
This work has been submitted to Computers & Chemical Engineering for possible publication.

Discrete-time Contraction-based Control of
Nonlinear Systems with Parametric Uncertainties

using Neural Networks
Lai Wei, Ryan McCloy, and Jie Bao

Abstract—In response to the continuously changing feedstock
supply and market demand for products with different specifica-
tions, the processes need to be operated at time-varying operating
conditions and targets (e.g., setpoints) to improve the process
economy, in contrast to traditional process operations around
predetermined equilibriums. In this paper, a contraction theory-
based control approach using neural networks is developed for
nonlinear chemical processes to achieve time-varying reference
tracking. This approach leverages the universal approximation
characteristics of neural networks with discrete-time contraction
analysis and control. It involves training a neural network to
learn a contraction metric and differential feedback gain, that is
embedded in a contraction-based controller. A second, separate
neural network is also incorporated into the control-loop to
perform online learning of uncertain system model parameters.
The resulting control scheme is capable of achieving efficient
offset-free tracking of time-varying references, with a full range
of model uncertainty, without the need for controller structure
redesign as the reference changes. This is a robust approach that
can deal with bounded parametric uncertainties in the process
model, which are commonly encountered in industrial (chemical)
processes. This approach also ensures the process stability during
online simultaneous learning and control. Simulation examples
are provided to illustrate the above approach.

Index Terms—Nonlinear control; neural networks; contraction
theory; uncertain nonlinear systems; discrete-time control con-
traction metric

I. INTRODUCTION

THE process industry has seen increasing variability in
market demand, with time varying specifications and

quantity of products. As an example, there is a trend for
produce-to-order operations in polymer [1] and fine chemicals
sectors. Variations are also evident in the specifications, costs
and supply volume of “raw” materials and energy. Conse-
quently, businesses in the process industry are required to
have the flexibility to dynamically adjust the volume and
specifications of products, and deal with diverse sources of
raw materials to remain competitive [2]. Traditionally, a chem-
ical plant is designed and operated at a certain steady-state
operating condition where the plant economy is optimized.
The process industry is shifting from the traditional mass
production to more agile, cost-effective and dynamic process
operation closer to the market, which is the main driver for

Lai Wei, Ryan McCloy and Jie Bao are with the School of Chemical
Engineering, The University of New South Wales (UNSW Sydney), Sydney,
NSW 2052, Australia. E-mail: lai.wei1@unsw.edu.au, r.mccloy@unsw.edu.au
and j.bao@unsw.edu.au (corresponding author).

This project is partially supported by Australian Research Council (ARC)
Discovery Projects DP180101717 and ARC Research Hub IH180100020.

next-generation “smart plants”. As such, the control systems
for modern chemical processes need to have the flexibility
to drive a process to any required time-varying operational
target (setpoint) to meet the dynamic market demand, with a
stability guarantee, especially during the start-up or shut-down
of processes.

As most chemical processes are inherently nonlinear, flex-
ible process operation warrants nonlinear control as the tar-
get operating conditions may need to vary significantly to
minimize the economic cost. Control of nonlinear systems
to track a time-varying reference profile and ensure stability
(convergence) can be challenging [3]. For general nonlinear
systems (e.g., many of them appearing in chemical pro-
cess systems), common nonlinear control approaches involve
stabilization of nonlinear systems with respect to a given
fixed equilibrium point, e.g., designing a control Lyapunov
function for a given equilibrium point, and based on which,
constructing a stabilizing control law. Therefore, every time
the reference is changed, a new control Lyapunov function
needs to be constructed and the control algorithm needs to be
redesigned. This inherent lack of flexibility makes control Lya-
punov function-based approaches infeasible for tracking arbi-
trary time-varying references (such as time-varying product
specifications required by the market). To address the above
challenge, contraction theory [3], [4] was adopted to study
the stability around (or contraction to) arbitrary references and
design tracking controllers based on differential dynamics for
time-varying (feasible) references of nonlinear systems with
stability guarantees and without structural redesign (e.g., [5],
[6]).

Neural networks have been used for nonlinear process mod-
eling (e.g., [7]) due to their ability to universally approximate
arbitrary functions, adaptive control [8], [9], finding utilization
in model-based control designs, such as model predictive
control (MPC) (see, e.g., [10]). Neural networks have also
been effectively used in learning control and adaptive control
applications [11]. A wide variety of neural network structures
are available (e.g., Siamese networks [12]), of which can
greatly impact the performance of the trained neural network.
However, stability design for neural network-based control
is still an open problem. In particular, there are very few
results on setpoint-independent nonlinear control, especially
when considering (embedding) the neural network within the
closed-loop control system. This poses a significant obstacle
for the neural network-based control approaches for chemical
processes, which are mission critical. It is often impractical

1

ar
X

iv
:2

10
5.

05
43

2v
3

 [
ee

ss
.S

Y
]

 2
0

Ju
n

20
22

2

to operate a process in a large range of random operating
conditions (with sufficient excitations) to produce process data
to train neural networks to learn system dynamics (or even
directly learn control laws). While such an exploration exercise
is often performed for mechanical systems, it is generally in-
feasible for chemical processes, as many operating conditions
may lead to poor product quality and/or inefficient material
and energy usage with significant financial penalties. If process
stability is not ensured, random process operating conditions
can even cause severe safety risks (fires or explosions). Fur-
thermore, chemical processes are typically designed based on
known mechanisms and thus chemical process models are
often available, although often with model uncertainties such
as uncertain parameters within a known range (see, e.g., [13]).
As such, one promising approach in chemical process con-
trol [14] is to train neural network-based controllers using
process data (input/output trajectories) generated from process
models and further refine such neural networks using real-
world process operating data. An important issue is “safe
exploration” (during online simultaneous learning and control
using neural networks), i.e., how can the controller explore
system trajectories to obtain new operating data, such that
the stimulus is sufficient for online learning and refinement
of such networks, yet simultaneously ensure process stability
by exploiting known trajectories, during online simultaneous
learning and control using neural networks. Inspired by [14],
[15], we aim to develop such a “safe” neural network-based
online learning approach to determine uncertain system param-
eters by “exploiting” a neural network embedded controller
that is designed offline via the contraction theory framework.

To address the problem of controlling discrete-time nonlin-
ear systems with parametric uncertainties, this article presents
a systematic approach to obtaining a novel contraction-based
controller with online parameter learning that embeds neural
networks. Using properties of contracting discrete-time sys-
tems, we develop a novel approach that uses neural networks to
synthesize DCCMs. This approach utilizes the nonlinear pro-
cess model to train the DCCM neural network representations
of the DCCM and differential feedback control gain (from
which the control law can be computed). To train the DCCM
neural network, a Siamese (or twin) neural network [12] is
employed to ensure both steps in the state trajectory share
the same state-dependent DCCM. A neural network-based
learning module is also incorporated into the control-loop,
such that any uncertain parameters can be identified online.
Finally, conditions to ensure offset-free tracking (after system
parameters are correctly identified), or bounded tracking (when
parameters are modeled with known uncertainty bounds), to
feasible references are derived. The resulting contraction-based
controller embeds a neural network.

