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Abstract As the use of renewable generation has increased, electric power
systems have become increasingly reliant on natural gas-fired power plants
as fast ramping sources for meeting fluctuating bulk power demands. This
dependence has introduced new vulnerabilities to the power grid, including
disruptions to gas transmission networks from natural and man-made disas-
ters. To address the operational challenges arising from these disruptions, we
consider the task of determining a feasible steady-state operating point for a
damaged gas pipeline network while ensuring the maximal delivery of load. We
formulate the mixed-integer nonconvex maximal load delivery (MLD) prob-
lem, which proves difficult to solve on large-scale networks. To address this
challenge, we present a mixed-integer convex relaxation of the MLD problem
and use it to determine bounds on the transport capacity of a gas pipeline sys-
tem. To demonstrate the effectiveness of the relaxation, the exact and relaxed
formulations are compared across a large number of randomized damage sce-
narios on nine natural gas pipeline network models ranging in size from 11 to
4197 junctions. A proof of concept application, which assumes network damage
from a set of synthetically generated earthquakes, is also presented to demon-
strate the utility of the proposed optimization-based capacity evaluation in
the context of risk assessment for natural disasters. For all but the largest net-
work, the relaxation-based method is found to be suitable for use in evaluating
the impacts of multi-contingency network disruptions, often converging to the
optimal solution of the relaxed formulation in less than ten seconds.
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Fig. 1: Illustration of a gas network’s response to an extreme event, similar to the power
network response in Coffrin et al. (2018). The star indicates the point in the damage and
restoration process that is examined in this study with an optimization-based assessment.

1 Introduction

Globally, electricity generation capacity is expected to grow from 21.6 trillion
kilowatt-hours (kWh) in 2012 to 36.5 trillion kWh in 2040. Of this capacity,
generation from natural gas is expected to grow from 22% to 28% (Conti et al.,
2016). This growing dependence implies the susceptibility of power systems to
upstream disruptions in gas transmission networks. Historical examples in-
clude the 2014 polar vortex, where natural gas delivery curtailments led to
approximately 25% of the total generation outages in the PJM interconnec-
tion (PJM Interconnection, 2014). A separate example is the 2014 South Napa
earthquake, which highlighted the vulnerability of gas networks to ground fail-
ure (Johnson and Mahin, 2016). Other hazards, including floods and wildfires,
can also have severe impacts on gas networks (Mohan, 2014). Aside from such
downstream effects on the power grid, these disruptions further inhibit the
transport of fuel for residential heating, which provides essential temperature
control to many individual homes during winter months. Mitigating the effects
of these disruptions is critical to the resilience of gas and power delivery net-
works. To that end, this study examines how to compute the optimal response
to a large-scale multi-contingency gas pipeline network disruption, whose ori-
gin (e.g., a natural hazard or sophisticated attack) is treated agnostically.
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The scope of the response measures considered in this study is illustrated
at a high level in Figure 1. When a hazard event begins, (1) delivery of load
decreases as gas network components are damaged and cascading effects begin,
and (2) cascading effects cease, and a new stable operating point is found.
After (2), some amount of load can be restored through operational methods
until (3) network repairs commence. These repairs are conducted in accord
with other restoration processes until (4) all load can be delivered. Repairs
continue until (5) all network components are operational. Addressing the
complete scope of Figure 1 is a substantial and complex task. In this study,
we focus on determining optimal steady-state operating points between events
of types (2) and (4), i.e., operational restoration decisions that enable the
delivery of a maximal amount of load in a damaged gas pipeline network.

Several commercial tools exist for analyzing the operation of gas pipelines
in the steady-state and transient regimes, including the NextGen pipeline
simulation suite (Gregg Engineering, 2020), Energy Solutions’ gas manage-
ment software (Energy Solutions, 2020), and Atmos Pipe (Atmos Interna-
tional, 2020). These tools are designed for capacity planners to simulate the
operation of a gas pipeline network under various physical conditions and flow
nominations rather than for resilience analysis. When one or more components
are set to be nonoperational (e.g., to simulate damage caused by a natural dis-
aster) and must be removed from the network model, this must typically be
done manually in such commercially available software tools. Therefore, eval-
uating the impact of many thousands of multi-component outage scenarios us-
ing existing tools is too labor-intensive to be practical. Furthermore, because
some deliveries (demand) and receipts (supply) may need to be adjusted (or
omitted) because of component outages, a new feasible operating solution, in-
cluding flow allocation and compressor settings, needs to be quickly obtained
for each scenario. It is therefore unclear how existing commercial tools can be
used for probabilistic risk assessment in this setting. This motivates a mathe-
matical approach that can determine a feasible natural gas pipeline operating
point that maximizes delivery subject to the multi-contingency considerations.

In this study, we formalize this task as the steady-state Maximal Load
Delivery (MLD) problem. Informally, the problem can be stated as follows:
given a severely damaged gas pipeline network in which a number of compo-
nents have become nonoperational, we seek to maximize the amount of prior-
itized load that can be served in the damaged network subject to steady-state
pipeline physical flow, capacity limits, pressure bounds, and other operating
requirements. The nonlinear physics of gas transport and the discrete nature
of operations in the network (i.e., the opening and closing of valves) make this
problem a challenging mixed-integer nonconvex program. To address this, we
introduce a mixed-integer convex relaxation of the problem, which is found to
be a reliable means for determining bounds on the maximum deliverable load.

Recent interest in large-scale gas network planning and control has led
to a wide variety of optimization-based applications and methodologies. Hiller
et al. (2018) provide a summary of studies connected to the optimization-based
evaluation of gas network capacities. Schmidt et al. (2016) present detailed
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steady-state models and approximations of network components for use in op-
timization applications. Hahn et al. (2017), Gugat et al. (2018), and Hoppmann
et al. (2019) present mixed-integer programming approaches for optimization
problems involving gas transport in the transient regime. Hante (2017, 2020)
describe relaxation methods for similar mixed-integer control problems.

The methodology of this study is primarily inspired by the success of ap-
proaches developed for multi-contingency analysis of power transmission net-
works. A similar optimization study on damaged power grids was motivated
by the analysis of natural disaster vulnerabilities (Coffrin et al., 2018). In that
study, the MLD problem was formulated for alternating current (AC) power
networks, and convex relaxations were developed that allow for the problem’s
efficient solution on large-scale instances. Another study introduced convex
relaxations for gas network expansion planning (Borraz-Sánchez et al., 2016).
Similar convex relaxations for gas pipeline flow have been explored subse-
quently (Wu et al., 2017; Chen et al., 2018). These relaxations largely inspire
the convex reformulation of the MLD problem described in this study. Ex-
tending these studies, we present nonconvex models and convex relaxations
for components that were previously not explicitly considered, e.g., resistors.

A number of studies consider problems as for the one developed here. Sun-
dar et al. (2018) and Ahumada-Paras et al. (2021) examine the problems of
identifying the k components of a power transmission network and gas pipeline
network, respectively, whose simultaneous failure maximizes disruption to the
network. Their studies use MLD problems as inner portions of broader bilevel
interdiction problems. In contrast, we seek to determine an optimal operating
point for a given disruption rather than find the worst-case disruption. Bent
et al. (2018) consider the joint expansion planning problem for gas and power
networks. Their study, which links power generation to gas delivery, serves as
a reference for future extensions of the methods presented in this study.

The contributions of this study include

– The first formulation of the steady-state MLD problem for gas networks;
– A mixed-integer nonconvex quadratic reformulation of the MLD problem;
– A tractable mixed-integer convex relaxation of the MLD problem;
– A rigorous benchmarking of the formulations on instances of various sizes;
– A proof of concept MLD analysis for spatially distributed natural hazards.

