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Abstract

Reinforcement Learning (RL) controllers have generated excitement within the control community. The
primary advantage of RL controllers relative to existing methods is their ability to optimize uncertain
systems independently of explicit assumption of process uncertainty. Recent focus on engineering
applications has been directed towards the development of safe RL controllers. Previous works have
proposed approaches to account for constraint satisfaction through constraint tightening from the
domain of stochastic model predictive control. Here, we extend these approaches to account for
plant-model mismatch. Specifically, we propose a data-driven approach that utilizes Gaussian processes
for the offline simulation model and use the associated posterior uncertainty prediction to account for
joint chance constraints and plant-model mismatch. The method is benchmarked against nonlinear
model predictive control via case studies. The results demonstrate the ability of the methodology to
account for process uncertainty, enabling satisfaction of joint chance constraints even in the presence of
plant-model mismatch.

Keywords: Safe Reinforcement Learning, Optimal Control, Dynamic Optimization, Bioprocess
Operation, Machine Learning

1. Introduction

Recently, there has been growing interest amongst the research community and industry in the
development of reinforcement learning (RL) based control schemes [1]. This is underpinned by the
ability of RL to naturally account for process stochasticity and handle nonlinear dynamics, and reflected
by a growing literature that demonstrates application empirically in applications ranging from set
point control [2, 3], online optimisation and control of batch processes [4, 5], real time optimisation [6]
and production scheduling [7]. All of these works rely on offline simulation of a process model, with
results often validated on the same model that the RL policy was trained. This implicitly considers
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that the model used offline is in fact a perfect description of the real process and, in the context of
control, provokes the question: ”if a model is available, why not use model predictive control (MPC)?”.
In practice, the real system is never perfectly described by the available model. In the presence of
uncertainty, the predictions from a model may not have closed-form expression, e.g. propagation of
uncertainty using Bayesian inference. Here lies the real attraction of RL controllers - the ability to
find an optimal control policy [8, 9] independently of closed-form expressions of the uncertain process
dynamics, as is required by conventional finite dimensional optimization approaches such as stochastic,
tube and distributionally robust MPC [10, 11, 12]. Additionally, the use of RL allows for a greater
diversity of models i.e. they are not required to be smooth.

However, there is a dualism implicit to RL. RL is very data expensive because knowledge about
the uncertain dynamics and the quality of a control policy is instead gained by sampling [13]. Offline
learning (simulation) is absolutely required due to the cost of real world data and the operational and
safety risk associated with conducting the RL process online. As a result, there remains a dependence
on the availability of a description of the physical system for offline simulation, which provides means
to conduct preliminary learning before deployment to the real system. Despite this, few works consider
the transfer of the policy [14] to the real online system, which promotes concerns for operational safety1.
For example, if model-process mismatch exists, constraints may be violated or the process driven to
unsafe operating regimes. Given the acknowledgement that no model is a perfect description of the real
process - the development of methods should consider that RL exploits the mathematical nature of the
offline model. Similar concerns are addressed in [15].

Broadly, there are two approaches to synthesising the type of safe controller required: modifications
could be made to the reinforcement learning process [16, 17, 18], or modifications made to the offline
model [19, 20], which can then be integrated into the RL objective. Recent works are discussed in the
following with consideration directed to both operational and safety concerns.

1.1. Safe Reinforcement Learning

One of the earliest works in process systems engineering (PSE), which considers the online operational
safety of reinforcement learning is provided by [21]. Here, the authors present an action-value method,
with integration of a Parzen probability density estimator [22] to bias the action-value function
approximation based on the local data density. In this case, the data is used to construct the action-
value function and hence the data density helps quantify epistemic uncertainty (i.e. the reducible part
of model uncertainty arising from a lack of information - data or knowledge - about the underlying
functional [23]). This concept is shared in more recent work [24], and enables the implementation
to produce conservative controls and restricts optimization from exploiting the mathematical nature
of the approximate action-value function. However, this approach does not consider operational
constraints or the accuracy of the underlying model. For RL to be deployed to real process systems,
operational constraints should be satisfied with high probability (if soft). One approach to achieve
this is underpinned by modification of the control selected by the RL agent, in order to ensure the
system remains within some safe set via direct optimal control (DOC) [25, 26]. However, the use of
DOC retains explicit dependence upon a process model and imposes non-trivial learning rules that
could affect the optimality of the policy produced.

Other methods directly leverage the Markov decision process (MDP) formulation, upon which
the reinforcement learning problem is built. This approach tends to avoid DOC and promotes use

1This is also placed in the scope of a wider concern regarding the interpretability of machine learning systems
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of ’model-free’ methods. A reasonably popular approach to address constraints in the RL setting
is provided by the constrained MDP (CMDP) formulation. In [27], the authors approach the need
for satisfaction of operational constraints via CMDP, but do so in expectation and simultaneously
negate process-model mismatch. In [28], the authors propose the identification of a lyapunov function
(this time model-free and outside of the CMDP framework) to ensure the process stays within some
safe set with a given probability. However, potential issues arising from plant-model mismatch are
similarly ignored in offline simulations. In [29], an approach to robust control is presented (i.e. the
method optimizes for the worst case event), and the presence of process-model mismatch is considered.
However, the framework is limited to linear systems with additive uncertainty. Recently, in [30] the
authors present an approach to address high probability constraint satisfaction based on the augmented
lagrangian. However, the penalty term presented does not provide information about the quality of
control selection (i.e. essentially ignoring the RL problem) and is likely to lead to conservative control
policies. There have been two methods proposed recently, by [31, 32], which integrate a similar penalty
method into the RL problem properly, and achieve high probability constraint satisfaction. This is
achieved through deployment of the concept of constraint tightening, which is common to the stochastic
MPC (sMPC) community [33, 34, 35]. A further method has been proposed by [36] for the case of
hard constraints, which constructs a slow non-stationary MDP to promote stability of learning via the
implementation of a dynamic penalty method. However, the aforementioned works negate the presence
of offline model-process mismatch.

Most of the previous works ignore issues arising from process-model mismatch. The domain of
batch RL (otherwise known as offline RL) has drawn a lot of recent research interest [37]. The promise
of this field lies in the synthesis of real-world control policies from existing datasets (offline). The
key idea in batch RL is to learn with awareness of the limitations of the available data. Many of the
works set in this domain focus on action-value methods and look to bias (or regularise) the action-value
function approximation [17] by considering the data density [16] in a manner not dissimilar to [21].
More recently, attention has been directed towards considerate construction of an offline model, based
on the available data and this directs attention in the following analysis.

1.2. Uncertainty Aware Modelling and Control

A key consideration in the development of model-based RL approaches is the relationship between
model construction and policy learning. For example, in [38], the problem of learning under the
limitations of a local model and improving policy performance on the real process is considered within
a game theoretic framework (similar to model-based design of experiments). However, it is not clear as
to whether this approach would ensure real-process safety unless modifications were made to the reward
function. This problem is approached by the work presented in [39] and more recently in [19]. In [40],
the authors integrate RL into a robust, linear MPC scheme, by using an RL policy to parameterise an
uncertainty set. This allows for ensurance of optimality under the scheme, but is traded at the price of
restrictive modelling assumptions. In [41], model uncertainty is incorporated into a penalty function for
RL, however, the uncertainty estimate is gained through approximate methods such as bootstrapping
and MC dropout, which provides computational cost. In [19], the epistemic uncertainty associated
with offline prediction is quantified via the variance of a model ensemble. The epistemic uncertainty
is used to modify the reward function of the MDP to synthesise a safe control policy without further
interaction with the real system. A type of model, which achieves this more naturally than an ensemble,
is the Gaussian process (GP). GPs are data-driven models and their use is well documented in PSE
applications [42, 43, 44, 45, 46]. In part, this is due to their compatibility with small datasets, but
primarily for their natural quantification of epistemic and aleatoric uncertainty. In a number of previous
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works, (realisations of) GPs have been used to inform control decisions. Most of these works lie in the
domain of sMPC [44, 47], however, a few hail from the field of RL-based policy optimization [48, 49, 50].
In [48], the authors compute gradients for policy improvement analytically, resulting in a highly efficient
algorithm for unconstrained problems. In [49], the authors utilise GPs and the variance of the posterior
distribution to produce a controller-directed exploration strategy, but negate propagation of model
uncertainty and, again, process constraints. Whereas [50] present an algorithm that simultaneously
balances exploration and exploitation of a GP model, considers constrained problems and provides
stability guarantees for the policy identified. In the following, we draw from works closer to sMPC
[47, 44], to synthesise a safe RL-based control policy, which considers both operational constraints and
process-model mismatch.

1.3. Contribution

A number of RL-based methodologies have been proposed to ensure operational constraints are
satisfied with high probability [32, 31, 30]. Other works have been proposed to consider the process-
model mismatch that exists when learning an RL policy offline [16, 19, 18]. However, as far as the
authors are aware, there are no RL methods, which achieve both. In this work, we propose a method that
synchronously satisfies operational constraints with high probability, whilst respecting the limitations
of a process model. Specifically, we deploy the use of GPs to construct a data-driven state space model.
The variance of the posterior predictive distribution of the GP is used in two different ways: firstly,
it provides a constraint tightening mechanism to back the nominal (or expected) process away from
the constraint boundary (to provide constraint satisfaction with high probability); and, secondly, it is
used to penalise exploration of regions of the GP model with high epistemic uncertainties. The full
method as proposed also implements a Bayesian optimization strategy in order to tune the degree
of constraint tightening - balancing operational risk with performance. Here, we draw analogue to
reward shaping, except in this case, we identify a policy variant mechanism for constraint satisfaction
as desired [51]. Importantly, the dimensionality of the shaping problem is equivalent to the number of
operational constraints imposed on the system, which provides means to scale the method to larger
problems. Further advantages include the inheritance of the MDP framework - which theoretically
enables us to account for uncertainty in a proper closed loop manner - as well as the mitigation of
resolving an optimization problem online (as is required by conventional methods). Instead controls are
selected via inference, which lends itself naturally to handling systems of both fast and slow dynamics.
Additionally, the approach is completely data-driven and synchronously accounts for model uncertainty,
removing demands for assumption of mechanistic process knowledge.

The following is structured as follows: in Section 2, we outline the problem statement and implicitly
define the processes of interest; in Section 3, the methodology is presented; in Section 4 a fed-batch
bioprocess case study is presented with a view to demonstrate the methodology; in Section 5 and 6 the
results and discussion, and conclusion are presented, respectively.

