
AN ALGORITHM FOR AUTOMATIC CHECKING OF EXERCISES IN A
DYNAMIC GEOMETRY SYSTEM: iGeom

Seiji Isotani1 and Leônidas de O. Brandão2

1The institute of Scientific and Industrial Research, Osaka University, Japan
2The Institute of Mathematics and Statistics, University of São Paulo, Brazil

isotani@acm.org, leo@ime.usp.br

ABSTRACT
One of the key issues in e-learning environments is the possibility of creating and
evaluating exercises. However, the lack of tools supporting the authoring and automatic
checking of exercises for specifics topics (e.g., geometry) drastically reduces advantages in
the use of e-learning environments on a larger scale, as usually happens in Brazil. This
paper describes an algorithm, and a tool based on it, designed for the authoring and
automatic checking of geometry exercises. The algorithm dynamically compares the
distances between the geometric objects of the student’s solution and the template’s
solution, provided by the author of the exercise. Each solution is a geometric construction
which is considered a function receiving geometric objects (input) and returning other
geometric objects (output). Thus, for a given problem, if we know one function
(construction) that solves the problem, we can compare it to any other function to check
whether they are equivalent or not. Two functions are equivalent if, and only if, they have
the same output when the same input is applied. If the student’s solution is equivalent to the
template’s solution, then we consider the student’s solution as a correct solution. Our
software utility provides both authoring and checking tools to work directly on the Internet,
together with learning management systems. These tools are implemented using the
dynamic geometry software, iGeom, which has been used in a geometry course since 2004
and has a successful track record in the classroom. Empowered with these new features,
iGeom simplifies teachers’ tasks, solves non-trivial problems in student solutions and helps
to increase student motivation by providing feedback in real time.

Keywords: Dynamic geometry; automatically checking exercises; distance education;
geometry; iGeom.

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

mailto:isotani@acm.org
mailto:leo@ime.usp.br

Introduction
The computer has been used in education since its earliest appearance in 19451. However,
it was only in the 1980s, with the emergence of “personal computers” (PCs), that the use of
this machine and its resources (e.g., software) significantly impacted teaching and learning
processes (Oldknow, 1997). Today, in Brazil and other developing countries, there has been
a large expansion in the use of the Internet for teaching. Consequently, the demand for
research in this area has considerably increased (Litto, 2006). The large-scale distribution
of cheap computers for teaching in Brazil has introduced a new stimulus for developing
local software with the capability of functioning in computing equipment with low-
processing capacities.

The development of environments for distance education and e-learning through the
Internet have not only allowed for an easier and faster diffusion of information and
knowledge, but has also helped with the introduction of courses using the flexibility of
schedules and places (Hentea, Shea & Pennington, 2003; Litto, 2006). In this context, these
online environments that support teaching and learning processes have become virtual
classrooms, where students and teachers can communicate and interact using tools,
including chat rooms, forums, emails, wikis, virtual blackboards, etc.

The use of the Internet and computers can bring great benefits to the teaching of
mathematics, but in order to achieve such goals, it is necessary to choose and create
appropriate programs and methodologies that take advantage of the computer’s positive
characteristics. Good examples of this include Dynamic Geometry (DG) programs, which
can benefit teaching and learning processes (Santos & Sola, 2001; Ruthven, Hannessy &
Deaney, 2007).

Dynamic Geometry can be understood as an alternative to traditional geometry, which
makes use of a ruler and compass and produces static constructions. When using traditional
methods to teach geometry, if a student, after accomplishing a construction, wants to
analyze the same construction using some of the objects in another disposition, he or she
needs to repeat the entire construction. However, with Dynamic Geometry, used today to
specify geometric equations implemented on the computer, objects can be freely
manipulated across the screen, maintaining all of the constraints and properties initially
established during construction.

DG programs have proven to be an excellent resource for teachers and students (Botana
& Valcarce, 2002; Sinclair, 2005; Ruthven et al., 2007). In spite of the great benefits for
teaching and learning, as well as the existence of useful DG programs, including GSP
(Jackiw,1995), Cabri (Cabri, 2007), Cinderella (Kortemkamp, 1999), C.a.R (Grothman,
1999), and Tabulae (Moraes, Santoro & Borges, 2005), DG is not commonly used in
adaptive distance education environments. The main reason for this is the lack of tools for
authoring and automatically checking exercises that allow communication between servers
and the adaptation of their interface (e.g., show/hide tools to draw objects), according to the
learning context.

The importance of the evaluation or checking students’ exercises is a reality in both
classroom and e-learning environments. According to Hara & King (1999) and Hentea et al.

1 To learn more about the history of the computer, visit the timeline of computing history at http://www.hofstra.edu/ComputingHistory.
Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

(2003), one main frustration of students engaged in e-learning courses (including blended
learning2 courses) is the lack of feedback or the limitation of an immediate evaluation of
completed exercises. In this context, using the usual DG programs generates some
difficulties for students and teachers, including the fact that the student is unaware of
whether his or her solution is correct and must save the solution and send it by email (or
another medium) to the teacher in order to receive an evaluation. Moreover, in order to gain
access to the student’s solution, a teacher needs to receive the email (or other form of
response), open it using a DG program and check each construction. Throughout this
cumbersome process, the elapsed time eliminates one advantage of the Internet, which is to
provide a faster and more interactive environment for learning. This loss of time makes a
teacher’s task of helping students improve learning through the use of technology much
more difficult.

The answer to this problem is to make DG programs more effective when used in e-
learning environments. The following can be implemented to facilitate that process: (a)
generate tools that produce and automatically check student exercises, allowing for faster
authoring and feedbacks; and (b) develop tools allowing for communication between DG
programs and learning management systems (LMS) that facilitate distribution, management,
adaptation, and reception of exercises or any other content.

 Today, two DG programs possess tools for authoring and checking exercises,
including Cinderella (Kortenkamp, 1999) and C.a.R. (Grothman, 1999). The contributions
of these programs inspire many teachers to include DG programs in classroom activities.
However, in the current versions of these programs, there are some limitations for their use
on distance education courses over the Internet. For instance, it is not possible to
satisfactorily link these programs to LMS, allowing for effective management and/or
adaptation of the created content. This means that these programs cannot personalize their
content in real time nor consider teacher and student preferences that would increase
success in the learning process.

The purpose of this paper is to present the development of algorithms and tools for
authoring and automatically checking exercises in a DG program, called iGeom, which can
be used for both web pages and as a stand-alone version. Conventional algorithms, based
on automatic theorem proving techniques, to check geometry constructions, are very time-
and machine-consuming and, sometimes, cannot check complex constructions in real time
(Gilmore, 1970; Chou, Gao & Zhang, 2000; Gallier, 2003). The developed algorithm of
this paper is not as formal as a proof, but does enable the instantaneous checking of a
geometric exercise by comparing it with a solution’s template. The main benefits of this
approach include a program that is (a) fast enough to be used over the Internet to support
the use of dynamic geometry programs in distance education courses; (b) able to check any
kind of geometric construction and return whether the construction has the necessary
properties to solve an exercise; and (c) able to run on computers with low-processing
capabilities, which is very important in Brazil, where many computers used in public
schools are out-of-date. Furthermore, we will present results using this algorithm,
implemented on iGeom, together with an under-development learning management system,
referred to as SAW (Moura, Brandão & Brandão, 2007). This paper is structured as

2 Blended learning is broadly used to define a course that combines usual classroom activities and on-line activities.
Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

follows: In section one, we will briefly describe the DG program, iGeom, compare its
functionalities with other DG programs and outline its potential use when together with
LMS. In section two, we show iGeom functionality for authoring and automatically
evaluating exercises. In section three, we present the automatic evaluation algorithm. In
section four, we show how geometric constructions can be exported to the Internet. In
section five, we present the results of the application in a compulsory discipline offered for
an undergraduate mathematics course at the University of Sao Paulo. Finally, in section six,
we present the conclusions of our study.