The remaining sections proceed as follows: Section 2 formulates the require-
ments for gas pipeline operational feasibility as a mixed-integer nonconvex pro-
gram; Section 3 formulates the MLD problem as a mixed-integer nonconvex
program, then proposes a mixed-integer convex relaxation of the problem; Sec-
tion 4 rigorously benchmarks the formulations across several gas network data
sets of various sizes and examines the use of the MLD method for probabilistic
risk assessment for natural disasters; and Section 5 concludes the paper.



Natural Gas Maximal Load Delivery for Multi-contingency Analysis 5

2 Background

This section presents the background for modeling natural gas transmission
networks in a steady-state regime. In Section 2.1, the transient dynamics for
gas pipelines are stated, and standard physical assumptions are imposed to
derive the Weymouth equation for steady-state turbulent flow. This noncon-
vex equation describes the loss in potential (i.e., pressure) along each pipe
as a nonlinear function of flow and represents one of the primary modeling
challenges addressed in subsequent sections. Then, in Section 2.2, additional
physical constraints required for feasible gas network operation are described.

2.1 Pipeline Modeling Assumptions

The dynamics of gas pipeline flow are accurately modeled via the following set
of partial differential equations (PDEs) over space and time (Osiadacz, 1987):

∂φ

∂x
+
∂ρ

∂t
= 0, (1a)

∂(φv)

∂x
+
∂φ

∂t
+
∂p

∂x
= − λ

2D
φ|v| − g sinαρ, (1b)

p− zRTρ = 0. (1c)

Here, Equation (1a) represents conservation of mass, Equation (1b) represents
conservation of momentum, and Equation (1c) is the equation of state that
relates the pressure and density. In these PDEs, the gas mass flux φ, density ρ,
velocity v, and pressure p evolve over both space and time, x and t, respectively.
In Equation (1b), λ denotes the friction factor of the pipe and, unless given, is
computed via an approximation of the Colebrook-White equation for turbulent
flow. That approximation is empirically derived as (Zeghadnia et al., 2019)

λ =

[
2 log

(
3.7D

ε

)]−2
, (2)

where D denotes the diameter of the pipe wall and ε denotes the absolute
pipe roughness (in units of length). Additionally, in Equations (1b) and (1c),
g denotes acceleration due to gravity, α denotes the angle of inclination of the
pipe with respect to the horizontal, z denotes the gas compressibility factor, T
denotes the temperature of the gas, and R denotes the universal gas constant.
While in practice, the gas compressibility z depends significantly on pressure
and temperature in the regime of high pressure gas pipeline flow, in this study,
we use an ideal gas equation of state and suppose z to be fixed, as commonly
done to explore new concepts in academic studies (Schmidt et al., 2016).

In our study, we assume all pipes are level, which allows the gravitational
term of Equation (1b) to be ignored. It is also assumed that the temperature
T is constant along a pipe. Finally, we assume that the system has reached



6 Byron Tasseff et al.

a steady state, and thus all time derivatives vanish. With these assumptions,
Equation (1a) reduces to ∂xφ = 0. Equation (1b), after imposing these as-
sumptions and multiplying by ρ, then reduces to

p
∂p

∂x
= −zRλT

2D
φ|φ| =⇒ ∂p2

∂x
= −zRλT

D
φ|φ|. (3)

Finally, integrating Equation (3) from zero to the length of the pipe, L, gives

[p(0)]2 − [p(L)]2 = γφ|φ| =⇒ [p(L)]2 − [p(0)]2 = −γφ|φ|, (4)

where the resistance term is defined via the relation γ := zLRλT
D . Equation (4)

is referred to as the Weymouth equation for turbulent flow, and its nonconvex
nonlinear form presents a critical challenge for optimization applications.

2.2 Network Modeling

Aside from pipes, gas networks include a variety of other components (Koch
et al., 2015), each of which is modeled using different sets of variables and
constraints. This subsection describes the nonconvex models of all components.

Notation for Sets. A natural gas transmission network is represented by a
directed graph G := (N ,A), where N is the set of junctions (nodes) and A
is the set of node-connecting components (arcs). The set of node-connecting
components in the network includes horizontal pipes, short pipes, resistors, loss
resistors, valves, regulators, and compressors. The set of receipts (producers)
is denoted by R and deliveries (consumers) by D. Receipts and deliveries are
attached to existing junctions i ∈ N . Furthermore, we let the subset of receipts
attached to i ∈ N be denoted byRi and the subset of deliveries by Di. The sets
of horizontal and short pipes in the network are denoted by P ⊂ A and S ⊂ A,
respectively; the set of regular and constant loss resistors by T ⊂ A and U ⊂ A,
respectively; the set of valves and regulating (i.e., control) valves by V ⊂ A
andW ⊂ A, respectively; and the set of compressors by C ⊂ A. Finally, the set
of node-connecting components incident to junction i ∈ N where i is the tail
(respectively, head) of the arc is denoted by δ+i := {(i, j) ∈ A} (respectively,
δ−i := {(j, i) ∈ A}). We now examine each of the aforementioned components
individually, define the decision variables, and present constraints that each
component enforces on the gas network’s operations. In particular, for each
component we present two types of constraints: (i) operational limits and (ii)
physical constraints. We start by examining junctions of the pipeline network.

Junctions. Each junction i ∈ N in the network is associated with a pres-
sure variable, pi. Operational limits require that this pressure resides between
predefined lower and upper bounds, denoted by p

i
and pi, respectively, i.e.,

0 ≤ p
i
≤ pi ≤ pi, ∀i ∈ N . (5)

We note that for a subset of predefined “slack junctions” N s ⊂ N , p
i

= pi.
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Node-connecting components. Every node-connecting component (i, j) ∈
A is associated with a decision variable, fij , which denotes the mass flow rate
across that component. These variables satisfy the capacity constraints

f
ij
≤ fij ≤ f ij , ∀(i, j) ∈ A. (6)

Here, a positive (respectively, negative) value of fij implies mass flow that
is directed from node i to j (respectively, j to i). Furthermore, for a pipe
(i, j) ∈ P, mass flow fij and mass flux φij are related by fij := π

4D
2
ijφij . In the

forthcoming paragraphs, we present the constraints required for modeling the
operational limits and physics of node-connecting components in the network.

Pipes. Pipes transport gas throughout a pipeline network. We suppose that
in steady-state flow, each pipe satisfies the Weymouth Equation (4), which
relates the mass flow rate fij through the cross-sectional area of the pipe to
the pressures pi and pj at the two end-points of the pipe. That is,

p2i − p2j = wijfij |fij |, ∀(i, j) ∈ P, (7)

where the mass flow resistance wij is related to γij via wij := (16γij)/(π
2D4

ij).

Short Pipes. Short pipes are components that model resistanceless transport
of flow between two junctions. This is equivalent to treating the length term
of a pipe’s resistance as negligible. Short pipes thus ensure the equality of
pressures at the two junctions, i and j, connected by that component, i.e.,

pi − pj = 0, ∀(i, j) ∈ S. (8)

Resistors. Aside from pressure losses that arise from the Weymouth equa-
tion, a variety of other phenomena can also induce pressure loss. Examples
include turbulence in shaped components, effects of measurement devices, cur-
vature of piping, and partially closed valves. Resistors serve as surrogate mod-
eling tools for representing these other forms of pressure loss. Losses across
resistors are modeled using the Darcy-Weisbach equation (Koch et al., 2015),

pi − pj = τijfij |fij |, ∀(i, j) ∈ T . (9)

Here, the resistance is defined by τij := (8κij)/(π
2D4

ijρs), where κij is the
resistor’s unitless drag factor, Dij is the resistor’s diameter, which may be
artificial, and ρs is the average standard density of gas throughout the network.
Note that like Constraints (7), Constraints (9) are also nonconvex nonlinear.
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Loss Resistors. Loss resistors serve as an alternate form of the previous
resistors, where instead of satisfying the Darcy-Weisbach equation, a fixed
pressure loss ξij ≥ 0 is incurred across the component (Koch et al., 2015).
Modeling pressure losses for all loss resistors requires imposing the constraints

fij(pi − pj) ≥ 0, ∀(i, j) ∈ U (10a)

(pi − pj)2 = ξ2ij , ∀(i, j) ∈ U . (10b)

Here, Constraints (10a) ensure that the mass flow across each loss resistor
is in the direction of the pressure loss, and each Constraint (10b) relates the
pressure loss magnitude ξij across the loss resistor to the difference of pressures.