2. Problem Statement

This work is concerned with the synthesis of an optimal control strategy for nonlinear, uncertain
systems of the form:

xt+1 = f(xt,ut, st) (1)

where x ∈ X ⊆ Rnx denotes the system state; u ∈ U ⊆ Rnu the control inputs to the system;
t = [1, . . . , T ] denotes the discrete time index; s ∈ S ⊆ Rns , where S represents a set of realisations of

4



process stochasticity; and, f : X×U×S→ X. Here, no formal assumption is made regarding the source
of stochasticity S, but it could be introduced via parametric uncertainty or disturbances. In either case,
given the presence of stochasticity within system description, Eq. 1 may be expressed equivalently via
the following conditional probability density function:

xt+1 ∼ p(xt+1|xt,ut) (2)

Specifically, it is assumed that the process dynamics adhere to description as a Markov process, and
therefore that the associated decision-making problem may be formalized as a Markov decision process
(MDP). MDPs provide a probabilistic value framework for decision making in uncertain systems, which
display the Markov property. Under the MDP framework, the probability of observing a given process
trajectory p(τ ), under a control policy π is described:

p(τ ) = p(x0)

T−1∏
t=0

π(ut|xt)p(xt+1|xt,ut) (3)

where τ = (x0,u0, . . . ,xT ) denotes the process trajectory; p(x0) denotes the initial state distribution;
p(xt+1|xt,ut) the process dynamics; and the policy π(ut|xt) is explicitly defined as a conditional
probability function over control inputs. Provided process evolution is subject to a stochastic policy
and process dynamics, the performance of a policy is evaluated via the expected discounted sum of
rewards Rt+1 ∈ R accumulated from the initial state:

G(τ ) =

T−1∑
t=0

γtRt+1

J =

∫
p(τ )G(τ )dτ

(4)

where the reward is allocated by a reward function R : X×U×X→ Rt+1 and γ = [0, 1] is the discount
factor. Therefore, the optimal policy π∗:

π∗ = arg max
π

J (5)

One approach to learning such a controller is via Reinforcement Learning (RL). However, under the
framework provided by MDPs, the optimal policy π∗ (and, hence RL) implicitly neglects the satisfaction
of both safety and operational constraints. In applications related to this work (i.e. industrial batch
process systems), the satisfaction of both operational and safety constraints is of concern. As such, it
is of interest to develop an RL-based methodology for the synthesis of an optimal control policy π∗C ,
which respects constraints. The problem statement follows that common to works set in the domain of
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stochastic optimal control:

P(πC) :=



max
π

J

s.t.

x0 ∼ p(x0)

xt+1 ∼ p(xt+1|xt,ut)
ut ∼ π(ut|xt)

ut ∈ Û

P(

T⋂
i=0

{xi ∈ X̂i}) ≥ 1− α

∀t ∈ {0, ..., T − 1}

(6)

where Û ⊂ U represents the set of control inputs, which satisfy hard constraints on the control space;
and, X̂ ⊂ X denotes the set of states, which satisfy operational and safety constraints imposed on the
state space. Under the assumption that the problem definition may have ng constraints, X̂ may be
expanded more generally as the joint chance constraint set, such that:

X̂t = {xt ∈ Gj,t,∀j ∈ {1, . . . , ng}} (7)

where Gj,t ⊂ Rnx defines the set of states, which ensure satisfaction of the jth constraint at time step t.
Specifically, in the following analysis, we assume that:

Gj,t = {xt ∈ Rnx : ATj xt − bj ≤ 0} (8)

where Aj ∈ Rnx and bj ∈ R define the jth constraint. The general principles discussed subsequently
extend to problems with nonlinear constraints. However, in that case, the constraints should be
represented by lower order power series expansions of the nonlinear functions [52] i.e. the nonlinear
expressions should be linearized. Given that the process is stochastic, the constraints are ’softened’
such that satisfaction is guaranteed for all time t = {0, . . . , T} with a desired probability, denoted 1−α.

Theoretically, solution to Eq. 6 may be realised via exact dynamic programming (DP), which
requires exact descriptions of the probabilistic process dynamics. In process systems, these are typically
unavailable. Further, DP is known to suffer from the the curse of dimensionality, which implies
that high dimensional problems, or those that operate over continuous state and control spaces, are
computationally intractable. In the domain of sMPC, works generally leverage reformulation of the
problem via deterministic expressions for the joint chance constraints and modelling assumptions
regarding the nature of process stochasticity [33, 53]. This work similarly forms a deterministic
surrogate of Eq. 6 in combination with Gaussian process (GP) data-driven modelling, and identifies a
reinforcement learning (RL) based control policy, which naturally accounts for process stochasticity in
a closed-loop manner. These benefits are complementary to those noted in Section 1.3. In the following
section, a methodology is proposed for synthesis of the controller πC .

3. Methodology

3.1. Gaussian Processes for Data-Driven Dynamic Modelling

Model-free RL-based policies are learned through Monte Carlo (MC) sampling of the process
dynamics and iteratively improved based on the collected data. This is otherwise known as policy
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iteration. For real world applications, the synthesis of RL-policies is dependent upon an accurate
description (model) of the process dynamics. For nonlinear, uncertain processes, construction of
mechanistic dynamical models can be problematic, even if understanding of the fundamental mechanisms
driving process behaviour exists. Hence, the construction of a purely data-driven model is proposed
to represent the discrete time, evolution of the nonlinear, uncertain dynamical system described by
xt+1 = f(xt,ut, st), i.e. Eq 1. In order to construct a representation of the system dynamics, it is
assumed that: a) f is a smooth function and b) there is an available dataset D, which is composed as
follows:

D = [ΥT YT ], Y = [yi, . . . ,yN ], Υ = [υi, . . . ,υN ], υi =
[
xTi uTi

]T
, (9)

where υ ∈ V ⊆ Rnυ , nυ = nx +nu are input measurements and y ∈ Y ⊆ Rnx are output measurements
of the system, which are gathered subject to some noisy process ω ∈W ⊆ Rnx [54]. Here, W is assumed
to be an infinite set representative of possible realisations of system noise, such that:

yi = f(υi) + ωi

ωi ∼ N (0,Σn)
(10)

where Σn = diag([σ2
n,1, . . . , σ

2
n,nx ]) ∈ Rnx×nx defines a diagonal matrix, where each element on the

diagonal denotes a state dependent variance. Further, as usual, it is assumed that all datapoints
di = [υi,yi] (equivalent to rows of D) are independently and identically distributed (i.i.d.). Parallel
can be drawn between Eq. 2, such that Eq. 10 is equivalently described as a conditional probability
function y ∼ p(y|υ). This description of data generation shares similarities to assumptions made in
Section 2 and directs attention to a branch of probability theory known as stochastic processes (SPs),
and in particular Gaussian processes (GPs).

3.1.1. Gaussian Processes

SPs define a probability model over an infinite collection of random variables, any finite subset of
which have a joint distribution [55]. This definition leads to the interpretation of SPs as probability
distributions over functions [54], such that one realisation of an SP can be thought of as obtaining a
sample from a function space. When the distribution over the function space is assumed Gaussian, the
resultant model is termed a GP.

A GP is fully specified by a mean function, m : V→ R, and covariance function, k : V× V→ R,
such that:

fGP (υ) ∼ GP
(
m(υ), k(υ,υ′)

)
(11)

A number of covariance functions exist within the GP toolbox. Selection of both the function and
the associated hyperparameters, λ ∈ Rnλ , define the properties of the GP in function space. As
such, the decision as to appropriate covariance function is often informed by domain knowledge and
understanding of the modelling problem at hand. The definition of hyperparameters is handled by
maximisation of the marginal log-likelihood (this is discussed in Appendix A.1.1 and referred to as GP
training). Popular choices include the Matern 5/2 and radial basis function (RBF) covariance functions
[54]. Definition of the mean function is also important. Often, a zero mean (m(υ) = 0) is assumed,
which is not unreasonable given standardisation of the output data, Y.

GP model inference takes place within the framework provided by Bayesian reasoning. The assertion
of a modelling decision regarding the mean and covariance function therefore represents a prior belief
about the possible properties of the hidden, functional relationship expressed in the dataset D. When
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presented with a new test input υ∗ ∈ Rnυ , the construction of a single GP model for the jth state leads
to the generation of an associated prediction y∗j ∈ R via the following joint prior distribution:[

YT
j

y∗j

]
= N

(
0,

[
K + σ2

nIN K∗
KT
∗ k(υ∗,υ∗)

])
(12)

where Yj ∈ R1×N denotes the jth row of the output of the training dataset Y; K ∈ RN×N denotes
the Gram matrix, such that provided with training input measurements (see Eq. 9), element km,n =
k(υm,υn), where m = [1, . . . , N ] and n = [1, . . . , N ]; σ2

n denotes the variance of the noise associated
with observation of state yj ∈ R (see Eq. 10); K∗ ∈ RN denotes the covariance of the test datapoint
υ∗ with the existing (training) input measurements; and, lastly, k(υ∗,υ∗) ∈ R represents the variance
of the test datapoint.

Furthermore, as GPs operate through Bayesian reasoning, by conditioning the joint prior distribution
(Eq. 12) upon the observed dataset D and the test point υ∗, we obtain a predictive posterior Gaussian
distribution, with mean µj and variance σ2

j as follows:

µj(υ
∗) = KT

∗ (K + σ2
nIN )−1YT

j

σ2
j (υ∗) = k(υ∗,υ∗)−KT

∗ (K + σ2
nIN )−1K∗

(13)

In the context of dynamical systems modelling, Eq. 13 represents a probability model over the next state
of the dynamical system at the next discrete time index. The construction of a posterior probability
function is particularly useful in engineering applications, given that it expresses elements of both
aleotoric and epsitemic model uncertainty. Typically, the mean is taken as the model’s prediction,
however, prediction may also be directly sampled from posterior distribution [45]. This will be discussed
further in section 3.1.3.

Thus far, the methodology has formalised the construction of GPs, and defined them as multiple-
input, single-output models. Hence a single GP provides a functional mapping descriptive of the future
discrete time evolution of a single state, given observation of the full system state and control inputs at
the current time index. It is of interest to this work to construct a multiple-input, multiple-output
state space model. This is discussed subsequently in Section 3.1.2 and has been presented previously
by other related works [44, 47, 48]. We direct the interested reader for more information.

3.1.2. Gaussian Processes for State Space Modelling

In this study, state space models are constructed by training nx GP models separately and combining
them to simultaneously predict the state vector x ∈ Rnx at the next discrete time interval, t + 1.
Specifically, under the assumption that each of the nx models has been constructed and trained
according to Section 3.1.1 and Appendix A.1.1, this implies that the the posterior prediction from the
GP state space model, when presented with υt follows:

µ(υt;D) =
[
µ1(υt), . . . , µnx(υt)

]
Σ(υt;D) = diag(σ2

1(υt), . . . , σ
2
nx(υt))

xt+1 ∼ N
(
µ,Σ

) (14)

where µ ∈ Rnx and Σ ∈ Rnx×nx amd xt+1 ∈ Rnx is the next state . In the following section, we discuss
how the GP state space model is used to generate realisations of underlying process stochasticity, and
relate discussion directly to the decision making process.
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3.1.3. Gaussian Process Realisations and Decision Making

For effective and safe control and optimization of process systems, a control policy must consider
worst-case realisations of process stochasticity. In GP models, function realisations are sampled from
the GP. Each function realisation represents a specific instance of model uncertainty across process
evolution - including the worst case. In order to achieve this, model uncertainties must be propagated
correctly. This work implements the method detailed in [47], which recursively updates the dataset
D as the process evolves between discrete time indices. This process is detailed by Algorithm 3 in
Appendix A.1.2 and relies upon linear algebra to account for the effects of conditioning the GP models
on the updated dataset. See [44, 56] for more details.

