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A B S T R A C T

Graph neural networks (GNNs) are emerging in chemical engineering for the end-to-end learning of physico-
chemical properties based on molecular graphs. A key element of GNNs is the pooling function which combines
atom feature vectors into molecular fingerprints. Most previous works use a standard pooling function to
predict a variety of properties. However, unsuitable pooling functions can lead to unphysical GNNs that poorly
generalize. We compare and select meaningful GNN pooling methods based on physical knowledge about
the learned properties. The impact of physical pooling functions is demonstrated with molecular properties
calculated from quantum mechanical computations. We also compare our results to the recent set2set pooling
approach. We recommend using sum pooling for the prediction of properties that depend on molecular size
and compare pooling functions for properties that are molecular size-independent. Overall, we show that the
use of physical pooling functions significantly enhances generalization.
1. Introduction

Graph neural networks (GNNs) are emerging for end-to-end learning
of molecular properties (Kearnes et al., 2016; Niepert et al., 2016;
Hamilton et al., 2017a; Duvenaud et al., 2015; Rittig et al., 2022a;
Reiser et al., 2022) in a broad variety of applications including chemical
engineering (Schweidtmann et al., 2020; Li et al., 2021; Rittig et al.,
2022b, 2023; Felton et al., 2022; Sanchez Medina et al., 2022a,b; Qin
et al., 2022), (quantum) chemistry (Gilmer et al., 2017; Yang et al.,
2019; Schütt et al., 2017; Wu et al., 2018; Back et al., 2019) and the
prediction of physical (Coley et al., 2017) and crystal properties (Chen
et al., 2019; Xie and Grossman, 2018). Although GNNs are flexible
models for end-to-end learning, we show that their pooling function
needs to be carefully selected because wrong decisions can lead to un-
physical GNNs that are more prone to overfitting. GNNs take molecular
graphs as inputs and represent atoms by nodes and bonds by edges. In
addition, atoms and nodes are characterized by corresponding feature
vectors. Most commonly, GNN architectures are based on message
passing neural networks (MPNNs) (Gilmer et al., 2017). In MPNNs, the

∗ Corresponding author at: RWTH Aachen University, Process Systems Engineering (AVT.SVT), Forckenbeckstr. 51, 52074 Aachen, Germany.
E-mail address: amitsos@alum.mit.edu (A. Mitsos).

node feature vectors are updated through a series of message passing
procedures of neighboring nodes. Each of these sequential message
passings corresponds to the graph convolutional layers of the GNN.
Then, the resulting node feature vectors are combined into a molecular
fingerprint vector through pooling. This molecular fingerprint is finally
mapped to molecular properties of interest by feedforward artificial
neural networks (ANNs). We show that using physical knowledge for
the selection of the pooling function, which combines the feature
vectors of all atoms into the molecular fingerprint, is critical for the
GNN’s performance.

Recent studies emphasize the importance of the choice of pooling
functions in GNNs beyond molecular property prediction. These studies
focus on the aggregation function of the neighborhood aggregation
within the message-passing phase in GNNs, where information from
neighboring nodes is aggregated and passed to a specific node. Xu et al.
(2018a) examine sum, mean, and max pooling and conclude that sum
pooling is more powerful than mean and max pooling since it can better
distinguish different graph structures. Corso et al. (2020) generalize the
vailable online 24 February 2023
098-1354/© 2023 Elsevier Ltd. All rights reserved.
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sum aggregation and further propose to combine multiple aggregators,
thereby outperforming GNN architectures with a single aggregator on
various data sets. Even though these works focus on neighborhood
aggregation, the theoretical implications are transferable to the pooling
operation for obtaining a graph representation/molecular fingerprint
vector since it is an aggregation of all node vectors within a graph.
Hence, the selection of the pooling operators is of great importance for
GNNs, with the sum pooling operator being favorable in most cases.

In molecular property prediction, the vast majority of previous
works do not select pooling functions based on physical understanding.
In the previous literature, common pooling functions are mean, sum,
and max pooling (Wu et al., 2021). Most previous works use sum
pooling (Xu et al., 2018a; Coley et al., 2017; Yang et al., 2019; Lu
et al., 2019), while a few use mean pooling (Morris et al., 2019;
Shindo and Matsumoto, 2019). Moreover, typically the same pooling
function is used for a range of different properties. We argue that
this can lead to unphysical GNNs and result in unnecessary errors. An
illustrative example is the molecular weight that is given by the sum of
the atom weights. In this case, using mean pooling in a standard GNN
would lead to an unphysical architecture that cannot learn the correct
underlying physics because the molecular mass cannot be computed
as an average of atom weights. In contrast, selecting the sum pooling
function according to the underlying physics enables the GNN to learn
a meaningful model.