This article is structured as follows. Section II formulates
the problem of tracking-time varying references for uncertain
nonlinear systems with neural networks in the closed loop, and
the proposed approach which leverages the contraction theory
framework. Section III presents the main approach to design-
ing a discrete-time contraction-based controller for discrete-
time systems with parametric uncertainties using DCCM neu-
ral networks and learning of uncertain parameters via estima-

xk = γk(0)

xk+1

xk+2

x∗k = γk(1) x∗k+1

x∗k+2

γk(s)
γk+1

γk+2

TxX

δx
k

X

Fig. 1: System trajectories along the state manifold X .

tion neural networks. Section IV develops the conditions for
the existence of contracting regions under the proposed neural
network-based method of Section III. Section V presents
illustrative examples, followed by Section VI which concludes
the article.

Notation. Function fk is defined as fk = f(xk) for any
function f , Z represents the set of all integers, Z+ represents
the set of positive integers, R represents set of real numbers.

II. PROBLEM FORMULATION AND APPROACH

A. Contraction Theory Overview

Contraction theory [3], [4] facilitates stability analysis and
control of discrete-time nonlinear systems with respect to ar-
bitrary, time-varying (feasible) references, without redesigning
the control algorithm, through the study of corresponding
displacement dynamics or differential dynamics. The analysis
and controller synthesis to ensure stability/contraction of the
nonlinear system is simultaneously completed via discrete-
time control contraction metrics (DCCMs). To introduce
the contraction-based methodology, we firstly consider the
discrete-time nonlinear control affine system without uncer-
tainty (extended in later sections)

xk+1 = f(xk) + g(xk)uk, (1)

where state and control are xk ∈ X ⊆ Rn and uk ∈ U ⊆ Rm.
The corresponding differential system of (1) is as follows

δxk+1
= Akδxk +Bkδuk , (2)

where Jacobian matrices of f and g in (1) are defined as
Ak = A(xk) := ∂(f(xk)+g(xk)uk)

∂xk
and Bk = B(xk) :=

∂(f(xk)+g(xk)uk)
∂uk

respectively, δuk := ∂uk
∂s and δxk := ∂xk

∂s
are vectors in the tangent space TxU at uk and TxX at xk
respectively, where s parameterises a path, c(s) : [0, 1] → X
between two points such that c(0) = x, c(1) = x∗ ∈ X
(see Fig. 1). Considering a state-feedback control law for the
differential dynamics (2),

δuk = K(xk)δxk , (3)

where K is a state dependent function, we then have from [3],
[4] the following definition for a contracting system.

3

Definition 1. A discrete-time nonlinear system (1), with differ-
ential dynamics (2) and differential state-feedback controller
(3), is contracting, with respect to a uniformly bounded metric,
α1I ≤M(xk) ≤ α2I (for constants α2 ≥ α1 > 0), provided,
∀x ∈ X and ∀δx ∈ TxX ,

(Ak +BkKk)>Mk+1(Ak +BkKk)− (1− β)Mk < 0, (4)

for some constant contraction rate 0 < β ≤ 1, where Mk =
M(xk) and Mk+1 = M(xk+1).

A region of state space is called a contraction region if
condition (4) holds for all points in that region. In Defi-
nition 1, M is a metric used in describing the geometry
of Riemannian space, which we briefly present here. We
define the Riemannian distance, d(x, x∗), as a measure for
the tracking performance (convergence/stability of the state,
x, to the reference, x∗), and is defined as (see, e.g., [16])

d(x, x∗) = d(c) :=

∫ 1

0

√
δ>c(s)M(c(s))δc(s)ds, (5)

where δc(s) := ∂c(s)
∂s . The shortest path in Riemannian space,

or geodesic, between x and x∗ is defined as

γ(s) := arg min
c(s)

d(x, x∗). (6)

Leveraging Riemannian tools, one feasible feedback track-
ing controller for (1), can be obtained by integrating the
differential feedback law (3) along the geodesic, γ(s) (6), as

uk = u∗k +

∫ 1

0

K(γ(s))
∂γ(s)

∂s
ds. (7)

Note, that this particular formulation is reference-independent,
since the target trajectory variations do not require structural
redesign of the feedback controller and is naturally befitting to
the flexible manufacturing paradigm. Moreover, the discrete-
time control input, uk (7), is a function with arguments (xk,
x∗k, u∗k) and hence the control action is computed from the
current state and target trajectory.

Then, under Definition 1 for a contracting system, e.g., (1)
driven by (7), we have

d(γk+1) ≤ (1− β)
1
2 d(γk), (8)

which states that the Riemannian distance between the state
trajectory, x, and a desired trajectory, x∗ is shrinking (i.e.,
convergence of the state to the reference), with respect to the
DCCM, M , with at least constant rate.

B. System Description

To address parametric uncertainties, for the remainder of
this article, we consider the following discrete-time control
affine nonlinear system with parametric uncertainty

xk+1 = f(r, xk) + g(r, xk)uk, (9)

where vector r represents the bounded uncertain parameters,

r ∈ R = {r ∈ R` | ri,min ≤ r ≤ ri,max | i = 1, . . . , `}, (10)

and functions f and g are smooth along the x direction and
Lipschitz continuous along r. The corresponding differential

dynamics (and hence the contraction condition) can be deter-
mined for any specific value of the parameter r, i.e.,

δxk+1
= A(r, xk)δxk +B(r, xk)δuk , (11)

where A(r, xk) := ∂(f(r,xk)+g(r,xk)uk)
∂xk

and B(r, xk) :=
∂(f(r,xk)+g(r,xk)uk)

∂uk
. Hence, from Section II-A, a function pair

(M,K), satisfying the contraction condition (4) for any r ∈ R,
i.e., satisfying

(Ak(r) +Bk(r)Kk)
>
Mk+1 (Ak(r) +Bk(r)Kk)

−(1− β)Mk < 0, ∀r ∈ R.
(12)

ensures contraction of the uncertain system (9) for the full
range of uncertainty.

C. Objective and Approach

The main objective is to ensure offset-free tracking of
(a priori unknown) time-varying references for an uncertain
nonlinear system (9). Time-varying references are generated
using an estimate of the uncertain parameter r̂k, such that the
reference sequence (x∗, u∗) satisfies the following

x∗k+1 = f(r∗, x∗k) + g(r∗, x∗k)u∗k, (13)

where r∗k = r̂k. Suppose that we have the desired state
trajectory (x∗k, x

∗
k+1). The corresponding target control input,

uk, can be obtained, given a system model and an estimated
parameter value, r̂k, by solution to (13). These solutions,
(x∗k, x

∗
k+1, u

∗
k), are only feasible solutions for the actual sys-

tem dynamics (9) when the estimated parameter, r̂, is equal to
the physical system value, r. Consequently, generating control
references subject to parameter modelling error will result
in incorrect control targets and hence state tracking offsets
(see, e.g., [17]). Thus, our ensuing objective is to force the
parameter estimate, r̂, to approach the real value, r, online,
whilst ensuring stability (to reference targets) for the full range
of parameter variation.

To ensure stability/convergence to any (feasible) reference
trajectories for the full range of parameter variation, a con-
traction theory-based structure is imposed during training
of a neural network embedded controller offline. Instead of
using the process model to generate process data for general
neural network training, we propose to use the model to
directly learn the crucial information for the contraction-
based control design (satisfying (12)): the contraction metric
(DCCM), which implies how the process nonlinearity affects
the contraction behavior; and a differential feedback gain,
from which the control action is computed. This trained
DCCM neural network is then embedded in a contraction-
based structure for (state-feedback) real-time control providing
stability guarantees across the full range of parametric un-
certainty (“exploitation”). This then facilitates online learning
of uncertain system parameters within the control-loop (“safe
exploration” see, e.g., [14], [15] for further discussion).

