Design and evaluation of a learning environment to effectively
provide network security skills

Abstract

Information system security and network security are topics of increasing importance in the
information society. They are also topics where the adequate education of professionals re-
quires the use of specific laboratory environments where the practical aspects of the discipline
may be addressed. However, most approaches currently used are excessively static and lack the
flexibility that the education requirements of security professionals demand. In this paper we
present NEMESIS, a scenario generation framework for education on system and network secu-
rity, which is based on virtualization technologies and has been designed to be open, distributed,
modular, scalable and flexible. Finally, an example scenario is described and some results vali-
dating the benefits of its use in undergraduate computer security courses are shown.

Keywords: Architectures for educational technology systems, Cooperative/collaborative
learning, Distributed learning environments, Interactive learning environments, Simulations,
Teaching/learning strategies

1. Introduction

Information systems and networks play a paramount role in the contemporary societies. The
degree of integration of these systems and networks in our daily lives is such that it is extremely
difficult, if not impossible, to imagine our societies without them. Information systems are a
key component in most government and enterprise structures. This dependency of the social
infrastructures on the information systems supporting them makes societies as vulnerable as
their underlying information systems are, which makes system and network protection a critical
aspect (Shaw et al., 2009).

To protect these systems and networks, there are two main categories of threats to take into
account: physical threats and logical threats. If we analyze data from the last years, we can
observe there has been a continuous increase in the number and severity of logical attacks to crit-
ical infrastructures (Cardenas et al., 2009). This is specially true in the case of electronic attacks.
For this reason, it is necessary to devote effective and efficient efforts to protect our infrastruc-
tures against these threats, and one of the critical requirements in order to achieve this is to be
able to provide high quality education on information system and network security. This is not
a new requirement, however. Since the 90s, different experts have recommended to strengthen
the security-related subjects in the curriculums of network and computer science disciplines,
pointing out that education on these matters is insufficient, and do not cover adequately the real
needs (Yang et al., 2004).

Though there are different approaches to introduce system and network security in computer
science courses, most of them distinguish two fundamental blocks: information security, where

Preprint submitted to Computer and Education July 3, 2013

the main emphasis is put on the use of cryptographic techniques, and system security (Higgins,
1989). Specially in the latter case, one of the key requirements in order to provide a complete
high-quality education is to have the adequate equipment. Due to the practical nature of the
discipline, it is very difficult to address effective teaching on these topics without a lab environ-
ment where the practical aspects of the discipline may be studied (Lee et al., 2011). However,
even where there are resources to build this kind of labs, a common drawback is the difficulty to
provide scenarios similar to real environments, which make students face challenges which are
closer to those they would find in the real professional experience. In addition, due to the nature
of the topics addressed in these subjects, system administrators are reluctant to the deployment
of security labs in campus networks, unless they are isolated from the rest of the network. There-
fore, most system security labs we can find are very limited, while most teachers would agree
that the ideal case would be to provide the students with practical environments where they can
interact with realistic systems using state-of-the-art technologies.

The design of realistic security labs is thus a challenge for the teachers of this kind of courses.
In this line, our research aims to design security labs with realistic scenarios without negatively
impacting the campus network performance, and in a modular and extensible way which allows
the labs to be adapted to the rapid evolution of the discipline. This paper contributes to this goal
in the following ways:

e We analyze the problem of teaching network and system security using scenarios, and we
review the main existing approaches to teach this field (Section 3).

e We establish a set of requirements for a solution to generate and deploy realistic security
scenarios (Section 4.1).

e We propose a hierarchical, modular model to define scenarios for network and system
security in a flexible and extensible way (Section 4.2).

e We design an architecture based on virtual machines distributed among different physical
machines, which allows to deploy complex scenarios in a scalable manner (Section 4.3).

e We provide a schema for scenario description based on templates and XML file descrip-
tions, which allows for high expressiveness and flexibility in scenario definition (Section
4.4).

e We provide illustrative examples on the practical use of the proposed framework to teach
system security (Section 5).

To validate the proposed framework, we provide a use case on its use as a support tool for
network security education (Section 6), along with the discussion of the results obtained. Finally,
the last section summarizes our contributions and sheds light on some future research lines.

2. Teaching Network and System Security

There are several traditional approaches to teach Network and System Security. Most courses
we can find in universities differ both in the variety of topics covered and in the methodology
used to address them. Regarding the contents of the courses, we can find basically three types:
cryptography courses, system security courses and survey courses (Bishop, 1993). Cryptography
courses are focused on the analysis, design and use of cryptographic mechanisms, and they

2

usually rely heavily on mathematical foundations of cryptography, such as information theory,
number theory and statistics. System security courses tend to draw apart from the foundations
of cryptography (cryptography is seen here just as one more tool in the security professional
toolbox) and focus on the design of secure information systems, usually covering the concepts of
security threats, vulnerabilities and mechanisms to address them. Depending on the nature of the
course, and usually of the context within the degree, there may be more emphasis in low-level
technical details (such as vulnerability exploitation) or in high-level design principles (such as
minimum privilege, segregation of duties or risk analysis). Finally, survey courses intend to give
a general view of all the security-relevant topics, and thus cover both cryptography and network
security in a more shallow way.

Regardless of the nature of the course from the point of view of its contents, there are differ-
ent methodologies that have been traditionally used to teach information and network security
(Yurcik & Doss, 2001; Sharma & Sefchek, 2007; Khambari et al., 2009). The traditional lecture
is probably the dominant approach we can find. Although this approach is probably justified in
cryptography courses due to the need to understand the mathematical foundations of the disci-
pline, it has the risk of becoming too descriptive and requiring so little involvement by the stu-
dents that they may become too passive, and thus the learning process may not work adequately.
Of course, techniques for making the lecture class more participative and appealing have been
used, like providing real-life examples or in-class exercises. However, such an approach has
the drawback of not incentivizing creative and lateral thinking, which are crucial elements in
information system security.