Some researchers circumvent the issue of selecting pooling functions
by introducing flexible models for pooling such as set2set (Vinyals
et al., 2015), DiffPool (Ying et al., 2018), or SortPool (Zhang et al.,
2018). For example, the set2set approach employs a long short-term
memory (LSTM) architecture designed for unordered and size-variant
input sets (Vinyals et al., 2015). The authors of DiffPool propose a
hierarchical GNN structure that progressively coarsens the input graph
in each layer by aggregating clusters of nodes until a single graph
representation is obtained (Ying et al., 2018). SortPool arranges the
learned node representation in a consistently ordered tensor which is
then truncated or extended to a user-defined fixed size (Zhang et al.,
2018). Similarly, GNNs with a large number of convolutional layers
combine node information through convolutions and thus reduce the
importance of pooling functions (Morris et al., 2019). Advanced pooling
methods have also been applied in molecular property prediction. For
instance, Gilmer et al. (2017) applied the set2set method for learning
various molecular properties from the QM9 data set (Ruddigkeit et al.,
2012; Ramakrishnan et al., 2014) and achieved state-of-the-art accu-
racies on all target properties compared to other GNN models at the
time of publication. However, the additional flexibility typically results
in larger data requirements, higher model variance, and the risk of
overfitting. In other words, the selection of physical pooling functions
over flexible model architectures for pooling can be understood as
enforcing a hybrid model structure, which is known to reduce the data
demand (Psichogios and Ungar, 1992; Fiedler and Schuppert, 2008;
Schweidtmann et al., 2021).

Only a few studies consider the physical nature of a property in
the selection of the pooling function. Pronobis et al. (2018) state that
decomposition of molecules into atom-wise contributions combined
with a property-suitable pooling function works better for ‘‘extensive
properties’’. Other works use property-specific pooling functions, where
mean/set2set or sum pooling is applied to ‘‘intensive’’ or ‘‘extensive’’
properties, respectively (Schütt et al., 2020, 2018; Gubaev et al., 2018;
Ye et al., 2020; Liu et al., 2021). For example, Schütt et al. (2018) train
a property prediction model on the QM9 data set and apply sum pooling
for ‘‘extensive’’ properties and mean pooling for ‘‘intensive’’ proper-
ties (Schütt et al., 2018). Overall, however, the physical selection of
pooling functions is somewhat contradictory in the previous literature
and the terms ‘‘intensive’’ or ‘‘extensive’’ have been used colloquially
and not in their thermodynamic sense. Also, a comparison of different
pooling functions on the prediction and generalization capabilities of
2

GNNs against a physical background has not been conducted yet, hence t
there is no guide for selecting suitable pooling functions based on
physical knowledge in the literature.

We evaluate GNN pooling functions against the underlying physical
nature of the learned properties. Specifically, we analyze the impact
of physical pooling functions on molecular properties learned from the
common QM9 data set (Ruddigkeit et al., 2012; Ramakrishnan et al.,
2014) and demonstrate their superior performance.

2. Materials and methods

We first describe the graph representation of molecules and then
briefly introduce the general GNN architecture used for property pre-
diction. Finally, we provide physical insight into the learned properties
and use the insight to design physical GNN architectures.

2.1. Molecular graph

Molecules can be described as molecular graphs with nodes 𝑣,𝑤 ∈ 𝑉
epresenting atoms and edges 𝑒𝑣𝑤 ∈ 𝐸 representing bonds. Each atom
s described by a feature vector 𝐟𝑉 (𝑣), containing atom information,
.g., atom mass or orbital hybridization. Similarly, each bond is de-
cribed by a bond feature vector 𝐟𝐸 (𝑒𝑣𝑤) that contains information on
he bond type, e.g., single or double bond. Commonly, for organic
olecules the hydrogen (H) atoms are omitted and replaced by the
ydrogen count as a node feature (Todeschini and Consonni, 2000); this
esults in reducing the complexity of molecular graphs and therefore
educing data demand.

.2. Graph neural network

GNNs exhibit two phases (Gilmer et al., 2017) as shown in Fig. 1:
i) message passing phase and (ii) readout phase.

To initialize the message passing phase, each node 𝑣 ∈ 𝑉 is
ssigned a state vector 𝐡𝑙=0𝑣 initialized by the respective node feature
ector (Gilmer et al., 2017). Then, the state vector of the nodes in layer
are updated with information from their neighboring nodes 𝑤 ∈ 𝑁(𝑣)
long edges 𝑒𝑣𝑤:

𝑙
𝑣 = 𝑈𝑙

(

𝐡𝑙−1𝑣 ,
∑

𝑤∈𝑁(𝑣)
𝑀𝑙

(

𝐡𝑙−1𝑣 ,𝐡𝑙−1𝑤 , 𝐟𝐸 (𝑒𝑣𝑤)
)

)

, (1)

here 𝑈𝑙(⋅) and 𝑀𝑙(⋅) respectively denote the state update function
nd the message function in layer 𝑙. This message passing procedure is
epeated 𝐿 times until each node state vector 𝐡𝐿𝑣 includes information
bout its local environment. This iterative message passing corresponds
o the stacking of 𝐿 graph convolutional layers.