1. iGeom: Dynamic Geometry on the Internet
The iGeom program is a complete, multi-platform, dynamic geometry system (DGS)
developed at the Institute of Mathematics and Statistics at the University of São Paulo
(IME-USP). It has been under development since 2000, under the direction of Professor
Leônidas O. Brandão (Brandão & Isotani, 2003). The iGeom program is implemented in
Java and can be used as a stand-alone program or as an applet. Like other DG programs, the
current version of iGeom allows users to perform all of the basic operations of Dynamic
Geometry, including the creation of geometric objects, such as points, lines, circumferences,
and dynamic measures (e.g., angles); the modification of characteristics of the objects (e.g.,
color, size); options for saving or recovering constructions in different formats; and other
advanced resources. Besides these, iGeom has special resources for creating scripts
(functions used to create automatic geometric constructions) and fractals. Figure 1 depicts
the interface of the iGeom, including fractals created using a recursive script.

Figure 1. The interface of the iGeom showing fractals created using recursive script.

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

The iGeom has been developed considering the computational restrictions of
computers in Brazil. This philosophy makes iGeom run efficiently in both residential and
personal computers that have low-processing capabilities (e.g., computers using a
microprocessor similar to Intel i386). Furthermore, it can be used without restrictions with
any other learning management system (Brandão, Isotani & Moura, 2005).

In Table 13, we show some of the resources available with the iGeom program, in
comparison with other DG programs. The column Portability refers to the DG programs
that can be executed in any platform. The column ADDs refers to DG programs that allow
for the opening of multiple drawing areas. The column Script contains those DG programs
that possess resources for script creation. In the column Rec, those DG programs that allow
for the creation of recursive scripts (allows for the construction of fractals) are listed. In the
column labeled Web are DG programs that allow for the unrestricted Internet use of these
resources. In the column labeled Com are DG programs that possess communication
resources. In the column titled AA are DG programs that possess resources for authoring
and the automatic evaluation of exercises. Finally, the column License refers to the license
type each program possesses.

Table 1. Comparison between the resources of some DGS.

Program Portability ADDs Script Rec Web Com AA License
iGeom X X X X X X X free
Cabri X X comercial
C.a.R X X X X GNU
Cinderella X X X X comercial
GSP X X X comercial
Tabulae X X X X comercial

In 2004, a project was initiated to develop a learning management system that could
easily incorporate applets into educational modules. This system was referred to as SAW
(Brandão, Isotani & Moura, 2004; Moura et al., 2007). The iGeom program has been used
together with SAW in different courses. One of these includes a course directed towards
public school teachers and people interested in teaching mathematics using computers.
Another use includes an obligatory discipline offered for a degree course in mathematics,
titled “Notions of teaching of mathematics using computers”. Each year, more than a
hundred students and teachers are enrolled in these courses. The use of iGeom+SAW,
including some of the obtained results using the automatic checking tool on the Internet,
will be shown in detail in sections 4 and 5.

2. Authoring and Automatically Evaluating Exercises
The action of evaluating or checking exercises is a complicated process (Gelernter, 1963;
Kortenkamp, 1999; Chou et al., 2000). Because of this, automation is not a trivial matter. It
requires the application of heuristics or simplifications. One of the difficulties in
developing an algorithm that enables automatic checking in GDS is the multiplicity of
different (and correct) solutions for the same problem. To illustrate this point, consider the
following problem: Given two points, A and B, build a middle point between them. Figure

3 The analysis of resources was done in 2004.
Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

2 shows two different constructions used to solve this problem. Many other constructions
are possible, whether minimal4 or not.

Figure 2. Two different constructions of the middle point.

We have identified three techniques used by DG programs in the automatic
evaluation of exercises: the automated (geometry) theorem proof (Gallier, 2003), the
technique based on the theory ACT (Atomic Component of Thought) (Anderson, 1993),
and the numerical evaluation (Isotani & Brandão, 2004).

According to Gallier (2003), an automatic theorem proof (ATP) can be summarized
as a computer program that shows whether or not a sentence (a conjecture) is a logical
consequence of a group of sentences (axioms and hypotheses). The language used by these
programs should be formal in order to eliminate ambiguity. The verification of a sentence
produced by an ATP program is known as a proof. This proof describes a sequence of steps
(logical consequences) that validate a conjecture. The steps, followed by an ATP program
(also known as a proof tree), can be understood by other ATP programs or even a person.
Some pioneering works in the development of automatic evaluators of geometry theorems
have been reported by Gelernter (1963), Gelernter, Hanson & Loveland (1963), and
Gilmore (1970).

The DG programs based on ATP are capable of checking the validity of different
constructions, which in turn, generate different types of proofs that depend on the methods
used to prove a scenario (Chou et al., 2000; Botana & Valcarce, 2002). At present, several
methods exist for accomplishing an automatic proof in geometry. Some of them are (Gao &
Zhu, 1999): the method of Wu, the area method, the base of Groebner, the vector method
and the angles method. Among the DG programs that use ATP methods are Geolog
(Holland, 1993), GeometryExpert (Gao & Zhu, 1999) and Discover (Botana & Valcarce,
2002).

The ACT-R technique is a current version of the ACT theory, a general theory on
the human cognition attempting to reproduce how an individual acquires knowledge. It was

4 Minimal constructions/solutions are those from which we cannot remove any object without compromising the properties that satisfy a
given problem.
Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

developed by a group of researchers under direction of John Anderson at Carnegie Mellon
University (Anderson, 1993) and has been applied to intelligent tutoring programs focused
on the teaching of Algebra and Geometry (Aleven, Koedinger, Sinclair & Snyder, 1998).

Although these two techniques produce excellent results, they cannot be effectively
applied to web-based courses that check geometry exercises. This dilemma is the result of
these techniques being time- and machine-consuming. Furthermore, if a teacher needs to
create an exercise, depending on the complexity of the solution, these techniques have
difficulties to determine, rapidly, whether the solution is correct or not (Chou et al., 2000;
Gallier, 2003). For online courses, the time available for response is extremely limited.
Feedback should be given almost instantaneously (real time). Additionally, in Brazilian
public schools, most computers have low-processing capabilities, which demand programs
and algorithms that do not consume a great deal of computer processing time.