By integrating the power of well-studied, model-based
modern control methods with the inherent ability of neural
networks to handle system uncertainties, the proposed ap-
proach provides: (1) a systematic and efficient approach to
embedding neural networks in the closed-loop control scheme;

4

(2) certificates for stabilizability to arbitrary (feasible) time-
varying references without structural redesign of the controller,
by imposing a contraction-based controller structure and con-
ditions; and (3) online model correction through iterative
learning of uncertain system parameters.

III. NEURAL NETWORK APPROACH TO CONTRACTION
ANALYSIS AND CONTROL OF UNCERTAIN NONLINEAR

SYSTEMS

The following sections detail the proposed neural network
embedded contraction-based control with online parameter
learning approach as follows. Firstly, the family of models
(9) is used to generate the state data and local values of the
Jacobian matrices for training (with both arbitrary and specific
distributions permitted). Secondly, the data set is fed into a
neural network to learn the function pair (M,K) satisfying
(12), using a tailored loss function. Then, the controller is
constructed using the function pair (MNN ,KNN) (both of
which are represented by the DCCM neural network) by
implementing (7). Finally, a neural network-based parameter
learning module is incorporated into the control-loop, to
provide online estimation of uncertain parameters, as required
for correct reference generation and offset-free tracking.

A. Model-based Data Generation

The first step in the proposed methodology is to generate
data, D, from a family of system models (9). As discussed in
the Introduction, to operate a chemical process using random
operating conditions to generate process data to learn an
accurate model is infeasible due to stability/safety concerns.
The idea proposed in the following is to use a model with
uncertain parameters (which characterizes the inherent un-
certain nonlinear nature of modern processes) to generate
data, which can be done safely offline for an explicit range
of uncertainty in the system model. The contraction-based
analysis is performed for the full range of system uncertainty
to ensure the contraction-based controller to be robust. In this
way, provided the actual system model behaves inside the
family of models considered, efficient and stabilizing control
combined with online parameter learning can be achieved.

In order to impose the contraction conditions (12) during
training, which utilizes the generated data set, consideration
as to which parameters must be included in D is required. The
Jacobian matrices, Ak(r, xk) and Bk(r, xk), can be explicitly
calculated from the system model (9) for specific r values
(see (11)). If the distribution for the uncertain parameter is
known, then r can be generated as a random variable with
such a distribution to produce a more realistic data set for the
uncertain model. Calculation of Mk+1 requires the possible
next-step states (i.e., given a specific state, xk ∈ X , generate
all possible next-step states, xk+1 ∈ X , for all possible inputs,
uk ∈ U , using (9)). Consequently, the Jacobian matrices
Ak(r, xk), Bk(r, xk) and the two-step trajectories, xk, xk+1,
under specific r, are needed in the data set, D. Algorithm 1
summarizes the data set generation procedure.

Algorithm 1: Data Set Generation.
Initialize r, s, xk and uk with lower bound values
for r ∈ R do

for xk ∈ X do
for uk ∈ U do

Calculate xk+1 = f(r, xk) + g(r, xk)uk.
Compute Ak, Bk.
Store {r, xk, xk+1, Ak, Bk}i in data set D.

end
end

end

Remark 1. The data set generation process can be ac-
celerated by paralleling Algorithm 1, i.e. to calculate
{xk+1, Ak, Bk} with each {r, xk, uk} ∈ R×X×U in parallel.

Remark 2. An ideal data set would include all possible
two-step-trajectories, xk, xk+1, and Jacobians, Ak, Bk, under
all possible combinations of r ∈ R, xk ∈ X , uk ∈ U .
Naturally, numerical implementation of Algorithm 1 requires
discretization of these continuous sets (see, e.g., (10)) using
a sufficiently small step size (forming, e.g., a mesh of states).
The mesh can be nonlinear, depending on the nonlinearity of
the system dynamics and additionally chosen to be finer near
reference trajectories, i.e., to provide better accuracy when
close to the desired state and corresponding control input.
The condition on the mesh size to ensure contraction will be
discussed in Section IV

Remark 3. Straightforward extensions can be made to Al-
gorithm 1 such that the data set, D, is generated whilst
additionally considering measurement noise. For example, the
next step state values, xk+1, could be generated using the
small state perturbation xk + η, where η denotes a bounded
measurement noise variable. Consequently, the learned DCCM
will inherently be capable of handling measurement noise,
although this would require additional extension of the sys-
tem model and hence contraction analysis that follows (e.g.,
via adaptation of the results in [18]). Additionally, through
straightforward modifications, guaranteed bounded distur-
bance responses could be shaped from the disturbance input
to the state or output (e.g., via the differential dissipativity
approach of [19]). Both the measurement noise accommoda-
tion and disturbance rejection extensions are omitted from this
article to avoid over-complicating the presentation.

B. DCCM Synthesis from Data

In this work, a DCCM neural network is employed to rep-
resent the function pair (M ,K) satisfying (12). The structure
of this DCCM neural network is shown in Fig. 2, whereby
the inputs are the states of the system and the outputs are
the numerical values of the matrices MNN and KNN for the
corresponding states. Since the DCCM, MNN , is a symmetric
matrix, only the lower triangular components of MNN are
of interest (i.e., only the lower triangular matrix is required to
fully construct MNN). Consequently, the first group of outputs
are the components in the lower triangular matrix of MNN

5

x1

xn

a1,1

a1,2

a1,p

a2,1

a2,2

a2,q

aj,1

aj,2

aj,r

m11

mnn

κ11

κmn

Input Layer Hidden Layer Output Layer




m11 m12 · · · mn1

m12 m22 · · · mn2

...
...

. . .
...

mn1 mn2 · · · mnn




︸ ︷︷ ︸
MNN




k11 k21 · · · km1

k12 k22 · · · km2

...
...

. . .
...

k1n k2n · · · kmn




︸ ︷︷ ︸
KNN

Fig. 2: Illustration of the DCCM neural network structure.

and the second group of outputs are the components of the
controller gain KNN (see Fig. 2). Moreover, by exploiting the
symmetric property of MNN the computational complexity
is significantly reduced (only requiring n(n + 1)/2 decision
variables or network outputs).

1) Loss Function Design: In order to train the DCCM neu-
ral network, a suitable loss function, L, is required. Inspired
by the triplet loss in [20], a novel (non-quadratic) objective
loss function is developed herein to represent the positive
definite properties of the neural represented metric function,
MNN , and contraction condition (12). By reforming (12), we
can rewrite the negative semi-definite uncertain contraction
condition as a positive semi-definite condition (required for
the subsequent loss function and training approach). Hence,
we define Ω as (cf. (12))

Ω := −Acl,k(r)>MNNk+1
Acl,k(r) + (1− β)MNNk , (14)

where Acl,k(r) := Ak(r) + Bk(r)KNNk . Then if Ω ≥ 0, the
contraction condition (12) holds. Since these two conditions
are inequalities of matrices, it is befitting to formulate the fol-
lowing loss function, L, based on quadratic penalty functions
(see, e.g., [21])

LMi
=

®
−(|MNN(1,i)

| − εi) if (|MNN(1,i)
| − εi) ≤ 0

0 else

LΩj =

®
−(|Ω(1,j)| − εj) if (|Ω(1,j)| − εj) ≤ 0

0 else

L =
∑

i

LMi +
∑

j

LΩj ,

(15)
where |MNN(1,i)

| is the leading principle minor of MNN

including the first i rows and columns (i.e square submatrix)
of matrix MNN and similarly for Ω(1,i). Under Sylvester’s
criterion, by ensuring that each leading principle minor is
positive, we can ensure the positive-definiteness of MNN and
Ω. A small positive value, εi or εj , is introduced to reduce
the effects of numerical errors, which may effectively return
a semi-definite (or possible non-convergence) result. Each
LMi

or LMj
returns a higher cost if the leading principle

minor is smaller than εi or εj , otherwise, it returns zero. This
encourages convergence of the leading principle minor to some
value larger than εi or εj . The loss function, L, (the sum of
all LMi and LΩj), encourages all leading principle minors
to be positive and hence the positive definiteness of both
matrices, MNN and Ω, which consequently implies MNN is a

x1

xn

a1,1

a1,2

a1,p

a2,1

a2,2

a2,q

aj,1

aj,2

aj,r

m11

mnn

κ11

κmn

Input Layer Hidden Layer Output Layer




m11 m12 · · · mn1

m12 m22 · · · mn2

...
...