Given the vastness of the security related topics, a growing tendency is to complement lec-
tures with supplementary materials such as tutorials. There is a huge amount of freely available
material on information security, which may be given to students as further readings and refer-
ences in case they want to expand their understanding of a particular topic. This is usually of great
help to keep the students motivated, since a broad offer of supplementary material increases the
likelihood of finding a topic of particular interest to the student. However, most of this material
is theoretical in nature, and even the practical material is very linearized (step-by-step howtos,
for instance), so there is still very little room for the students to develop discipline-related free
thinking.

Finally, most current security courses in higher education complement the lecture approach
with lab assignments. Lab assignments intend to put the student in contact with some of the
topics in the discipline in a practical way. By having to apply the concepts learned in lectures
to small practical projects, students not only interiorize concepts more easily, but also acquire a
practical, hands-on view of security, which also helps to keep their motivation. The assignment
may vary in difficulty and depth, from simple, highly-guided labs to small project-like assign-
ments where students have to solve a more generally specified problem, such as securing a web
server or designing a firewall architecture for a given fictitious corporation. Labs can be very
motivating and rewarding for students, but it is very difficult to adjust their difficulty. Often
small assignments are too mechanic to be a challenge, and complex projects may be frustrating
and exceed the scope of the course (e.g. securing a web server would usually require to install
the web server, which may be a time-consuming task not directly related to the course).

An alternative to have security labs which are motivational, instructive and affordable for
the students is to devise a number of security-related scenarios which reproduce real problems
of the discipline. These scenarios, if well designed and implemented, could allow students to
face realistic assignments specifically tailored to suit their learning needs and capabilities, as
has been successfully proven for other disciplines (Siddiqui et al., 2008). In the following we

3

discuss the requirements which such scenarios must have and propose an approach to facilitate
their implementation.

3. Using Scenarios for Education on Network and System Security

In this section we review the key challenges that arise when designing a security lab based
on scenarios, and we analyze the main existing approaches in this field.

3.1. Challenges

When designing a security lab with the goals stated in the previous section, we need to take
into account some considerations (Yang et al., 2004):

e Protection of the campus networks: As we have stated before, system administrators are
usually reluctant to the deployment of security labs due to the potential impact they may
have on the security of the campus network. For instance, some assignments related to
penetration testing or vulnerability analysis skills may require deploying instances of vul-
nerable versions of services, which could cause an increase in the number of security in-
cidents or the spread of malware infections. To avoid this, a common practice is to isolate
these labs from the rest of the network.

e Access to Internet: However, in most cases students may need Internet access to complete
their assignments, since looking for information in the Internet is one of the basic learning
ways for many disciplines, and particularly for computer security. Specific hosts may
be used to this end while keeping the lab machines isolated, but this may impose some
unrealistic overheads on the students (e.g. computer switching, data transfer from the
Internet-enabled hosts to the isolated ones...).

o Simulation of corporate-scale networks: A typical corporate environment will present a
wide range of hardware and software elements, such as routers, switches, firewalls or dif-
ferent kinds of servers. If the company is concerned with secure access, we may find
additional components like VPN or RADIUS servers (Rigney et al., 2000). It is also usual
to find wireless networks in these environments. Deploying and maintaining an infrastruc-
ture containing all those elements for education on network security usually exceeds the
available resources (both material and human) at most education institutions.

e Sharing resources for different lab assignments: Another recurring problem is the dif-
ficulty to support different scenarios simultaneously. For instance, we may think about
different security-related subjects from different courses, which may have different as-
sumptions and scenarios for their assignments, and they may need to share the lab facil-
ities. Even for the same course and lab, an specific assignment may require the students
to experiment with different network configurations (e.g. when studying firewall architec-
tures). Given the usual limitations on equipment and administration staff availability, this
is not always possible. Some authors address these challenges by using virtual LANs and
removable hard drives in the network hosts (Lee et al., 2011). In this case, the network is
in a VLAN different from the campus network, and each subject works with a different
set of hard drives. Reconfiguring the VLAN may also allow to emulate different network
environments.

e Resources needed for the assignments: Students may not have at hand the required equip-
ment to reproduce the proposed scenarios for the different assignments, but it would be
desirable that they could reproduce at least some of the environments in their own ma-
chines without the need for additional components, or that they are able to access the lab
infrastructure remotely from their own networks.

o Use of state-of-the-art technologies: A key aspect of information system security is its
dynamicity. New systems and technologies are continuously appearing; new vulnerabili-
ties are discovered every day. To provide a security education matching the real needs of
the society, it is necessary that our education environments adapt to these technological
changes, like new services, network technologies, operating systems or attack techniques.
To achieve this, the security lab design proposed must be extensible, in the sense that it
must be easy to add new components to the existing network. Extensibility and scalability
are key issues in order to be able to provide realistic and state-of-the-art scenarios in the
labs.

e Overhead imposed by the configuration and maintenance of the lab for different assign-
ments: Configuring and maintaining the security labs to be used in different subjects may
require a vast amount of resources. Thorough planning of the installation and deployment
procedures for the different lab configurations is required to speed up maintenance tasks.
Even systematically automating these processes, maintenance tasks on such labs may be
overwhelming.

3.2. Existing Approaches

Most of the existing approaches for security labs present some limitations on several of the
aforementioned aspects. Here we will briefly review the main existing proposals, dividing them
into three categories: hardware labs, decentralized virtual labs and centralized virtual labs.

3.2.1. Hardware Labs

The way to achieve the maximum level of realism in the design of a security lab is, of course,
to use real hardware. Students may use real devices (including real network components) and
experience the problems derived from the use of such components. Though, as we have said,
this kind of labs provide the more realistic experience, they raise also important concerns. The
main drawback is related to cost: all components present in the scenario need to be acquired.
There are also costs related to the time needed to install and configure each scenario we want
to work with. Finally, we have to take into account portability: students must work on the
real scenario and they cannot reproduce the environment easily. The teaching staff also need to
invest a significant amount of time in redeploying the scenarios for different courses, subjects
or assignments. Therefore, this kind of labs, even providing the closest experience to a real
environment, may exceed the available resources of most institutions. An example of this kind
of approach is the Georgia Tech’s Hands-On Information Security Lab (Abler et al., 2006). In this
environment, taking advantage of the capabilities of Cisco network equipment, it is even possible
to reconfigure the network infrastructure to a certain extent. However, the authors acknowledge
that the requirements imposed by their approach make it unfeasible for many medium and small
institutions.