Instead of attempting to prove a student’s construction/solution, a numerical
evaluation compares the student’s answer-objects with the corresponding teacher’s
answers-objects. This comparison is made using a distance criterion between the objects.
For instance, if the problem is to determine the middle point between points A and B, the
distance is verified between the point of the student’s construction and the point of the
teacher’s construction according to an established criterion. Programs that use a similar
method include Cinderella (Kortenkamp, 1999), C.a.R (Grothman, 1999), and iGeom
(Isotani & Brandão, 2004). The numerical evaluation method is not a formal proof, like
ATP or ACT-R, and demands a solution template (a previously provided correct
construction). However, this type of evaluation possesses advantages by using less
computational processes and by not restricting the application domain. This allows a
proposed exercise to be solved using any technique without harming the evaluation process.

2.1 An Overview of the Authoring and Checking Processes of
iGeom
The functionalities for authoring and automatically checking exercises in iGeom are
incorporated so that an exercise may be completed using the application (which facilitates
the execution of tests for the definition of the exercise) or web pages.

The authoring of exercises in the iGeom program has five steps: (a) the construction
of a solution template; (b) the selection of initial objects (including the selection of a
statement); (c) the selection of answer-objects; (d) the use of the unable/enable buttons; and
(e) saving the exercise or exporting it into HTML format.

The construction of the solution template is accomplished the same as any other
construction. For example, to construct the median line of two points, one possible
construction requires the authors (a) to create points A and B; (b) to create a segment s0 that
connects A and B; (c) to create a middle point M between A and B; and (d) to create the line
r (median) perpendicular to the segment s0, which passes through M, shown in Figure 3.

When construction is complete, the author can initiate an authoring window (to the
right of Figure 3) and select the initial objects (those that will appear at the beginning of the
exercise) using the “marcador” button (in Figure 3, the icon with a red square around it).

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

The selection of the answer-object is completed in a similar fashion.

In the authoring window, it is possible to see which objects have been selected, as
well as remove or add other objects. To disable/enable buttons in the student main interface,
one can click on the buttons shown at the bottom of the authoring window. Thus, teachers
can select tools that will be available to learners during the resolution of the exercise. For
example, the buttons “middle point”, “perpendicular” and “parallel” can be disabled and,
thus, students will be unable to use these tools to solve the given problem. Finally, authors
can save the exercise in a stand-alone version of iGeom, or save it as an HTML file.

Along with the authoring tool, a resource for automatically checking a student’s
solution has been developed. When a student opens an exercise in iGeom, similar to the
example shown in Figure 3, he or she will only see points A and B and the message, “Given
two points A and B, build the median line”. Furthermore, the buttons disabled by the
teacher during the authoring phase will not appear in the menu. Thus, the student will be
unable to use them.

Figure 3. Construction of a solution template for a median line exercise. In the left-hand pane of

the display, the solution template is presented as the construction and the statement "Given two points, A
and B, build the median line" (in Portuguese). In the right is shown the authoring window.

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

After a student completes a given exercise, he or she needs to select the answer-
object that he or she believes to be the correct answer (e.g., select the median line for his or
her construction). Then, the evaluation algorithm begins. If the student’s solution is
evaluated as incorrect, the iGeom finds a counter-example or a configuration (instance) of
the construction where the selected answer-objects do not satisfy the desired properties
(more details on how to find the counter-example is shown in section 3). The use of
counter-examples aids both teachers verifying a student’s construction and students who
need to visualize their mistakes. Another advantage of the numerical method implemented
in iGeom is that a student can use any geometrically valid solution to solve an exercise,
even those not imagined by a teacher.

The tools of authoring and automatically checking, together with exporting
resources for the Internet, facilitate the creation of interactive exercises that can be used for
free access. By using this export feature, a teacher can produce a set of web pages using
several exercises and offer their students an immediate evaluation of their constructions,
without the need of personally verifying each construction.

A practical example of the use of these resources can be found with iMática, a
project making digital materials for mathematics available in Portuguese
(http://www.matematica.br/igeom/docs/exemplo1). This webpage possesses several
activities (divided into classes, topics and exercises) that are helpful in teaching geometry
(Figure 4). All of them can be completed online and the evaluation (whether it is correct or
not) of each solution is supplied by iGeom.

Figure 4: Activity example for use through Web, with the iGeom program, developed by students at
IME-USP in 2004.

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

3. Proposing an Algorithm for Automatically Checking
Exercises Using a Numerical Evaluation

Proposing a fast and accurate algorithm for checking an exercise that can verify

whether a construction is correct or not is intrinsically dependent on how the concept
“solution” is defined. For example, in the C.a.R. program, a solution is defined as any
static object. With such a definition, the algorithm used to check exercises in C.a.R.
basically tests if the objects selected as a solution for an exercise have similar objects in the
solution template. This algorithm somewhat works in practice, however, it constrains the
dynamicity of the system. Because a solution is defined as a static object, C.a.R. does not
allow for the movement of objects while an exercise is being solved. In order to simplify
the automatic checking of exercises, such algorithms ignore the term “dynamic” of a
dynamic geometry system. An easy test can exemplify one weakness of this algorithm. For
example, if an exercise asks an individual to find a middle point between the given points A
and B, then one way of cheating is to create a point with the same coordinates as the middle
point. Although this solution is not desirable, the automatic checking in C.a.R. will
determine that such a construction is correct, even though no valid construction has been
completed.

In Cinderella, the concept “solution” is defined as a theorem that needs to be
checked. Thus, the algorithm for checking exercises is known as “automatic theorem
checking”, based on the Schwartz-Zippel Theorem (Schwartz, 1980). This theorem states
that if it is possible to estimate the probability of choosing a counter-example (if there is
one), it is then possible to bound the probability of failing if a theorem is true, based on a
few random examples. By utilizing such a theorem when checking an exercise, the
Cinderella algorithm tries to prove if objects in a construction coincide by chance or
because a theorem drives them to coincide.

Finally, in iGeom, a solution is defined as a function applied to any object (initial
objects) and returning objects (answer-objects). Such a definition allows for high flexibility
when comparing two different constructions. Thus, when given initial objects, it is possible
to verify if different constructions provide equivalent results without the necessity of
comparing each object of every construction or the construction steps. To establish the
definition of solution and equivalence between solutions, and thus, creating an algorithm
based on numerical evaluation, it is necessary to measure the distance among objects of a
construction. In the following sections, the basic formalization for these definitions and an
algorithm for checking exercises are proposed.

3.1 Numerical Evaluation
The result of the evaluation is a measurement of the distance between the student’s

solution and the teacher’s solution (a correct solution given for a problem). To complete
this evaluation, it is necessary to define the distance criterion among the geometric objects.
We have defined the distance criterion only for pairs of objects of the same family or type.
To simplify, we only name examples from the more common families in a construction,

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

including the family of points (Fp), the family of circumferences (Fc) and the family of
segments (Fs). The sets of all families of objects will be represented by Fog.

By doing so, the distance criterion is the function dist that receives a pair of
geometric objects () ogog FXF2og,1og ∈ and returns a value of +ℜ :

 () +ℜ→2og,1og:dist (1)

The computational description of the objects is defined for each family of Fog as a
list of numerical values. For instance, a point can be represented by ()y,x , where x and y
are the coordinates of a point; a circumference can be represented by (, where

 are the coordinates of its center and r is its radius; and a segment
)

)
r,y,x

(y,x
() ()[]2211 y,x,y,xs = can be represented by ()2211 y,x,y,x . Thus, if we consider

just the families of points, circumferences and segments, given two objects of a same
family, og1 e og2, if (),,..,., 1

i
1
2

1
1 lll and (),,..,., 2

i
2
2

2
1 lll represent og1 e og2,

respectively, then we can define the function dist according to the equation (2).