In the following section, an approach that synchronously combines concepts from sMPC and RL
to produce a self-optimizing, policy varying reward shaping mechanism is presented, which provides
probabilistic constraint satisfaction. Specifically, a penalty function method is combined with the
concept of backoffs.

3.2. Safe Chance Constrained Policy Optimization with Gaussian Processes

In this section, we provide details of the methodology, which enables combination of GP state space
models with RL-based policy optimization for high probability constraint satisfaction. To achieve this,
the methodology is organised as follows and the full algorithm is detailed by Algorithm 2:

1. In Section 3.2.1, the general stochastic optimal control problem defined by Eq. 6 is modified
to consider the nominal evolution of the states and obtain a deterministic expression for the
probabilistic joint constraints. To facilitate this, we implement an approach similar to [31] in
combination with a GP state space model.

2. In Section 3.2.2 the deterministic surrogate constraints are incorporated into a reformulation of
the RL objective (see Eq. 4) via an lp penalty function2 [57, 58] and detail of a general constrained
policy optimization algorithm is provided [59].

3. Then, in Section 3.2.3, an ’efficient’ global optimization strategy [60] is presented to iteratively
tune the penalty function enabling satisfaction of the original joint chance constraints with the
desired probability 1− α establishing a strong connection between this work and reward shaping
[51].

The methodology is formalized with a view to the use of policy optimization methods, however, the
concepts discussed can also be integrated into actor-critic and action-value methods [13].

3.2.1. Probabilistic Joint Chance Constraints

In this section, reformulation of the probabilistic joint chance constraint detailed by Eq.6 is presented.
The joint chance constraints are restated here for ease:

P(

T⋂
i=0

{xi ∈ X̂i}) ≥ 1− α (15)

The following analysis proceeds to obtain a set of deterministic surrogate constraints, which can then
be integrated into a revised objective for RL-based policy optimization. In particular, we leverage

2The subscript p of lp denotes the norm incorporated into the penalty function
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Boole’s inequality and the Cantelli-Chebyshev inequality to obtain a deterministic constraint for each
of those that comprise the original joint constraint. The analysis follows [61, 62].

Lemma 1. Boole’s Inequality [63]: Consider a finite set of countable events {Z1, Z2, . . . , Zng}, the
probability that one of these events occurs is no greater than the sum of the probabilities of the individual
events:

P
( ng⋃
i=1

Zi

)
≤

ng∑
i=1

P(Zi) (16)

Now, considering ng constraints comprise the joint chance constraint, then applying this result
enables decomposition of Eq. 15, into ng individual chance constraints. As in [31], for ease of notation,
we define the following:

X = max
(t,j)∈{0,...,T}×{1,...,ng}

Ajxt − bj , g = {x ∈ Rnx : X}, G
′

j =

T⋂
i=0

{xi /∈ Gj,i}

where G′j defines the set of states, which do not satisfy constraint j for all time indices and X ∈ Rnx
defines a random variable. From Lemma 1:

P
( ng⋃
j=1

{g ⊂ G
′

j}
)
≤

ng∑
i=1

P(g ⊂ G
′

j) (17)

Explicitly, Eq. 17, dictates that the probability of achieving joint constraint satisfaction under a given
policy π is lower bounded by the probability of satisfying each of the respective constraints individually.
Therefore, guaranteeing satisfaction of chance constraints individually can be considered a robust
approximation to joint satisfaction:

ιj = P(g ⊂ G
′

j) =⇒ α ≤
ng∑
j=1

ιj

where ιj ∈ R, subject to satisfying Eq. 17. This enables approximation of Eq. 15 via the following:

ng∑
j=1

P
( T⋂
i=0

{xi ∈ Gj,i}
)

= 1−
ng∑
j=1

ιj (18)

In this work, we define ιj = α/ng, j = [1, . . . , ng]. Having decomposed the original joint chance
constraint into a set of individual chance constraints, the methodology looks to express a set of
deterministic surrogate expressions (of the original probabilistic chance constraints), which can then be
incorporated into the method presented.

To proceed, we deploy the concept of constraint tightening, which is an approach commonly deployed
within the domain of sMPC. The intuition behind constraint tightening is described as follows. The
process of concern is subject to unbounded uncertainties. We consider that under a given policy π,
the process will vary probabilistically within a given region of X̂t. Specifically, one can assume that
the process will vary within some euclidean distance from the nominal or expected behaviour with a
given probability. If we back the nominal process off from the constraint boundary then we will be
able to achieve chance constraint satisfaction with the desired probability. This is underpinned by the
Cantelli-Chebyshev inequality, which is described by Lemma 2
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Lemma 2. Cantelli-Chebyshev Inequality [64]: Consider a random variable Z, with expected value
E
[
Z
]

and finite variance Σ[Z], then:

P
(
Z − E

[
Z
]
≥ δ
)
≤

Σ
[
Z]

Σ[Z] + δ2

The mechanism of constraint tightening takes the form of a set of backoffs εj = [εj,0, . . . , εj,T ],
which can be conceptualised as the necessary euclidean distance from the expected or nominal state
x̄t ∈ Rnx to the constraint boundary to guarantee chance satisfaction with a given probability (note,
backoff values are specific to both the constraint and time index). As stated in Section 2, the analysis
provided in this work assumes affine constraints. Therefore, the tightened constraint sets follow:

Ḡj,t = {x̄t ∈ Rnx : ATj x̄t + εj,t − bj ≤ 0}
X̄t = {x̄t ∈ Ḡj,t,∀j = {1, . . . , ng}}

(19)

The determination of the backoff values εj,t is handled via the following analysis. Specifically, we
work from the developments made in [62, 65], which (via Lemma 2) show that the Cantelli-Chebyshev
approximation of the backoff set is equivalent to:

εj,t =

√
1− ιj
ιj

√
ATj Σ[xt]Aj (20)

where εj,t represents a robust approximation of the backoff required for individual chance constraint
satisfaction with the desired probability ιj . In this work, we deploy a GP state space model to estimate
both the nominal state x̄ ∈ Rnx and the variance of the state Σ[xt], as described by Eq. 14, enabling
construction of a deterministic expression for each of the individual chance constraints. In practice,
it is well documented that use of the Cantelli-Chebyshev approximation leads to overly-conservative
control policies, which operate far from the constraint boundary. In order to balance the performance
of the control trajectory, with constraint satisfaction, we propose to tune εj,t via a multiplying factor
ξj = [0, 1] for each constraint. As such, the deterministic surrogate for each of the individual chance
constraints, detailed by Eq. 18, are described:

ATj x̄t + ξj

√
1− ιj
ιj

√
ATj Σ[xt]Aj − bj ≤ 0 (21)

The approach to the tuning of the multiplying factors, ξ = [ξ1, . . . , ξng ], could be handled via Bayesian
optimization (BO) or bisection method [31, 44, 32]. This work employs a BO strategy, which is detailed
by Section 3.2.3. The computational implications for this are small given the efficiency of BO.

The use of a GP to parameterise the backoff values εj is more efficient than the set of methods
proposed previously by [31, 32]. In those works, initial backoff values were estimated via MC sampling
and then tuned. Here, we provide a method to analytically express the backoff values via the posterior
predictive distribution of the GP state space model, removing the requirement for sampling and the
potential inaccuracies it brings in initialisation. This is the primary novelty of this work.

The methodology has now obtained a set of deterministic surrogate constraints for joint chance
constraint satisfaction. Identification of these expressions enables reformulation of the original problem
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statement P(·) described by Eq.6 as follows:

P̂(πC) :=



max
π

J

s.t.

x0 ∼ p(x0)

xt+1 ∼ N (µ(υt),Σ(υt))

ut ∼ π(ut|xt)

ut ∈ Û
xt ∈ X̄t
∀t ∈ {0, ..., T − 1}

(22)

where υt =
[
xTt uTt

]T
and solution to P̂(·) is equivalent to that of the original P(·). Due to the presence

of a GP state space model within the problem description, P̂ is a function space optimization problem.
Previous works have solved this problem via nonlinear MPC with precalculation of the backoff values,
and description of the discrete time state evolution according to the mean of the GP (equivalent to the
nominal process) [44]. In this work, we use RL to solve P̂ (hence the use of function realisations and
Algorithm 3, detailed by Appendix A.1.2) with incorporation of the deterministic surrogate constraints
into a modified RL objective. This is achieved via an lp penalty function, under a given value of the
backoff multipliers, ξ. Solution to this problem under the optimal backoff multipliers ξ∗ is deemed
equivalent to finding solution to Eq. 22 as discussed subsequently.

3.2.2. Safe Constrained Policy Optimization with Fixed Backoffs

As GPs express process uncertainties, they present an avenue to synthesise policies, which only
exploit regions of the state space in which the model is confident of the true process behaviour i.e.
where epistemic uncertainties are low. By incorporating the variance prediction, Σ(υt), of the GP
state space model posterior directly in the RL performance index, we force the ultimate RL policy to
avoid the areas that the GP is uncertain and provide explicit mechanism to mitigate exploitation of the
mathematical nature of the GP model. Hence the policy pessimistically accounts for the limitations of
the data-driven model when deployed to the real process.