3.2.2. Decentralized Virtualization

Many teachers do not see the hardware security labs feasible or suitable for their purposes,
due to all the drawbacks discussed in the previous section. Virtualization technologies may help
to deploy similar scenarios in a more efficient manner (Romero-Zaldivar et al., 2012). With
this model, we can use the existing hardware infrastructure to launch virtual machines which
constitute the desired security scenario. These virtual machines can be deployed in different
physical machines, and may replicate different network architectures. With this approach we can
achieve a higher degree of stability and fault tolerance: since the state of the virtual machines
may be saved, students may work more safely with the scenario. If destructive consequences
happen (intentionally or accidentally), we can always return to the latest stable state.

There are basically two different models to implement such a lab. On one hand, we can
store virtual machine images in a centralized storage system. When a student wants to launch a
scenario for a given project or assignment, he will download the appropriate images to his local
physical machine and launch these images with the virtualization engine used. A key advantage
of this model is the abstraction from the real hardware by means of the virtual machines. Another
strength of this approach is that each student may reproduce his own set of virtual machines in
an isolated environment. However, this strategy presents some important drawbacks, like the re-
quired download time prior to launching the scenario, and the limitation to the maximum number
of nodes the scenario may have, which will be given by the computation, memory and storage
capabilities of the local physical machine. To address these drawbacks we may devise a different
model where, instead of downloading a set of virtual machines to each workstation, a larger,
single set of images is distributed among a set of workstations. In this way, if we could run
six virtual machines per workstation, for instance, we could simulate a network with 30 hosts
using five workstations. The main advantage of this approach is to allow for resource aggre-
gation to simulate larger networks, thus getting closer to the experience of working in a real
lab. Regarding network configuration, plain topologies may be deployed in an straightforward
manner. For more complex scenarios, we need to resort to techniques allowing link-level virtual-
ization, like Virtual Distributed Ethernet (VDE), which allow host interconnections using virtual
switches and routers. Examples of this kind of labs are Purdue ReAssure lab (ReAssure, 2012)
and TinkerNet (Winters et al., 2006).

3.2.3. Centralized Virtualization

Other models propose to use a centralized approach to provide a virtual network environment
(Romero-Zaldivar et al., 2012). A central server hosts the virtual networks for all the students.
Though in theory this centralized server could support either complete virtualization or OS vir-
tualization, for relatively complex scenarios computation limitations will typically force the use
OS virtualization. Students can access the central server and create virtual networks up to a
moderate scale with low impact on the server. In addition, this also allows the student to access
the proposed scenarios remotely, with the increased convenience for time management. In this
kind of labs, clusters may be used to increase scalability. The main strength of this approach is
the increased simplicity for the management of the lab. However, it relies on a single centralized
server, with the associated availability risks, and network connectivity to this server is required
in order to be able to work with the scenarios.

4. A Scenario Generation Framework for Security-related Education

As we have seen, most existing approximations present some limitations, specially regarding
flexibility, scalability and resource consumption. To address these limitations, in this section
we propose NEMESIS (Network EMulator for Education on System and Internet Security), a
scenario generation framework for security-related education. First, we establish the design
requirements which have guided the development of the framework. Then, we describe the
main elements of our proposal. Finally, we briefly outline the most relevant details about the
implementation of the framework and the way scenarios are defined.

4.1. Design requirements

When we first undertook the development of a scenario generator to be used for security-
related subjects, we thought on one hand to provide a framework with the power and flexibility
to assist us in the whole teaching process: lectures, team assignments, evaluations... On the other
hand, we wanted it to be able to reproduce (and enhance) all the practical activities we already
used in our subjects. Taking this into account, NEMESIS design evolved around the following
requirements:

e Expressiveness: The framework must allow to design scenarios illustrating all concepts
covered in security-related subjects, such as vulnerabilities, threats, risks and security
mechanisms.

o Interactivity: Students must be able to interact with the scenarios in a way that allows
them to acquire and practice the different skills involved in security-related subjects, such
as vulnerability analysis, remote access, privilege escalation, intrusion detection, forensics
analysis or security audit.

e Event management: One of the major limitations of existing frameworks is that the gen-
erated scenarios are static or asynchronous, that is, they do not allow for event generation
in real time. Many real attacks (and the reactions to them) are built on the execution of a
succession of steps throughout a given time interval or on response to certain stimuli. Tak-
ing this into account, the framework must be able to simulate event timelines to illustrate
these processes.

e Transparency: Using the virtual scenario generation tool must not impact negatively the
student experience when facing the scenario. The interaction between the student and the
scenario, and the results obtained from this interaction, must be identical to what he would
obtain working with the real scenarios (except, probably, regarding time measurements).

e Scalability: The framework must allow for the generation of complex scenarios, with
multiple networks, hosts and services.

o Security and Accountability: Apart from robustness and fault tolerance, in order to enable
the use of the framework as a continuous student evaluation, the framework must present
its own security and audit mechanisms, which allow to track student progress and ensure
that he may not alter the scenario or take advantage of it.

Openness and extensibility: Network and system security is an extremely wide field in
continuous growth. New vulnerabilities, new attack techniques and new security mecha-
nisms appear every day. For the framework to be useful in the long term, it must support
the possibility to add extensions to enable education in more specific environments (e.g.
database security) or to address successive advancements of the discipline.

Backwards compatibility: Using this framework must not limit teaching, so it must support
at least the functionality to reproduce classical security lab assignments, such as ARP
spoofing, privilege escalation wargames or forensic analysis challenges.

