNIST dataset consists of images (28 × 28 pixels) of handwrit- 

en single digits and is widely used to test the performance of neu- 

al networks. An example of these images is shown in Fig. 2 . 

While MNIST is used for general classification tasks, it can also 

e applied to specific areas unrelated to digit recognition. At its 

ore, the classification of handwritten digits is an optimization of 

etwork parameters to fit nonlinear patterns; therefore, we can use 

t as a temporary substitute in other applications where it is diffi- 

ult to obtain data. We use the MNIST dataset to measure the rel- 

tive performance of different network setups, which can later be 

sed in fault detection and diagnosis tasks. The dataset is evenly 

istributed between digits and utilizing a part of the dataset will 
4 
till yield satisfactory results. The primary constraint of our net- 

ork is data points, which is why we could not use the Tennessee 

astman Process directly as it is difficult to isolate each fault and 

educe the amount of data. Out of 60,0 0 0, we used 10,0 0 0 to

5,0 0 0 to reduce training time and 50 0 0 testing data points. 

Another advantage of the MNIST dataset is its large dimension- 

lity: the 28 × 28 pixels result in 784 features. The large number 

f features is usually a downside, but as in the present case, it pro- 

ides a basis for dimensionality reduction and paves way to show 

ow such datasets can be dealt with through the hybrid model. 

.2. Dimensionality reduction (Step 1) 

Having large dimensionality in the input dataset can lead to 

ong training times and reduced accuracy. In some industrial pro- 

esses, the data may be too complex, and dimensionality reduction 

ay be required. For these reasons, we implement Kernel Principal 

omponent Analysis (kPCA) to reduce dataset complexity. In our 

odel, we use the Radial Basis Function (RBF) kernel to create the 

ernel matrix ( Zhang, 2015 ). Eq. (12) shows RBF kernel 

 = exp 

(
−| x − y | 2 

γ

)
(12) 

here x and y are two samples representing feature vectors in the 

nput space, and γ is a width parameter. The width parameter was 

hosen as 10,0 0 0, this number was selected after a series of sen- 

itivity analyses aimed to achieve the largest variability contained 

ithin the chosen number of principal components. We then se- 

ect the number of principal components and generate a new in- 

ut dataset. As the original MNIST dataset has 784 variables, we 

reated various datasets ranging from 50 to 500 dimensions to test 

he effectiveness of the method for various dimensions of the input 

ataset. There is always some loss of variability when applying PCA 

echniques; however, reducing dimensionality allows the following 

eural network to train better. 

The main disadvantage of using the kPCA algorithm is its inabil- 

ty to handle data with many data points. Since we have an input 

atrix X with N data points, the Kernel matrix that we obtain is of 

-by-N dimension, which occupies a large portion of computation 

pace (RAM). 

.3. Training networks with different input datasets (Step 2) 

This section will use the various datasets created from kPCA to 

rain a network to classify handwritten digits. This will be anal- 

gous to the fault diagnosis task as we treat each number as an 

perational state or a fault state. For proper comparison, we use 

2,0 0 0 data points for training, 30 0 0 for validation, and 50 0 0 for
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Fig. 3. Structure of the deep neural network used to compare the effectiveness of dimensionality reduction via kPCA method. 

Fig. 4. Confusion matrices for classification of digits with 784 inputs (left) and 50 inputs (right) for MNIST dataset estimation. 
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esting in all simulations. The original dataset contains approxi- 

ately 60,0 0 0 datapoins, and 15,0 0 0 datapoints (25%) were used 

ue to RAM limitations of kPCA algorithm. We assumed that 25% 

f the dataset is sufficient for producing acceptable results. We uti- 

ized ADAM - adaptive moment estimation algorithm ( Kingma and 

a, 2015 ), and networks would train for up to 10 0 0 epochs with

ccasional premature stops to reduce overfitting. Neural networks 

onsist of three hidden layers with 20 nodes each, a dropout layer 

fter each hidden layer of 20%, and ten output layers depicting ten 

igits. The input layer would be different each time, depending on 

he input dataset used. The schematic of our network is shown in 

ig. 3 . Table 1 shows accuracy results for networks with different 

nput datasets. 