Use of the l1 or l2 penalty functions is particularly appealing because of the exactness (under certain
conditions) to the solution of P̂ [57]. This would further preserve the approximation provided by Eq.
22 to Eq. 6. The general penalty function, ϕp : X× U× X→ R is detailed as follows:

ϕp(x,u, t) = Rt+1 − tr
(
ζΣ[υt]

)
− κ

∥∥[ATxt+1 + εt − b]−
∥∥
p (23)

where A ∈ Rnx×ng and b ∈ Rng define the set of inequality constraints; εt ∈ Rng the set of backoff
values relevant to the set of constraints at a given time index (see Eq. 21); [z]− = max(0, z) defines an
element wise operation over z ∈ Rng ; ‖·‖p the general p-norm; Rt+1 ∈ R the rewards accumulated under
the original process objective e.g. productivity maximisation in a (bio)chemical process; and, κ ∈ R
and ζ ∈ Rnx×nx (a diagonal matrix) weight the penalty for constraint violation and model uncertainty,
respectively - relative to Rt+1. The incorporation of model uncertainty, therefore, is represented by
the term tr

(
ζΣ[υt]

)
. It is expected that in some cases there is likely to be a dependence between the

uncertainty and constraint penalty terms, which may lead to over-penalisation of constraint violations.
This may favour the identification of conservative policies, although this is likely to be case dependent
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and may be mitigated by the tuning process discussed in Section 3.2.3. Expression of the penalty
function, enables redefinition of the RL objective J(τ ) via J̄C(τ ):

ḠC(τ ) =

T−1∑
t=0

γtϕp(x,u, t)

J̄C =

∫
p(τ )ḠC(τ )dτ

(24)

It is hypothesised that RL-based optimization of this new objective will synthesise a policy, which
provides chance constraint satisfaction and exploits regions of the state space well characterised by the
model - encouraging the learning of inherently safe control policies. Further, because the modifications
are made directly to the reward function itself, the approach is compatible with any RL method. Given
the GP state space model is constructed over continuous state and control variables, as usual, the RL
can learn a parameterisation of the optimal constrained policy:

π∗C(u|x; θ, ·) ≈ π∗C(u|x)

π∗C(·, θ) = arg max
θ

J̄C
(25)

where θ ∈ Rnθ denotes a vector representation of the policy parameters (typically the weights and bias
of a neural network). A general algorithm for constrained policy optimization under a fixed set of
backoff values is provided by Algorithm 1. These backoffs are adjusted via BO - details are presented
later in the manuscript in Section 3.2.3 and Algorithm 2.

The description provided by Algorithm 1 considers all on-policy policy optimization approaches,
denoted generally as fPO(·), although there is no reason the approach could not utilise an off-policy
method too [32]. The detail provided formalises the process of obtaining function space realisations
from the GP state space model, fGPSS , each of which represents a potential instance of the uncertain
process detailed by Eq. 1. Every process trajectory is ranked according to Eq. 23 and the current
iterate of backoff multiplier, ξ, values. Using the collected experience (including relevant information
that describes decision making), stored in the memory, Binfo, the weights of the policy are updated
by fPO(·). This is repeated until a convergence criterion is satisfied. In the following computational
experiments detailed by this work, the methodology was integrated with the proximal policy optimization
(PPO) algorithm [59]. This is an attractive option given: a) the ability to directly parameterise a
policy as a conditional probability distribution over a continuous control input space; b) compatibility
with recurrent neural networks [59]; c) sample efficiency relative to conventional policy optimization
methods i.e. reinforce; and, d) ease of implementation. Full detail of the PPO algorithm is provided by
Appendix A.3.

In this section, the methodology has provided mechanism to incorporate information about the
constrained problem into the reward signal characteristic of the MDP. In doing so, a strong connection
to reward shaping is established. In reward shaping, policy invariant modifications of the reward
function are identified to aid learning of the optimal policy π∗ [51, 66]. In this work, we construct a
policy varying modification of the reward function in order to satisfy operational constraints. The
resultant penalty function (Eq. 23) contains a number of free parameters. In the subsequent section, it
is proposed to tune the backoffs, ε, via the multipliers, ξ, (see Eq. 21) and a BO scheme. This leaves
decision as to the parameters κ ∈ R and ζ ∈ R open to the implementation, although it is recommended
that they are large real values [57]. Ultimately this provides mechanism for the implementation to
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Algorithm 1: Safe Policy Optimization for Fixed Backoffs

Initialise: Experimental dataset D; GP state space model fGPSS = [f1
GP (υ), . . . , fnxGP (υ)]

with hyperparameters Λ̂ = [λ̂1, . . . , λ̂nx ] trained on D; Initial control policy π(u|x; θ0); Policy
optimization algorithm fPO(·); backoff multipliers ξ; Finite horizon length T; initial state
distribution p(x0); Memory Binfo for information required for fPO(·); K episodes; tolerance
criterion

1. i = 0
2. while not converged do

a. Obtain a batch of K rollouts over a horizon of T discrete intervals according to
Algorithm 3, via π(u|x; θi), fGPSS , and p(x0). Return the trajectory information3 of
each rollout and any further necessary information for fPO(·) and store in Binfo.;
b. Perform policy optimization θi+1 = fPO(Binfo, θi);
c. Reset memory Binfo;
d. i += 1;

e. Assess tolerance criterion;

end

3. Assess final policy performance J(θi) under the unconstrained reward function R and
approximate the probability of joint constraint violation (Eq. 15) denoted FLB(0) via the
method detailed in Appendix A.4

Output: Optimal constrained policy π∗C(u|x; θi) under backoff multipliers ξ and associated
performance indices J(θi) and FLB(0)

balance operational risk and performance manually.

3.2.3. Optimization of Backoff Multipliers

The primary objective of this section is to identify a mechanism which facilitates synthesis of a
policy that:

(a) achieves high probability constraint satisfaction as desired, and

(b) performs with respect to the original process objective as specified by R : X× U× X→ R.

’Efficient’ global optimization of the backoff multipliers ξ is proposed, and so the methodology explores
definition of an objective to evaluate candidate values of ξ as follows.

Firstly, discussion is directed in how best to evaluate a) from the policy generated by Algorithm 1.

3This includes the rewards ϕ
(k)
0:T−1 = [ϕ

(k)
1 , . . . , ϕ

(k)
T−1] under Eq. 23 and the current backoff multipliers ξ, for the

sequence of controls u
(k)
0:T−1 = [u

(k)
1 , . . . ,u

(k)
T−1] and states x

(k)
0:T = [x

(k)
1 , . . . ,x

(k)
T ]
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Specifically, with reference to Eq. 17 and the following works [61, 31]:

FX(0) = P(X ≤ 0) = P(

T⋂
i=0

{xi ∈ X̂i}) (26)

where FX(·) indicates the cumulative distribution function (cdf), which in this case is analytically
intractable. In order to assess a), it is proposed to validate the probability of constraint satisfaction
empirically via MC sampling under the GP state space model i.e. via the sample approximation of
FX(0), denoted FSA(0). The specific approach is detailed in [31] and repeated in Appendix A.4 for
completeness. Ultimately, through this sampling-based method, a lower bound for Eq. 26 and FSA(0)
is obtained and denoted FLB(0). This accounts for potential inexactness introduced through finite
samples. The evaluation of b) is more simple and directed via the definition of the process objective in
the form of the reward function R. As such, the investigation may evaluate the performance of the
policy under the original, unconstrained objective provided by Eq. 4. This work therefore proposes the
use of the following objective function in evaluation of candidate multiplier values ξ ∈ Rng :

U = (FLB(0)− (1− α))2

JBO = −(J(τ )− βσJ) exp(−cU)
(27)

where β = [0, 1], c ∈ R+ and σJ denotes the standard deviation of the policy with respect to the
unconstrained process objective. This is a modification to the objective function proposed previously
in [31], which equated JBO to U . Here, Eq. 27, provides a smoother latent function and naturally
balances the objectives a) and b). The inclusion of the term σJ also incentivises those policies, which
exploit regions of the state space well characterised by the model. The factor c provides a shape
parameter for the RBF part of the objective, with higher values providing greater incentive to obtain
joint constraint satisfaction as desired. Care should be taken in selection as the higher the value, the
sparser the mapping provided by the objective. This is likely to have consequences for the efficacy of
optimization.

In the following case studies, β = 0.1, c = 1 and a BO scheme was deployed via GP surrogate models
with RBF covariance functions and zero mean priors to optimize the backoff multipliers ξ:

ξ∗ = arg min
ξ

JBO (28)

Due to the expensive black box optimization proposed BO is deemed the most appropriate approach. BO
proceeds to construct and exploit a GP surrogate model to sample new candidate points. Construction of
the GP surrogate demands a small initial dataset, describing a set of inputs, Ξ, and their corresponding
fulfilment of the objective function, JΞ. New sampling points (or in this case, candidate backoff
multipliers) are sampled to maximise an acquisition function (AF), which is a function of the posterior
distribution of the GP surrogate. The AF, denoted fAF (·), used in this work was the expected
improvement (EI) function [67, 60]. It was found that the EI AF, fEIAF (·), was most efficient in this
case, balancing exploration and exploitation of the GP surrogate model to find the optimal solution.
The expected improvement function is detailed as follows [60, 68]:

% =
µ(ξ)− J+

BO

σ(ξ)

fEIAF (ξ) =

{
σ(ξ)ψ(%) + (µ(ξ)− J+

BO)φ(%), if σ(ξ) > 0

0, otherwise
(29)
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where φ(·) is the Gaussian cumulative distribution function, ψ(·) is the Gaussian probability density
function, J+

BO is the objective value of the current best backoff multiplier values ξ+ [60, 67], and µ(·)
and σ(·) are detailed by Eq. 13. Dissecting Eq. 29, the first term on the right hand side incentivises
exploring regions of the input space associated with high uncertainty in the posterior distribution,
and the second term provides basis to exploit regions of the input space corresponding to high mean
predictions in the posterior [60]. As such, Eq. 29 provides explicit mechanism to balance exploration
and exploitation of the GP surrogate model, in a fashion not dissimilar to the exploration-exploitation
paradigm in RL. For more detail on BO in this context, we direct the interested reader to previous
work [31, 46] and a comprehensive review [67].

Algorithm 2 formalises the approach to reward shaping detailed by this Section. In Step 1,
an optimal policy parameterisation is learned for the unconstrained problem. This is used as an
initialisation for learning of the optimal constrained policy thereafter. In Step 2.a, a number of policies
are learned for the constrained problem each utilising different values of the backoff multipliers. In
2.b, each of the policies is assessed with respect to JBO, providing an input-output dataset, where the
inputs are backoff multipliers and the outputs are corresponding performances under the objective
(JBO). In Step 3, a surrogate GP model is built via this input-output dataset for subsequent BO.
Pseudocode for BO is provided by Step 4, with Step 5 documents the return of the solution policy
from memory.

Algorithm 2: Safe Chance Constrained Policy Optimization

Initialisation: Desired probability of joint chance constraint satisfaction α; GP prior for
Bayesian Optimization fBO; Acquisition function fAF ; Objective function JBO; maximum
number of acquisitions for BO M ; Initial set of B backoff multiplier values Ξ = [ξ1, . . . , ξB]
generated via sobol sequence [69];

1. Perform policy optimization for unconstrained problem to maximise Eq. 4 via modification
to Algorithm 2. Return policy π∗(·, θ).
2.a. Train a set of B constrained policies π∗init = [π∗C(·, θ1), . . . , π∗C(·, θB)] to maximise Eq. 24
under the respective backoff values, Ξ, via Algorithm 2 with π∗(·, θ) for initialisation

2.b. Return performance indices FLB(0) and J(τ , θ) ∀ π∗C(·, θ) ∈ π∗init and assess JBO, such
that JΞ = [JBO(ξ1), . . . , JBO(ξB)].

3. Train a GP model given input-output pairs representative of (backoff multiplier values and
policy performance under JBO) Ξ and JΞ according to Appendix A.1.1 and condition to obtain
updated predictive posterior distribution, p(JBO|ξ,Ξ).