We consider a standard GNN including edge features in the message
assing phase, also known as 1-GNN (Morris et al., 2019; Hamilton
t al., 2017b). The 1-GNN uses the following message passing function:

𝑙
𝑣 = 𝜎

(

𝜃𝑙𝑣 ⋅ 𝐡
𝑙−1
𝑣 +

∑

𝑤∈𝑁(𝑣)
ANN𝜃𝑙𝑒

(𝐟𝐸 (𝑒𝑣𝑤)) ⋅ 𝐡𝑙−1𝑤

)

, (2)

where 𝜎 indicates an activation function, 𝜃𝑙𝑣 denotes a parameter
atrix, and ANN𝜃𝑙𝑒

denotes a feedforward ANN mapping the respective

eature vectors 𝐟𝐸 (𝑒𝑣𝑤) of the edges 𝑒𝑣𝑤 connecting node 𝑣 with its
eighbors to a parameter matrix 𝜃𝑙𝑒, referred to as edge feature network.

In the readout phase, the final state vectors of the nodes 𝐡𝐿𝑣 are
ombined into a graph state vector 𝐡𝐺 by a pooling function. The
ooling function is necessary for molecular property prediction because
he number of atoms usually differs between different molecules. This
eads to a varying number of atom feature vectors that need to be
ombined to the molecular fingerprints. Thus, the pooling function
ombines a varying number of final state vectors for the nodes into a
ingle graph state vector. In the context of molecular property predic-

ion, the literature commonly refers to 𝐡𝐺 as the molecular fingerprint.
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Fig. 1. Illustration of the GNN structure highlighting the message passing and readout phases.
This molecular fingerprint 𝐡𝐺 is finally fed into a feed-forward ANN for
the prediction of molecular properties, 𝐩̂ = MLP(𝐡𝐺).

The molecular fingerprint is given by the pooling function 𝑓𝑝(⋅) that
epends on the final state vectors of the nodes 𝐡𝐿𝑣 with 𝑣 ∈ 𝑉 :

𝐺 = 𝑓𝑝
(

{𝐡𝐿𝑣 ∣ 𝑣 ∈ 𝑉 }
)

(3)

ommon choices for 𝑓𝑝 are the sum, mean, and max functions. It is
lso possible to consider intermediate node state vectors instead of the
inal state vectors only in the pooling function, referred to as jumping
nowledge (Xu et al., 2018b), which can lead to a beneficial structure-
ware fingerprint vector. Most works, however, focus on pooling of
he final state vectors. An alternative pooling function is the set2set
ethod (Vinyals et al., 2015) which can capture more complex rela-

ionships between different atomic contributions (Gilmer et al., 2017;
chütt et al., 2018) by employing a long short-term memory (LSTM)
odel (Vinyals et al., 2015). After 𝑇 steps of the following iterative

omputation, the molecular fingerprint is obtained by 𝐡𝐺 = 𝐪∗𝑡=𝑇 with

𝐪∗𝑡 = 𝐪𝑡 ∥ 𝐫𝑡
𝐪𝑡 = LSTM

(

𝐪∗𝑡−1
)

𝐫𝑡 =
∑

𝑣
𝐚𝑣,𝑡 ⋅ 𝐡𝐿𝑣

𝑣,𝑡 = softmax
(

𝐡𝐿𝑣 ⋅ 𝐪𝑡
)

(4)

where 𝐪𝑡 is a query vector for iteration 𝑡 providing information about
the previous attention readout vector 𝐫𝑡 from the memories, 𝐚𝑣,𝑡 is an
attention vector resulting from averaging the attention of a node 𝑣 by
applying the softmax function, 𝐫𝑡 is the attention readout, similar to
the simple pooling method with sum, and 𝐪𝑡 is a concatenation (∥) of
the current query vector and the attention readout. The vector 𝐪∗𝑡−1 is
initialized at 𝑡 = 0 by 𝐪∗−1 = 𝟎.

Recent GNNs incorporate physical knowledge into message passing.
Over the last years, multiple MPNN architectures have been proposed
that integrate physical knowledge to the message passing scheme,
e.g., SchNet (Schütt et al., 2018), PhysNet (Unke and Meuwly, 2019),
DimeNet (Klicpera et al., 2020), MXMNet (Zhang et al., 2020a). This in-
cludes the incorporation of directional information, such as interatomic
distances and angles between atom pairs, into the message function
𝑀𝑙(⋅) (cf. Eq. (1)) modeling the interactions of atoms. We consider
MXMNet that utilizes physical-driven message passing while preserving
computational efficiency (Zhang et al., 2020a). Within MXMNet, two
message passing schemes are applied. In a global message passing
scheme, information between atoms with a global cutoff distance 𝑑𝑔
is exchanged. Further, a local message passing is applied to exchange
information between atoms with a local cutoff distance 𝑑𝑙 with 𝑑𝑔 > 𝑑𝑙.
This local cutoff distance represents the connectivity of atoms that
are connected by chemical bonds. The architecture further enables to
transfer of information between atom representations in the global
and local message passing by including a cross layer mapping. In the
readout step, the learned atom-wise representations are subsequently
pooled by the sum operator for molecular property prediction.
3

2.3. Physical insight

The prediction of molecular properties by decomposing molecules
into atomic contributions has a long history in chemical research.
According to Bonchev and Rouvray (1991), the first investigations
into properties of molecules with additive characteristics in terms of
atomic contributions were carried out in the 1850s. Later, quantitative
structure–property relationship (QSPR) and group additivity methods
were developed based on the additive character of atoms or functional
groups within a molecule (Katritzky et al., 1995; Benson et al., 1969;
Gani et al., 1991; Joback and Reid, 1987). Yet, not every molecular
property exhibits purely additive effects.