The first case without kPCA resulted in 80% classification accu- 

acy. Fig. 4 shows confusion matrices for the initial case and the 

nal case. 

Based on Table 1 , the accuracy steadily increased as the number 

f features decreased. Fig. 4 shows considerable improvement for 
Table 1 

Network structures for different input datasets. 

Case # Number of features Accuracy 

1 784 80% 

2 500 80% 

3 400 83% 

4 300 84% 

5 200 85% 

6 150 86% 

7 100 86% 

8 75 86% 

9 50 88% 

0

t

N

c

n

p

p

i

r

c

t

5 
lassifying several classes (most notably for numbers 5 and 8). This 

s considered to be the result of the neural network having less 

omplex input, which allowed for a more accurate tuning of the 

etwork parameters. 

.4. Dividing fault detection and diagnosis (Step 3) 

In some cases, the classification of data into working/fault types 

ay prove difficult. Especially if the dataset is dominated by oper- 

tional data points, the network may be biased towards the oper- 

tional class. To overcome this issue, we decided to split the task 

f detection and diagnosis. To do so, we designed two neural net- 

orks in series, as shown in Fig. 5 . First, the input data is pro-

essed by kPCA algorithm to reduce the number of variables to 50. 

or this case, we choose 80 0 0 data points for training, 20 0 0 points

or validation, and 50 0 0 for testing. This is fed as input data into

he first neural network N I . N I has only two outputs to differen- 

iate working and faulty conditions. In our case, we labeled digits 

–4 as faulty and digits 5–9 as working. Following N I , all opera- 

ional datapoints (digits 5–9) are removed and the second network 

 II is trained to classify digits 0–4 to simulate fault diagnosis. To 

ompare the results of this hybrid model, we simulated another 

etwork that would classify ten digits directly using the same in- 

ut data and network parameters as in N I . Table 2 shows the com- 

arison between the two. 

From Table 2 , the overall performance of the combined model 

s better than a single model by 2%. Training a single model took 

oughly 12 min, while each N I and N II trained for 2–2.5 min. 

The results shown represent an incomplete dataset and may 

ontain a bias due to sampling of the data. However, the poten- 

ial bias would be applied to all model configurations, and could 
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Fig. 5. A detailed flowchart of training and testing data used forfault detection and diagnosis using separate deep neural networks in MNIST digit classification case study. 

Table 2 

Double network model vs Single network model. ∗Training time is for comparison 

purposes. This is dependent on the computer capacity which is training the model. 

Model type Single model Double model N I + N II 

Input features 50 50 

Training data 8000 8000 

Validation data 2000 2000 

Testing data 5000 5000 

Classification accuracy for digits 0-4 84.7% 

Classification accuracy for N1 N/A 91.2% 

Classification accuracy for N2 N/A 95.2% 

Overall performance 84.7% 86.8% 

Training time, minutes ∗ 12 5 

Table 3 

Selected faults for the case study. 

Fault ID Process variable Type 

Fault #1 A/C feed ratio Step 

Fault #6 A feed loss Step 

Fault #12 Condenser cooling water temperature Random variation 

Fault #18 Unknown Unknown 
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e ignored since this is a comparative example that is aimed to 

xplore the effect of the proposed model. 

.5. Fault detection and diagnosis in the Tennessee Eastman (TE) 

rocess 

The same approach as described above were applied to the 

E process to observe the accuracy of fault detection and diag- 

osis in a chemical process. The datasets published online ( Rieth 

t al., 2017 ) contain process data of over 500 simulation runs for 

ormal/faulty operation. Original data has 20 faults and 52 input 

odes. In this case study, we reduced the amount of data used for 

raining due to RAM requirements, such that we dealt with four 

ault types (#1, #6, #12, #18) and a non-faulty operation. Table 3 

escribes the selected faults. In addition, each class was limited to 

00 simulations. Overall, this case study is a miniature version of 

he TE process, aimed to demonstrate the performance of the hy- 

rid model compared to the base model ( Heo and Lee, 2018 ). 