Valves. Valves are used to route the flow of gas to certain portions of the
network or to block flow during maintenance of subnetworks. In this study,
valves are considered controllable elements that are assumed to be either closed
or open. In practice, valves can be partially closed to control the gas velocity,
but in these cases, we choose to model the valve as a resistor (Koch et al.,
2015). The operating status of each valve (i, j) ∈ V is indicated using a binary
variable zij ∈ {0, 1}, where zij = 1 corresponds to an open valve and zij = 0
to a closed valve. These variables constrain the mass flow across each valve as

f
ij
zij ≤ fij ≤ f ijzij , zij ∈ {0, 1}, ∀(i, j) ∈ V. (11)

Furthermore, when a valve is open, the pressures at the junctions connected by
that valve are equal. When the valve is closed, these pressures are decoupled.
This phenomenon is modeled via the following set of disjunctive constraints:

pi ≤ pj + (1− zij)pi, ∀(i, j) ∈ V (12a)

pj ≤ pi + (1− zij)pj , ∀(i, j) ∈ V. (12b)

Regulators. Large pipes are usually operated at higher pressures than other
portions of the network. As such, interconnection of large pipes with smaller
pipes often requires the use of pressure regulators (i.e., control valves) to reduce
pressure between differently-sized pipes. Regulators can also be used as an
additional means of controlling flow throughout the network (Koch et al.,
2015). The operating status of a regulator is given using a binary variable
zij ∈ {0, 1}, where zij = 1 and zij = 0 indicate active and inactive statuses,
respectively. The mass flow across each regulator is then governed by

f
ij
zij ≤ fij ≤ f ijzij , zij ∈ {0, 1}, ∀(i, j) ∈ W. (13)

Furthermore, each regulator (i, j) is associated with a multiplicative scaling
factor, αij , that defines the relationship between pi and pj when the regulator
is active, i.e., αijpi = pj . This factor is constrained by operating limits as αij =
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0 ≤ αij ≤ αij = 1. As for valves, the pressures at the junctions connected by
a regulator are decoupled when the regulator is inactive. This is modeled by

fij(pi − pj) ≥ 0, ∀(i, j) ∈ W (14a)

αijpi ≤ pj + (1− zij)αijpi, ∀(i, j) ∈ W (14b)

pj ≤ αijpi + (1− zij)pj , ∀(i, j) ∈ W. (14c)

Here, Constraints (14a) ensure that each mass flow is in the same direction
as the pressure loss, while Constraints (14b) and (14c) ensure the pressure at
node j resides within the scaled bounds of pi when the control valve is open.

Compressors. Each compressor (i, j) ∈ C boosts the pressure at the down-
stream junction j ∈ N by a variable scalar αij and is assumed to have negligi-
ble length. For the networks considered in this paper, bidirectional compressors
do not exist, although each compressor may or may not allow for uncompressed
flow in the reverse direction, i.e., from j to i. In this study, these distinct be-
haviors of compressors are captured by three conditional sets of constraints.

The first set of constraints describes the behavior of compressors where
uncompressed reverse flow is prohibited. These constraints are presented as

αijpi ≤ pj ≤ αijpi, ∀(i, j) ∈ C : f
ij
≥ 0, (15)

where αij and αij , (i, j) ∈ C, are minimum and maximum compression ratios.
The second set of constraints describes the behavior of compressors where

reverse flow is allowed and the minimum compression ratio is equal to one:

αijpi ≤ pj ≤ αijpi, ∀(i, j) ∈ C : f
ij
< 0 ∧ αij = 1 (16a)

fij(pi − pj) ≤ 0, ∀(i, j) ∈ C : f
ij
< 0 ∧ αij = 1. (16b)

Here, Constraints (16b) ensure that, if fij < 0 (i.e., when there exists reverse
flow), then pi = pj (i.e., there is no change in pressure across the compressor).

The final set of constraints describes the behavior of compressors where
uncompressed reverse flow is allowed and the minimum compression ratio is
not equal to one. In this case, the behavior of the compressor must be modeled
disjunctively. To accomplish this, for each compressor, a binary variable yij ∈
{0, 1} is introduced to denote the direction of flow through the compressor,
where yij = 1 implies flow from i to j and yij = 0 implies flow from j to i. The
pressures at the junctions that connect each compressor are then modeled as

yij ∈ {0, 1}, ∀(i, j) ∈ C : f
ij
< 0 ∧ αij 6= 1 (17a)

pj ≤ αijpi + (1− yij)pj , ∀(i, j) ∈ C : f
ij
< 0 ∧ αij 6= 1 (17b)

αijpi ≤ pj + (1− yij)pi, ∀(i, j) ∈ C : f
ij
< 0 ∧ αij 6= 1 (17c)

pi − pj ≤ yijpi, ∀(i, j) ∈ C : f
ij
< 0 ∧ αij 6= 1 (17d)

pj − pi ≤ yijpj , ∀(i, j) ∈ C : f
ij
< 0 ∧ αij 6= 1. (17e)
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Here, Constraints (17b) and (17c) ensure that, when a compressor’s flow is
positively directed, the pressure at node j is modeled according to the com-
pression ratio bounds. Constraints (17d) and (17e) ensure that, when flow is
reversed (i.e., yij = 0), the pressures on both sides of the compressor are equal.

Receipts, Deliveries, and Mass Conservation. Receipts and deliveries
are points in the network that are attached to junctions where gas can be
supplied to and withdrawn from the network, respectively. Each receipt (re-
spectively, delivery) is associated with a nonnegative constant sk (respectively,
dk) that denotes the fixed mass supply (respectively, demand) at receipt k ∈ R
(respectively, delivery k ∈ D). Mass conservation throughout the network then
requires nodal balance constraints to be enforced at every junction, namely∑

(i,j)∈δ+i

fij −
∑

(j,i)∈δ−i

fji =
∑
k∈Ri

sk −
∑
k∈Di

dk, ∀i ∈ N . (18)

Feasibility Problem. Given the constraints that model each component in
the gas network, the nonconvex program for steady-state feasibility is thus

Pressure and mass flow bounds: Constraints (5), (6)

Pipe dynamics: Constraints (7)

Short pipe dynamics: Constraints (8)

Resistor dynamics: Constraints (9)

Loss resistor dynamics: Constraints (10)

Valve dynamics: Constraints (11), (12)

Regulator dynamics: Constraints (13), (14)

Compressor dynamics: Constraints (15), (16), (17)

Conservation of mass flow: Constraints (18).

(MINCP-F)

The goal of (MINCP-F) is to determine if gas can be routed through the
pipeline network while satisfying the operational limits and physical con-
straints imposed by each component of the network. As formulated, the prob-
lem is a mixed-integer nonconvex nonlinear program. The nonconvexities of
the system of equations (MINCP-F) arise from three sources: (i) the discrete-
ness of controllable components; (ii) bilinear products of variables appearing
in flow direction-related inequalities, i.e., Constraints (10a), (14a), and (16b);
and (iii) nonlinear equations, i.e., Constraints (7), (9), and (10b). Section 3 first
describes a mixed-integer nonconvex quadratic formulation that addresses (ii),
followed by a mixed-integer convex quadratic relaxation that addresses (iii).