In thermodynamics, macroscopic properties are categorized as in-
tensive or extensive (Cohen et al., 2007). A system property is extensive
if it scales linearly with the mass (and as such ‘‘extent’’) of the system;
examples are the mass or volume. In contrast, intensive properties
do not change with the system mass. Note that sometimes thermo-
dynamicists also distinguish between intensive (e.g., temperature and
pressure) and specific (extensive quantity divided by volume, e.g., den-
sity) properties (Stephan and Mayinger, 2013), but we will not. We
transfer these concepts to molecules and distinguish between molecular
size-independent and molecular size-dependent properties. Molecular size-
dependent properties scale with the number of atoms in a molecule. For
example, the molecular weight is determined by how many atoms of
which type are present in a molecule. In contrast, there exist molec-
ular size-independent properties that do not scale with the number
of atoms in a molecule, e.g., the highest occupied molecular energy
level (HOMO) (Schütt et al., 2018). Moreover, some properties of a
substance, e.g., activity or toxicity, are mostly influenced by certain
functional groups or structural fragments. Note that this dependency on
molecular size does not necessarily correspond to the formal definition
of intensive or extensive properties in a thermodynamic sense because
the former is considered at a microscopic atom-based molecular level,
not at a macroscopic mass-based system level. For example, the molar
enthalpy with the unit J/mol is an intensive property. On a molecular
level, the enthalpy of atomization 𝐻298,𝑎𝑡𝑜𝑚 with the unit J/mol, is a
molecular size-dependent property describing the amount of energy
needed to break up a molecule into all of its single atoms at room
temperature and fixed pressure (Gilmer et al., 2017).

Schütt et al. (2018) consider the QM9 properties dipole moment
(𝜇), isotropic polarizability (𝛼), electronic spatial extent (R2), zero
point vibrational energy (ZPVE), heat capacity at 298.15 K (Cv,298),
atomization energy at 0 K (U0,atom), atomization energy at 298.15 K
(U298,atom), enthalpy of atomization at 298.15 K (H298,atom), free energy
of atomization at 298.15 K (G298,atom) as ‘‘extensive’’. Other properties
are the highest occupied molecular orbital (𝜖HOMO), lowest unoccupied
molecular orbital energy level (𝜖LUMO), and HOMO-LUMO gap (𝛥𝜖).
For some of these properties, physical dependencies on molecular size
are known. For example, Miller and Savchik (1979) developed a semi-
empirical approach for the prediction of isotropic polarizabilities as

a sum of atomistic contributions that depend on their hybridization
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states based on theoretical calculations already in 1979. Each nonlinear
molecule has 3𝑁 − 6 vibrational degrees of freedom (3𝑁 − 5 for linear
nes), 𝑁 being its number of atoms. Each degree of freedom has a
PVE proportional to its frequency 𝜈 ∝

√

𝑓∕𝑚. Here, 𝑚 is the reduced
mass of the parts of a molecule that vibrate with respect to each
other and 𝑓 is the force constant of this vibration. Hence, ZPVE is a
molecular size-dependent property to first order but the frequencies
of vibrations that include large fractions of a molecule decrease with
increasing molecular size. This effect should be learned by the GNN.
Similar relations apply to the heat capacity, enthalpy, and entropy
contributions with the minor complication that terms dependent on the
molecular mass (translation) and the moment of inertia (rotation) arise
for some of the contributions (Atkins and Friedman, 2011). Atomization
energies and enthalpies include essentially sums of contributions of all
bonds, which may be non-local in the case of conjugated bonds, and
are hence molecular size-dependent properties as well. The electronic
spatial extent is determined mainly by the shapes of the orbitals in very
small molecules and is closely related to the radius of gyration for large
molecules, which may even depend on the solvent for large molecules
such as polymers and may scale with a fractal exponent in this case.

The dipole moment (𝜇) is a particularly interesting property. Even
hough formally the molecule size enters the dipole moment definition
quation, 𝜇 =

∑

r𝑖𝑞𝑖, with the positions r𝑖 of the charges 𝑞𝑖, in
ost molecules local functional groups determine 𝜇, and depending

n orientation they can even weaken each other. In particular, one
r a few strongly polar groups dominate the dipole moment that
an then be written as the sum of the individual dipole moments
ectors. Thus, we classify the dipole moment as molecular size inde-
endent. The prediction of dipole moment is expected to be challenging
or conventional GNNs because long-range orientational relations be-
ween the polar groups may need to be learned by a model, e. g., for
escribing the difference between the polar ortho- and the unpolar
ara-benzoquinone.