4. for m = 1, . . . , M do

a. According to p(JBO|ξ,Ξ) find ξB+m = arg maxξ fAF (·) and update
Ξ = [ξ1, . . . , ξB+m]
b. Train constrained policy π∗C(·, θB+m) via Algorithm 2, π∗(·, θ) for initialisation under
the backoff values ξB+m. Return performance indices FLB(0) and J(τ , θB+m) for
π∗C(·, θB+m), assess JBO(ξB+m) and append to dataset, JΞ = [JBO(ξ1), . . . , JBO(ξB+m)]

c. if m < M : repeat step 3.

5. Return π∗C(θ) corresponding to ξ∗ = arg maxξ JΞ

Output: Optimal Constrained Policy π∗C(θ)

In the following section, the method is demonstrated on a microalgal lutein photo-production
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dynamic process and benchmarked against dynamic optimization and NMPC strategies.

4. Case Study

To demonstrate the methodology, a case study was selected from previous work conducted by
[70, 71], which is underpinned by a set of ordinary differential equations (ODEs). The problem and
standard benchmarks are detailed via the following subsections.

4.1. A Microalgal Lutein Photo-Production Dynamic Process

Fed-batch fermentation processes are thought to be ideal systems for RL-based controllers and
particularly suited to data-driven approaches to control and optimization. This is due to characteristics
of predominantly batch mode operation and complex physical phenomena driven by the metabolic
reaction network. The complexity of the process physics often provides impediment to structural and
practical model identification, with large parametric uncertainties common across bioprocess systems.
To demonstrate the method proposed here, we consider an in-silico microalgal lutein photo-production
process described as follows:

ċX = u0
cN

cN +KN
cX − udcX

ċN = −YN/Xu0
cN

cN +KN
cX + FN,in

ċL = k0
cN

cN +KNL
cX − kdcLcX

(30)

where cX (g L−1) defines the biomass concentration; cN (mg L−1) defines the nitrate concentration;
cL (mg L−1) defines the lutein (product) concentration; FN,in(mg h−1) is the nitrate inflow to the
system (a control input); u0 ∈ R (h−1) is the specific biomass growth rate, which is a function of the
incident light intensity I0 ∈ R (µmol m−2 s−1) to the reactor and the maximum theoretical growth
rate um ∈ R (h−1); k0 ∈ R (mg g−1 h−1) is the specific lutein production rate, which is a function of
I0 and the maximum theoretical production rate km ∈ R (mg g−1 h−1); kd ∈ R (L g−1 h−1) is the
lutein consumption rate; ud ∈ R (h−1) is the biomass specific decay rate; YN/X ∈ R (mg g−1) is the
nitrate yield coefficient; and, KN ∈ R (mg L−1) and KNL ∈ R (mg L−1) are the nitrate half-velocity
constant for cell growth and lutein synthesis, respectively. The growth rates of biomass and lutein are
constituted by the terms u0 and k0. These are both functions of the incident light intensity to the
reactor and are detailed as follows:

u0 =
um
20

9∑
n=1

(
I0

I0 + ks +
I2
0

ki

+ 2
InL

10

InL
10

+ ks +
I2
nL
10

ki

+
IL

IL + ks +
I2
L

ki

)

k0 =
km
20

9∑
n=1

(
I0

I0 + ksL +
I2
0

kiL

+ 2
InL

10

InL
10

+ ksL +
I2
nL
10

kiL

+
IL

IL + ksL
+
I2
L

kiL

) (31)

where ki ∈ R and kiL ∈ R are light inhibition terms for biomass growth and lutein synthesis, respectively.
Similarly, ks ∈ R and ksL ∈ R are light saturation terms for biomass growth and lutein synthesis,
respectively. More information on parameter definitions and values is provided by [71, 70]. The states
x = [cX , cN , cL] of the system are absolute and hence ci ≥ 0 ∀ i ∈ {X,N,L}. Further to FN,in ,
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the control input is also constituted by I0, such that nu = 2 and u(t) = [FN,in , I0]T , with bounds
0.1 ≤ FN,in ≤ 100 mg h−1 and 100 ≤ I0 ≤ 1000 µmol m−2 s−1. It is assumed that the process is
subject to stochasticity in the form of 5 % parametric uncertainty. This and the initial state distribution
is detailed by Table 1. Parametric values not detailed are assumed constant following the original
works [71, 70]. Additionally, the initial state distribution, p(x0), is defined in keeping with the work
[70]. However, the state constraints imposed are specific to this work and not the previous. Here, affine

Table 1: Case Study: List of parametric and initial state distributions imposed to describe uncertainty in the real
underlying bioprocess.

Variable Uncertainty Distribution

um N (0.152, 0.0038)
KN N (30, 0.75)
ud N (5.93× 10−3, 1.483× 10−4)
YN/X N (305, 7.625)
km N (0.35, 0.00875)
Kd N (3.71× 10−3, 9.275× 10−5)
x0

[
N (0.27, 3.125× 10−3),N (765.0, 9.5625),N (0.0, 0.0)

]
constraints are defined using notation from Section 3.2.2:

A =

1 0 −1.67
0 −1× 10−3 0
0 0 1

 b =

 2.6
0.15

0

 (32)

The constraints were constructed to represent common operational concerns in bioprocessing. The first
column of A considers the potential raw material to product conversion via constraint of the maximum
biomass concentration (as biomass is a ’by-product’). The second column considers the protection
of cell growth (via a minimum nitrate constraint) and the third ensures continued productivity (via
constraint of the maximum ratio of secondary metabolite to biomass). The process objective reward
function R : X× U× X→ Rt+1 is as follows:

Rt+1 =

{
dTxt+1 −∆uTt C∆ut if t = T − 1

−∆uTt C∆ut, otherwise
(33)

where t = [0, . . . , T ] and the length of the finite horizon is defined T = 6; ∆ut = ut − ut−1 ∈ Rnu
defines the change of controls between discrete time steps; C = diag([0.16, 8.1 × 10−5]) ∈ Rnu×nu
provides a penalty for changing the controls and promotes the learning of ’stable’ control profiles;
and, d = [0,−0.001, 4]T ∈ Rnx provides an overall objective for process operation i.e. to maximise the
production of lutein and minimise waste of nitrate. The problem definition is common to both Section
4.2 and the benchmark described in Section 4.3, except the benchmark does not consider any form of
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parametric uncertainty. A formalisation of the control problem follows:

P(πC) :=



max
πC

EπC
[ T−1∑
t=0

Rt+1

]
(see Eq. 33)

s.t.

x0 ∼ p(x0)

st ∼ p(s) (see Table 1)

xt+1 = f(xt,ut, st) (see Eqs. 30 and 31)

ut = πC(xt)

ut ∈ Û

xt ∈ X̂t (see Eqs. 7 and 32)

∀t ∈ {0, ..., T − 1}

(34)

4.2. Safe Chance Constrained Policy Optimization

To demonstrate the methodology, this work deploys the PPO algorithm with both actor and critic
recurrent long-short term memory (LSTM) neural network parameterisations. The actor network
expresses a mapping between observed states and controls (i.e. a control policy) and the critic provides
a mapping between a state and the value of that state under the policy (this is known as the value
function). The use of a critic provides means to deploy the general advantage estimate (GAE) form
of the policy gradient (PG) within the PPO framework. The GAE enables the implementation to
manually balance the bias and variance of the advantage PG. This provides means to synchronously
ensure stable learning, improve the sample efficiency of the algorithm and find a clear direction (in
weight space) for policy improvement. For more information on PPO and the GAE, the reader is
directed to Appendix A.3 and [72, 59]. The implementation utilised Pytorch 1.7.1. Information about
the structure of the actor, critic and all hyperparameters defining the PPO algorithm as used in this
work, may be found in Appendix A.3.3. See Table 2 for definition of general case study parameters.

Table 2: Case Study: List of key algorithm parameters

Variable Value

Penalty weight, κ 34
Uncertainty penalty weight, ζ 300× diag([1/σ2

1Υ
, . . . , 1/σ2

nxΥ
])4

Tolerance criterion |J̄C(τ , θi)− J̄C(τ , θi−1)| ≤ 10−3

Joint Probability of constraint violation, α 0.001
Probability of individual constraint violation, ιj 0.00033

In order to train the desired policy π∗C(·, θ) via Algorithm 2, a GP state space model is required. In
this work, the model was built using an initial dataset D5, generated by simulation of the uncertain

process’ response to 32 different control sequences, u
(j)
0:T , j = [1, . . . , 32] (hence the dataset contains

4σ2
nxΥ

represents the variance of the distribution of state xnx in the dataset D
5The dataset used for model construction may be found at https://github.com/mawbray/Lutein-Dataset
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information from 32 separate batch experiments). Each control sequence was generated via transforma-
tion of a Sobol sequence (of length T) to the bounded controls space (as detailed in Section 4.1). In
practice, this dataset could be generated via an initial design of experiments [39]. Having generated
D, (nx = 3) individual GP models were constructed to form a state space model (for the prediction
of each state) via the methodology outlined in Section 3.1. A prior distribution with mean function
m(υ) = 0 and a matern 5/2 covariance function was specified for each of the constituent models. The
covariance function was selected according to preliminary experiments, which examined the model’s
predictive accuracy. All GPs were constructed with the GPy 1.9.9 python package and subsequent BO
utilised GPyOpt 1.2.6. Details of the data used for model construction, as well as metrics relating to
the predictive accuracy of the model are detailed in Appendix A.2.

In the presentation of results for this work, the investigation is concerned with two main questions.
Firstly, does Algorithm 2 enable identification of a reward function, which provides policy performance
with respect to the process objective and probabilistic constraint satisfaction? And, secondly, does the
incorporation of the posterior variance prediction of the GP state space model (into the reward function
(Eq. 23)) provide means to minimise the risk of policy deployment (to the real uncertain process),
by ensuring the policy exploits regions of the model with small model-process mismatch? These two
questions will direct discussion in Section 5. All results were generated under view of the policy as
deterministic i.e. ut = π(xt). This was achieved through selection of the control corresponding to the
mode of the conditional distribution π(u|x).

4.3. Benchmark for Process Optimization

The results from the proposed methodology were benchmarked relative to the control profiles
generated from a) dynamic optimization (DO) strategies, and b) nonlinear model predictive control
(NMPC). Both a) and b) use the process model detailed by Eq. 30. The deterministic form of this model
(i.e. with no parametric uncertainty) represents the most accurate deterministic model, which may be
built for process prediction and optimization. Therefore, the controls generated from a) and b) assume
that the underlying process is deterministic, and are subsequently validated on the stochastic analogue
of the process concerned. As both a) and b) neglect the existence of uncertainty over the parameter
values assumed from [71], validation of the strategies on the stochastic variant of the process (detailed
by Section 4.1) directly investigates the effects of uncertainty (model-plant mismatch) on performance
with respect to the objective and constraint satisfaction. It should be noted that this benchmark
is not reflective of the existing state-of-the-art optimization methods, such as sMPC that similarly
consider model uncertainty. The control strategy for a) was generated offline through optimization of
the control inputs to the model detailed in Eq. 30. Hence the control policy generated is deterministic
and unconditional to online state observation. Conversely. the control strategy for b) was generated
online through perfect state observation as in the RL case. Both benchmarks utilised the orthogonal
collocation method and one finite element per control interval [73, 74] and the IPOPT solver [75]. This
was facilitated by the Casadi 3.5.1 Python package [76]. In the case that a feasible solution could not
be found online, the MPC scheme was tuned further with an approximate problem solved to minimise
constraint violation. From empirical analysis, this tuning increased the performance of the NMPC
scheme. Further information on the approximate problem is available in Appendix A.5.