()

()

()

()

() ss

cc

pp

4
1i

2
14%1i

1
i

4
1i

2
i

1
i

2
3

1
3

2
2

1
2

2
1

1
1

2
2

1
2

2
1

1
1

FXF2og,1og,

FXF2og,1og,

FXF2og,1og,

,

,
min

2og,1ogdist

∈

∈

∈

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−

−

−+−+−

−+−

=

∑
∑
= ++

=

ll

ll

llllll

llll

 (2)

The symbol % is used to obtain the rest of the division (function module).

The need of the minimum (min), when objects are from the family of segments, is
based on the desire to compare not only the distance between segments AB and CD, but
also their permutations AB and DC, BD and CD, BA and DC, without differentiation
between them. In other words, for segments, the distance criterion does not distinguish
segment AB from segment BA.

Once the distance among geometric objects is defined, we can define the distance
between pairs of geometric constructions, OGp and OGa. If OGp and OGa are two
constructions and their objects are represented by ()p

i
p
2

p
1 og,...,og,og and

()a
i

a
2

a
1 og,...,og,og , respectively, then the distance between OGp e OGa, can be

expressed as shown in Table 2.

A solution (geometric construction) can be represented as a function that receives a
list of geometric objects (input) and returns another list of geometric objects (output):

 (6) fi OGOG:S →

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

Table 2. Definition of distance among pairs of constructions.

If the cardinality of the lists OGp and OGa (#OGp e #OGa) are different, then

 () ∞+=ap OG,OGdist (3)

If #OGp = #OGa = n,

then ()n1p p,...,pI = and ()n1a a,...,aI = two permutations on the first
natural n,

()
() () () { }

..,

,...,1,,,
, 1

cc

niogtipoogtipoifogogdist
IIdist

a
a

p
p

n

i

a
a

p
p

ap

iiii
∈=

⎪
⎪
⎩

⎪⎪
⎨

⎧

∞+

=
∑
= (4)

tipo(og) being a function that returns the type of geometric object og.

Then,

 if is the set of all of the permutations of first natural n: nP

 () () (){ }nnapapap PXPI,I,I,IdistminOG,OGdist ∈∀= (5)

In other words, among all of the permutations of objects of OGp e OGa,
()ap OG,OGdist is the sum of the distances among each pair of objects of same

type that results in the smallest value.

An instance of construction S is the application of S over a given configuration of
objects. Once the distance among pairs of constructions and the representation of a solution
is determined, we can decide when the two constructions (solutions) are equivalent, as
shown in Table 3.

Table 3. Definition of equivalence of solutions/constructions

Definition of Equivalence:

Be Sp and Sa two constructions applicable over the same list of geometric objects OG.
Then Sp and Sa are equivalent if, and only if, for any configuration OG0 of the list OG,

() ()() 0OGS,OGSdist 0a0p = .

It is worth noting that if two constructions are equivalent, the distance between them
is invariant in relation to the initial configurations. In other words, the distance computed
for any instance is always zero. Therefore, if we do not consider numerical errors, a good
evaluation criterion states that construction Sa is correct whenever it is equivalent to a
correct given construction, Sp (for example, a student’s solution, Sa, can be considered
correct if it is equivalent to solution Sp, given by the teacher). However, there is a practical
problem: how to implement a version that is sufficiently fast and takes into account
numerical errors?

As different constructions applied to the same initial objects generate the same
Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

answer-objects (output) with small numerical differences, we have opted to relax the
equivalence criterion that allows, for instance, two points very close in a number of
different instances of the initial objects to be considered almost equivalent. In principle,
this solution allows for false positives (a wrong exercise evaluated as correct) or false
negatives (a correct exercise evaluated as incorrect), but as we show in session 4, in
practice, it works well. It is also possible to increase the number of instances tested or
implement other modifications of parameters that would reduce or eliminate wrong
evaluations.

3.2 The Evaluation Algorithm
From now on, when it is implicit or indifferent as to which list of geometric objects should
be used, the simplified notation S will be used.

Based on the numerical evaluation presented in the previous section, we have
created an algorithm composed of four main steps. These steps include numerical
transformation, evaluation, instantiation, and validation. This algorithm has been
implemented into iGeom as a way of verifying its performance and accuracy. As mentioned
in section 2, in order to check an exercise, it is necessary to create a solution template by
providing a correct construction for the exercise and selecting which objects will be
checked (answer-objects). At the end of a resolution, a student selects which are their
answer-objects. The lists of the student’s answer-objects and the solution template’s
answer-objects will be the input data for the evaluator algorithm. The result will be a
natural number between 1 and 3, with (1) being the correct solution, (2) being a partially
incorrect solution and (3) being an incorrect solution.

When applied on a geometric object, the first step of our algorithm, the numerical
transformation, returns a list of scalars that represent the object. In most cases, this
transformation is simple. However, besides the numerical transformation, some objects,
such as the polygon, need the ordination of points representing it. With this list of scalars,
we can make a comparison between objects. Then, in order to compare the solution
template, Sp, and the student’s solution, Sa, we transform objects marked as answers in lists
of scalars and then begin the evaluation, as schematized in Figure 5.

The evaluation is made in two stages. The first stage consists of mapping between
the lists, while the second is the comparison of the distance criterion. The first stage allows
students to have the freedom of making a selection of answer-objects in any order. For
instance, if the solution template contains points A and B and the student’s answer-objects
are points C and D, the mapping stage will identify if points C or D correspond to A or B.

The mapping of objects Sa e Sp is accomplished by comparing each og element of Sa,
with all elements of Sp that belong to the same type (family), while minimizing the distance
between them. Then, an object of Sa will be mapped with an object of Sp if both belong to
the same family of geometric objects, have not been mapped before and the distance among
them is the smallest possible in relation to other objects of Sa. This mapping is made only
for the first instance (the initial configuration of an exercise). The second stage of the
evaluation consists of a comparison between pairs of mapped geometric objects

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

()p
i

a
i og,og . In comparison, we use a relaxed version of the definition of equivalence,

presented in Table 3, that takes into consideration the numerical imprecision of using
different solutions. Then, we propose a definition of Quasi Equivalence, as shown in Table
4.

Figure 5. Numerical transformation and evaluation.

The pseudo-algorithm implemented in iGeom that corresponds to these two steps
(mapping and evaluation), is shown in Table 5. Lines 1 through 12 represent the mapping
of objects, while lines 13 through 19 represent the exercise evaluation.

Table 4. Definition of quasi-equivalence of solutions/constructions

Definition of Quasi Equivalence:

Fixed a list of input objects OG, be Sp a construction on OG and Sa another
construction on the same OG. Then Sp and Sa are quasi equivalent if, and only if, for
any configuration OG0 of the list OG, we have () ()() ε<00 , OGSOGSdist ap .