. . .
...

mn1 mn2 · · · mnn




︸ ︷︷ ︸
MNN




k11 k21 · · · km1

k12 k22 · · · km2

...
...

. . .
...

k1n k2n · · · kmn




︸ ︷︷ ︸
KNN

xk

x1

xn

a1,1

a1,2

a1,p

a2,1

a2,2

a2,q

aj,1

aj,2

aj,r

m11

mnn

κ11

κmn

Input Layer Hidden Layer Output Layer




m11 m12 · · · mn1

m12 m22 · · · mn2

...
...

. . .
...

mn1 mn2 · · · mnn




︸ ︷︷ ︸
MNN




k11 k21 · · · km1

k12 k22 · · · km2

...
...

. . .
...

k1n k2n · · · kmn




︸ ︷︷ ︸
KNN

xk+1

Share Weights L

Ak(r), Bk(r)

MNNk

KNNk

MNNk+1

Fig. 3: DCCM neural network training process block diagram.

DCCM for the contraction of (9). Compared to existing CCM
synthesis approaches using SoS programming, the proposed
method permits contraction metric and feedback gain synthesis
for non-polynomial system descriptions in addition to systems
modeled with parametric uncertainty.

2) DCCM Neural Network Training: Using the training
data set, D, generated from Algorithm 1 and loss function
(15), we detail here the process for training the DCCM
neural network function pair (MNN ,KNN). The DCCM
neural network cannot be simply trained using the generalized
structure in Fig. 2, as the loss function (15) requires both
the DCCM neural network output under input, xk, and also
the output under input, xk+1, since (14) requires both MNNk

and MNNk+1
at the next step (i.e., MNN (xk+1) evaluated

using MNN (xk) and stepping forward using (9)). To overcome
this difficulty, we adopted a Siamese network (see Fig. 3)
structure, whereby two neural networks, sharing the same
weights, can be tuned at the same time, by considering both
outputs of the weight sharing neural networks simultaneously.
In addition, the Siamese network structure permits the use
of outputs at time step k and k + 1 in the loss function.
Furthermore, the learning can be done in parallel using a
GPU to speed up the training, i.e. the complete set, D is
treated as a batch, and a total loss, Lt, is defined by summing
every loss function, Li, where Li is the output from each
element {r, xk, xk+1, Ak, Bk}i in D. Algorithm 2 describes
the training procedure for the Siamese neural network, with
further details and discussion provided subsequently.

The first step in Algorithm 2, is to feed the two-step trajecto-
ries, xk, xk+1, into the Siamese networks, which have two sets
of outputs, MNNk ,KNNk and MNNk+1

. Then, MNNk ,KNNk

and MNNk+1
are used to calculate the loss function, Li

(15) for {r, xk, xk+1, Ak, Bk}i. The DCCM neural network
is trained using backward propagation, whereby the loss
is summed cumulatively at each iteration. As described in
Algorithm 2, each iteration involves calculating the total loss,
Lt, for the all elements in the data set; however, if the number
of elements is sufficiently large, this process can be batch
executed. The learning process is finally terminated when
the total loss, Lt, is small enough, or the max number of
predefined iterations is reached. The error threshold, εmin, is
the smallest among all εi or εj in (15), which implies that

6

Algorithm 2: Training Procedure
Stack elements, {r, xk, xk+1, Ak, Bk}i ∈ D as a batch
for iter ≤ max iteration number do

for each element {r, xk, xk+1, Ak, Bk}i ∈ D do
Feed xk into the Siamese neural network.
Feed xk+1 into the Siamese neural network.
Construct MNNk ,MNNk+1

and KNNk .
Calculate the i-th element loss, Li, as in (15).

end
Calculate total loss Lt =

∑
i Li.

Proceed backward propagation.
if Lt < εmin then Break.

end
Save MNN and KNN .

provided the cumulative error is lower than this threshold, the
contraction condition is satisfied for each point in the data set.

The computational complexity of the training process in
Algorithm 2 can be expressed in terms of the number of
floating point operations (FLOPs). Feeding one element of
the data set, e.g., the i-th element {r, xk, xk+1, Ak, Bk}i,
through the Siamese network in Fig. 3, the computation
requires FLOPs = 2

∑
j (2Ij − 1)Oj+2Nnode+2n3 +n2 +

2
∑n
i=1 FLOPsdeth , where Ij and Oj represent the number

of inputs and outputs of layer j respectively [22], Nnode
represents the number of nodes of one neural network in Fig.
2, n is the order of the system and FLOPsdeth represents the
number of FLOPs for the determinant calculation of an h×h
matrix (see, e.g., [23] for more details).

Remark 4. A number of existing strategies are available for
quantifying the “success” of a trained DCCM neural network,
e.g., through testing and verification or statistical analysis and
performance metrics. As an example, we note that the training
methodology presented, is capable of incorporating direct
validation by splitting or generating multiple data sets, say
one for training, DT , and another for validation, DV , whereby
each set can be given context specific weighting, pending, e.g.,
the target system trajectories or known regions of typical or
safety critical operation. Due to the task specific nature of this
process and range of techniques available, we have omitted its
presentation here for clarity and refer the interested reader to
[24] for further details. Herein, and without loss of generality,
we assume the training process was completed sufficiently,
i.e., the training process was not stopped due to exceeding
the maximum number of iterations, with a level of accuracy
sufficient for the desired control application.

C. Neural Network Embedded Contraction-based Controller

This section details the implementation of a contraction-
based controller, of the form in (7), that is obtained by
embedding a neural network representation of the function pair
(M,K), i.e., MNN and KNN (calculated using Algorithms 1
and 2). Foremost, the proposed neural network embedded
contraction-based controller is described by (cf. (7))

uk = u∗k +

∫ 1

0

KNN (γ(s))
∂γ(s)

∂s
ds, (16)

where (x∗k, u
∗
k) are the state and control reference trajectories

at time k. When the desired state value, x∗k, changes, the
feed-forward component, u∗k, can be instantly updated, and
the feedback component,

∫
KNNδγ ds, can be automatically

updated through online geodesic calculation. Note that this
approach results in setpoint-independent control synthesis.
From (5) and (6), the geodesic, γ, is calculated as

γ(x, x∗) : = arg min
c

d(x, x∗)

= arg min
c

∫ 1

0

∂c(s)

∂s

T

MNN (c(s))
∂c(s)