4.2. Key elements

In order to fulfil the requirements discussed above, we have chosen a modular architecture to
facilitate expressiveness and flexibility of the framework, and to ensure its extensibility. The key
elements we have considered in NEMESIS are the following:

Host: Each one of the machines in the considered network scenario. General features
of the deployed machines (e.g. operating system, version) may be selected among the
different available templates. One of the basic extension mechanisms for the framework is
the development of new machine templates.

Network Segment: encompasses a set of hosts, which have connectivity at link-level.

Gateway: A particular type of host, which acts as the connection between two or more
network segments. The same templates available as hosts may be used as gateways.

Service: Each host may run one or more services, such as telnet, ssh, or http, which
may be selected from a library of available services. Creation of new services is another
mechanism to extend NEMESIS.

Event: For each host, events or sets of events may be programmed. An event is just a
sequence of actions (e.g. running a program, launching a service), which are triggered at
a given time.

Attack: Among the different actions which may be triggered by events, attacks are spe-
cially relevant for the teaching goals of the framework. Attacks may be selected from an
attack library, and new attacks may be developed as extensions for the framework.

The different logical elements in a NEMESIS scenario, along with the relationships between

them,

may be seen graphically in Fig. 1.

4.3. A Distributed Architecture of Virtual Machines

The choice of a hardware and software architecture for NEMESIS has been clearly condi-
tioned by three essential aspects: the diversity of machines and configurations it should be able
to handle, the scalability requirements imposed on it, and the need to meet certain security re-
quirements for the framework itself.

It is obvious that we cannot expect to have in our lab each and every type of machine which
may be interesting from the security education point of view. A particular type of attack may
only be effective for a given version of an operating system, which may not match the one in
the lab or in the students’ laptops. This suggests the use of virtual machines (Smith & Nair,

8

Host Host —]
LHost

Segment Segment Segment

L J - J . J

Scenario

Figure 1: Elements of a NEMESIS scenario

2005a) to implement hosts with the required features regardless of the physical machines we are
using. However, the use of virtual machines has some significant drawbacks. First of all, we
have performance. If we want to simulate a big network scenario (e.g. 50 machines), we may
easily exhaust the computing and memory resources of the host machine, making very difficult,
or even unfeasible, to work with the scenario. On the other hand, the fact that the scenario runs
using virtual machines in a physical machine which is controlled by the student may raise some
issues regarding student evaluation. Of course, this may be addressed by limiting the use of
the framework to the lab machines (owned by the teaching institution), but that would limit the
possibilities of using NEMESIS as a support tool for e-Learning.

Taking this into account, we propose an architecture based on virtual machines which may
be distributed across different physical machines. Thus, each physical machine will host one or
more network segments, which in turn will contain one or more virtual machines, supported by
a virtual machine manager (VMM) (Smith & Nair, 2005b). Network segments will be intercon-
nected by means of their corresponding virtual gateways, so that for the hosts the fact that the
scenario is distributed across different machines is totally transparent. The resulting architecture
is shown in Fig. 2. In the diagram we may observe also the existence of a management agent
(MA), which is entitled with scenario launching and management. There is also a deployment
agent (DA) in each physical machine, which starts network segments and virtual machines on
request from the MA, and establishes the necessary channels for the communications between
the different segments.

With a distributed virtual architecture as the one described, performance problems may be
mitigated by distributing computational load among different machines. On the other hand, this
architecture allows, for instance, to deploy the virtual machines from which students will act as
“attackers” in different host machines from the ones hosting the network segments they have to
attack, preventing in this way scenario manipulation.

The implementation of the proposed distributed architecture raises some additional chal-
lenges, such as controlling the startup and stop of the virtual machines, the adequate isolation
between different network segments and the confidentiality of the communication among phys-
ical machines. These challenges have conditioned to a great extent the virtualization solution
adopted. Though we studied the possibility of using VMWare (VMWare, 2012) and Xen (Xen,

9

Scenario

Segment | Segment Segment

Host Host Host ptew: Host Gateway Host

o [o)| |
VMM

VMM

Network

Machine 1 | | Machine 2 | [N) | Machine N

Figure 2: Distributed architecture of virtual machines in NEMESIS

2012), the finally chosen solution was KVM (KVM, 2012), due to its greater flexibility and

adaptability to the specific needs of the framework.

4.4. Scenario description, startup and management

Once we have an architecture of virtual machines which may be interconnected in a transpar-
ent and secure manner, the next step is to define the way scenarios can be described. Taking into
account the flexibility and extensibility requirements, we have chosen to describe the scenarios

using XML files. Fig. 3 shows an example of a description file for a basic scenario.

Fully detailing the XML syntax considered for scenario description is beyond the scope of
this article. We will use, however, the example file shown to illustrate some relevant details about

the framework and its expressive potential:

e The XML scenario file is loaded by the management agent MA, which will parse it and
send the required commands to the deployment agents in the physical machines, so that
each machine deploys its corresponding part of the scenario. Currently, the deployment
agents and management agents are implemented in C++ and Python. C++ is used for its
efficiency, while Python is used for its flexibility in parsing tasks.

e Each network segment, defined by the element segment, is launched in a given physical
machine, identified by the attribute ip. If several segments are launched in the same
physical machine, a port must be specified as an additional attribute for each segment.
This port will be used for communications involving the virtual machines belonging to
that segment.

e Hosts may be included within each segment, defining them with the element host. For
each host, we must specify the template defining the kind of virtual machine to be
launched. The different templates are previously stored in the physical machines. It is also
possible to specify some generic configuration attributes, such as the IP address.