Notice that the part of the algorithm shown in Table 5 represents just one instance of
the solution, which considers a fixed position for each input object. If this algorithm is used
to check only the initial configuration, it can frequently generate mistakes, such as false
positives. For instance, in the problem using the middle point (section 2), a student could
try to put a free point on segment AB and move it so that it is close enough to the position
of the medium point to generate a false positive, without making a valid geometric
construction. In spite of the difficulty involved in positioning the point so that the algorithm

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

evaluates the solution as correct, it is possible to identify such problems in the algorithm
implemented in C.a.R. This false positive problem is illustrated with the following
example: Given two points, A and B, build an equilateral triangle ∆ABC.

Table 5. An pseudo-algorithm to solve the problem of checking exercises in DG

1. Receive two lists Sp e Sa of geometric objects
2. Creates a new list of geometric objects φ←tS

3. For each element of the list Sp
iog p

4. SmallestFoundDistance ∞←
5. MappedObject φ←

6. For each element of the list Sa
jog a

7. If e belong the same family of geometric objects then p
iog a

jog

8. If () <a
j

p
i ogogdist , SmallestFoundDistance

9. MappedObject a
jog←

10. SmallestFoundDistance ()a
j

p
i og,ogdist←

11. If MappedObject φ=
12. Return False // mapping between Sp and Sa failed
13. If not
14. • MappedObject // concatenation tt SS ←

15. Remove MappedObject de // object is mapped aS

16. For each element of the list Sp
iog p

17. Be the first element t
jog tS

18. If () ε<t
j

p
i og,ogdist then

19. Remove of t
jog tS

20. If not
21. Return False //solutions are not equivalent
22. Return True //solutions are equivalent

In Figure 6, two solutions for this problem are shown. The first construction is
correct and is shown in Figure 6a. The second, shown in Figure 6b, is an incorrect solution,
but contains the same properties of an equilateral triangle. In this case, the second solution
depicts the construction of an isosceles triangle, with the free point C on the straight line s.
Coincidentally, in this construction configuration (instance), point C is in such a position
that BCACAB == .Thus, the construction of the isosceles triangle can be erroneously
used to produce an equilateral triangle. To avoid such problem, it is possible to move all
free points of the construction, in particular, point C of the isosceles triangle, so that it
becomes clear that triangle ∆ABC in Figure 6b is not the correct construction for an
equilateral triangle.

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

Figure 6. Two constructions of an equilateral triangle. The construction (a) is the correct construction
for an equilateral triangle and the construction (b) is the construction of an isosceles triangle in a
instance where all the sides of the triangle have the same measure.

Therefore, a simple way to detect such mistakes is to create a mechanism that
analyzes the exercise in several instances (instantiation) and only after a considerable
number of evaluations does the system return the result of the evaluation (validation). In
Figure 7, we show the procedure that is employed by the evaluation algorithm. For each
application of the automatic checking algorithm, the positions of the geometric objects are
changed. This alteration is made through the random movement of all free points of the
construction. The choice for the new position of a point is made by modifying the
coordinates for and (y,x))('y,'x kx'xkx +<<− for ky'yky +<<− , where k is a
random value such that . The value of k was empirically determined providing
evidences that the modification of the coordinates is enough to identify possible problems
in a construction.

20k0 ≤<

At the end of the automatic checking process, the algorithm returns an integer value:
(1) means the solution is correct; (2) means the solution is incorrect, however, it found
instances considered correct and incorrect; and (3) means the solution is incorrect.

Figure 7. Sequence of steps of the proposed algorithm for automatic checking of geometry exercises.
Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

3.3 Identification of Ambiguity
The concept of functions has been explored in order to deal with the problem of
automatically checking geometric exercises. These functions are constructions that receive
a set of input objects and return a set of answer-objects. Such functions are considered
ambiguous when they are not bijective functions, or in other words, they possess more
than one set of answers for the same input data. In DG, this problem can appear whenever
the proposed exercise has an implicit or explicit free point needed to solve the problem. An
example is presented in the following problem: Given two points, A and B, build an
isosceles triangle ∆ABC.

This problem is intrinsically ambiguous, possessing infinite solution instances,
because point C can be located on any position of the median line A and B. Independent of
A and B, point C can be moved, changing the instance of triangle ∆ABC, yet maintaining
the desired properties, as can be observed in Figure 8.

To find this ambiguity problem during the authoring of an exercise, we have
implemented an algorithm that checks the construction of the solution template. It informs
the author which geometric object makes the construction ambiguous. This warning is very
useful when correcting teachers’ mistakes during the creation of an exercise. Other
programs, such as C.a.R and Cinderella, lack similar algorithms or functionalities.

During the construction, when selecting the initial objects and answer-objects, the
algorithm of ambiguity verifies if some answer-object is dependent of some free point, P. If
such point P does not belong to the selected initial objects and cannot be determined by
them, then, we verify whether moving point P will change the position of some answer-
objects. In the example of Figure 8, during the creation of the solution template selection,
only points A and B are initial objects, while segments AC and BC are answer-objects.
The algorithm identifies the ambiguity and returns a message to the teacher informing him
or her that point C needs to be selected as an initial object to remove the ambiguity of the
solution template.

Figure 8. For a same position of the points A and B, potentially we have infinite configurations for the
problem of construction isosceles triangles.

It is worth noting that an answer-object, dependent on a free point that does not
belong to the initial objects of the solution template, is not always modified when the free
Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

point is moved. An example can be observed by creating the solution template for the
following problem: Given the straight line r and point A, build a straight line s by passing
through A and forming an angle of 60 degrees to r.

The solution for this problem can be seen in Figure 9. The objects selected as initial
objects are straight line r and point A, while the object selected as the answer will be
straight line s. Note that in this construction, straight line s is dependent on point C. Yet,
this point is not selected as an initial object. However, when moving point C, the position
of straight line s does not modify and, therefore, the solution is not ambiguous. The
developed algorithm detects this case using part of the mechanism of the automatic
evaluation, making the comparison of the construction in different configurations.

Figure 9. Construction of an angle of 60 degrees. In this construction the movement of the point C (free
point) does not interfere in the result.

4. Communication Between the iGeom program and a Web
Server
The tools for automatically checking and authoring exercises have been built directly into
the iGeom application. To fulfill our goal of effectively using DG programs in distance
education courses, it was necessary to build a tool that could communicate with learning
management systems (LMS). Among the several advantages of the communication
between iGeom and a LMS we emphasize the following:

(a) Teacher can produce the exercises with his or her machine and send them to the
server or create them directly on the Internet through an iGeom applet, working
together with a learning management system (LMS);

(b) iGeom can exchange data related to the resolution of an exercise with a LMS;

(c) By receiving data from a server, iGeom is able to personalize the content
according to learner’s behavior.

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

Today, there are several complex systems used to manage Web-based courses.
Some of these are commercial, while others are freeware, including SAW (Moura et al.,
2007), AulaNet (Lucena, Fuks, Raposo, Gerosa & Pimentel, 2006) and Moodle (Moodle,
2007). Usually, these environments lack specialized resources that would boost learning
specific contents (e.g., geometry). Thus, the use of iGeom allows any LMS that supports
Java applets to incorporate specific functionalities that will help the teaching-learning of
geometry in a very interactive way.