4.4. Key Performance Indicators

In the following section, this work will investigate the utility of the algorithm, and presentation
of the results will focus on the ability of the proposed method to find a safe constrained policy
π∗C(·, θ). Explicitly, the policy should exploit regions of the real process state space (i.e. Eq. 30), well
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characterised by the approximating process model (i.e. Eq. 14), therefore minimising mismatch between
the state distributions simulated under the offline process model and observed under the real uncertain
process. This will be demonstrated in two ways. First, via visual comparison as presented figuratively,
and secondly via the quantitative metrics (key performance indicators) available to the investigation.
Primarily, these metrics are the performance of the policy with respect to the unconstrained process
objective J(τ) (see Eqs. 4 and 33) and the probability of joint chance satisfaction as evaluated by
FSA(0) and FLB(0). The same metrics will be used to evaluate the performance of the benchmarks of
DO and NMPC.

5. Results and Discussion

5.1. Results of Safe Chance Constrained Policy Optimization

Firstly, the results of Algorithm 2 with respect to the approximate offline state space model are
displayed by Fig. 1. Explicitly, here, we demonstrate the performance of the final policy π∗C(·, θ)
on the GP state space model. The results were obtained according to 500 function realisations of
π∗C(·, θ) via Algorithm 3. Fig. 1 a) expresses a representation of the state evolution x0:T and Fig. 1
b) provides a visualisation of the performance of the policy with respect to the constraints. In Fig. 1
a), the average state evolution and an associated confidence interval of one standard deviation for the
validation trajectories is represented by a solid line and a shaded region, respectively. It can be seen
that the agent learns to maximise the productivity objective - balancing maximisation of the lutein
product at the end of the batch with a decrease in the concentration of nitrate left in the system. This
is achieved in a manner that accounts for worst case process stochasticity by backing the nominal or
expected state trajectory away from the constraint boundary. This is highlighted by Fig. 1 b). In
particular, the shaded regions indicate 99% confidence intervals for process deviation and the dark blue
solid line plot indicates the nominal process. Further, the utility of tuning the backoff multipliers via
Algorithm 2 is highlighted given that the worst case realisations of process stochasticity do not violate,
but approach the constraint boundary very closely. The performance of the policy π∗C(·, θ) with respect
to both process objective and constraint satisfaction on the GP process model is detailed by Table 3.
The performance of the policy on the process model is however, not the primary contribution of this
work. Rather, it is of interest to validate the safety of the policy on deployment to the real stochastic
process and highlight the particular use of the training approach detailed. To achieve this, results were
obtained by sampling the real process described by Eq. 30, with the parametric uncertainty detailed
in Section 4. The results of this are expressed by Fig. 2. Similar to Fig. 1 b), Fig. 2 a) details the
performance of the policy with respect to the constraints, but upon deployment to the real uncertain
process. Again, the shaded regions indicate 99% confidence intervals of process deviation and the dark
blue solid line indicates the nominal process. Fig. 2 b) provides comparative detail of the distribution
of the trajectories with respect to the constraints when the policy is deployed on the GP state space
model (blue) and when deployed to the real uncertain process (red). As previously, the shaded regions
indicate 99% confidence intervals for process deviation and the solid line indicates the nominal process.
It is observed that there is very little mismatch between the model and real process in this region of the
state space and as a result the distributions of the first and second constraint (g1 and g2) are almost
indistinguishable. Notably, however, there is indeed clear, but small amounts of mismatch between the
nominal process trajectories on the GP state space model and the real process as demonstrated via the
third constraint plot of g3. Interestingly, this plot shows that 99% of the real process trajectories (the
red region) are contained within the (blue) region described by the samples from the GP state space
model. This indicates the potential that the offline GP model (epistemic) uncertainty, expressed via the
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(a) (b)

Figure 1: Results from Case Study. (a) The state profile produced from the final policy learned on the Gaussian Process
model plotted against control interactions (as a proxy for time). Control interactions are provided every 24 hours of
process operation. (b) The corresponding distribution of trajectories with respect to the operational constraints. The ith

constraint is denoted gi := AT
i x− bi. The light blue shaded areas represent the 99th to 1st percentiles and solid blue line

represents the expected trajectory. The black line plot represents the threshold of constraint violation i.e. when gi = 0

variance of the posterior, could be able to provide constraint satisfaction and ensure safe RL policies.
Table 3 demonstrates the utility of the algorithm in achieving constraint satisfaction as desired in both

Table 3: Case Study: Comparison of probabilities of joint constraint satisfaction FLB(0) and FSA(0) and objective values
of π∗

C(·, θ) as learned via the methodology on the real process and GP state space model. The objective performance is
quantified via the mean and variance due to process stochasticity. See Eq. 33 for detail of the process objective.

Process FLB(0) FSA(0) Process Objective (Eq. 33)

Offline Gaussian process model 1.0 1.0 15.29 +/- 0.11
Online real uncertain process 1.0 1.0 15.23 +/- 0.096

the offline model and real uncertain process. There is a small discrepancy between the performances of
the two validations. This could be explained either due to the number of finite samples (500) used in
assessment of policy performance, or via small amounts of nominal process mismatch between the GP
model and the real process. If the latter view is taken and it is assumed the biomass and nitrate states
are perfectly predicted (biomass is not included in the objective directly and nitrate is, but weakly),
then this difference corresponds to a 0.375% prediction error of the nominal lutein trajectory. In the
following sections, the work detailed here is benchmarked against results observed from implementing
control policies on the uncertain process determined via a) offline DO and b) NMPC. The approach to
generation of these results is discussed in Section 4.3.
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(a) (b)

Figure 2: Results from Case Study. (a) The distribution of trajectories with respect to the operational constraints as
sampled from the real uncertain process. (b) An overlay of the distributions observed when the policy is deployed on the
real uncertain process (red) and the GP state space model (blue) as plotted in Fig. 1. The ith constraint is denoted
gi := AT

i x− bi. The shaded areas represent the 99th to 1st percentiles and solid line represents the expected trajectory.
The black line plot represents the threshold of constraint violation i.e. when gi = 0

5.2. Comparison to Benchmark Methods

The benchmark for this case study is provided by DO and NMPC, both of which are common
approaches to process control. In the following sections the investigation provides comparative analysis
to demonstrate the utility and limitations of the methodology.

5.2.1. Comparison to Dynamic Optimization

In order to demonstrate the effects of process stochasticity for dynamic optimization (DO), control
profiles were generated for the system (Eq. 30) from four different initial conditions, all of which are
probable to be drawn from the initial state distribution detailed in Section 4. As previously, all results
are derived from 500 realisations of the real uncertain process model. The comparative performance of
the DO benchmark is detailed by Table 4. From Table 4 it is clear that the effects of small amounts of

Table 4: Case Study: Comparison of probabilities of joint constraint satisfaction FLB(0) and FSA(0) and objective
values of π∗

C(·, θ) under the proposed dynamic optimization (DO) benchmark. Four different results are reported for DO,
corresponding to the four different initial conditions used to generate the control profile offline. The objective performance
is quantified via the mean and variance due to process stochasticity. See Eq. 33 for detail of the process objective.

Algorithm Initial Conditions x0 FLB(0) FSA(0) Process Objective J(τ)

DO I [0.276, 784, 0.0] 0.036 0.056 16.68 +/- 0.24
DO II [0.273, 774, 0.0] 0.046 0.068 16.68 +/- 0.25
DO III [0.270, 765, 0.0] 0.030 0.048 16.65 +/- 0.25
DO IV [0.267, 755, 0.0] 0.043 0.064 16.61 +/- 0.25
Proposed x0 ∼ p(x0) 1.0 1.0 15.23 +/- 0.096
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stochasticity have dramatic implications for the probability of joint chance constraint satisfaction for
DO. Both the statistically robust FLB(0) and the sample approximate FSA(0) are less than 0.06 for
all DO control profiles. This highlights the utility of the method proposed in accounting for process
stochasticity. It is also necessary to comment on the standard deviation of the performance with respect
to the process objective as reported. The RL policy trained by the method achieves a lower variance
in performance than that of the DO scheme. This is worth discussion as it highlights the ability of
RL policies to naturally account for process stochasicity in a closed loop feedback control manner.
Whereas, the variance of performance reported for the DO strategies is similar across all results and
expresses the effects of process stochasticity on an open loop nominal (and deterministic) control policy.
However, it is also important to note that although the RL method proposed performs with respect to
constraint satisfaction, it does not achieve as well as DO with respect to the expected unconstrained
process objective J(τ). This is mainly because backing the nominal process away from the constraint
boundaries in order to account for variability, will naturally incur a decrease in the nominal performance
of the policy. However, as the process objective function is only reduced by 8% and the constraints are
satisfied with high probability, the current approach is still advantageous.

Despite the comparative benefits of RL, it is worth highlighting that the performance is sensitive to
correct specification of initial state distribution, p(x0), in offline training. Initialising the system in an
initial state, x0, not well described by p(x0) will likely lead to deterioration in the performance of the
RL policy. Compared to the traditional NMPC approach in which process model can be continuously
re-calibrated using online data, other advanced techniques [77] could conceivably be applied given the
slow dynamics under consideration in this case study. Although updating RL online is out of current
study’s scope, it is worth investigating in future work.

5.2.2. Comparison to Nonlinear Model Predictive Control

The generation of the NMPC trajectory similarly assumes use of the deterministic variant of Eq.
30, as the process model. Here, however, the control policy is updated online via complete observation
of the real uncertain process state (as is typical). The initial state is drawn from the initial state
distribution detailed in Section 4.1, which was also used to train and validate the RL policy π∗C(·, θ).
Table 5 reports the respective KPIs for the method proposed and the NMPC scheme. Interestingly,

Table 5: Case Study: Comparison of probabilities of joint constraint satisfaction FLB(0) and FSA(0) and objective values
of π∗

C(·, θ) under the proposed benchmark of nonlinear model predictive control (NMPC). The objective performance is
quantified via the mean and variance due to process stochasticity. See Eq. 33 for detail of the process objective.