Similarly, the relations are complex for energies of the HOMO, the
UMO, and their difference (i.e., the HOMO-LUMO-gap). Depending on
he type of molecule, these orbitals may be quite localized to a certain
unctional group and thus independent of molecular size in some
olecules. However, they may also be delocalized in other molecules

nd thus dependent on molecular size for small and medium-sized
olecules but converge to a limit for large molecules as can be seen,

.g., from the Hückel model for conjugated double bonds (Atkins and
riedman, 2011). Hence this property may be particularly challenging
or a GNN model.

. Results and discussion

In order to demonstrate the relevance of the pooling function in the
eadout phase, two case studies are conducted and discussed below.
irst, we consider the illustrative prediction of the molecular weight.
hen, we consider the prediction of twelve quantum mechanical prop-
rties collected in the QM9 data set.

.1. Hyperparameters and implementation

Our implementations are based on the models in PyTorch Geo-
etric developed by Fey and Lenssen (2019). For our case study, we

ombine each mean, sum, and max as well as set2set pooling with
he 1-GNN. The hyperparameters of the models are selected based
n our experience from our previous work on predicting fuel prop-
rties (Schweidtmann et al., 2020). The molecular graphs have the
ollowing features encoded as a one-hot vector: (node) atom type, is
romatic, is in ring, hybridization (e.g., 𝑠𝑝, 𝑠𝑝2, 𝑠𝑝3) hydrogen count,
edge) bond type, conjugated, and stereo. The 1-GNN comprises three
raph convolutional layers with hidden dimension size of 64 and
LU activation function. The graph convolutions further have an edge
eature network (cf. Eq. (2)) with three layers with #1: 10, #2: 128,
4

3: 4096 (642) layers and a ReLU activation function. To map the
olecular fingerprint (𝐡𝐺) to the property (𝑝̂) of interest, we use
ultilayer perceptrons (MLPs), 𝑝̂ = MLP(𝐡𝐺), with an ELU activation

unction. The MLPs constitute four layers with #1: 64, #2: 32 #3: 16,
4: 1 neurons when mean, sum, or max pooling is used. When the

et2set pooling is used, the MLP layers have #1: 128, #2: 64, #3: 32,
4: 1 neurons, because the output vector of the set2set method is twice

ts input size. For the set2set method, we set the number of processing
teps 𝑇 to 3. For training, we use the ADAM optimizer, a mean squared
rror loss function, and a batch size of 128. The initial learning rate is
et to 0.001 and is reduced by a factor of 0.7 during training if the
alidation loss has not decreased for 5 consecutive epochs.

We additionally test mean, sum, max pooling with MXMNet. We use
he implementation and default hyperparameters as it was provided by
he authors of MXMNet (Zhang et al., 2020a), cf. Zhang et al. (2020b):
he network has six MXMNet module layers using a SiLU activation
unction and a global cutoff distance of 5. It is trained with the ADAM
ptimizer, a mean absolute error loss function, and a batch size of 128.
he initial learning rate 0.0001 is decreased every epoch by a factor of
.9961697.

.2. Illustrative case study: Molecular weight

To illustrate the importance of physical pooling functions on a
imple example, we learn the molecular weight of alkanes. To compose
he data set, we obtain about 2300 alkanes from C1H4 to C60H122 from
he PubChem database (Kim et al., 2016) and compute their molecular
eight using RDKit (Landrum, 2020).

For illustration, we split this case study into two steps. Firstly,
-GNNs with sum, mean, and max pooling functions are trained, vali-
ated, and tested on corresponding data sets with alkanes with up to
0 C-atoms. Secondly, the trained GNNs are tested against an external
ata set containing alkanes with more than 30 C-atoms. Thus, the gen-
ralization capabilities of the 1-GNNs are tested against extrapolated
ata.

The training of the 1-GNNs is repeated ten times for each pooling
unction with a maximum number of 500 epochs. The initial data
et with up to 30 C-atoms is randomly split into 80% training, 10%
alidation, and 10% test sets for each run. Since we consider alkanes,
e choose the attributes of the nodes in the molecular graph to include

he hydrogen count only and do not use edge attributes, hence we
eplace the edge feature network in the message passing of the 1-
NN (cf. Eq. (2)) by a (learnable) parameter matrix (𝜃𝑙𝑤) that does not
epend on the edge type.

Fig. 2 shows the test set performance of the 1-GNN with different
ooling functions. Fig. 2(a) illustrates the test results for the data set
f alkanes with up to 30 C-atoms. As expected, the sum pooling leads
o the best performance on the test data set with an average mean
bsolute error of 0.06 g/mol as it captures the molecular size-dependent
haracter of the molecular weights. In contrast, mean pooling leads to
n average mean absolute error 0.7 g/mol. Max pooling even leads to
n average absolute error in the order of 31 g/mol.

Fig. 2(b) shows the mean absolute error on the test data sets of
lkanes with more than 30 C-atoms. The 1-GNN with sum pooling leads
o an average absolute error of 6.5 g/mol. In contrast, the 1-GNN with
ean pooling leads to an average error of 63 g/mol and the 1-GNN with
ax pooling leads to an average error of 213 g/mol.