The possibility of integrating iGeom into LMS offers many advantages for students
and teachers. For students, besides the possibility of interactively accomplishing exercises
online, solutions can be checked almost instantaneously and a counter-example can be
given when a solution is incorrect. For teachers, we offer resources that facilitate authoring
interactive content, evaluating exercises and collecting data related to the student’s
interaction with the content (exercises, examples, etc.) for a subsequent analysis.

The exchange of messages between iGeom and the server (LMS) is made using the
method POST (Raggett, Hors, Jacobs, 1999). This method allows iGeom to send variables
in the form of chains of characters. In this way, different information is sent for the server
using the same message. In this case, the program located in the server should be
responsible for the treatment of the received data, in order to recover the values of the sent
variables.

An example of sending messages happens after the evaluation of an exercise is
accomplished on the Internet. When the exercise is solved, iGeom requests a connection to
an address on the server. Data are stored using different variables. Each variable, defined
by a group of characters, is packed using the method POST. After the reception of the data,
the server stores the messages received in local variables so that they can later be
manipulated by the program manager. Yet, through the same connection, the server can
request changes in the active Web page interface or open a new Web page. Some of the
variables manipulated by iGeom include the following:

$envWebValor: This variable indicates the result of the evaluation of the exercise. If its
value is equal to 0 (zero), then the exercise is evaluated as incorrect; if it is equal to 1 (one),
the exercise is evaluated as correct.

$envWebArq: This variable possesses two functionalities. The first relates to when a
teacher is creating an exercise and the other to when a student is solving an exercise. When
a teacher creates an exercise, directly on the Internet, the variable stores all of the
information of the exercise, including the solution template that will be used later. For
students, it stores every construction accomplished during the resolution of an exercise. If
the solution is considered incorrect, then the counter-example is stored to show that the
student has made a mistake. If the solution is correct, it stores the construction in any
configuration.

$envWebGeoResp: This variable is used to indicate which geometric objects have been
selected as answers to an exercise.

$envWebGeoOuvidor: This variable stores the data created from interactions between the
user and iGeom. For instance, the buttons frequently used may be stored. It can also recall
specific situations in which the user used such buttons.

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

5. Results
In order to analyze the efficiency, efficacy and accuracy of our algorithm, since 2004,
iGeom has integrated a learning manager system, referred to as SAW. iGeom together with
SAW has been used in several didactic experiments to offer geometry e-courses for
undergraduate students, math teachers, and students in private high schools. The analysis of
efficiency refers to the possibility of applying our algorithm to check exercises in class or
over the Internet, using personal computers with low-processing capabilities and offering
immediate feedback to alleviate student frustration. The analysis of efficacy means to
determine if the algorithm can check a student’s solution, given any exercise in which the
solution is not ambiguous. Finally, checking accuracy refers to checking how many times
our algorithm will return false positive and false negative results.

The tools of authoring and automatically checking exercises in iGeom have been
tested on several occasions. The first instance occurred in 2004 for an obligatory discipline,
titled “Notions of teaching of mathematics using computers” (MAC118), for undergraduate
students in mathematics. The goal of this discipline is to teach future teachers how to use
technologies that support students learning mathematics. This discipline comprised of two
teachers, three teaching assistants and more than 150 students, divided into three groups.
The authoring and checking tools were used during a period of six months, until the end of
the semester. Due to the success of the use of iGeom and SAW, these tools were
incorporated into this discipline. Another test was done at the beginning of 2005 for courses
for senior math teachers. This test included the participation of more than 25 junior high
and high school teachers. These teachers acted as authors of content and problem solvers.
During a two month period, they were instructed on how to use iGeom and SAW to
construct e-courses for geometry, as well as how to benefit from the functionalities of
dynamic geometry programs to create more interactive content for Web-based courses. In
2006 and 2007, a qualitative and quantitative analysis of SAW, using the iGeom program,
was completed by Moura et al. (2007), following the methodology proposed by Yin (2005).

In MAC118, before the implementation of the automatic checking tool, the
exercises were solved using iGeom (or a similar program), but exercises were corrected
manually by teaching assistants and teachers. Correcting consumed a great deal of the
teaching assistant’s time and feedback of these corrections was given two or three weeks
later. Before 2004, approximately 20 exercises were applied and solved per semester. With
the use of automatic checking and SAW, it was possible to reduce the teachers’ and
assistants’ work. Both were able to spend more time taking care of student’s personal
difficulties raised during the attempt to solve an exercise. Furthermore, in 2004, it was
possible to apply and solve more than 40 exercises in class and over the Internet with
immediate feedback. In 2006, there were more than 70 exercises completed in one semester.
Through the application of the automatic checking tool, students have eliminated
misconceptions immediately after the resolution of an exercise. As affirmed by one student,
“... in the case that the construction is evaluated as correct, it was already recorded (in the
SAW), and in the case it was wrong, I could start it again and would remove my doubts
immediately ...”.

According to the work of Moura et al. (2007), which analyzes the impact of iGeom
and SAW in the learning process, the increased number of exercises given in the course is

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

“… a consequence of the use of automatic assessment resources which have encouraged
learners in their studies (in 2006, 82% of students that answered the second questionnaire
think that the use of SAW+iGeom has encouraged them during the course). Also, it reduced
tutor workload and encouraged him/her to introduce preparatory exercises to serve as an
auxiliary for the solution of the main problem, as well as leaving related exercises as
homework.”

The experiments completed in MAC118 have shown that our algorithm is
efficacious in checking exercises and efficiently runs in computers with low-processing
capabilities. In 2004, the computers used in class had processors similar to a K6II 450
MHZ with 256 Megabytes of RAM memory. For any proposed exercise, our algorithm
responded almost instantly (milliseconds), immediately returning output. In comparison,
GEOLOG (Holland, 1993), another geometry software program that uses an algorithm
based on theorem-proving methods, required more than five seconds to check the exercise
of a middle point, using the solutions presented at the right of Figure 2. For more complex
exercises, such as the construction of a pentagon (see Table 6), GEOLOG did not answer
until several minutes had passed. Such a delay (ten seconds and greater with no response) is
not acceptable when exercises must be accomplished over the Internet, where instantaneous
feedback is key to maintaining student motivation (Hentea et al., 2003).
Table 6. Sequence of steps (algorithm) performed by one student to construct a pentagon. The result is
show on Figure 10.

c0:= Circle(P1, P2);
c1:= Circle(P2, P1);
A:= Intersection south(c0, c1);
B:= Intersection north(c0,c1);
s0:= Segment(A, B);
c2:= Circle(A, P1);
C:= Intersection(c1, c2);
D:= Intersection(s0, c2);
r:= line(C,D);
E:= Intersection(c0, c2);
s:= line(E,D);
F:= Intersection(c0, r);
c3:= Circle(F, P1);
G:= Intersection north(c1, s);
c4:= Circle(G, P2);
s1:= Segment(P1, F);
H:= Intersection north(c3, c4);
s2:= Segment(F, H);
s3:= Segment(H, G);
s4:= Segment(G, P2);