∂s
ds,

(17)

where MNN and KNN are the function pair (M,K) repre-
sented by the DCCM neural network (see Fig. 2), and recall
from Section II-A that c(s) is an s-parameterized smooth
curve connecting x (s = 0) to x∗ (s = 1). Implementing
the contraction-based controller (7) requires integrating the
feedback law along the geodesic, γ, in (6). Subsequently, one
method to numerically approximate the geodesic is shown.
Since (17) is an infinite dimensional problem over all smooth
curves, without explicit analytical solution, the problem must
be discretized to be numerically solved. Note that the integral
can be approximated by discrete summation provided the
discrete steps are sufficiently small. As a result, the geodesic
(17) can be numerically calculated by solving the following
optimization problem,

γ̄(x, x∗) = arg min
∆x̃s

N∑

i=1

∆x̃TsiMNN (x̃i)∆x̃si∆si

s.t. x̃1 = x, x̃N = x∗,

(18)

where γ̄(x, x∗) ≈ γ(x, x∗) represents the numerically ap-
proximated geodesic, x and x∗ are the endpoints of the
geodesic, x̃i represents i-th point on a discrete path in the
state space, ∆x̃si := ∆x̃i/∆si ≈ ∂c(s)/∂s can be interpreted
as the displacement vector discretized with respect to the
s parameter, ∆x̃s := (∆x̃s1 , . . . ,∆x̃sN) is the discretized
path joining x to x∗ (i.e., discretization of c(s) in (17)),
all ∆si are small positive scalar values chosen such that∑N
i=1 ∆si = 1, N is the chosen number of discretization steps

(of s), x̃i =
∑i
j=1 ∆x̃sj∆sj+x represents the numerical state

evaluation along the geodesic.

Remark 5. Note that (18) is the discretization of (17)
with ∆x̃si and ∆si as the discretizations of ∂c(s)

∂s and δs
respectively, whereby the constraints in (18) ensure that the
discretized path connecting the start, x, and end, x∗, state
values align with the continuous integral from s = 0 to s = 1.
Hence, as ∆si approaches 0, i.e., for an infinitesimally small
discretization step size, the approximated discrete summation
in (18) converges to the smooth integral in (17).

After the geodesic is numerically calculated using (18), the
control law in (7) can be analogously calculated using an
equivalent discretization as follows

uk = u∗k +

N∑

i=1

∆x̃si∆siKNN (x̃i). (19)

7

The state reference, x∗, is chosen to follow some desired
trajectory, for which the corresponding instantaneous input,
u∗, can be computed via real-time optimization methods
(see “Reference Generator” in Fig. 5), such that the triplet
(x∗k, u

∗
k, x
∗
k+1), obtained from (13), satisfies (9) for a specific

value of the uncertain parameter, i.e., only when the modeled
parameter matches the physical value, or r∗ = r. The choice
for this reference value, r∗, for the purpose of reference design,
can be selected as the most likely or expected value for the
uncertain parameter, i.e., r∗ = E[r]. Hence, the corresponding
desired control input at any time, u∗k, can be calculated from
(13) as the expected corresponding control effort, u∗ = E[u∗k],
given both the desired state values, x∗k, x

∗
k+1, and expected

value for r. Suppose then, that there was some error (e.g.,
due to modeling) between the chosen uncertain parameter, r∗,
and the exact value for r. Consequently, there will be some
error when computing the corresponding control effort for
the desired state trajectory (via (9)), and moreover, for the
resulting control effort in (16), denoted by ũk = ūk − u∗k,
where ūk represents the control input reference generated
using the correct parameter value r. The resulting disturbed
system, can be modeled, using (9), as

xk+1 = f(r, xk) + g(r, xk)(uk + ũk), (20)

where uk has the same form as (7). Inspired by the results in
[4], we have then have the following contraction result.

Lemma 1. For the DCCM-based controller (7) that ensures a
system without uncertainty (1) is contracting, when parametric
uncertainty is present (20), the state trajectory, x, is driven by
(7) to the bounding ball around the target reference, x∗, as

d(γk+1) ≤ (1− β)
1
2 d(γk) +

√
α2Gk‖ũk‖. (21)

Proof. A Riemannian space is a metric space, thus from
the definition of a metric function (see e.g., [25]) and from
Definition 1 we have the following inequality,

d(γ(xk+1, x
∗
k+1)) = d(γ(x̌+ g(r, xk)ũk, x

∗
k+1))

≤ d(γ(x̌k+1, x
∗
k+1)) + d(γ(x̌k+1 + g(r, xk)ũk, x̌k+1)),

(22)
where x̌k+1 := f(r, xk) + g(r, xk)uk. Now, we con-
sider the last two components of (22). Firstly, from (8),
we have d(γ(x̌k+1, x

∗
k+1)) ≤ (1 − β)

1
2 d(γ(xk, x

∗
k)). Sec-

ondly, since the metric, Mk, is bounded by definition, then,
d(γ(x̌k+1 + g(r, xk)ũk, x̌k+1)) ≤ √α2Gk‖ũk‖, where Gk =
maxxk ‖g(r, xk)‖. Thus we have the conclusion in (21).

Remark 6. The condition in (21) (cf. (8)) requires the
disturbance term, gkũk in (20), to be bounded. The control
deviation, ũk is a constant, given a particular value for r,
and it is a reasonable assumption that in control practice, the
control-to-state mapping, gk, is also bounded for all k.

The choice for the uncertain parameter, r∗, when designing
the reference trajectory, (x∗, u∗), directly affects the radius
of the ball to which the system (1) contracts, and naturally,
a finite upper limit on the radius, due to this design choice,
exists and can be described by the maximum disturbance, i.e.,
max

√
α2‖gkũk‖. For continuity, note that by designing the

x1

xn

r̂1

r̂l

Input Layer Hidden Layer Output Layer

Lol

xk−1, uk−1, xk

r̂

Fig. 4: Illustration of the online parameter estimation neural
network training process.

reference about the expected value of the uncertain parameter,
the expected radius of the bounding ball in (21) is zero and
hence (cf. (8)) recovers the undisturbed or exact contraction
results of Section II-A (see specifically Definition 1) when
the expected parameter value correctly matches the physical
value. Following this idea, we will present a method in the
following section to adjust the reference parameter, r∗, such
that it converges to the physical value, r, hence facilitating
offset-free tracking.

D. Online Parameter Learning
As Lemma 1 provides conditions for closed-loop system

stability for a range of uncertain parameters, it serves the
foundation for “safe exploration” [14], [15], through the addi-
tion of an online parameter estimation module, whilst main-
taining stabilizing control. The additional parameter learning
module (e.g., neural network training algorithm) is included
in the closed-loop to learn the correct value of any uncertain
parameters, such that correct reference generation and hence
offset-free control can be obtained. Naturally befitting the
existing approach, we present here a neural network based
online parameter identification method. The estimation neural
network is constructed as shown in Fig. 4, whereby the input is
the current system state, xk = (x1, · · · , xn)>, and the output
is the uncertain parameter estimate, r̂k = (r̂1, · · · , r̂`)>. This
chosen neural network structure is a generalized treatment for
parameter identification/estimation. It allows for extensions to
state-dependent uncertain system parameters (e.g., the rate of
a chemical reaction can be a function of the temperature (a
state variable) in a chemical reactor) or a more general case
that uncertain parameters can represent unknown/unmodeled
system dynamics. To facilitate the learning process, as shown
in Fig. 4, a loss function, Lol, is constructed to represent the
error of prediction, defined as

Lol = ‖xk − f(r̂, xk−1)− g(r̂, xk−1, uk−1)‖. (23)

To clarify, r∗ is the value used for reference generation (as per
Section III-C), which is updated by online parameter estimates,
r̂, for the physical system parameter, r, using the proposed Al-
gorithm 3. The initial estimate (used for reference generation),
is taken as the expected (albeit potentially incorrect) value for
the uncertain parameter, r̄ (as per Section III-C).