10

e The element config may be used to specify more detailed and complex configurations in
hosts, gateways and servers, among others. The syntax of the configuration file will depend
on the specific template, to allow for a higher degree of customization. The configuration
file is parsed by the deployment agent to configure the virtual machine after its launch.

e By default, virtual machines are launched without a graphical interface. The element
display may be used to enable a graphical interface for a specific host (e.g. so that
a student may operate through it) and to specify which physical machine will launch the
interface. This allows to export host interfaces to machines not belonging to the scenario,
which allows to interact with the scenario without giving access to the machines the user
should not have access to, even if they are in the same virtual network segment.

e Network segments are connected by means of gateways, using pre-stored templates, in a
similar way to hosts. In the example we can see there is a firewall template where we
can specify packet filtering rules.

e Within each host, we may use the element service to define services to be run at virtual
machine startup. Among the direct configuration attributes we can specify the port (or
ports) for service execution and the user to run the service as. For more complex configu-
rations we can use the element config.

e Events (element event) may be defined to be run at the host at an specific time (in the
example, 5 minutes and 16 seconds after the scenario startup).

¢ Finally, among the different actions which may be defined for events, in the listing we can
show an example of an attack, where a port scan is launched against a given machine,
specifying the port range for the scan.

The sample listing shown illustrates NEMESIS functionality from a technical point of view,
and clarifies some relevant details about its implementation. In addition, collection of videos
showing the usage of the framework can be found at http://www.youtube.com/user/
telematicauah. In any case, we must also assess the possibilities of the framework from the
point of view of education on network and system security, which we cover in the next section.

5. Using NEMESIS as a support tool for education

In this section we discuss NEMESIS possibilities for teaching security-related subjects. To do
this, we present two different examples of what could be typical assignments for system security
labs. The first presents a group assignment which can even involve some degree of competition,
while the second focuses on the possibilities of the framework to provide automated feedback
for students and assessment help for instructors.

5.1. An attack and defend” methodology

” Attack and defend” security assignments take the form of little war-games, where students
are divided in two teams (or several groups of two teams), which are assigned either the role of
”Black-Hat” (attackers) or "White-Hat” (defenders). The main goal of the offensive teams is to
compromise the security of the systems in the scenario, while the defensive teams are in charge
of protecting the information assets hosted by those systems, in terms of confidentiality, integrity

11

and availability (Hill et al., 2001). Along with the inherent realisms of this kind of settings, it
benefits from the impact that competitive learning has on the motivation, interest and satisfaction
of students (Burguillo, 2010).

The following is an example of an “attack and defend scenario” built using NEMESIS. As
stated above, the lab may be seen from two perspectives: as the atfacker and as the defender.
The attacker assignment would be to gain access to a set of sensitive data stored in a LDAP
server within an enterprise corporative network. The defender assignment would be to analyze
the network infrastructure and to deploy the adequate security mechanisms to avoid or counter
the attack, or to mitigate the associated losses.

An interesting advantage of using NEMESIS is the possibility to automatize both parts of
the scenario, so that a student may participate in the scenario as either an attacker or a defender,
alternate the roles or even watch as a spectator while the scenario evolves automatically (e.g. to
compare his solution to the one considered by the teaching staff).

5.1.1. Scenario from the attacker’s perspective

In order to have a more didactic attack scenario, we chose to launch a model attack in six
stages (McClure et al., 2012): reconnaissance, remote access, privilege escalation, attack pay-
load, access maintenance and covering tracks. For the host from which the attacker operates,
we have used a virtual machine template based on the Linux distribution Backtrack (Backtrack,
2012), specifically designed to perform penetration testing in network and system security. For
the attacked hosts we have used templates based on Damn Vulnerable Linux (DVL) (Linux,
2012), with the modifications and configuration files needed to adapt them to the scenario needs.
The actions considered for the attack in each stage are as follows:

1. Reconnaissance: Analysis of the corporate web of the target enterprise. Students playing
the role of attackers may perform a manual analysis. To automate the attack, we use
a Python script acting as a web crawler (Vega-Gorgojo et al., 2010) which downloads
the content of the corporate website to the attacker host, and then uses pattern matching
filters to detect strings with potentially sensitive information. In this case, the sensitive
information is the IP address of another publicly accessible host in the corporate network.
A port scan will reveal a SMTP server running in this machine.

2. Remote access: The SMTP version running in the server has an input validation vulner-
ability allowing to execute short shell commands. Students may try to exploit this vul-
nerability to open a reverse telnet channel allowing to issue arbitrary shell orders to the
victim machine. For the automated version of the attack, these actions are executed using
Metasploit (Maynor & Mookhey, 2007), a vulnerability exploitation framework included
in Backtrack. The victim machine is behind a firewall, so the telnet channel must be estab-
lished through allowed ports.

3. Privilege scalation: The SMTP server runs as a non-privileged user (nobody). However,
there is a executable file which runs some functionality with superuser privileges, and a
race condition vulnerability (Dean & Hu, 2004) which allows local privilege escalation
towards root. Again, automated exploitation is performed using Metasploit.

4. Attack payload: The LDAP server stores the sensitive information in encrypted text fields.
The key used for encryption is the root password (there are clues in the LDAP configu-
ration files allowing to deduce this). The encryption key can thus easily be extracted using
a password cracking tool over the /et c/shadow file. From the available encrypted data

12

5.

512

in the LDAP server, students may deduce the encryption algorithm used, or at least re-
duce the list of algorithms to an acceptable number. In the case of the automated attack,
all reasonable encryption mechanisms are tried until an adequately formatted plain text is
obtained.

Access maintenance: In order to be able to access the victim machine again if necessary,
the attacker installs a rootkit (Hoglund & Butler, 2005) which leaves an open backdoor
while hiding its existence. The chosen rootkit for the lab is SuckIT (Riley et al., 2009).
Covering tracks: Finally, before closing the connection to the victim machine, the attacker
modifies the log files to erase all potential traces of the attack. In the automated version of
the attack, this is done by means of shell scripts.

. Scenario from the defender’s perspective

From the defender’s point of view, the lab assignment may be devised in two different ways.

The

scenario may be started without launching the attacker machine, and we may allow the

defender (be it the student or the automated version of this part of the scenario) to deploy a set of
security mechanisms, and then launch the attacker’s machine and start the attack (again, either
automated or manual). Another possibility is to launch the complete scenario and program the
attack for a given time, turning the lab assignment into a countdown race.