Finally, the accuracy of our algorithm has been proven robust enough to not provide
false positive and false negative evaluations. Different instructors from schools and
universities have produced hundreds of exercises and thousands of solutions which have
been checked by our algorithm. So far, none of them have been given a false positive or
false negative result. A very good example of the accuracy of our algorithm occurred in
Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

MAC118 in 2005. The teacher had asked the students to create a pentagon, starting with a
given segment (initial object). One of the students tried to solve the exercise using a
solution (construction) that he knew and believed to be correct. The steps to create this
solution are presented in Table 6 and the corresponding geometric construction is shown in
Figure 10. This solution was considered incorrect by our algorithm. The student resent it
again and again, complaining that our algorithm was not accurate enough, given the
numerical imprecision. In this case, even the teacher was in doubt about the veracity of the
answer given by our algorithm. However, a bibliographic research made by one of the
teaching assistants verified that the solution given by the student was, in fact, wrong.
According to Fourrey (1924), this construction is an approximation of the correct solution.
In this solution (Figure 10), the internal angles of points F and G have 109°2'28", and not
108° (in a regular pentagon all internal angles should have 108°). In such situations,
without the automatic checking tool, the student would never know that such a construction
is incorrect.

Figure 10. Result of an incorrect construction of a pentagon sent by one student. The internal angles in F
and G have 109°2'28" and not 108°. In Table 6 is shown the steps (algorithm) used to construct the
figure.

The difficulties and obstacles regarding the use of iGeom have been analyzed using
answers from distributed questionnaires. Through the application of automatic checking,
students have the possibility of removing any doubt they may have concerning about the
Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

resolution of the exercise rapidly. 97% of students are very satisfied with this functionality.
However, we observe that it is necessary to provide a more precise statement for each
exercise. Many students have difficulties solving some exercises due to an imprecision in
statements. According to the data obtained during the use of iGeom during MAC118, about
69% of the students whose exercises are evaluated as incorrect have difficulty to
understand the statements. Other difficulties listed by the students include the selection of
correct answer-objects and difficulty in building the solutions due to the complexity of the
exercises.

Another implemented resource that contributes to the success of iGeom in the
classroom and over the Internet is the integrated communication capability. With
communication, the teacher can create the exercises directly on the Internet and store them
in a database using any LMS that supports our protocols. Thus, iGeom has facilitated the
reuse of created exercises for different teachers and courses. Besides these benefits, each
exercise accomplished by a student and other information about its solution also can be
stored. When an exercise is considered incorrect by our algorithm, the iGeom sends the
student’s solution to the server/database in a configuration that facilitates the visualization
of the mistake (a counter-example). Thus, a teacher can verify a student’s solution and
provide more personalized feedback. It is also possible to build a library of different
solutions for the same problem, including one illustrating mistakes most frequently made.

6. Conclusions
The possibility of increasing the benefits of DG programs to be used in computers with low
capabilities, over the Internet, and in distance education courses, has been a great challenge,
as well as a strong motivation for developing and implementing these resources. In this
context, the resources of communication, authoring, and automatically checking exercises
have been intentionally developed to increase the dissemination of DG programs to
teachers and students.

According to Ruthven et al. (2007), one of the biggest difficulties in encouraging a
wider use of DG programs is the difficulty of creating content and evaluating and guiding
students during learning activities. To overcome such difficulties for teachers, this work
offers resources that facilitate the authoring and checking of exercises which can be used on
simple Web pages or with an LMS. Thus, teachers’ time spent creating and evaluating
exercises is reduced. Moreover, resources for storing and reusing exercises are provided.
For students, the use of DG is provided directly on Web pages and, because of automatic
checking, fast feedback is given for each accomplished exercise. With this, students’ doubts
can be immediately eliminated, which reduces student frustration over a lack of feedback
after the conclusion of an exercise.

In order to develop an automatic checking tool in iGeom that could be used in
computers with low-processing capabilities and over the Internet, this work proposes and
implements an algorithm that checks the validity of a construction, using the idea of
function. Each geometric construction is considered a function that receives some
geometric objects (input) and returns other geometric objects (output). Thus, for a given
problem, if one function (construction) is known to solve the problem, we can compare it

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

with another function to check whether these functions are equivalent or not. Two functions
are equivalent if, and only if, for the same input they have the same output. Because of the
numerical imprecision of geometric constructions, some numerical differences between
outputs of each function are accepted (quasi-equivalence). By using such definitions to
check an exercise, we can compare a solution given by a student with the solution given by
a teacher to solve the same problem. If the student’s solution is considered equivalent (or
quasi-equivalent) to the teacher’s solution for a variety of different inputs, then we consider
the student’s solution correct. This algorithm is implemented into iGeom and is shown to
be faster and consume less machine resources than formal approaches (rule-based
approaches), which allows for an increased use in classrooms, with computers with low-
processing capabilities and via the Internet (Isotani, 2005). The main concern of the
presented algorithm is the possibility of giving false positive and false negative answers.
This means that our algorithm could indicate that a given solution is correct when it is, in
fact, incorrect (false positive) or indicate that a given solution is incorrect answer when it is,
in fact, correct (false negative). Nevertheless, an extensive evaluation of our algorithm
shows that it works well in practice. So far, we have not found any case where a solution
has been given a false positive or false negative evaluation.

The communication protocol implemented in iGeom allows for the exchange of
information over the Internet. Using such capabilities, the iGeom has been used together
with a learning management system, called SAW, to create a very interactive environment
to learn geometry. Thus, teachers can create exercises directly through a Web page (or
upload the exercise) and students can submit their solutions that will be stored on the server.
Furthermore, students receive immediate feedback that determines whether their solutions
are correct or not. According to Gomes et al. (2007), the use of iGeom in classrooms and in
distance education courses can increase student’s motivation and help teachers identify
student misconceptions.

iGeom is continuously under development. Each semester, users of the program
offer feedback and suggestions to improve its functionalities and remove technical
problems (bugs). As mentioned at the end of section 5, we intend to create a library with
different solutions for the same problems, including good solutions and frequent mistakes
committed by students. One of the biggest challenges facing this program is the
augmentation of our automatic checking algorithm. We intend to use this library to improve
feedback given by our program.

Today, our algorithm runs only if the user clicks the “checking exercise” button.
Otherwise, no action is taken. By using a library made up of correct solutions and common
mistakes, our algorithm could run in the background and identify whether the user’s
solution is similar to a possible mistake, and then offer some sort of hint to help the student
realize his or her mistake (or avoid it). If the student’s solution is similar to a correct
solution, then the program can offer praise for partial accomplishment to increase his or her
motivation. Usually, during the problem-solving process, a user’s solution is not
completely wrong. Thus, this approach allows a student to reuse part of his or her solution
that is considered correct (i.e., partially similar to a good solution in the library), to guide
the user or to give some suggestions/hints in order to help him or her “find” the correct
solution to the problem.

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

To achieve this goal, our library needs to be formal and organized in terms of (a) a
common vocabulary with structured definition of geometric concepts; (b) semantic
interoperability and a high expression of each concept; and (c) a variety of contexts by
which a problem can be solved. One possibility in fulfilling these requirements is to use
ontologies and ontological engineering techniques that support the development of our
library (Mizoguchi & Bourdeal, 2000). By using these ontologies, we may feasibly
augment our automatic checking algorithm by providing a better way of identifying
necessary and desirable concepts for solving an exercise and identifying similarities
between the actual construction done by the user and the constructions recorded in the
library. Thus, we believe that with such improvements, it will be possible to offer a
meaningful and more personalized system for users, which will contribute to an increase in
motivation and the avoidance of possible frustrations during interactions with the system.