Remark 7. The learning algorithm needs sufficient non-
repeating data (utilizing the reference model (13) with the past

8

Algorithm 3: Online Parameter Learning
Initialize the estimation neural network.
for Each time step k do

Append {xk−1, uk−1, xk}i to the training data-set,
De, for the estimation neural network.

for iter ≤ max iteration number do
for Each element i in De do

Calculate Lol,i using (23).
Backpropagate using Lol,i.

end
if maxi Lol,i < εol then Break.

end
if r̂k ∈ R in (10) then

Output r̂k.
else

Output r̂k−1.
Reinitialize the estimation neural network.

end
end

state, control input, reference target and uncertain parameter
values) to meet the minimum requirement for parameter con-
vergence. Moreover, the amount of data required for identi-
fiability increases with the dimensionality of the parametric
uncertainty (see, e.g., [26] for further discussion).

Algorithm 3 describes the procedure of parameter estima-
tion in the time interval [k, k+1). Suppose H denotes the num-
ber of available recorded time steps (historical data elements),
then the data set, De, contains the collection of elements
{xk−H , xk−H+1, · · · , xk−1}. Since the parameter estimation
neural network is trained using backward propagation, if the
number of elements is sufficiently large, this process can be
batch executed (in parallel). The parameter learning process is
finally terminated when the largest loss among elements in De
is small enough (using the arbitrarily small threshold εol), or
the max number of predefined iterations is reached, implying
that the estimation error is sufficiently small for each historical
element in the data set. Importantly, the estimated parameter,
r̂k, is forced to lie inside the known bound (rmin, rmax),
satisfying (10), as required to ensure that the contraction-
based controller maintains stability (as per Lemma 1). As the
estimated parameter, r̂, converges to the physical value, r, the
reference model (13) converges to that of the physical system
(9), leading to the following conclusion for the closed-loop.

Corollary 1. The discrete-time nonlinear system (9), with neu-
ral network embedded controller (16), is stable with respect
to a target reference (bounded convergence), in the sense of
Lemma 1. Provided Algorithm 3 converges, the Riemannian
distance between the system state and the desired reference
additionally shrinks to zero.

Proof. The proof is straightforward by noting that the un-
certainty results of Lemma 1 collapse to that of Definition
1 when the uncertain parameter r is correctly identified.
From convergence of Algorithm 3, the reference generating
model (13) matches precisely the physical system (9), i.e.,

r∗ = r̂ = r.

E. Synthesis and Implementation Summary

Lemma 1 guarantees that a contraction-based controller
(designed offline via Algorithms 1 and 2) will at least drive
an uncertain nonlinear system to a small neighborhood about
any reference generated using the model in (13). Since sta-
bility is guaranteed (in the sense of boundedness about the
target trajectory), we can update online the reference model
using the identified parameter in Algorithm 3 (provided the
estimation satisfies (10)). As stated in Corollary 1, when the
reference model matches precisely the physical system, i.e.,
the parametric uncertainty is removed through online identifi-
cation (estimation), the neural network embedded contraction-
based controller (16) also guarantees error free tracking. The
proposed control synthesis and implementation (see Fig. 5)
approach can be summarized as follows:
Offline:

i. Using the system model (9), generate training data, D,
via Algorithm 1.

ii. Using the training data, D, learn the metric, MNN , and
differential feedback gain, KNN , via Algorithm 2.

iii. Assign the reference model parameter, r∗, with the ex-
pected uncertain parameter value, r̄, i.e., r∗ = r̄.

Online: For each time step k
i. Update the identified parameters r̂k using Algorithm 3

and generate the reference triplet, (x∗k, u
∗
k, x
∗
k+1) using

the updated system model (13) with r∗ = r̂k.
ii. Feed the state measurement, xk, into the DCCM neural

network to determine the current step metric and feedback
gain, MNN and KNN , as per Fig. 2.

iii. Calculate the numerical geodesic, γ̄(xk, x
∗
k), connecting

the state, xk, to the desired reference x∗k, via solution to
(18) using the metric, MNN .

iv. Using the geodesic information, γ̄k, differential feedback
gain, KNN , and the control reference, u∗k, implement the
control, uk, via (19).

The proposed control approach is well suited for the dy-
namic control of modern industrial processes that are natu-
rally highly nonlinear and modeled with uncertainty. Since
the contraction metric, MNN (and thus the corresponding
feedback control law (19)) is valid for the full range of
parameter variation in r (and hence r̂), the parameter used
by the reference generator, r∗, can be safely updated (ex-
plored) online simultaneously with control of the process.
As a result, the proposed approach is capable of providing
reference flexibility and efficient setpoint/trajectory tracking
to ensure market competitiveness. Certificates for stability, to
ensure safe and reliable operation, are explicitly detailed in the
following section. The proposed contraction-based controller
embeds neural networks, as shown in Fig. 5.

IV. DESIGN ANALYSIS

In practice, the DCCM neural network should be trained
with a finite data set to make using Algorithms 1 and 2
computationally tractable. The finite data set, D, is comprised

9

Processuk Geodesic Calculation (18):
arg min∆x̃s

∑N
i=1 ∆x̃T

siMNN (x̃i)∆x̃si∆si

x1

xn

a1,1

a1,2

a1,p

a2,1

a2,2

a2,q

aj,1

aj,2

aj,r

m11

mnn

κ11

κmn

Input Layer Hidden Layer Output Layer




m11 m12 · · · mn1

m12 m22 · · · mn2

...
...

. . .
...

mn1 mn2 · · · mnn




︸ ︷︷ ︸
MNN

x̃i MNN(x̃i)

Control Output (19):
uk = u∗

k +
∑N

i=1 ∆x̃si∆siKNN (x̃i)

x1

xn

a1,1

a1,2

a1,p

a2,1

a2,2

a2,q

aj,1

aj,2

aj,r

m11

mnn

κ11

κmn

Input Layer Hidden Layer Output Layer




k11 k21 · · · km1

k12 k22 · · · km2

...
...

. . .
...

k1n k2n · · · kmn




︸ ︷︷ ︸
KNN

x̃i KNN(x̃i)

xk ∆xs

Reference Generator (13)

x∗k
u∗k

Controller

Parameter Estimation:
(Algorithm 3)

x1

xn

r̂1

r̂l

Input Layer Hidden Layer Output Layer

Lol

xk−1, uk−1, xk

r̂

r̂k

Fig. 5: Proposed neural network embedded contraction-based control scheme.

of a grid of points in R × X × U , which naturally depends
on the discretization step size or grid resolution (see Remark
2). In this section, we develop bounding conditions on the
contraction properties for the entire region of interest, when
only a discrete number of data points are available. For clarity
of presentation, we begin with considering the control affine
system without uncertainty in (1). The following theorem
describes contraction regions in the form of a finite ball
surrounding a known contracting point.

Theorem 1. If the contraction condition in (4) holds for a
state and control value pair (x?, u?) (satisfying (1)), then there
exists a ball B((x?, u?), ξ) with radius ξ = (ξx, ξu), centered
at (x?, u?), in which the system (1) is locally contracting with
a rate no slower than λ − Lxu‖ξ‖, where λ is the desired
contraction rate and Lxu is a Lipschitz constant.