The results clearly show that the sum pooling function, which was
selected based on our physical insight, performs better than the unphys-
ical mean and max pooling functions for the prediction of the molecular
weight. In particular, the sum pooling outperforms the unphysical
pooling functions significantly when extrapolating the model. These
results support our theoretical expectations that GNNs with physical
pooling functions lead to better predictive quality for both interpolation

and extrapolation.
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Fig. 2. Mean absolute error in g/mol for test of the 1-GNN with different pooling functions, namely: sum, mean, max. (a) test data set of alkanes with up to 30 C-atoms, (b)
xternal data set of alkanes with 35 up to 60 C-atoms. Results are for ten independent training runs, each with 500 periods.
.3. Physicochemical properties

We analyze the importance of physical pooling functions for a vari-
ty of relevant properties. In addition, we compare our results to a more
omplex set2set readout function and explore the MXMNet (Zhang
t al., 2020a) architecture.

We use the QM9 data set to train our models (Ruddigkeit et al.,
012; Ramakrishnan et al., 2014). The experimental setup is twofold.
irst, the 1-GNNs with sum, mean, max, and set2set pooling functions
re trained, validated, and tested on randomly selected subsets of the
hole QM9 data set. This approach assesses the interpolation capabili-

ies of the respective pooling functions. Second, we train, validate, and
est the 1-GNN and MXMNet on the QM9 data excluding molecules
ith exactly 9 heavy atoms. These models are then tested against
olecules with 9 heavy atoms from the QM9 data set. This approach is

hosen to assess the generalization capabilities of the models in terms
f extrapolation ability. For each training run, the data set is randomly
plit into 80% training, 10% validation, and 10% test sets. The training
s stopped after 300 and 900 periods for the 1-GNN and MXMNet,
espectively. The mean absolute error for the test set is reported based
n the period with the lowest validation error.

.3.1. Interpolation
The results for testing sum, mean, max, and set2set pooling function

n the whole QM9 data set are summarized in Table 1. Overall, the
esults indicate that physically meaningful pooling functions lead to
avorable performances on the QM9 data set for interpolation. It can
e observed that for all molecular size-dependent properties, the 1-GNN
ith sum pooling significantly outperforms the 1-GNNs with mean and
ax pooling.

For the molecular size-independent properties, we do not observe
superior performance of one pooling function; all pooling functions

esult in similar accuracies, in most cases within the standard deviation
f each other.

.3.2. Generalization with 1-GNN architecture
In order to analyze the generalization capability of the pooling

unctions on the QM9 data set, we train the 1-GNNs only on molecules
ith up to 8 heavy atoms, i.e., a maximum number of 8 C, N, O, F
toms. Then, we test the prediction accuracy on an internal test set,
.e., containing molecules with up to 8 heavy atoms, and also on a
ata set with the remaining QM9 molecules that have exactly 9 heavy
toms. The latter test set therefore tests the extrapolation capability of
he derived GNNs. The results of the extrapolation are summarized in
able 2.

The interpolation performance of the models (indicated in black in
able 2) is similar to that of the previous models trained on the whole
M9 data set (cf. Table 1). Notably, the absolute errors increase for
5

some properties, e.g., atomization energy, as the training set is much
smaller. The QM9 data set contains about 108,000 molecules with 9
atoms and about 22,000 molecules with 1 to 8 heavy atoms.

For extrapolation (indicated in blue in Table 2), we find that sum
pooling performs much better compared to mean, max, and set2set
pooling on all tested molecular size-dependent properties. For the
molecular size-independent properties we observe that the sum pooling
does not outperform the other pooling functions anymore. Rather,
mean and max pooling perform on a similar level or slightly better com-
pared to sum pooling; mostly averaged accuracies within the standard
deviation of the different pooling function are observed. Notably, the
set2set method does not improve the accuracy compared to sum, mean,
and max pooling for any property.

3.3.3. Generalization with MXMNet architecture
We also analyze the influence of the pooling function on the MXM-

Net GNN model (Zhang et al., 2020a). The MXMNet model reached
state-of-the-art performance on several prediction tasks in QM9 (Zhang
et al., 2020a). MXMNet includes directional information in its message
passing process. For the readout step, sum pooling is applied in the
original MXMNet model. We compare MXMNet performance with three
different pooling functions: sum, mean, and max. Similar to the 1-GNN,
we test MXMNet trained on molecules of QM9 with up to 8 heavy atoms
against an internal test set and an external test set, i.e., extrapolating to
molecules with 9 heavy atoms. The results are summarized in Table 3.

The interpolation performance of the MXMNet (indicated in black
in Table 3) is highly favorably compared to the 1-GNN architecture,
as expected. The MXMNet with sum pooling outperforms the other
pooling approaches for all molecular size-dependent properties. This
is in agreement with our expectations and previous observations on
the 1-GNN architecture. For the molecular size-independent properties,
we observe that sum, mean, and max pooling perform very similarly.
Notably, the extrapolation performance of the MXMNet architecture
(indicated in blue in Table 3) also significantly outperforms the 1-GNN
architecture on all properties but 𝑅2.