Algorithm FLB(0) FSA(0) Process Objective J(τ)

NMPC 0.12 0.148 11.58 +/- 4.07
Proposed 1.0 1.0 15.23 +/- 0.096

with reference to Table 5, the method proposed performs better than NMPC with respect to the process
objective. In this case, this is primarily due to the destabilisation of NMPC by process stochasitity,
which was evidenced by the frequent inability to find control solutions online. This is common when
stochastic systems are driven close to constraint boundaries with deterministic methods. The inability of
NMPC to find control solutions online is the primary reason for the difference in objective performance
as detailed by Table 5 (Note: if solution could not be found, an approximate problem was solved to
minimise constraint violation, and this was found to considerably improve performance - see Section
4.3 for information). In combination with worst cases of process stochasticity, this provides a skewing
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of the nominal process performance as reported. Demonstration of the sensitivity of the NMPC control
scheme to process stochasticity is best expressed in analysis of the control trajectories generated in
validation on the real uncertain process. This is reported by Fig. 3.

(a) (b)

Figure 3: Results from Case Study. (a) The distribution of controls selected by the RL policy, π∗
C(·, θ), upon validation

on the real uncertain process. Red solid line represents the average control trajectory and the light red shaded region
represents a 1 standard deviation confidence interval (which is essentially non-existent), (b) The distribution of controls
selected by the NMPC policy upon validation on the real uncertain process. Green solid line represents the average
control trajectory and the light red shaded region represents a 1 standard deviation confidence interval

From Fig. 3 the relative effect of stochasticity on the NMPC scheme is apparent. Fig. 3 a) displays
the distribution of controls selected under the RL policy, π∗C(·, θ), on the real uncertain process. The
red solid line represents the average control trajectory and the red shaded region, which is essentially
indistinguishable, represents a confidence interval of one standard deviation. Fig. 3 b) represents the
distribution of controls selected by the benchmark NMPC control policy when validated under the real
uncertain process. Here, the green solid line represents the average control trajectory and the green
shaded region, which is relatively large, represents a confidence interval of one standard deviation. It
is likely that the average control trajectory plotted is not representative of actual control behaviour,
i.e. the distribution of controls at each time interval is not best described by a unimodal Gaussian.
However, the figure plotted well expresses the relative variance of controls selected.

From comparison of 3 a) and b), it is clear that the RL method proposed naturally accounts for
process stochasticity in a closed loop manner, with little variance in the distribution of controls shown.
This is characteristic of a control strategy, which is robust to process uncertainty. This is especially
beneficial in the context of cell cultivation or fermentation processes, where cell metabolism is sensitive
to variation in the environmental conditions. As a result, the oscillatory control behaviour demonstrated
by the NMPC control scheme would likely have a detrimental effect on the efficacy of operation/cell
metabolism. It should be noted that the detrimental effects of process stochasticity on deterministic
control strategies are demonstrated here, with small amounts of uncertainty. In the types of processes
of concern to this work, (parametric) uncertainties can be much larger. This further contextualises the
benefits provided by the strategy proposed i.e. the ability to simultaneously account for process-model
mismatch and constraints.

The results provided by the work provokes the following question: is the primary benefit of the
RL method proposed (relative to the NMPC result) derived due to the benefits of accounting for
uncertainty in closed loop (i.e. operating within the MDP framework), or due to the description of
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process uncertainty provided by the GP model? Admittedly, it is difficult to answer this question
certainly without further computational experiments and more thorough comparisons; however, through
the current study it is believed that both elements are likely to be at play in separating the performance
of the proposed method and NMPC. This question provides basis for future empirical studies.

6. Conclusion

In this work, an efficient, purely data-driven method has been proposed, which considers the safe
deployment of RL policies from the offline training environment (process model) to the real uncertain
process. The method also provides approach to ensuring joint chance constraint satisfaction with a
set probability. This is facilitated through use of the aleatoric and epistemic uncertainties expressed
naturally by Gaussian process models, as well as the concept of constraint tightening. The method
was analysed empirically and benchmarked against two commonly used, deterministic approaches
to control and optimization of fed-batch process systems. It was demonstrated that the presence of
even small amounts of process stochasticity may have a destabilising effect on the performance of
deterministic methods and their relative probabilities of achieving joint constraint satisfaction. It
should be highlighted that the level of parametric uncertainty (5%) expressed in this case study is a
common lower-bound to that typically observed in the processes of concern to this work. It is likely
that the benefits of this method would be even more apparent in cases where higher uncertainties
were present. Therefore, it is thought that the scheme proposed is likely to be competitive with
state-of-the-art sMPC approaches that similarly account for model uncertainties. The benefit (or
drawback, depending on the context) of RL being that it shifts the computational effort offline, and is
therefore much faster online (although slower offline). Further, the formalisation of this approach and
the link drawn to reward shaping, enables combination of the method with any RL algorithm - policy
optimization, action-value methods and all that lies inbetween. We hypothesise that once deployed, the
policy could be continuously improved offline as the local model is iteratively improved and updated
between batches [38]. Further, it is possible the method could be adapted to the multi-agent setting
for distributed control of fed-batch processes or into the domain of continuous processing [78]. We
do however, assume the availability of an existing dataset, which provides information about the
operational region of interest, however this could be developed using available mechanistic models
and [39] in a model-based design of experiments. Future work should consider the quantification of
uncertainties in the parameterisation of the control function.
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Appendix A. Appendices

Appendix A.1. Gaussian Process State Space Modelling

Appendix A.1.1. Training of Gaussian Process Models

Selection of the appropriate hyperparameters, λ̂ = [λ, σ2
n] ∈ Rnλ+1 for a covariance function

provides considerable improvement in the predictive abilities of GPs and can be viewed as a parallel
to parameter estimation for mechanistic process models. The tuning procedure acts to maximise the
marginal log-likelihood p(YT

j |Υ, λ̂) of the state specific, noisy output data points Yj , provided with

the respective input measurements Υ and hyperparameters λ̂:

log p(YT
j |Υ, λ̂) = −1

2
(Yj(K + σ2

nIN )−1YT
j + log |K + σ2

nIN |+N log 2π) (A.1)

Gradient-based optimization may then be deployed to find λ̂, which maximise the likelihood of
observing our output data, given the covariance function chosen and the input data. This problem is
non-convex and so typically multi-start schemes are deployed to find the best solution.

Appendix A.1.2. Obtaining Function Realisations from GP State Space Models

In this work, we are concerned with obtaining function realisations from a Gaussian process state
space model. The state space model is composed of nx individual Gaussian process models of each state.
Here, we use the method proposed by [56, 44, 47]. The method aims to update the posterior distribution
of the Gaussian process model according to the initial dataset D used for model construction, as well
as the states and control inputs observed during each trajectory evolution. This combined dataset is
denoted D+.

Algorithm 3: Function Realisations via GP State Space Model for Decision-making Under
Uncertainty

Initialise: Experimental dataset D; GP state space model fGPSS = [f1
GP (υ), . . . , fnxGP (υ)] with

hyperparameters Λ̂ = [λ̂1, . . . , λ̂nx ] trained on D; Control Policy π(u|x); Finite horizon length
T; initial state distribution p(x0); Memory for state Bx and control Bu trajectories, as well as
for information related to decision making Bπ for use in subsequent policy optimization.

1. Set D+ = D
2. Draw x0 ∼ p(x0). Append x0 to Bx
3. for t = 1, . . . , T − 1 do

a. Observe xt−1, sample ut−1 ∼ π(u|x) and concatenate, such that υt−1 =
[
xTt−1u

T
t−1

]T
;

b. Condition the GP state space model on (D+,υt−1) to obtain the predictive posterior:
p(xt|υt−1,D+) = N (µ(υt−1;D+),Σ(υt−1;D+));
c. Draw next state from posterior of the GP state space model, xt ∼ p(xt|υt−1,D+) ;

d. Update D+ = [DT+ dTN+t]
T , where dN+t = [υTt−1 xTt ] and append xt and ut−1 to Bx

and Bu, respectively;

Output: Function realisation stored in Bx and Bu and information related to decision making
Bπ (to be explained in Algorithm 2)

The use of Algorithm 3 allows for proper propagation of model uncertainty and sampling of functions
from the GP. In essence, it is desired to obtain state sequences x0:T = [x0, . . . ,xT ], which are expressive
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of Eq. 1 and represent a realisation of process uncertainty. As samples xt are drawn from the
posterior they are added, along with the respective input υt−1, to the dataset D+ upon which the GP
is conditioned. This leads to a subsequent update of the GP posterior distribution (via A.2 - A.3)
considering previous samples xt−1 as noiseless observations, with retention of the original covariance
function hyperparameters λ̂. This means that if the updated GP posterior were to be queried at the
previous input υt−1, the exact realisation of xt−1 would be drawn again i.e. the GP would express
xt−1 deterministically. Such an outcome highlights the algorithm’s utility in effective function space
sampling and implies that future process evolution is explicitly dependent upon the past realisations of
uncertainty.

We can express the updated posterior distribution of the jth GP after transition from one discrete
time index at t = t0 to t = t1 as follows:

µj(υ
∗;D+) = K+T

∗ Σ+−1

Y+T

j

σ2
j (υ∗;D+) = k(υ∗,υ∗)−K+T

∗ Σ+−1

K+
∗

(A.2)

where Y+
j = [Yj , y

+
j ] ∈ R1×(N+1), where y+

j ∈ R is state xj ∈ R observed at time index t = t1; The
updated covariance matrices are expressed as follows:

K+T

∗ =
[
KT
∗ , k(υ∗, υ

+)
]

Σ+−1 =

[
K + σnIN K+

KT
+ k(υ+,υ+)

]−1

(A.3)

where KT
+ = [k(υ+,υi), . . . , k(υ+,υN )] ∈ R1×N , and υ+ ∈ Rnυ is the state and control input pair

at time index t = t0. This process is repeated iteratively for state transitions thereafter, which means
that the memory and computation requirements will grow quadratically and cubically, respectively,
with the time horizon T . Updating K+

∗ , Y +
j is relatively easy, however, updating Σ+−1

, is slightly more
involved due to inversion. In order to do this we use the method from [56] as proposed in [44, 47]. We
refer the reader to these works for more information.

Appendix A.2. Validation of Gaussian Process Models Used in Case Study

Table A.6 details the results of leave-one-out cross validation of the Gaussian process state space
model used in this case study. Specifically, the results reported assess multi-step ahead predictions,
which correspond to forecasting the entire batch given an initial state and control profile. Results are
reported as the average across all possible different folds (of which there are 32). Predictions from the
GP were drawn using the mean of the posterior. The dataset used to construct the Gaussian process
models is available at https://github.com/mawbray/Lutein-Dataset

Table A.6: Multistep prediction mean absolute percentage error (MAPE) of leave-one-out cross validation of Gaussian
process state space model used in Case study.