Proof. Consider a function

h(xk, uk) := max eig((Θ−1
k)>A>cl,kMk+1Acl,kΘ−1

k − I)),
(24)

where Acl,k := Ak + BkKk and Mk =: Θ>k Θk. Since all
arguments of h are assumed to be smooth, we can apply a
Lipschitz condition to function h, yielding

|h(x? + ξx, u
? + ξu)− h(x?, u?)| ≤ Lxu|ξ|, (25)

where Lxu is a Lipschitz constant. By definition [4], we have
h(xk, uk) ≤ −λ . Hence, the largest variation of h inside the
ball can be upper bounded by

h(x?+ξx, u
?+ξu) ≤ h(x?, u?)+Lxu|ξ| ≤ −λ+Lxu|ξ|. (26)

Provided −λ + Lxu|ξ| < 0, the system (1) is contracting
inside the ball, for which, there always exists a |ξ| to ensure
this negative condition. Moreover, the minimum contraction
rate can be directly obtained by considering the maximum
eigenvalue inside the ball.

Theorem 1 describes a local contraction property in the
space X × U . This property is generalized to the space X

in the following extension, by considering all possible control
values, u ∈ U , for a particular state value, x? ∈ X .

Corollary 2. If the ball B((x?, uj), ξ) centered at (x?, uj)
forms a local contraction region for the system in (1) (for some
control value uj), and Bx(x?, ξx)×U ⊆ ⋃

j

B((x?, uj), ξ), then

the system is locally contracting within Bx(x?, ξx) at x?.

Proof. From (24), we have the contraction condition holds at
different uj with radius ξu. If these balls are connected, then,
there exists a ball around x? such that Bx(x?, ξx) × U ⊆⋃
j

B((x?, uj), ξ).

These results are extended in the following to systems with
parametric uncertainties by considering locally contracting
regions in the space X ×U ×R and hence the entire space of
uncertainty, R.

Corollary 3. If the contraction condition in (12) holds for
the uncertain parameter value r? with state and control
pair (x?, u?) for the system (9), then there exists a ball
B((x?, u?, r?), ξ) with radius ξ = (ξx, ξu, ξr) centered at
(x?, u?, r?), for which the system (9) is locally contracting.
Moreover, if Bx(x?, ξx) × U × R ⊆ ⋃

j,`

B((x?, uj , r`), ξ), the

system is locally contracting within Bx(x?, ξx) at x?.

Proof. These results are straightforward extensions of Theo-
rem 1 and Corollary 2, by considering an additional parameter
r and hence dimension, i.e., ∀r ∈ R.

By combining multiple locally contracting regions, a larger
region of interest, S, can be formed, for which we have the
following immediate result.

Corollary 4. If there exist multiple locally contracting regions
Bx,i := Bx(xi, ξx,i) such that Sx ⊆

⋃
i

Bx,i (where Sx ⊆ X is

10

an area of interest), then the area Sx is a contraction region
with the minimum contraction rate λSx,min given by

λSx,min = min
i

(λ− Lxur||ξi||). (27)

Proof. This result is straightforward from Theorem 2, by
following a similar approach to the proof of Corollary 2, where
h(x? + ξx, u

? + ξu, r
? + ξr) ≤ −λ + Lxur|ξ| and Lxur is a

Lipschitz constant. The minimum contraction rate inside the
region of interest is obtained by considering the maximum
eigenvalue among local contraction regions covering the whole
space of interest Sx.

Theorem 1 and Corollaries 2–4 state that the contraction
property of a nonlinear system with parametric uncertainty
can be determined by checking a finite number of local
conditions (e.g., across a grid of state values). In this way,
a contraction rate close to the desired one can be achieved
for an uncertain nonlinear system (1) using finite data sets,
hence making Algorithms 1 and 2 tractable. As the number
of data points increases (and hence, considering increasingly
small balls about each point), the minimum contraction rate
for the unified region of interest, Sx, approaches the desired
contraction rate.

V. ILLUSTRATIVE EXAMPLE

To illustrate the proposed control design method and per-
formance for both certain and uncertain nonlinear discrete-
time systems, we present here two simulation examples which
consider the following discrete-time model for a continuously
stirred tank reactor (CSTR) [6]:ï
x1k+1

x2k+1

ò
=


0.9x1k + 0.1φ1(x1k)e

αx2k
α+x2k + 0.1(1− ζ)x1k

0.9x2k + 0.1Bφ2(x1k)e
αx2k
α+x2k + uk


 ,

(28)
where φi = Dai(1 − x1k), Da1 = 1.25, Da2 = 2.5,
ζ = 0.1, α = 0.8 and the uncertain parameter B ∈ [1, 3]
with the true value B = 1. The state and input constraints
are x1k ∈ [0.1, 1.1], x2k ∈ [0.1, 1.1] and uk ∈ [−1, 1],
respectively. The normalized reactant concentration, reactor
temperature and jacket temperature are denoted by x1k , x2k

and uk, respectively. The time-varying state setpoints (based
on the market demand and energy cost) are as follows:

(x∗1(t), x∗2(t)) =

®
(0.939, 0.297), ∀t ∈ [0, 0.5)

(0.945, 0.547), ∀t ∈ [0.5, 1]
, (29)

whereby the control reference u∗ can be computed analytically
using the system model (28) and B∗ = B = 1 as u∗ =
0.050 ∀t ∈ [0, 0.5) and u∗ = 0.1 ∀t ∈ [0.5, 1]. Similarly,
when B is incorrectly modeled, e.g., B∗ = 3, the (incorrect)
control reference is computed as u∗ = 0.0312 ∀t ∈ [0, 0.5)
and u∗ = 0.0811 ∀t ∈ [0.5, 1].

Data generation was conducted offline using Algorithm 1
via a square mesh of state (xk), control (uk), and uncertain
parameter (B) values, with steps of 1

60 , 1
10 , and 1

10 respec-
tively. The DCCM and parameter estimation neural networks
were both designed with ReLU hidden layer activation, linear
input/output layer activation, a weight decay coefficient of 0.5,

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

x∗1
x1

x∗2
x2

u∗

u

0.0 0.2 0.4 0.6 0.8 1.0

Time(h)

0.0

0.5

6.18·10−13

d(γ)

Fig. 6: Simulation of CSTR control without parametric uncer-
tainty.

and decay rates of β1 = 0.1, β2 = 0.9. The function pair
(MNN ,KNN) was trained offline via Algorithm 2 using the
DCCM neural network structure as in Fig. 2 and Fig. 3 (with
a learning rate of 0.05, 3 hidden layers, and 10 neurons per
hidden layer). For the system in this example, processing one
element of data using the proposed neural network (shown
in Fig. 3) requires 3204 FLOPs. To significantly reduce the
training time, the DCCM neural network training algorithm
was executed in parallel. Parameter estimates for B were ob-
tained via Algorithm 3 online, using the parameter estimation
neural network as in Fig. 4 (with a learning rate of 0.00025,
1 hidden layer, and 4 neurons per hidden layer).