The possibilities considered for the scenario in the defender’s part are as follows:

5.2

Vulnerability analysis: Either manually or using automated tools (e.g. Nessus), most of
the vulnerabilities in the corporate network may be detected.

Firewall configuration: The defender may try to modify firewall rules to make them more
adequate (e.g. blocking potential reverse telnet channels).

Intrusion Detection Systems: The Snort IDS (Koziol, 2003), available in the victim ma-
chine, may be enabled to detect some of the most usual attack vectors. Snort may be even
configured to modify the firewall access rules in real time.

Gathering of evidence: The different machines in the corporate network may be configured
to store system and audit logs with different sensitivity levels, or we may link the logging
sensitivity levels to the events detected by Snort. We can also configure the machines to
store logs in a dedicated server, or even in write-once media (e.g. CD). This will not thwart
the attack or mitigate its consequences, but it allows for forensic analysis, which (apart
from its utility in a real investigation) has a great didactic value for the student, which will
be able to examine the footprints from his attack (or from the automated attack).

Honeypots: As a particular case of evidence gathering, we can enable honeypots (Levine
et al., 2004) in the corporate network machines. We may also link the honeypot activation
to the detection of specific events by Srort, making them work as padded cells (Bace,
2000).

Taking advantage of NEMESIS flexibility for assessment and feedback: a Perimeter Security
scenario

In this section we will describe how to employ NEMESIS to design a lab related to perimeter
security. The choice of this specific environment is due to the special challenges this scenario

13

implies because of both the deployment of the lab and the design of proper activities for the stu-
dents to be evaluated. First, due to its very nature, perimeter security requires different network
segments to be defined, each of them having their own addressing and interconnected by means
of switches and routers. Second, while it could be feasible to emulate this kind of scenarios
using other alternatives, there still would be great problems for the students regarding configura-
tion and management. According to our own teaching experience, this burden sometimes keeps
the student from focusing on the learning objectives of the subject. Third, to evaluate and val-
idate the results from this kind of environments, special traffic patterns (e.g., for testing DDoS
defense capabilities) have to be generated that could interfere in some of the deployed network
security tools usually deployed in campus networks. Finally, we would like to enable the stu-
dent to switch between different choices for perimeter security (e.g., multiple screened subnets,
split subnets...). Therefore, we consider that this kind of scenarios could benefit greatly from
NEMESIS and, accordingly, NEMESIS features could be shown clearly.

Traditional security courses taught at our university have usually included perimeter security
labs. Usually, from a 60-hour course, four hours (two sessions, each of one being two hours long)
were devoted to perimeter security labs, starting with firewall security and ending with intrusion
detection systems (IDS). Those labs were based on single-box firewall architectures consisting
of a screening router working as packet filtering device, commonly using GNU Linux, and a
bastion host in the local network. The packet filtering on the screening router had to be set up in
such a way that the bastion host should be the only system on the internal network that hosts on
the Internet can open connections to (for example, to deliver incoming email). Even then, only
certain types of connections were allowed. Any external system trying to access internal systems
or services would have to connect to this host. Moreover, other internal hosts were considered in
the scenario. The student was required to configure the screening router to allow internal hosts to
open connections to hosts on the Internet for certain services and to disallow all connections from
external networks to services other than the one the bastion host is offering. In the second part of
the lab session, new threats, which could not be easily tackled using a traditional firewall (e.g.,
password cracking attacks), were introduced and the use of an intrusion detection system (IDS)
was suggested. The student was required to create rules for the IDS Snort (Koziol, 2003) to deal
with this kind of new threats. Either in the firewall or in the IDS scenario, students were required
to set up the environment and, after this, an evaluation was performed to check the compliance
with the lab requirements, usually by hand. The combined evaluation of both formal correctness
and requirement compliance was used to evaluate the student work.

This mechanism, while able to meet the basic requirements for these sessions, has some
drawbacks, though. On the one hand, there are limitations regarding the complexity of the sce-
narios that can be deployed using such an approach, posed mainly by the problems derived
from setting up complex network configurations by hand (several networks interconnected by
routers/firewalls) either on virtualization environments or with real systems and networks. From
a teaching point of view, this establishes a limit in the type of environments we are able to work
with, preventing us from working with, for instance, architectures with multiple screened sub-
nets. On the other hand, evaluating student’s work is very time consuming because most of the
testing has to be done by hand, which results in a significantly high workload for the teaching
personnel.

NEMESIS can be used to overcome these limitations. To illustrate the benefits derived from
its use, we present a scenario we have been using so far, which models a typical use case scenario:
a big corporation where different areas (administration, R&D, Internet servers ...) have differ-
ent, even separate, networks with different requirements regarding access control and network

14

security. The complexity of this scenario justifies the use of NEMESIS.

The student is presented this use case with the specific requirements for each of the network
areas and is provided with some design alternatives from where he is required to choose one of
them according to the requirements and her own understanding of the proposed scenario. These
alternatives have been previously created by the course teaching staff. Both the scenario descrip-
tion (as an XML file) for each of the alternatives and the required virtual machines (bastion host,
workstations, gateway ...) are provided, thus the student has only to deal with IP address man-
agement, which can be performed easily by modifying the XML scenario description. Once this
is completed, the student can start the scenario emulation.

Over this scenario, the student is required to design and implement perimeter security mech-
anisms using, in a first stage, only firewalls and later adding intrusion detection systems. By
means of using NEMESIS gateway templates (that have been mentioned before), it is possible to
focus only on configuration and design issues and forget about installation aspects. The gateway
template is based on GNU Linux and includes both iptables (Netfilter, 2012) (for packet filtering
management) and Snort software packages.