3 Maximal Load Delivery Formulations

This section formulates the MLD problem, which seeks to determine a feasible
operating point for a damaged gas pipeline network that maximizes the deliv-
ery of prioritized load. To the best of our knowledge, this is the first time such
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a problem has been formulated for gas networks. Three variants of the prob-
lem are presented in order of successive reformulations and relaxations that,
though they increase problem complexity, decrease nonconvexity and hence
computational difficulty. First, Section 3.1 extends the nonconvex feasibility
constraints of (MINCP-F) to formulate the initial MLD problem. Section 3.2
introduces an exact mixed-integer nonconvex quadratic reformulation of this
problem. Finally, to alleviate the challenges associated with nonconvexity, a
mixed-integer convex quadratic relaxation is presented in Section 3.3.

Aside from formulating the MLD problem, compared to previous studies
(e.g., Borraz-Sánchez et al., 2016; Wu et al., 2017; Chen et al., 2018; Ahumada-
Paras et al., 2021; Bent et al., 2018), this section also (i) presents mixed-integer
quadratic reformulations for a broader set of gas pipeline network components
and (ii) introduces convex relaxation techniques for components that were not
explicitly considered in these studies (e.g., resistors and loss resistors).

3.1 Mixed-integer Nonconvex Formulation

A damaged gas network requires the exclusion of components from the model
described in Section 2.2. This set of excluded components comprises both the
damaged components themselves as well as any connected components. For
example, a damaged junction i ∈ N implies a nonoperational status of all
node-connecting components δ+i ∪ δ

−
i . To this end, we introduce a tilde-based

notation to define the sets of components that are still functional within a
damaged gas network, e.g., P̃ ⊆ P denotes the set of still-operational pipes.

The fundamental motivation for formulating the MLD problem is that a
damaged gas network may not be able to satisfy all demands of the origi-
nal system. This implies a possible imbalance of the mass conservation Con-
straints (18). To address this, in the MLD problem, all receipts and deliveries
are treated as dispatchable. This implies the previous constant supplies and
demands, sk, k ∈ Ri, and dk, k ∈ Di, for i ∈ N , become variables bounded as

0 ≤ sk ≤ sk, ∀k ∈ Ri, ∀i ∈ Ñ (19a)

0 ≤ dk ≤ dk, ∀k ∈ Di, ∀i ∈ Ñ , (19b)

where sk and dk denote the original supplies and demands, respectively. Using
these variable loads, the previous mass conservation Constraints (18) become∑

(i,j)∈δ̃+i

fij −
∑

(j,i)∈δ̃−i

fji =
∑
k∈Ri

sk −
∑
k∈Di

dk, ∀i ∈ Ñ . (20)

Next, parameters βk ≥ 0, k ∈ D, are introduced to denote load restoration
priorities. If no load priorities are available, values of one can be used instead.
(Indeed, this parameterization is used for all of our experiments in Section 4.)
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Maximization of prioritized load delivered then implies the objective function

η(d) =
∑
i∈Ñ

∑
k∈Di

βkdk. (21)

The mixed-integer nonconvex, nonlinear MLD problem formulation is then

maximize Objective function: η(d) of Equation (21)

subject to Supply and demand bounds: Constraints (19)

Conservation of mass flow: Constraints (20)

(MINCP-F) without Constraints (18),

(MINCP)

where in (MINCP-F), all component sets are assumed to be replaced with their
tilde-denoted counterparts to indicate the application of a damage scenario.

3.2 Mixed-integer Nonconvex Quadratic Reformulation

As described at the end of Section 2.2, one source of nonconvexity in (MINCP)
is the existence of bilinear variable products appearing in flow direction-related
inequalities. To address these nonconvexities, this subsection introduces (i)

binary direction variables yij ∈ {0, 1} for all (i, j) ∈ Ã and (ii) squared pressure

variables πi = p2i for all i ∈ Ñ , which allows for the construction of an exact
mixed-integer nonconvex quadratic reformulation of the original problem. That
is, the new reformulation contains fewer nonlinearities than (MINCP) but
has the same solution set. This new formulation enables global solutions to
be found with modern mixed-integer quadratic programming solvers (namely,
Gurobi). Later, in Section 3.3, this directed formulation is relaxed to form a
mixed-integer convex quadratic relaxation of the original MLD problem.

Junctions. Squared pressures must reside between predefined bounds, i.e.,

πi ≤ πi ≤ πi, ∀i ∈ Ñ . (22)

where πi and πi, i ∈ Ñ are derived from the bounds p
i

and pi, respectively.

Node-connecting Components. Using the binary flow direction variables,
the mass flow bounds of all node-connecting components are restricted as

(1− yij)f ij ≤ fij ≤ yijf ij , yij ∈ {0, 1}, ∀(i, j) ∈ Ã. (23)
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Pipes. Squared pressure variables and directions allow for the reduction of
nonlinearities in the Weymouth Constraints (7) for pipes, rewritten here as

πi − πj ≥ wijf2ij − (1− yij)
[
wijf

2

ij
− (πi − πj)

]
, ∀(i, j) ∈ P̃ (24a)

πi − πj ≤ wijf2ij , ∀(i, j) ∈ P̃ (24b)

πj − πi ≥ wijf2ij − yij
[
wijf

2

ij − (πj − πi)
]
, ∀(i, j) ∈ P̃ (24c)

πj − πi ≤ wijf2ij , ∀(i, j) ∈ P̃. (24d)

This is similar to the reformulation presented by Borraz-Sánchez et al. (2016).
Here, each Constraint (24a) ensures a pressure decrease from i to j when
yij = 1 (nonnegative flow). Constraint (24b) ensures the Weymouth equation
is satisfied when yij = 1. Constraint (24c) ensures a pressure decrease from j
to i when yij = 0. Constraint (24d) ensures the Weymouth equation is satisfied
when yij = 0. Directions are used to bound squared pressure differences via

(1− yij)(πi − πj) ≤ πi − πj , ∀(i, j) ∈ P̃ (25a)

πi − πj ≤ yij(πi − πj), ∀(i, j) ∈ P̃. (25b)

Short Pipes. Squared pressures allow for rewriting Constraints (8) as

πi − πj = 0, ∀(i, j) ∈ S̃. (26)

As with pipes, direction variables are used to bound squared pressures via

(1− yij)(πi − πj) ≤ πi − πj , ∀(i, j) ∈ S̃ (27a)

πi − πj ≤ yij(πi − πj), ∀(i, j) ∈ S̃. (27b)

Resistors. For junctions that are connected to a resistor, the squared pres-
sure variables πi, i ∈ Ñ , must be related to variables denoting pressure, i.e.,

p2i − πi = 0, i ∈ Ñ :
(
∃(i, j) ∈ T̃

)
∨
(
∃(j, i) ∈ T̃

)
. (28)

The potential loss is then written in a manner as for that of pipes, i.e.,

pi − pj ≥ wijf2ij − (1− yij)
[
wijf

2

ij
− (p

i
− pj)

]
, ∀(i, j) ∈ T̃ (29a)

pi − pj ≤ wijf2ij , ∀(i, j) ∈ T̃ (29b)

pj − pi ≥ wijf2ij − yij
[
wijf

2

ij − (p
j
− pi)

]
, ∀(i, j) ∈ T̃ (29c)

pj − pi ≤ wijf2ij , ∀(i, j) ∈ T̃ , (29d)
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Direction variables are also used to bound the original pressure variables via

(1− yij)(pi − pj) ≤ pi − pj , ∀(i, j) ∈ T̃ (30a)

pi − pj ≤ yij(pi − pj), ∀(i, j) ∈ T̃ . (30b)

Loss Resistors. As for resistors, squared pressure variables πi, i ∈ Ñ , for
junctions connected to a loss resistor, must be related to pressure variables via

p2i − πi = 0, i ∈ Ñ :
(
∃(i, j) ∈ Ũ

)
∨
(
∃(j, i) ∈ Ũ

)
. (31)

Note that Constraints (10) can be rewritten using absolute values as

ξij = |pi − pj |, ∀(i, j) ∈ Ũ . (32)

However, directions yij allow this disjunctive form to be modeled linearly, i.e.,

(2yij − 1)ξij = pi − pj , ∀(i, j) ∈ Ũ . (33)

Here, the direction of pressure loss coincides with the direction given by yij .