The generalization results follow the same pattern as our previous
observations. Again, we observe a significant advantage of sum pooling
for all molecular size-dependent properties. For the molecular size-
independent properties, we obtain similar performance of the pooling
functions for LUMO. For 𝜇, sum pooling performs only slightly better
than mean and max pooling. For the HOMO and the HOMO-LUMO gap,
however, mean and max pooling outperform sum pooling by a factor
of more than 3. Here, sum pooling also has a considerably higher stan-
dard deviation. This demonstrates that also sum pooling can promote
overfitting and instable training, thus preventing generalization in case
of size-independent properties. Notably, the extrapolation error of the
MXMNet is much larger for the unphysical pooling function compared
to the extrapolation error of the simpler 1-GNN with the same pooling
function. This indicates that the selection of physical pooling functions
could be more important for more complex models.
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Table 1
Mean absolute errors averaged over three training runs with the corresponding standard deviation for testing 1-GNN with different pooling
functions, sum, mean, max, set2set against QM9 target properties for the interpolation case. Properties are categorized into molecular size-
independent (‘‘m. size-ind.’’) and molecular size-dependent (‘‘m. size-dep.’’) according to Schütt et al. (2018). Errors of the best pooling function
are bold type.
Target Pooling

Sum Mean Max set2set

m. size-dep.

𝛼 a30 0.301 ± 0.008 0.469 ± 0.013 0.482 ± 0.011 0.583 ± 0.238
R2 a20 21.5 ± 0.5 25.0 ± 0.6 24.1 ± 0.4 24.1 ± 1.9
ZPVE meV 9.39 ± 1.06 24.16 ± 3.99 26.99 ± 1.10 21.96 ± 6.34
Cv,298 cal∕mol K 0.149 ± 0.032 0.203 ± 0.011 0.197 ± 0.007 0.197 ± 0.050
U0,atom eV 0.117 ± 0.005 0.345 ± 0.018 0.357 ± 0.010 0.437 ± 0.181
U298,atom eV 0.117 ± 0.005 0.363 ± 0.045 0.366 ± 0.021 0.386 ± 0.119
H298,atom eV 0.123 ± 0.007 0.329 ± 0.035 0.383 ± 0.026 0.390 ± 0.149
G298,atom eV 0.112 ± 0.001 0.293 ± 0.017 0.328 ± 0.016 0.313 ± 0.087

m. size-ind.

𝜇 Debye 0.452 ± 0.003 0.456 ± 0.004 0.449 ± 0.003 0.472 ± 0.016
𝜖HOMO eV 0.0928 ± 0.0009 0.0931 ± 0.0016 0.0926 ± 0.0011 0.1337 ± 0.0060
𝜖LUMO eV 0.0931 ± 0.0028 0.0937 ± 0.0011 0.0938 ± 0.0021 0.0937 ± 0.0007
𝛥𝜖 eV 0.1322 ± 0.0019 0.1336 ± 0.0008 0.1283 ± 0.0003 0.1323 ± 0.0032
W

Table 2
Mean absolute errors averaged over three independent training runs with the corre-
sponding standard deviation for testing 1-GNN with different pooling functions, sum,
mean, max, and set2set, against: (black) QM9 data set excluding molecules with 9 heavy
atoms, (blue) only molecules with 9 heavy atoms of the QM9 data set. The errors of
the best pooling function are bold type. Units are equivalent to those in Table 1.

Target 1-GNN

Sum Mean Max set2set

𝛼
0.302 ± 0.012 0.816 ± 0.079 0.727 ± 0.114 1.164 ± 0.390
1.385 ± 0.369 8.445 ± 0.064 8.654 ± 0.405 7.835 ± 0.727

R2 17.9 ± 0.3 24.9 ± 0.6 23.3 ± 0.5 29.4 ± 12.1
83.6 ± 25.7 236.0 ± 9.1 229.5 ± 6.7 227.0 ± 11.7

ZPVE 12.26 ± 1.42 56.14 ± 5.12 54.39 ± 3.61 54.68 ± 8.97
28.81 ± 4.76 366.09 ± 14.65 312.73 ± 45.65 450.78 ± 108.45

Cv,298
0.158 ± 0.004 0.312 ± 0.004 0.291 ± 0.014 0.309 ± 0.087
0.650 ± 0.315 3.509 ± 0.101 3.360 ± 0.407 3.129 ± 0.048

U0,𝑎𝑡𝑜𝑚
0.180 ± 0.018 0.816 ± 0.025 0.766 ± 0.117 0.773 ± 0.161
1.365 ± 1.073 8.082 ± 0.339 8.100 ± 0.474 9.613 ± 3.044

U298,𝑎𝑡𝑜𝑚
0.171 ± 0.012 0.759 ± 0.028 0.757 ± 0.104 0.631 ± 0.052
1.239 ± 0.937 8.368 ± 0.229 8.117 ± 0.561 8.220 ± 0.200

H298,𝑎𝑡𝑜𝑚
0.181 ± 0.011 0.724 ± 0.053 0.802 ± 0.085 0.706 ± 0.130
1.197 ± 0.899 8.275 ± 0.405 8.125 ± 0.277 10.424 ± 1.989