To realize this lab, we have devised two different ways of working with NEMESIS. First,
it is possible to implement the security configurations (firewall and IDS rules) by means of a
high level description where the students do not have to deal with low-level IDS or firewall
configuration. This alternative is the preferred choice for courses where students have little
background on OS administration. This high level description allows the definition of either
filtering rules ("allow http protocol on port 80°) or rules for an IDS describing threats (’allow
less than 5 login attempts’) without knowing how these rules are actually implemented. This
approach makes possible to focus on the design issues of this kind of systems regardless of the
implementation aspects. Second, a low-level OS-specific description is also available and can
use as much expressivity as the underlying system allows. Both kinds of descriptions could
be either included in the XML scenario description file or in another XML file that would be
referenced from the former and accordingly loaded when necessary: the student could load and
unload different sets of firewall rules just to see how well they perform. In summary, the choice
of either high-level or low-level descriptions would depend on the nature of the course to be
taught and the students involved.

After the design and implementation stages, it is also possible to define automated validation
and evaluation mechanisms. When defining the scenario, validation routines can also be included
in order to assess the compliance with the defined requirements. These validation routines, which
are also defined in external XML files, are implemented through automated tests that have to
be defined in advance. To perform the actual validation, these tests take network parameters
from the scenario description so that the teaching personnel do not have to know in advance
the detailed network-addressing scheme chosen by the student. The purpose of this kind of
routines is twofold: first, a formal validation is conducted over the set of rules defined by the
student in order to evaluate whether they are consistent or not. Only after this validation, the
requirement-compliance check is performed. This check consists of a set of automated checks,
which emulate different kind of network traffic patterns, either legitimate or not. An example
of the former would be ’access host "web server’ using http port 80 from Internet’ and one of
the latter Do SYN Flood over hosts in DMZ network’. This validation results in a detailed score
reflecting the degree of compliance with the scenario security requirements. This scoring will be
useful both for the student, as it provides her with a feedback about how its work is improving,
and for the teaching staff as it can be used as another metric to evaluate the student work.

15

6. Case study: teaching System Security with and without NEMESIS

In order to analyze our experience with NEMESIS in teaching, in this section we describe
the main features of security related courses relevant to the experience, the experiment’s design
and the nature of the data collected and the instruments used to evaluate the experience.

6.1. The educational context

Traditionally, Internet Security (IS) is an optional undergraduate course delivered in the Com-
puter Science academic plan of the University of Alcala (Spain). It includes 30 practical lab
hours out of 60. The goal of the course is to provide students with a solid foundation on Infor-
mation Security, Network Security and System Security. Most theoretical teaching hours deal
with cryptography, while practical classes are mostly devoted to Network and System Security.
Academic results in the last decade revealed that students acquired a good understanding of the
cryptography topics of the course, while the skills related to network and system security were
found more difficult to learn. Our hypothesis about that was that system security required a more
’hands on’ experience, where students were given the opportunity to face some of the real-world
problems of the discipline. Taking this into account, in the last year we rebuilt the practical part
of the course to make labs more realistic. However, infrastructure and budget constraints hardly
limited the extent to which we could make improvements to the lab assignments.

With the transition to the European Space for Higher Education (ESHE) Spanish Universities
are performing a great effort to provide students with a more practical and skill-oriented teaching.
We saw this as an opportunity to develop a framework to generate security-oriented lab scenarios
in a realistic and flexible manner. The framework described in this document will be put into use
for the course Information Systems Security, which is a base course in the new academic plans,
with 3 practical European credits out of 6. The contents of the course are equivalent to the In-
ternet Security course mentioned above. This provides a unique opportunity for validation of the
framework, since both courses are equivalent, which allows to compare results more rigorously.

6.2. The experiment

The experiment took place during the spring term of the 2011/2012 year. During this term,
we taught the traditional Internet Security course with the new methodology devised for the new
Information System Security (ISS) course within the framework of the ESHE, which included the
use of NEMESIS as a learning tool. In this way, students from the ISS version of the course form
the experimental group, while students from the previous year IS course form the control group
in a static group comparison design (Fraenkel & Wallen, 2000), without creating any unfairness
within the students in the same course. To allow for an even better comparison, students in both
courses were assessed in the same way, by means of a series of Continuous Assessment Tests
(CAT) distributed throughout the semester. The only difference between both courses was the
use of the NEMESIS framework. Finally, there were no significant demographic differences
between both courses.

6.3. Instruments and data collection

We evaluated the experiments by means of two instruments. On the one hand, we used the
academic results for the 2010/2011 course on Internet Security (IS) and the 2011/2012 course
adapted to the methodology of the new Information Systems Security course (ISS). To avoid bias,
only data about students that had taken the course for the first time was collected. On the other

16

IS course ISS course

mean std. dev. mean std. dev.
Cryptography 7.793 1.029 7.325 1.366
System security ~ 5.660 1.104 7.668 1.491
Global 6.726 0.690 7.497 0.963

Table 1: Academic results for IS (2010/2011) and ISS (2011/2012).

hand, we performed two different surveys to measure student’s satisfaction with the NEMESIS
framework. One of the surveys was conducted with the first-year ISS students, and the other
with the transferred students, that is, the ones which had taken the IS course in the past and took
the ISS version this year. The survey was composed of two parts: personal data for statistics
(age, gender...) and five-score Likert-type scale items. The survey was completed by all students
through an online form in the Blackboard LMS (Blackboard, 2012) platform associated to the
course.

6.4. Results and discussion

Table 1 shows the academic results in a scale from 0 to 10 (being 10 the highest qualification)
for the traditional Internet Security course for the year 2010/2011 (IS) and the new Information
Systems Security version of the course for the year 2011/2012 (ISS). The results are divided into
two different parts: cryptography and system security. Total scores are also included for the sake
of completeness. The results were found to be significantly different with p < 0.05. We can see
that the results for ISS students are significantly better than the IS ones. In addition, the main
differences are observed in the system security part, which backups the hypothesis that it is the
difference in the methodology (i.e. the use of NEMESIS) the factor causing the improvement,
and not a bias on students’ abilities. From the teacher’s perspective, using NEMESIS provided a
much more flexible and easy way to design and deploy lab scenarios, which allowed to provide
more realistic lab assignments to the students. Another proof of the flexibility and ease of use of
the platform is that we ask for some master thesis students to design scenarios for security labs,
and they came up with high quality scenarios in a fairly reasonable time. We plan to include
these scenarios as optional lab assignments in future editions of the course.