Valves. Pressure Constraints (12) are written with squared pressures as

πi ≤ πj + (1− zij)πi, ∀(i, j) ∈ Ṽ (34a)

πj ≤ πi + (1− zij)πj , ∀(i, j) ∈ Ṽ. (34b)

Regulators. Pressure Constraints (14) are written with squared pressures as

πj − α2
ijπi ≤ (2− yij − zij)πj , ∀(i, j) ∈ W̃ (35a)

α2
ijπi − πj ≤ (2− yij − zij)πi, ∀(i, j) ∈ W̃ (35b)

πj − πi ≤ (1 + yij − zij)πj , ∀(i, j) ∈ W̃ (35c)

πi − πj ≤ (1 + yij − zij)πi, ∀(i, j) ∈ W̃. (35d)

Here, when yij = 1 and zij = 1 (i.e., the regulating valve is open and the
flow direction is positive), Constraints (35a) and (35b) ensure that πj resides
between the scaled value of πi. When yij = 0 and zij = 1, Constraints (35c)
and (35d) ensure that πi = πj , and reverse flow is allowed. Finally, when the
valve is closed, zij = 0 and yij ∈ {0, 1}, which ensures πi and πj are decoupled.
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Compressors. Constraints (15), which model compressors where uncom-
pressed reverse flow is prohibited, are written with squared pressures as

α2
ijπi ≤ πj ≤ α2

ijπi, ∀(i, j) ∈ C : f
ij
≥ 0. (36)

For compressors that allow reverse flow, Constraints (16) and (17) become

πj ≤ α2
ijπi + (1− yij)πj , ∀(i, j) ∈ C : f

ij
< 0 (37a)

α2
ijπi ≤ πj + (1− yij)α2

ijπi, ∀(i, j) ∈ C : f
ij
< 0 (37b)

πi − πj ≤ yijπi, ∀(i, j) ∈ C : f
ij
< 0 (37c)

πj − πi ≤ yijπj , ∀(i, j) ∈ C : f
ij
< 0. (37d)

Here, when yij = 1, Constraints (37a) and (37b) require πj to reside within
the scaled bounds of πi. When yij = 0, Constraints (37c) and (37d) ensure the
equality of pressures when flow is from j to i (i.e., there is no compression).

Direction-related Valid Inequalities. The formulations of Borraz-Sánchez
et al. (2016) include valid inequalities that relate node-connecting component
directions yij to nodal conditions in the directed network. These inequalities
improve relaxed formulations. Here, we employ the constraints that model flow
directionality at junctions with zero supply, zero demand, and degree two:

∑
(i,j)∈δ̃−i

yij −
∑

(i,j)∈δ̃+i

yij = 0, i ∈ Ñ0 :
(∣∣∣δ̃±i ∣∣∣ = 1

)
(38a)

∑
(i,j)∈δ̃−i

yij +
∑

(i,j)∈δ̃+i

yij = 1, i ∈ Ñ0 :
(∣∣∣δ̃±i ∣∣∣ = 2

)
∧
(∣∣∣δ̃∓i ∣∣∣ = 0

)
, (38b)

where Ñ0 ⊂ Ñ denotes the subset of junctions where
∑
k∈Ri

si =
∑
k∈Di

di =
0. These constraints imply that, for this subset of junctions, the direction of
incoming mass flow must be equal to the direction of outgoing mass flow.



16 Byron Tasseff et al.

Reformulation. The preceding changes enable the mixed-integer nonconvex
(MINCP) to be formulated as the mixed-integer nonconvex quadratic program

maximize Objective function: η(d) of Equation (21)

subject to Supply and demand bounds: Constraints (19)

Conservation of mass flow: Constraints (20)

Pressure bounds: Constraints (5), (22)

Directed mass flow bounds: Constraints (23)

Pipe dynamics: Constraints (24), (25)

Short pipe dynamics: Constraints (26), (27)

Resistor dynamics: Constraints (28), (29), (30)

Loss resistor dynamics: Constraints (31), (33)

Valve dynamics: Constraints (11), (34)

Regulator dynamics: Constraints (13), (35)

Compressor dynamics: Constraints (36), (37)

Direction-related cuts: Constraints (38).

(MINQP)

3.3 Mixed-integer Convex Quadratic Relaxation

There are a significant number of nonconvex nonlinear constraints in the prob-
lem (MINQP) that cause it to become computationally intractable with in-
creasing network size. Specifically, these are Constraints (24b), (24d), (28),
(29b), (29d), and (31). In this section, we apply convex relaxation strategies,
as done in Borraz-Sánchez et al. (2016), Wu et al. (2017), and Chen et al.
(2018), to address this. We also extend these studies by formulating relax-
ations for components that were not previously considered, e.g., resistors and
loss resistors, which require constraints involving explicit pressure variables.

Pipes. We first apply convex relaxations to the Weymouth Constraints (24)

for pipes. The variables `ij for (i, j) ∈ P̃ are introduced to denote the difference
in squared pressures across each pipe. The relaxation constraints are then

πj − πi ≤ `ij ≤ πi − πj , ∀(i, j) ∈ P̃ (39a)

`ij ≤ πj − πi + (2yij)(πi − πj), ∀(i, j) ∈ P̃ (39b)

`ij ≤ πi − πj + (2yij − 2)(πi − πj), ∀(i, j) ∈ P̃ (39c)

wijf
2
ij ≤ `ij , ∀(i, j) ∈ P̃ (39d)

`ij ≤ wijf ijfij + (1− yij)
(∣∣∣wijf ijf ij∣∣∣+ wijf

2

ij

)
, ∀(i, j) ∈ P̃ (39e)

`ij ≤ wijf ijfij + yij

(∣∣∣wijf ijf ij∣∣∣+ wijf
2

ij

)
, ∀(i, j) ∈ P̃. (39f)
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Here, Constraints (39a) ensure each loss of squared pressures resides between
the corresponding differences. Constraints (39b) ensure that when yij = 0,
each loss is bounded by πj − πi, and Constraints (39c) imply that each loss is
bounded by πi − πj when yij = 1. Constraints (39d) are the primarily convex
relaxations of the Weymouth equations. Finally, Constraints (39e) apply linear
upper bounds on each variable `ij , depending on the choice of flow direction.

Resistors. We next apply convex relaxations to Constraints (28), which re-
late nonsquared and squared pressure variables. These relaxations yield

p2i ≤ πi, i ∈ Ñ :
(
∃(i, j) ∈ T̃

)
∨
(
∃(j, i) ∈ T̃

)
. (40)

Constraints (29) are then relaxed as done for Constraints (39), i.e.,

pj − pi ≤ `ij ≤ pi − pj , ∀(i, j) ∈ T̃ (41a)

`ij ≤ pj − pi + (2yij)(pi − pj), ∀(i, j) ∈ T̃ (41b)

`ij ≤ pi − pj + (2yij − 2)(p
i
− pj), ∀(i, j) ∈ T̃ (41c)

wijf
2
ij ≤ `ij , ∀(i, j) ∈ T̃ (41d)

`ij ≤ wijf ijfij + (1− yij)
(∣∣∣wijf ijf ij∣∣∣+ wijf

2

ij

)
, ∀(i, j) ∈ T̃ (41e)

`ij ≤ wijf ijfij + yij

(∣∣∣wijf ijf ij∣∣∣+ wijf
2

ij

)
, ∀(i, j) ∈ T̃ . (41f)

Loss Resistors. As we have done for resistors, we apply convex relaxations
to Constraints (31) relating nonsquared and squared pressures. We obtain

p2i ≤ πi, i ∈ Ñ :
(
∃(i, j) ∈ Ũ

)
∨
(
∃(j, i) ∈ Ũ

)
. (42)

Relaxation. The mixed-integer convex quadratic relaxation of (MINQP) is

maximize Objective function: η(d) of Equation (21)

subject to Supply and demand bounds: Constraints (19)

Conservation of mass flow: Constraints (20)

Pressure bounds: Constraints (5), (22)

Directed mass flow bounds: Constraints (23)

Pipe dynamics: Constraints (25), (39)

Short pipe dynamics: Constraints (26), (27)

Resistor dynamics: Constraints (30), (40), (41)

Loss resistor dynamics: Constraints (33), (42)

Valve dynamics: Constraints (11), (34)

Regulator dynamics: Constraints (13), (35)

Compressor dynamics: Constraints (36), (37)

Direction-related cuts: Constraints (38).