The network configuration was kept constant throughout all ex- 

mples. As such, the hidden layer consisted of three layers, each 

ontaining 25 nodes. A dropout layer of 0.2 was added after each 

idden layer. The networks were trained until overfitting started, 

hich was generally under 15 or 25 epochs. The network training 

as manually stopped while monitoring for overfitting, in particu- 

ar, the data loss progression would go up as the network memo- 

ized certain data. The hyperparameters for the network were up- 

ated according to batch size, which was selected as 20. This value 

an affect the accuracy of parameter estimation and was selected 

fter trial and error. Due to reduced number of datapoints, the net- 

ork training step took several minutes compared to 20 min when 
6 
sing full dataset. However, a significant amount of time (several 

ours) was required for the data sampling and kPCA dimensional- 

ty reduction step. 

First, we measured the effectiveness of a single neural network 

n fault detection and diagnosis (FDD) performance. Applying the 

ingle neural network to the reduced TE dataset resulted in a 97.4% 

ccuracy of fault prediction. The model struggled to differentiate 

etween fault #12 and fault #18 in 13 cases out of 500. Due to the

educed dataset, training times for all simulations were shorter. 

As a first step, we decided to split the network into fault de- 

ection and fault diagnosis. While keeping the same network con- 

gurations, we trained the first network N I to detect and remove 

ll healthy cases; and the faulty cases would then be diagnosed by 

he second network N II . The first network showed a 100% detection 

ate, while the second network correctly identified 393 out of 400 

aulty cases, leading to a total 98.3% prediction accuracy. 

Then, we wanted to investigate the effect of dimensionality re- 

uction on FDD in the TE process. We performed kPCA reduction 

rom 52 to 25 principle components and repeated the network 

raining. The single FDD network was able to accurately predict 

97 out of 500 cases, or 99.4%. Applying kPCA reduction to the 

ouble model showed a slight improvement as the hybrid model 

iagnosed 398 out of 400 faults in the second network, with a 

00% fault detection accuracy in the first network, bringing the 

verall accuracy to 99.5%. The results of the simulations are pre- 

ented in Table 4 . 

The comparison between confusion matrices of the base model 

nd the enhanced model are shown in Fig. 6 . 

. Discussion 

Results shown in Table 1 provide a visible effect of reducing in- 

ut dimensions on the classification accuracy. Since the deep neu- 

al network is not the optimal solution for digit classification, we 

ould not expect near-hundred percent accuracy; we also use a 

imited amount of data for network training, making it even more 

ifficult to classify data points correctly. Because all cases had the 

ame framework, we were able to isolate input dimensionality and 

ompare the results. By reducing the number of variables that the 

etwork is learning from, we could increase the initial accuracy 

f 80% to 86-88%. The ‘optimal’ number of variables for this case 

tudy is between 150 and 50. Reducing dimensionality further may 

esult in unnecessary loss of variability, which can lead to reduced 

rediction accuracy. This work showed that kPCA can be success- 

ully applied to complex datasets and can result in more accurate 

lassifications. Considering reliability, this can help detect and clas- 

ify faults with less error, and increasing model accuracy by 10% is 

 significant upgrade. Applying this technique is suited for indus- 

rial process data which is complex. 

In this work, we also showed the benefit of splitting the model 

nto fault detection and fault classification. Having the same con- 

traints, we achieved a slight increase in overall classification ac- 
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Table 4 

Results of different model configurations for the TE process. 

# Description FDD accuracy 

1 Single neural network. 97.4% 

2 Double neural network configuration. 98.3% 

3 Single neural network-assisted by kPCA. 99.4% 

4 Double neural network configuration assisted by kPCA (the proposed model) 99.5% 

Fig. 6. Confusion matrices for classification of digits with 52 inputs (left) and 25 inputs (right) for TE process estimation. 
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uracy, which may be beneficial in process data analysis. We ini- 

ially predicted that the main downside to this model would be 

he increase in tuning complexity: since we have two models in- 

tead of one, we must tune double the parameters. However, by 

plitting the task into detection and classification, we reduced the 

umber of output nodes, which increased the speed of network 

raining. This allowed quickly to tune parameters for one model, 

et relevant results, and then focus on the second model. In the 

nd, comparing to a single neural network, we spent far less time 

orking with two networks. Larger datasets may result in longer 

raining times, and therefore will take longer to adjust parameters 

or optimal results. Providing an option to significantly reduce this 

ime while not losing accuracy is another outcome of this paper. 