The latest version of the program iGeom, with all resources discussed in this paper,
is freely available by visiting http://www.matematica.br/igeom.

References

Anderson, John. (1993). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Aleven, V., Koedinger, K. R., Sinclair, H. C., & Snyder, J. (1998). Combatting
shallow learning in a tutor for geometry problem solving. Proceedings of the International
Conference on Intelligent Tutoring Systems. Lecture Notes in Computer Science, 1452,
Berlin: Springer, 364-373.

Botana, F., & Valcarce, J. L. (2002). A dynamic-symbolic interface for geometric
theorem discovery. Computer & Education, 49(2), 27-34.

Brandão, L. O., & Isotani, S. (2003). A tool for teaching of dynamic geometry in the
Internet: iGeom. Proceedings of the Brazilian Computer Society Congress, 1476–1487.

Brandão, L. O., Isotani, S., & Moura, J. G. (2004). A Plug-in based adaptive
System: SAAW. Proceedings of the International Conference on Intelligent Tutoring
Systems, Lecture Notes in Computer Science, 3220, Berlin: Springer, 791–793.

Brandão, L. O., Isotani, S., & Moura, J. G. (2005). Immersing Dynamic Geometry
in Distance Education Environments: iGeom e SAW. Brazilian Journal of Informatics in
Education, 14 (1) 41-49.

Cabri II Plus (2007). http://www.cabri.com

Chou, S.C., Gao, X.S., & Zhang, J.Z. (2000). A Deductive Database Approach to
Automated Geometry Theorem Proving and Discovering. Journal of Automated Reasoning,
25(3), 219-246.

Fourrey, E. (1924). Procédés Originaux de Instructions Géométriques, Paris,
Librairie Vuibert, 86-89.

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

 Gallier, J. H. (2003). Logic for Computer Science: Foundations of Automatic
Theorem Proving. New York, NY: Harper & Row Publishers. Available at
http://www.cis.upenn.edu/~jean/gbooks/logic.html

Gelernter, H. (1963). Realization of a geometry theorem-proving machine. In
Computers and Thought. New York: McGraw-Hill. 134-152.

Gelernter, H., Hanson, J. R., & Loveland, D. W. (1963). Empirical explorations of
the geometry-theorem proving machine. Computers and Thought. New York: McGraw-Hill.
153-163.

Gilmore, P. C. (1970). An examination of the geometry theorem-proving machine.
Artificial Intelligence, 1, 171-187.

Gao, X. –S., & Zhu, C. (1999). Building dynamic mathematical models with
geometry expert – iii a geometry deductive database. Proceedings of Asian Technology
Conference in Mathematics, 153-162.

Grothman, R. (1999). C.a.R.: Compass and Rules. http://www.z-u-
l.de/doc_en/index.html

Hara, N., & Kling, R. (1999). Students' Frustrations with a Web-Based Distance
Education Course. First Monday: Journal on the Internet, 4(12), Available at
http://www.firstmonday.dk/issues/issue4_12/index.html

 Hentea, M., Shea, M. J., & Pennington, L. (2003). A perspective on fulfilling the
expectations of distance education. Proceedings of the 4th conference on Information
technology curriculum, 160–167.

 Holland, G. (1993). Geolog Geometrische Konstruktionen mit dem Computer,
Dümmler Verlag 1993. Available at http://www.uni-giessen.de/~gcp3/Geolog/geolog.htm

 Isotani, S., & Brandão, L. O. (2004). Tool of automatic evaluation in the iGeom. In
Proceedings of the Brazilian Symposium of Informatics in Education, 328-337.

 Isotani, S. (2005). Developing tools in iGeom: Using the Dynamic Geometry in the
Classroom and Distance Learning. Master Dissertation, Institute of Mathematics and
Statistics of the University of São Paulo, 2005. Available at
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-17092005-063522/

 Jackiw, N. (designer) (1995). The Geometer's Sketchpad. Berkeley, CA: Key
Curriculum Press.

 Kortenkamp, U. (1999). Foundations of Dynamic Geometry. Ph.D. Thesis No 13403,
Swiss Federal Institute of Technology, Zurich, Switzerland. Available at
http://kortenkamps.net/papers/diss.pdf

 Litto, F. M. (2006). Learning with technology in Brazil: a study in contrasts and
conquests. Advanced Technology for Learning, 3(2), 62-68.

 Lucena, C.J.P., Fuks, H., Raposo, A., Gerosa, M.A. & Pimentel, M. (2006).
Communication, Coordination and Cooperation in Computer-Supported Learning: The
AulaNet Experience. Advances in Computer-Supported Learning, 274-297.

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

 Mizoguchi, R., & Bourdeau, J. (2000). Using Ontological Engineering to Overcome
AI-ED Problems. International Journal of Artificial Intelligence in Education, 11(2), 107-
121.

 Moraes, T.G. Santoro, F.M. Borges, M.R.S. (2005). Tabulae: educational
groupware for learning geometry. IEEE International Conference on Advanced Learning
Technologies, Kaohsiung, 750-754.

 Moura, J. G., & Brandão L. O., Brandão, A. A. F. (2007). A Web-based Learning
Management System with Automatic Assessment Resources. Proceedings of ASEE/IEEE
Frontiers in Education Conference, Session F2D, 1-6.

 Moodle (2007). http://moodle.org/

 Oldknow, A. (1997). Dynamic geometry software - a powerful tool for teaching
mathematics, not just geometry. Proceedings of International Conference on Technology in
Mathematics Teaching. Available at http://citeseer.ist.psu.edu/341832.html.

 Raggett, D., Hors, A. L., & Jacobs, I. (1999). HTML 4.01 Specification. Available at
http://www.w3.org/TR/REC-html40/

 Ruthven, k., Hennessy, S., & Deaney, R. (2007). Constructions of dynamic geometry:
A study of the interpretative flexibility of educational software in classroom practice.
Computers & Education. (in press) http://dx.doi.org/10.1016/j.compedu.2007.05.013

 Santos, E. T., & Sola, J. I. R. (2001). A proposal for an on-line library of descriptive
geometry problems. Journal for Geometry and Graphics, 5(1):93–100.

 Sinclair, M.P. (2005). Peer interactions in a computer lab: reflections on results of a
case study involving web-based dynamic geometry sketches. The Journal of Mathematical
Behavior, 24(1), 89-107.

 Schwartz, J. T. (1980). Probabilistic algorithms for verification of polynomial
identities. Journal of the ACM, 27(4), 701-717.

 Yin, R. K. (2002). Case Study Research, Design and Methods, 3rd ed. Newbury Park:
Sage Publications.

Please cite this article in press as: Isotani, S., & Brandão, L. O., An algorithm for automatic checking of exercises in dynamic
geometry system: iGeom ,Computers & Education (2008), http://dx.doi.org/10.1016/j.compedu.2007.12.004