(MICQP)
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In Section 4, we present the results of a comprehensive computational study
performed to compare the tractability and application of the exact and relaxed
MLD problem formulations, (MINQP) and (MICQP), respectively. These com-
putations display the practical benefits of employing the relaxation, (MICQP).

4 Computational Experiments

This section experimentally analyzes the applicability and computational per-
formance of the (MINQP) and (MICQP) MLD formulations presented in Sec-
tion 3. This informs of us the practical, analytical, and computational trade-
offs associated with using the exact and relaxed MLD problem formulations,
respectively. To accomplish this, we consider three different types of dam-
age scenarios: (i) N−1 or single contingency scenarios, (ii) N−k or multi-
contingency scenarios, and (iii) earthquake damage scenarios. Each scenario
is intended to simulate common sources of damage to a gas pipeline network.
Although these damage models arise from physically reasonable assumptions,
we do not claim to quantify the robustness of the specific networks considered.
Rather, these models serve as proofs of concept for studying three aspects of
the MLD problem: (i) understanding the tractability of MLD formulations,
(ii) highlighting the qualitative insights given by an MLD analysis, and (iii)
providing guidelines for future applications of this work to real-world scenarios.

Both MLD formulations are implemented in the Julia programming lan-
guage using the mathematical modeling layer JuMP, version 0.21 (Dunning
et al., 2017), and version 0.8 of GasModels, an open-source Julia pack-
age for steady-state and transient natural gas network optimization (Bent,
2020). Section 4.1 describes the instances, computational resources, and pa-
rameters used throughout these experiments; Section 4.2 compares the efficacy
of MLD formulations on N−1 contingency scenarios for each network; Section
4.3 does the same for randomized N−k multi-contingency scenarios, where
k corresponds to 15% of node-connecting components in each network; and
Section 4.4 compares the runtime performance of the formulations over both
the N−1 and N−k experiment sets. Finally, Section 4.5 provides a proof of
concept application of the MLD problem to damage scenarios precipitated by
deterministic or stochastic natural hazards (in this case, earthquakes).

4.1 Experimental Test Data & Setup

The numerical experiments consider networks of various sizes that appear in
literature of natural gas transmission network modeling or are derivable from
open data. These instances are summarized in Table 1. Here, the Belgium-20

network is derived from the application of De Wolf and Smeers (2000); the
North American 154-junction network (i.e., NA-154) is derived by subject
matter experts using public data; and GasLib networks are obtained directly
from Schmidt et al. (2017). For the GasLib-582 and GasLib-4197 networks,
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Network |N | |P| |S| |T | |U| |V| |W| |C|
GasLib-11 11 8 0 0 0 1 0 2
Belgian-20 20 24 0 0 0 0 0 3
GasLib-24 24 19 1 1 0 0 1 3
GasLib-40 40 39 0 0 0 0 0 6
GasLib-134 134 86 45 0 0 0 1 1
GasLib-135 135 141 0 0 0 0 0 29

NA-154 154 140 0 0 0 0 0 12
GasLib-582 582 278 269 8 0 26 23 5
GasLib-4197 4197 3537 343 22 6 426 120 12

Table 1: Summary of natural gas transmission networks derived from open data.

the nomination freezing 1 and nomination mild 0006 delivery and receipt
nominations are used, respectively. Generally, steady-state optimization prob-
lems involving most networks can be solved to optimality given a small amount
of time (e.g., seconds to minutes). The notable exception is the GasLib-4197

network, the largest system, which requires hours to solve many instances.
Experiments are performed on the Darwin experimental computing clus-

ter at Los Alamos National Laboratory. Each optimization computation is
provided a wall-clock time of one hour on a node containing two Intel Xeon
E5-2695 v4 processors, each with 18 cores @2.10 GHz, and 125 GB of memory.
For solutions of the nonconvex and convex MIQPs, Gurobi 9.0 is used with
the parameter MIPGap=0.0. For experiments employing (MINQP), the setting
NonConvex=2 is used, which allows for global optimization of this formulation.

4.2 Single Contingency Damage Scenarios

The first damage model considered is the single contingency or N−1 model,
where N corresponds to the original number of network components and N−1
indicates that an individual component is removed (or damaged). This model
can be thought of as a method for simulating the effects of an unscheduled
component outage. Here, it is assumed that both nodal components (i.e., junc-
tions) and node-connecting components (e.g., pipes) can comprise an N−1
damage scenario. In our study, this damage model is intended to demonstrate
feasibility of the MLD problem for a broad variety of network structures and
to validate our network modeling assumptions for damaged gas networks.

For each network, the set of all such possible N−1 scenarios is consid-
ered, and the corresponding instances are solved using both the (MINQP)
and (MICQP) MLD formulations. The exception is GasLib-4197, which is
limited to 1040 unique scenarios because of cluster restrictions. Table 2 dis-
plays statistics of solver termination statuses across all scenarios for each net-
work and formulation. For all networks except GasLib-135, GasLib-582, and
GasLib-4197, optimal solutions to all instances are found within the pre-
scribed one hour time limit. For GasLib-135, the (MINQP) formulation is
unable to prove global optimality on 98 instances. Notably, GasLib-135 con-
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MINQP MICQP
Network Opt. (%) Lim. (%) Inf. (%) Opt. (%) Lim. (%) Inf. (%)
GasLib-11 100.0 0.0 0.0 100.0 0.0 0.0
Belgium-20 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-24 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-40 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-134 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-135 90.2 9.8 0.0 100.0 0.0 0.0

NA-154 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-582 79.6 20.4 0.0 100.0 0.0 0.0
GasLib-4197 3.2 90.3 6.5 43.8 56.2 0.0

Table 2: Comparison of solver termination statuses over all N−1 contingency scenarios.
Here, “Opt.” corresponds to instances where optimality is proven, “Lim.” to instances where
the time limit is reached, and “Inf.” to instances that are claimed to be infeasible.

tains the largest number of compressors compared to other networks, and these
additional degrees of freedom are the source of computational complexity. For
GasLib-582 and GasLib-4197, the large number of (MINQP) instances that
cannot be solved to optimality is likely because of the networks’ large sizes.

Comparing the two formulations shows the benefit of using the relaxation-
based (MICQP) approach, which is capable of solving much larger propor-
tions of challenging GasLib-135, GasLib-582, and GasLib-4197 instances.
This suggests that (MICQP), when compared to the mixed-integer nonconvex
(MINQP), is often a better candidate for numerically intensive applications.
We also note that, when using the default Gurobi parameters described in
Section 4.1, 292 of 1040 GasLib-4197 instances of the (MINQP) MLD formula-
tion are claimed to be infeasible. Using the parameter NumericFocus=3 for this
subset of 292 instances, however, decreases this number to 68. These claimed
infeasibilities are likely related to the numerical properties of the GasLib-4197
data set rather than our MLD formulations. Additional future work to pre-
process data and rescale constraints is warranted to address these issues.