The CSTR was simulated using the proposed control design
(as shown in Fig. 5) for the scenario when the reference
generator uses the correct system parameter B∗ = B = 1
(hence, online learning is not required). Fig. 6 shows that when
the exact model is known the discrete-time neural network em-
bedded contraction-based controller (19) is capable of offset-
free tracking. The system was then simulated with incorrect
value of B (with B∗ = 3), and without online parameter
learning. Fig. 7 shows that bounded tracking was achieved as
per Lemma 1 (observe that the Riemannian geodesic distance,
d(γ(x, x∗)), converges to a non-zero value comparatively),
whereby the incorrect control reference u∗ generated using the
incorrect value for B caused the tracking offsets (see Section
III-C). To further demonstrate the overall control approach,
the same incorrectly modeled system was then simulated
with the online parameter estimation module active from time
t ≥ 0.1h. As shown in Fig. 8, the proposed approach achieved
bounded reference tracking (as per Lemma 1) when parametric
uncertainty was present (see t ∈ [0, 0.1h)), and after the online
parameter learning algorithm converged, offset free tracking
(see also d(γ(x, x∗))→ 0) was achieved as per Corollary 1.

VI. CONCLUSION

In this article, a framework was developed to train a DCCM
neural network (contraction metric and feedback gain) for con-
traction analysis and control using a nonlinear system model

11

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

x∗1
x1

x∗2
x2

u∗

u

0.0 0.2 0.4 0.6 0.8 1.0

Time(h)

0.0

0.2

0.4

0.0013

d(γ)

Fig. 7: Simulation of CSTR control with parametric uncer-
tainty and without parameter learning.

0.00

0.25

0.50

0.75

1.00

x∗1
x1

x∗2
x2

u∗

u

1

2

3

B

B∗

0.0 0.2 0.4 0.6 0.8 1.0

Time(h)

0.0

0.5

5.55 · 10−10

d(γ)

Fig. 8: Simulation of CSTR control with parametric uncer-
tainty and online parameter learning active from t ≥ 0.1h.

with parametric uncertainties. Considerations were made for
the discrete-time contraction and stability for certain nonlinear
systems, which for known bounds on modeling uncertainty,
were then extended to provide direct analysis and controller
synthesis tools for the contraction of uncertain nonlinear
systems. An online parameter “safe” learning module was also
included into the control-loop to facilitate correct reference
generation and consequently offset-free tracking. The resulting
contraction-based controller, which embeds the trained DCCM
neural network, was shown capable of achieving efficient
tracking of time-varying references, for the full range of model
uncertainty, without the need for controller structure redesign.

REFERENCES

[1] C. Zhang, Z. Shao, X. Chen, X. Gu, L. Feng, and L. T. Biegler, “Optimal
flowsheet configuration of a polymerization process with embedded
molecular weight distributions,” AIChE Journal, vol. 62, no. 1, pp. 131–
145, 2016.

[2] N. N. Chokshi and D. C. McFarlane, “DRPC: Distributed reconfigurable
process control,” A Distributed Coordination Approach to Reconfig-
urable Process Control, pp. 43–49, 2008.

[3] I. R. Manchester and J.-J. E. Slotine, “Control contraction metrics:
Convex and intrinsic criteria for nonlinear feedback design,” IEEE
Transactions on Automatic Control, vol. 62, no. 6, pp. 3046–3053, 2017.

[4] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear
systems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.

[5] R. McCloy and J. Bao, “Contraction-based control of switched nonlinear
systems using dwell times and switched contraction metrics,” IEEE
Control Systems Letters, vol. 6, pp. 1382–1387, 2022.

[6] R. McCloy, R. Wang, and J. Bao, “Differential dissipativity based
distributed MPC for flexible operation of nonlinear plantwide systems,”
Journal of Process Control, vol. 97, pp. 45–58, 2021.

[7] S.-L. Dai, C. Wang, and M. Wang, “Dynamic learning from adaptive
neural network control of a class of nonaffine nonlinear systems,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 25, no. 1,
pp. 111–123, 2013.

[8] W. He, Y. Chen, and Z. Yin, “Adaptive neural network control of
an uncertain robot with full-state constraints,” IEEE Transactions on
Cybernetics, vol. 46, no. 3, pp. 620–629, 2016.

[9] H. D. Patino and D. Liu, “Neural network-based model reference
adaptive control system,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 30, no. 1, pp. 198–204, 2000.

[10] T. Wang, H. Gao, and J. Qiu, “A combined adaptive neural network and
nonlinear model predictive control for multirate networked industrial
process control,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 27, no. 2, pp. 416–425, 2015.

[11] S. S. Ge, C. C. Hang, T. H. Lee, and T. Zhang, Stable Adaptive Neural
Network Control. Springer, 2013, vol. 13.

[12] D. Sheng and G. Fazekas, “A feature learning Siamese model for
intelligent control of the dynamic range compressor,” in International
Joint Conference on Neural Networks (IJCNN), 2019, pp. 1–8.

[13] G. Leitmann, “On one approach to the control of uncertain systems,”
Journal of Dynamic Systems, Measurement, and Control, vol. 115,
no. 2B, pp. 373–380, 1993.

[14] J. Shin, T. A. Badgwell, K.-H. Liu, and J. H. Lee, “Reinforcement
learning–overview of recent progress and implications for process con-
trol,” Computers & Chemical Engineering, vol. 127, pp. 282–294, 2019.

[15] M. Črepinšek, S.-H. Liu, and M. Mernik, “Exploration and exploitation
in evolutionary algorithms: A survey,” ACM computing surveys (CSUR),
vol. 45, no. 3, pp. 1–33, 2013.

[16] M. do Carmo, Riemannian Geometry. Birkhäuser, 1992.
[17] L. Wei, R. McCloy, and J. Bao, “Control contraction metric synthesis for

discrete-time nonlinear systems,” in 11th IFAC Symposium on Advanced
Control of Chemical Processes (Keynote Presentation), 2021.

[18] Q.-C. Pham, N. Tabareau, and J.-J. Slotine, “A contraction theory
approach to stochastic incremental stability,” IEEE Transactions on
Automatic Control, vol. 54, no. 4, pp. 816–820, 2009.

[19] R. Wang and J. Bao, “Distributed plantwide control based on differential
dissipativity,” International Journal of Robust and Nonlinear Control,
vol. 27, no. 13, pp. 2253–2274, 2017.

[20] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embed-
ding for face recognition and clustering,” in Conference on Computer
Vision and Pattern Recognition, 2015, pp. 815–823.

[21] D. P. Bertsekas, “On penalty and multiplier methods for constrained
minimization,” SIAM Journal on Control and Optimization, vol. 14,
no. 2, pp. 216–235, 1976.

[22] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” in 5th
International Conference on Learning Representations, ICLR 2017-
Conference Track Proceedings, 2019.

[23] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[24] B. J. Taylor, Methods and Procedures for the Verification and Validation
of Artificial Neural Networks. Springer, 2006.

[25] M. A. Armstrong, Basic Topology. Springer, 2013.
[26] A. Olivier and A. W. Smyth, “On the performance of online parameter

estimation algorithms in systems with various identifiability properties,”
Frontiers in Built Environment, vol. 3, p. 14, 2017.

	I Introduction
	II Problem Formulation and Approach
	II-A Contraction Theory Overview
	II-B System Description
	II-C Objective and Approach

	III Neural Network Approach to Contraction Analysis and Control of Uncertain Nonlinear Systems
	III-A Model-based Data Generation
	III-B DCCM Synthesis from Data
	III-B1 Loss Function Design
	III-B2 DCCM Neural Network Training

	III-C Neural Network Embedded Contraction-based Controller
	III-D Online Parameter Learning
	III-E Synthesis and Implementation Summary

	IV Design Analysis
	V Illustrative Example
	VI Conclusion
	References