Component of State MAPE (%)

Biomass 2.5
Nitrate 4.3
Lutein 2.2
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Appendix A.3. Proximal Policy Optimization, The Advantage Function and Entropy Regularisation

PPO is at its core a policy gradient (PG) method. PG methods have previously been discussed, and
so this work directs the interested reader to the original paper [79] and other recent work [14]. PPO
utilises a specific instance of the PG, known as the advantage policy gradient (APG). The APG [80] is
a powerful, low variance form of the policy gradient, which utilises the generalised advantage function
estimate Aϕ (GAE), rather than the action-value estimate, as in vanilla policy gradient methods [79].
Further detail on the GAE and PPO is provided by Appendix A.3.1 and Appendix A.3.3, respectively.
In practice, the investigation found the addition of an entropy regularisation term useful in RL training.
Entropy regularisation is widely studied in the RL literature, and at a high level provides mechanism
to ensure the policy does not converge deterministically to a poor local optimum. This is particularly
important in view of RL as a set of sampling-based algorithms [81, 82] and is discussed further in
Appendix A.3.2.

Appendix A.3.1. The Advantage Function

The advantage function [83] is formalised:

V π(xt) = Eπ
[ T−1∑
t′=t

Rt′+1|x = xt

]
Qπ(xt,ut) = Eπ

[
Rt+1 + γV π(x′)|x = xt,u = ut

]
Aπ(xt,ut) = Qπ(xt,ut)− V π(xt)

(A.4)

and, represents the difference between the expected returns under a policy in the current state,
V π, and the returns accumulated from selecting a given control in the current state and the current
policy thereafter, Qπ. In RL practice, parameterisation of the value function Vψ is required in order to
approximate the true value function V π, such that Vψ ≈ V π. Decision as to the model structure and
initialisation of the parameters asserts bias into estimation of the advantage function. This is reduced
through use of the generalised advantage function estimate Âπ (GAE). The GAE provides a mechanism
to explicitly trade off variance and bias, by maximising the information provided by the reward signal.
Explicitly, the GAE is formalised as:

Âπt = δt+1 + (ργ)δt+2 + . . .+ (ργ)T−t+1δT

δt+1 = Rt+1 + γVψ(xt+1)− Vψ(xt)
(A.5)

The parameter ρ = [0, 1] provides the mechanism to balance the bias and variance. Values closer to
1 reduce bias by utilising more information from the reward signal, but at the compromise of increasing
the variance of the estimate. The opposite applies as values tend to 0.

Appendix A.3.2. Entropy Regularisation

There is a rich literature on maximum entropy (Max.Ent.) RL [84, 85, 86]. Instead of simply
optimizing for the process objective and accumulated reward, G(τ ), Max.Ent. RL also optimizes for
the expected entropy of the stochastic policy learned. As a result, we can formulate the Max.Ent. RL
objective, JH as follows:

JH = E
[
G(τ ) +Hπ

]
(A.6)

where Hπ = −Eπ
[

log π(u|x)
]

is the entropy of the policy. Typically, in practice, this objective
is maximised via a regularisation term i.e. not as an extrinsic addition of entropy to the reward
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signal, and therefore not optimized via the PG. It is thought that entropy regularisation provides two
main benefits: 1) it modifies the optimization landscape ’for the better’, and in some cases provides a
smoother landscape than the vanilla objective, and 2) the use of entropy plays some role in tackling the
exploration-exploitation paradigm, i.e. by regularising entropy, exploration is encouraged, preventing
convergence to a suboptimal deterministic policy. The use of entropy was found to be particularly
helpful in this study, aiding the learning dynamics. It could be perceived that the constraint boundary
provides a discontinuity in the reward landscape, and the promotion of exploration via entropy provides
mechanism to ’escape’ local optima.

Appendix A.3.3. Entropy Regularised Proximal Policy Optimization

PPO aims to provide conservative policy updates, by utilising the concept of trust region optimization.
The idea of trust region optimization in the RL sense, is to constrain the update of an initial policy, such
that the ultimate policy remains within a given distance of the initial in policy space. This distance
could e.g. be quantified by the Kullback-Liebler divergence. One algorithm known as trust-region
policy optimization (TRPO) necessitates estimate of the Hessian of the approximate KL divergence
with respect to the policy parameters [72] (this also shares similarities with the natural policy gradient
[87]). PPO sidesteps this complexity through approximation of the 2nd order TRPO update with a
first order update - instead of explicitly enforcing this as a hard constraint, PPO enforces this via a
penalty method [59]. This means that PPO is more computationally efficient than TRPO and provides
flexible use of different function approximators (policy parameterisations).

The objective function LCLIP formalised within the PPO framework follows:

rt(θ) =
πθ(ut|xt)
πθold(ut|xt)

LCLIP (θ) = Êt
[

min(rt(θ)Â
π
t , clip(rt(θ), 1− ε, 1 + ε)Âπt )

] (A.7)

where, ε = [0, 1] and Âπt is the advantage function, as discussed previously. By clipping the ratio r,
updates corresponding to negative advantages are clipped with a ratio of r = 1 + ε, whereas updates
with positive advantages are clipped at r = 1 − ε. The minimum is taken in order to provide a
pessimistic update and enforce what could be interpreted as a trust-region. A full entropy regularised
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PPO algorithm is presented by Algorithm 4.

Algorithm 4: Entropy Regularised Proximal Policy Optimization

Initialise: Approximate state space model or process dynamics fSS(·); Initial control policy
π(u|x; θ0); Initial critic V (xt, ψ0); Reward function Rxx′ ; Finite horizon length T ; initial state
distribution p(x0); entropy penalty term β ∈ R+; Learning rate wπ ∈ R+; Learning rate
wV ∈ R+; Strategies for updating the learning rates (schedules) fπw(·) and fVw (·); Memory
Binfo for information required for policy optimization; K episodes; Learning updates per batch
J ; batchsize of M trajectories; tolerance criterion;

1. i = 0;

2. while not converged do

a. Obtain a batch of K rollouts over horizon of T discrete intervals, via π(u|x; θi), fSS ,
and p(x0);

b. Return trajectory information i.e. rewards R
(k)
0:T−1 = [R

(k)
1 , . . . , R

(k)
T ] under Rxx′

for the sequence of controls u
(k)
0:T−1 = [u

(k)
0 , . . . ,u

(k)
T−1] and states x

(k)
0:T = [x

(k)
0 , . . . ,x

(k)
T ],

corresponding to each rollout and store in Binfo;
c. j = 0;

while j < J do

i. Perform policy optimization by sampling the information of M trajectories from
Binfo, calculating the respective importance ratios rt via Eq. A.7 and GAEs via
Eq. A.5:

θi+1 = θi+wi∇θ
[

1
MT

∑M
m=1

∑T−1
t=0 LCLIP (x

(m)
t ,u

(m)
t ,x

(m)
t+1, θi)+βHπ(π(u

(m)
t |x(m)

t ))
]
;

ii. Update the critic V (x, ψi) on the same data sampled in c.i. and the respective
returns, Gt:

ψi+1 = ψi − 1
MT

∑M
m=1

∑T−1
t=0 ∇ψiV (x, ψi)(V (x

(m)
t , ψi)−G(m)

t ) ;

iii. Update the learning rate : wπi+1 = fπw(wi) ;

iv. Update the learning rate : wVi+1 = fVw (wi) ;

v. i+ = 1, j+ = 1 ;

end
d. Reset memory Binfo;
e. Assess tolerance criterion ;

end
Output: Optimal policy π(θ∗) and critic V (ψ∗);

Appendix A.4. Evaluating Joint Constraint Satisfaction Empirically

In this work, we are concerned with the satisfaction of the joint chance constraints expressed by:

FX(0) = P(X ≤ 0) = P(

T⋂
i=0

{xi ∈ X̂i}) (A.8)

36



where X̂i is the tightened joint constraint set and

X = max
(t,j)∈{0,...,T}×{1,...,ng}

Ajxt − bj ,

defines the maximum constraint violation during process evolution. As analytical expression of Eq.
A.8 is not available, it is proposed to instead estimate it via Monte Carlo sampling. Hence we can
define the empirical cumulative distribution function (ecdf) via S Monte Carlo samples:

FX(0) ≈ FSA(0) =
1

S

S∑
s=1

1(X(s) ≤ 0) (A.9)

where 1 is the indicator function. However, due to the limits imposed by finite samples, the
approximation is likely to include error. Therefore, in order to account for this we deploy a concept
from the binomial proportion confidence interval literature. Specifically, the Clopper–Pearson interval
[88], which enables us to ensure the probability of joint satisfaction with a given confidence level, 1− υ,
on the basis of empirical observation. This is expressed by Lemma 3, which is recycled from [31].

Lemma 3. Joint chance constraint satisfaction via the Clopper-Pearson confidence inter-
val [88, 89]: Consider the realisation of FSA(0) based on S independently and identically distributed
samples. The lower bound of the true value FLB(0) may be defined with a given confidence 1− υ, such
that:

P(FX(0) ≥ FLB(0)) ≥ 1− υ
FLB(0) = 1− betainv(υ, S + 1− SFSA(0), SFSA(0))

(A.10)

where betainv(·) is the inverse of the Beta cumulative distribution function with parameters {S + 1−
SFSA(0)} and {SFSA(0)}.

Appendix A.5. Further Information on Benchmark

In construction of the benchmark provided, a direct collocation scheme was implemented in python.
The code is available at https://github.com/mawbray/Lutein DO. In the case of NMPC and online
optimization, an approximate problem was solved if a solution could not be found online an approximate
problem was solved instead. This was conducted via the following formulation:

max
ut′:T−1

T−1∑
t=t′

Rt+1 − z(Axt − b) (see Eqs. 33 and 32)

s.t.

xt+1 = f(xt,ut) (see Eqs. 30 and 31)

ut ∈ Û
Axt − b ≤ 0 (see Eqs. 7 and 32)

∀t ∈ {t′, ..., T − 1}

(A.11)

where z = [1, 10, 10] and xt′ is observed from the uncertain process. This approximate problem modifies
the objective function to incentivize minimisation of constraint violation. It should be stressed that
this problem is only solved if a solution cannot be found to the original problem. This was typically
the case when the optimization was initialised such that xt′ had already violated the constraints and
arose from the inability to handle constraints.

37



Appendix A.6. Hyperparameters for Learning in Case Study

Table A.7: Miscellaneous hyperparameters specific to Proximal policy optimization algorithm used in this work.

Parameter Value

Episodes, K 200
Nodes per LSTM layer of Policy Net. 30
LSTM Layers in Policy Net. 4
Activation function in output layer of Policy Net. ReLU6
Nodes per LSTM layer in Value Net. 30
LSTM layers in Value Net. 2
Activation function in output layer of Value Net. Leaky ReLU
Policy learning rate, wπ 5× 10−3

Value learning rate, wV 5× 10−3

GAE weight, ρ 0.99
Batch size, M 100
Weight updates, J 2
Clipping factor, ε 0.2
Discount factor, γ 0.99
Entropy regularisation weights, β 5× 10−2
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