4.3 Multi-contingency Damage Scenarios

The second damage model is the multi-contingency or N−k model, where k
corresponds to the number of components that are simultaneously removed
from the network. These scenarios are intended to capture the effects of multi-
modal network failures. Here, we consider the removal of only node-connecting
components within the generated N−k scenarios. In each scenario, a uni-
formly random selection of 15% node-connecting components are assumed
to be nonoperational. Heuristically, this proportion of components seems to
generate challenging scenarios while providing different maximal load distri-
butions across the networks considered. For each network, one thousand such
scenarios are generated. If solved, the maximal proportional load delivered in
each experiment is then computed as the ratio of the optimal nonprioritized
objective in Equation (21) and the maximal load of the undamaged network.
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MINQP MICQP
Network Opt. (%) Lim. (%) Inf. (%) Opt. (%) Lim. (%) Inf. (%)
GasLib-11 100.0 0.0 0.0 100.0 0.0 0.0
Belgium-20 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-24 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-40 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-134 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-135 99.6 0.4 0.0 100.0 0.0 0.0

NA-154 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-582 99.9 0.1 0.0 100.0 0.0 0.0
GasLib-4197 92.7 7.3 0.0 99.2 0.8 0.0

Table 3: Comparison of termination statuses over 1000 randomized N−k multi-contingency
scenarios, where k corresponds to 15% of all edge-type components in the network.

Table 3 displays statistics of solver termination statuses across all dam-
age scenarios for each network and formulation. For all except GasLib-135,
GasLib-582, and GasLib-4197, globally optimal solutions to MLD instances
are found within the one hour time limit. For GasLib-135 and GasLib-582, the
(MINQP) formulation is unable to prove optimality on four instances and one
instance, respectively. For GasLib-4197, a larger proportion cannot be solved.
Comparing the two formulations again shows the benefit of the relaxation-
based approach, which solves larger proportions of challenging instances. We
note that one GasLib-4197 (MINQP) instance is claimed to be infeasible using
default Gurobi parameters but is resolved when using NumericFocus=3.

Figure 2 displays nine histograms that compare the proportion of load
delivered across solved damage scenarios for each network while using the
two formulations. Most importantly, these histograms display the similarity
of the results achieved while using the relaxation-based formulation. These
results also indicate substantial qualitative differences in the hypothetical ro-
bustness of each network. For example, larger networks like GasLib-582 and
GasLib-4197 are shown to be highly sensitive to the 15% damage scenarios,
where often only 10% to 30% of load can be delivered. The Belgium-20 net-
work appears less vulnerable and is often capable of serving between 70% and
100% of the load under severe contingencies. Finally, for some smaller networks
(e.g., GasLib-11, GasLib-24, GasLib-134), many scenarios result in zero or
nearly zero deliverable load. This simple analysis shows the utility of the MLD
problem for understanding broad characteristics of gas network robustness.

4.4 Computational Performance

This section compares the performance of (MINQP) and (MICQP) MLD for-
mulations using the benchmark instances described in Sections 4.2 and 4.3. The
performance profiles for these instances are shown in Figure 3 and divided into
three categories: (i) networks containing tens of nodes; (ii) networks contain-
ing hundreds of nodes; and (iii) networks containing thousands of nodes (i.e.,
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Fig. 2: Histograms of load delivered over randomized N−k multi-contingency scenarios us-
ing the (MINQP) and (MICQP) formulations, where k corresponds to 15% of all edges. Note
that each pair of histograms summarizes instances solved by both (MINQP) and (MICQP).

GasLib-4197). In all such categories, it is shown that the (MICQP) formula-
tion is able to solve substantially greater numbers of problems than (MINQP)
in shorter amounts of time. For networks with tens of nodes, both formula-
tions are capable of solving all instances in less than ten seconds. For networks
with hundreds of nodes, (MICQP) is capable of solving most instances within
ten seconds, while (MINQP) requires hundreds or thousands of seconds. For
networks with thousands of nodes, (MICQP) solves a much greater number of
instances within the alotted hour time limit, although solve times are much
longer than for problems containing networks of tens or hundreds of nodes.

4.5 Synthetic Earthquake Damage Scenarios

This subsection provides a proof of concept application to demonstrate the use
of the MLD problem in the context of risk assessment for deterministic and
uncertain spatial hazards. In each scenario, damage to a network is assumed
to be caused by an earthquake with a fixed magnitude and epicenter. For an
earthquake, the probability of damage to a pipeline component is commonly
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Fig. 3: Performance profiles comparing the efficiency of (MINQP) and (MICQP) formula-
tions over the instances described in Sections 4.2 and 4.3. Here, the performance profiles are
divided into three categories for (i) networks containing tens of nodes; (ii) networks contain-
ing hundreds of nodes; and (iii) networks containing thousands of nodes (i.e., GasLib-4197).

represented as a function of peak ground acceleration (PGA) and peak ground
velocity (PGV). These relationships for PGA and PGV are typically expressed
as functions of earthquake magnitude and distance from seismographic rup-
ture. In this paper, the relationships derived by Campbell (1997) are used,
although their details are omitted here. All earthquakes are assumed to arise
from strike-slip faulting at a depth of one kilometer in a region of firm soil.

Given the PGA and PGV at a component’s point in space, the vulnerabil-
ity of the component is then modeled using the fragility approach of Lanzano
et al. (2014) for continuous pipelines in the presence of strong ground shaking.
Specifically, the probability of damage is computed as a function of PGV, and
node-connecting components exceeding the damage threshold for the first risk
state (“very limited loss”) are assumed to be nonfunctional. Again, for the pur-
pose of brevity, these relationships are omitted here. For simplicity, we make
three additional assumptions to the model: (i) only node-connecting compo-
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Fig. 4: Illustrations of the earthquake scenarios. The first (left) shows the position of
an earthquake epicenter (red star) for the Belgium-20 network and its spatial relation to
network junctions (black triangles). The second illustration (center) shows the placement of
a mean earthquake epicenter (red star) for the Belgium-20 network and random, normally
distributed epicenters surrounding it (black circles). The last (right) shows a fragility curve
derived from Campbell (1997) and Lanzano et al. (2014) for a magnitude 8.0 earthquake.

nents are affected by PGA and PGV; (ii) all node-connecting components are
assumed structurally equivalent as “continuous pipelines,” and (iii) the dis-
tance from the epicenter to each node-connecting component is the minimum
distance between the epicenter and the locations of the connecting junctions.

The networks Belgium-20, GasLib-40, GasLib-135, NA-154, GasLib-582,
and GasLib-4197 are considered for earthquake damage scenarios, as the re-
maining three networks do not contain geolocation data for components. Fig-
ure 4 depicts three illustrations relevant to the parameterization of scenarios.

Deterministic Earthquake, Stochastic Fragility Scenarios. The first
set of earthquake scenarios is intended to demonstrate the applicability of the
MLD method when analyzing network vulnerability to a known (i.e., determin-
istic) natural hazard. To this end, one earthquake is considered per network,
each described by a fixed magnitude and epicenter. This type of scenario is
illustrated pictorially in the first image of Figure 4. The local magnitude of
each earthquake is assumed to be 8.0, while each epicenter is assumed to be
the center of a k-means cluster containing the largest number of junctions,
where k = 5. Then, using the PGV model of Campbell (1997) and the prob-
abilistic fragility approach of Lanzano et al. (2014), one thousand damage
scenarios are generated per network, where in each, the operational status per
node-connecting component is determined via a uniform random sampling and
comparison with the probability of damage. An example fragility curve is de-
picted in the last image of Figure 4, which relates a component’s distance from
the epicenter of a magnitude 8.0 earthquake to the probability of damage.