Then, we applied different model setups for a reduced dataset 

f the TE process. It was shown that splitting diagnosis and de- 

ection into separate neural networks can be successfully applied 

o a chemical process. It results in a slight increase in classifica- 

ion accuracy, reduced training times, and eases the tuning process. 

n addition, the application of kPCA as a dimensionality reduction 

echnique to the data helped increase the accuracy even further. 

y reducing the complexity of the training dataset to 25 variables, 

he model was able to diagnose faults with 99.4-99.5% accuracy. 

 similar study achieved 97.3% accuracy using DNN in detection 

nd diagnosis of faults in TEP ( Heo and Lee, 2018 ), however they

sed a complete dataset. This is similar to our result using base 

odel (97.4%). Although we cannot make direct comparison be- 

ween studies with complete and incomplete dataset, the improve- 

ent from a hybrid approach cannot be overlooked. We conclude 

hat this model could be applied to chemical processes with large 

imensionality and produce more accurate results. DNN was used 

s an example of a ML method in this work, and it is suggested 

hat other combinations of kPCA and ML mechanisms are explored 

or potential increase in FDD performance. 

A downside to this model is that it is not clear how much vari-

bility is lost during kPCA. It is suggested to add a step to con- 

rm that the reduced dataset is an accurate representation of the 

rocess. Another downside to using kPCA is its difficulty in han- 

ling large and/or dynamic datasets. The basic kPCA algorithm is 

ot flexible and does not allow the addition of data to improve the 
7 
odel. For this reason, in the case study, we had to use a sim- 

lified version of the TE process. In reality, it is essential that the 

odel is regularly updated and new data is tested in real-time. 

his can be overcome by utilizing a modification of kPCA, such as 

wo-phase incremental kPCA (TP-IKPCA) ( Zhao et al., 2019 ). The au- 

hors concluded that the enhanced model produces similar results 

o conventional kPCA, but is computationally faster, and it can be 

sed for large and dynamic datasets. Another challenge of the pro- 

osed model is that both kPCA and DNN are trial and error depen- 

ent. The success of the model will largely depend on the model 

etup and parameter selection. It is suggested to look into the cor- 

esponding literature for kPCA and DNN to determine appropriate 

odel configurations. 

. Conclusion 

This paper proposes a hybrid model that combines kPCA and 

eep neural networks to help detect and diagnose faults. The nov- 

lty of the work lies in the successful application of the proposed 

ybrid model by reduction of the dimensionality of a complex 

hemical process dataset and splitting the detection and diagnosis 

ask between two DNNs to achieve higher accuracy of data inter- 

retation. 

We treated fault detection and diagnosis as classification prob- 

ems in the MNIST digit classification dataset; and then applied the 

odel to the TE process. The first part of this work concentrated 

n the application of kPCA to process data, and we showed that 

educing the dimensionality of input data had allowed neural net- 

orks to train more proficiently, resulting in improved classifica- 

ion accuracy (by approximately 10%). Then, we demonstrated that 

ividing fault detection and diagnosis into two separate neural net- 

orks could further improve overall accuracy and reduce network 

raining times. Using the hybrid model brought the FDD accuracy 

n the TE process to 99.4-99.5%. 

However, while training times were noticeably reduced in the 

ater stages of the hybrid model, the model needs a significant 

mount of time in the early stage, where input data is processed 

ia kPCA. In addition, the model in its current state cannot work 

ith large amounts of data points and dynamic data. This can be 
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vercome by adopting variations of kPCA explicitly aimed to cover 

he weaknesses of conventional kPCA. In this work, we did not fo- 

us on the effects of layer configuration and interactions between 

PCA and other types of networks, which could be the focus of fu- 

ure research. 
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