G298,𝑎𝑡𝑜𝑚

0.167 ± 0.014 0.690 ± 0.060 0.705 ± 0.063 0.757 ± 0.198
1.142 ± 0.689 7.671 ± 0.148 7.363 ± 0.035 8.751 ± 2.596

𝜇
0.469 ± 0.006 0.465 ± 0.002 0.454 ± 0.002 0.501 ± 0.051
0.588 ± 0.002 0.572 ± 0.005 0.569 ± 0.004 0.611 ± 0.038

𝜖𝐻𝑂𝑀𝑂
0.110 ± 0.001 0.109 ± 0.002 0.112 ± 0.003 0.127 ± 0.010
0.142 ± 0.003 0.140 ± 0.001 0.142 ± 0.002 0.158 ± 0.012

𝜖𝐿𝑈𝑀𝑂
0.116 ± 0.002 0.114 ± 0.003 0.110 ± 0.004 0.118 ± 0.006
0.179 ± 0.002 0.171 ± 0.001 0.167 ± 0.005 0.173 ± 0.007

𝛥𝜖
0.161 ± 0.002 0.156 ± 0.001 0.150 ± 0.004 0.156 ± 0.005
0.226 ± 0.004 0.219 ± 0.002 0.208 ± 0.004 0.219 ± 0.007

4. Conclusion

GNNs have emerged as a promising deep learning technique for
end-to-end molecular property prediction in chemical engineering. The
selection of pooling functions in GNNs for property prediction should
be based on physical knowledge because incorrect pooling functions
can promote overfitting and weaken generalization. We identify the
dependency of the learned property on the molecular size as key
property for the selection of the pooling function: When a property
is molecular size-dependent, the sum pooling function should be used.
When a property is molecular size-independent, sum pooling can lead
to poor generalization. We recommend to compare sum, mean, and max
6

pooling functions for size-independent properties. &
Table 3
Mean absolute errors averaged over three independent training runs with the corre-
sponding standard deviation for testing MXMNet with different pooling functions, sum,
mean, max, against: (black) QM9 data set excluding molecules with 9 heavy atoms,
(blue) only molecules with 9 heavy atoms of the QM9 data set. Error of best pooling
function are bold type. Units are equivalent to those in Table 1.

Target MXMNet

Sum Mean Max

𝛼
0.0781 ± 0.0059 0.1331 ± 0.0049 0.1347 ± 0.0040
0.1887 ± 0.0099 1.2853 ± 0.1534 0.4569 ± 0.0244

R2 1.78 ± 0.07 2.55 ± 0.04 2.77 ± 0.26
104.84 ± 9.49 199.26 ± 14.02 182.34 ± 4.87

ZPVE 1.44 ± 0.01 3.70 ± 0.40 2.78 ± 0.22
2.26 ± 0.03 44.92 ± 9.35 8.07 ± 0.07

Cv,298
0.0325 ± 0.0010 0.0503 ± 0.0031 0.0515 ± 0.0010
0.0891 ± 0.0058 2.2484 ± 0.6533 0.6094 ± 0.2107

U0,𝑎𝑡𝑜𝑚
0.0111 ± 0.0004 0.0728 ± 0.0012 0.0710 ± 0.0108
0.0265 ± 0.0011 1.4095 ± 0.5951 0.5047 ± 0.1451

U298,𝑎𝑡𝑜𝑚
0.0114 ± 0.0005 0.0729 ± 0.0035 0.0720 ± 0.0098
0.0265 ± 0.0011 1.2072 ± 0.4537 0.5025 ± 0.1428

H298,𝑎𝑡𝑜𝑚
0.0115 ± 0.0006 0.0723 ± 0.0016 0.0724 ± 0.0081
0.0265 ± 0.0009 1.5855 ± 0.9168 0.5039 ± 0.1233

G298,𝑎𝑡𝑜𝑚

0.0122 ± 0.0003 0.0662 ± 0.0018 0.0677 ± 0.0088
0.0271 ± 0.0010 2.1216 ± 1.0470 0.5009 ± 0.1058

𝜇
0.0892 ± 0.0027 0.0981 ± 0.0015 0.1203 ± 0.0049
0.1551 ± 0.0066 0.1708 ± 0.0048 0.1997 ± 0.0091

𝜖𝐻𝑂𝑀𝑂
0.0516 ± 0.0004 0.0460 ± 0.0008 0.0550 ± 0.0028
0.2273 ± 0.1028 0.0687 ± 0.0013 0.0743 ± 0.0024

𝜖𝐿𝑈𝑀𝑂
0.0366 ± 0.0012 0.0384 ± 0.0001 0.0449 ± 0.0006
0.0700 ± 0.0012 0.0707 ± 0.0002 0.0816 ± 0.0027

𝛥𝜖
0.0766 ± 0.0006 0.0729 ± 0.0022 0.0783 ± 0.0030
0.3896 ± 0.1788 0.1192 ± 0.0024 0.1263 ± 0.0052

Our computational results support this hypothesis showing that
physical GNN architectures generalize better than unphysical architec-
tures. In future research, the physical selection of pooling functions
should always be considered when predicting molecular properties with
GNNs.
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