Table 4 displays statistics of solver statuses across all damage scenarios for
each network and formulation. For all except the GasLib-135, GasLib-582,
and GasLib-4197 networks, optimal solutions to instances are found within
the one hour time limit. For GasLib-135, the (MINQP) formulation is un-
able to prove optimality on 17 instances. For GasLib-582 and GasLib-4197,
a larger proportion of (MINQP) instances cannot be solved within the time
limit. Even for the convex relaxation, two instances cannot be solved for the
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MINQP MICQP
Network Opt. (%) Lim. (%) Inf. (%) Opt. (%) Lim. (%) Inf. (%)

Belgium-20 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-40 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-135 98.3 1.7 0.0 100.0 0.0 0.0

NA-154 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-582 58.7 41.3 0.0 99.8 0.2 0.0
GasLib-4197 2.9 95.3 1.8 86.0 14.0 0.0

Table 4: Comparison of solution statuses over the set of deterministic earthquake scenarios.
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Fig. 5: Boxplots of load delivered over solved earthquake damage scenarios per network,
where the magnitude and epicenter for each network are assumed to be fixed. Here, dotted
and clear boxplots correspond to (MINQP) and (MICQP) formulations, respectively. Note
that each pair of boxplots summarizes only instances solved by both (MINQP) and (MICQP).

GasLib-582 network. Nonetheless, comparing the (MINQP) and (MICQP) for-
mulations shows the benefit of the relaxation-based approach, which is capable
of solving a larger proportion of instances. We note that 96 of the thousand
GasLib-4197 (MINQP) instances are claimed to be infeasible using default
Gurobi parameters. This number is reduced to 18 using NumericFocus=3.

Figure 5 displays boxplots comparing the maximal proportion of load de-
livered across solved damage scenarios for each network and formulation. Here,
results obtained using the (MINQP) and (MICQP) formulations of the MLD
problem are shown to be remarkably similar. This demonstrates the utility
of the relaxation-based approach, which provides outcomes comparable to the
mixed-integer nonconvex formulation at a smaller computational cost. The
boxplots also show substantial qualitative differences in the (hypothetical)
vulnerability among networks. For example, the GasLib-40 network is shown
to have great variability in maximal load delivered, while GasLib-135, NA-154,
and GasLib-582 are mostly unaffected by the hypothetical hazard. Addition-
ally, some networks (e.g., NA-154, GasLib-582) predict small ranges of load
delivered, while others (e.g., Belgium-20) appear to carry greater uncertainty.

The large discrepancies in boxplots for the GasLib-4197 damage scenarios
likely originate from two sources. First, the pair of boxplots is representative
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MINQP MICQP
Network Opt. (%) Lim. (%) Inf. (%) Opt. (%) Lim. (%) Inf. (%)

Belgium-20 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-40 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-135 97.3 2.7 0.0 100.0 0.0 0.0

NA-154 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-582 97.1 2.9 0.0 100.0 0.0 0.0
GasLib-4197 4.4 89.7 5.9 82.8 17.2 0.0

Table 5: Comparison of termination statuses over the second set of earthquake scenarios.

of only the subset of instances solved by both formulations, which is relatively
small. Second, however, are the mathematical differences in nonconvex and
relaxed formulations. Notably, the minima across the solvable instances dif-
fer by around twenty percent. This could be a consequence of the relaxation,
which theoretically predicts maximal load values greater than or equal to the
nonconvex formulation. Compared to other networks, these larger discrepan-
cies in predicted deliverable load could be a manifestation of the component
relaxations, whose errors are further aggregated as the network size grows.

Stochastic Earthquake, Stochastic Fragility Scenarios. The second set
of earthquake scenarios is intended to demonstrate the applicability of the
MLD method when analyzing network vulnerability to a stochastic (i.e., un-
certain) natural hazard. To this end, multiple earthquakes are considered per
network, where each is randomly sampled assuming normally distributed mag-
nitudes and epicenters. This situation is illustrated in the second image of Fig-
ure 4. Here, the mean local magnitude of each earthquake is assumed to be 8.0
with a standard deviation of 0.25, and each mean epicenter is again assumed to
be the center of a k-means cluster containing the largest number of junctions,
where k = 5, and where a distance-based standard deviation of ten kilometers
is assumed. Using the models of Campbell (1997) and Lanzano et al. (2014),
one thousand random earthquake scenarios are generated per network, where
in each, the status per node-connecting component is again determined via a
uniform random sampling and comparison with the probability of damage.

Table 5 repeats the format of Table 4 to display aggregate statistics of
solver termination statuses across all stochastic earthquake scenarios. For
most scenarios, globally optimal solutions to MLD instances are found within
the prescribed one hour time limit. For scenarios based on the GasLib-135,
GasLib-582, and GasLib-4197 networks, however, some instances cannot be
solved. As in the deterministic scenario analysis, comparing the (MINQP) and
(MICQP) formulations shows the benefit of the relaxation-based approach.
Furthermore, 133 and one GasLib-4197 (MINQP) and (MICQP) instances,
respectively, are claimed to be infeasible using default Gurobi parameters.
These numbers are reduced to 59 and zero, respectively, using NumericFocus=3.

Figure 6 displays boxplots comparing the proportion of load delivered
across all scenarios. Again, the (MINQP) and (MICQP) formulations provide
results that are qualitatively similar. The boxplots also show similar differences
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Fig. 6: Boxplots of load delivered over earthquake damage scenarios per network, where
both the magnitude and epicenter for each scenario are normally distributed. Here, dotted
and clear boxplots correspond to (MINQP) and (MICQP) formulations, respectively. Note
that each pair of boxplots summarizes only instances solved by both (MINQP) and (MICQP).

in vulnerability as those observed in Figure 6. However, the greater variation
in epicenters and magnitudes results in greater variation of the effects.

5 Concluding Remarks

This study introduces the MLD problem for natural gas transmission net-
works, which seeks to determine a feasible operating point for a damaged gas
network while ensuring the maximal delivery of prioritized load. This task is
presented as three successive mathematical programming formulations. First,
a mixed-integer nonconvex program is formulated that embeds all physical and
engineering requirements for operational feasibility. Second, the first noncon-
vex program is reformulated exactly as a mixed-integer nonconvex quadratic
program by introducing new variables. Finally, convex relaxations are applied
to all nonconvex relationships in the former problem that involve pressures
and mass flows, which results in a mixed-integer convex relaxed formulation.

To compare the efficacy of the second and third formulations, a rigorous
benchmarking study is conducted over a large number of randomized multi-
contingency scenarios on nine networks ranging in size from 11 to 4197 junc-
tions. First, MLD experiments based on N−1 (or single contingency) damage
scenarios are conducted. Second, N−k (multi-contingency) damage experi-
ments are performed in order to understand MLD tractability for multimodal
failures. A performance comparison of the (MINQP) and (MICQP) formula-
tions is then conducted using results from the N−1 and N−k experiments.
Finally, a proof of concept application based on network damage from a set of
synthetically generated earthquakes demonstrates the application of the MLD
problem to risk assessment for deterministic and stochastic spatial hazards.

These experimental results lead to three key conclusions. First, the relaxed
formulation (MICQP) provides good bounds on the maximal deliverable load
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obtained from the full mixed-integer nonconvex formulation, (MINQP). Sec-
ond, the relaxation-based formulation is more computationally robust than
the mixed-integer nonconvex formulation, and can solve larger proportions of
challenging instances in much shorter amounts of time. Finally, for the largest
network (i.e., GasLib-4197), the relaxation-based approach begins to show its
limitations. For some challenging scenario types (e.g., N−1), large numbers of
instances cannot be solved because of the relatively larger size of the network.

There are several potential studies that could extend the approaches de-
veloped in this study. First, additional relaxation-based methods could be
developed to more accurately and efficiently solve the MLD problem for gas
networks containing thousands of nodes. To facilitate this, another useful con-
tribution could be the development of new benchmark instances whose sizes
range between the sizes of GasLib-582 and GasLib-4197. Finally, the origin
of numerical instabilities associated with the challenging GasLib-4197 net-
work, and especially the sources of claimed infeasibility by Gurobi for some
(MINQP) instances, should be thoroughly investigated. This could involve de-
veloping new methods for processing network data or normalizing constraints.
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