From the student’s perspective, the subjective perception about the experience was very pos-
itive. However, to get a more objective feedback from students, two surveys were conducted.
The first survey was oriented to know how ISS students evaluated the system, and the second
one was intended to gather the opinion of students who had transferred from IS to ISS in the
last year about how the new methodology compared to the old one. Tables 2 and 3 show the
average marks for both questionnaires, where every question was graded in a scale from 1 to
5, which ranged from ”’Strongly Disagree” to ”Strongly Agree” respectively. The results have
been aggregated by topic due to space limitations, since the original survey had 50 questions (24
questions for transferred students). The results show that students were significantly satisfied
with the framework, and that transferred students value NEMESIS as an improvement over the
previous methodology.

17

Topic Average Score

Flexibility to work (time, location) 4.603
Coverage of course topics 3919
Help to consolidate concepts and skills 4.693
Lab diversity and interest 4.503
Perceived realism 3.640
Overall evaluation of the lab assignments 3.824

Table 2: Survey results for ISS students (2011/2012). Sample size: 17 students.

Topic Average Score
Usefulness to complete assignments 4.076
Improved learning 4.470
Less need for additional clarifications 4.485
Overall preference 3.758

Table 3: Survey results for transferred students (2011/2012). Sample size: 10 students.

7. Conclusions and future work

Realistic design of security labs is a challenge for teachers in this kind of subjects. There exist
different alternatives to address this challenge, ranging from purely hardware labs to the use of
different virtualization techniques. However, most approaches found in the literature have serious
limitations, specially regarding flexibility, extensibility and security. Trying to address these
limitations, in this article we present NEMESIS, a framework for the generation and emulation of
scenarios for teaching network and system security. The platform relies on existing virtualization
techniques to facilitate scenario portability, and presents a modular design to allow extensibility.
Moreover, the framework has been designed to allow for scenario distribution among multiple
physical machines, which enhances scalability. Finally, scenario design relies on templates for
hosts, services, and attacks, and uses XML files for scenario definition. This guarantees a certain
degree of expressiveness and flexibility.

Though using this framework to design lab assignments has yielded satisfactory results (as
shown in the provided use example), there is still plenty of research to be done in this area. We
are working on the creation of more templates for different systems, services and attacks and
on improving the expressiveness of the scenario description language. Finally, we are interested
in creating a community portal for the development of modules for the framework, where other
members of the security community may contribute to the growth of NEMESIS.

References

Abler, R., Contis, D., Grizzard, J., & Owen, H. (2006). Georgia tech information security center hands-on network
security laboratory. Education, IEEE Transactions on, 49(1), 82 — 87.

18

Bace, R. G. (2000). Intrusion Detection. Macmillan Technical Publishing.

Backtrack (2012). Backtrack linux official website. http://www.backtrack-linux.org/, accessed on July 2012.

Bishop, M. (1993). Teaching computer security. In IFIP Transactions A (Computer Science and Technology) (pp. 65—
74). Netherlands: IFIP. IFIP TC11 Ninth International Conference on Information Security, IFIP/Sec’93. Computer
Security, ,, Toronto, Ont., Canada.

Blackboard (2012). Blackboard Ims official website. http://www.blackboard.com/, accessed on July 2012.

Burguillo, J. C. (2010). Using game theory and competition-based learning to stimulate student motivation and perfor-
mance. Computers & Education, 55(2), 566-575.

Cardenas, A. A., Roosta, T., & Sastry, S. (2009). Rethinking security properties, threat models, and the design space in
sensor networks: A case study in SCADA systems. Ad Hoc Networks, 7(8), 1434 — 1447. Privacy and Security in
Wireless Sensor and Ad Hoc Networks.

Dean, D. & Hu, A. J. (2004). Fixing races for fun and profit: how to use access(2). In SSYM’04: Proceedings of the 13th
conference on USENIX Security Symposium (pp. 14—14). Berkeley, CA, USA: USENIX Association.

Fraenkel, J. R. & Wallen, N. E. (2000). How to design and evaluate research in education. McGraw-Hill.

Higgins, J. (1989). Information security as a topic in undergraduate education of computer scientists. In Information
Security as a Topic in Undergraduate Education of Computer Scientists (pp. 553-557).

Hill, J. M. D., Carver, Jr., C. A., Humphries, J. W., & Pooch, U. W. (2001). Using an isolated network laboratory to teach
advanced networks and security. SIGCSE Bull., 33(1), 36-40.

Hoglund, G. & Butler, J. (2005). Rootkits: Subverting the Windows Kernel. Addison-Wesley Professional.

Khambari, M. N. M., Fairuz Iskandar Othman, M., Radzi Motsidi, M., & Faizal Abdollah, M. (2009). A novel approach
on teaching network security for ict courses. In Engineering Education (ICEED), 2009 International Conference on
(pp. 66 —71).

Koziol, J. (2003). Intrusion Detection with Snort. Indianapolis, IN, USA: Sams, 1 edition.

KVM (2012). Kvm official website. http://www.linux-kvm.org/, accessed on March 2011.

Lee, C., Uluagac, A., Fairbanks, K., & Copeland, J. (2011). The design of netseclab: A small competition-based network
security lab. Education, IEEE Transactions on, 54(1), 149 —155.

Levine, J., Grizzard, J., & Owen, H. (2004). Using honeynets to protect large enterprise networks. Security Privacy,
IEEE, 2(6), 73 - 75.

Linux, D. V. (2012). Damn vulnerable linux official website. http://www.damnvulnerablelinux.org/, accessed on July
2012.

Maynor, D. & Mookhey, K. K. (2007). Metasploit toolkit for penetration testing, exploit development, and vulnerability
research. Syngress.

McClure, S., Scambray, J., & Kurtz, G. (2012). Hacking exposed 7: network security secrets and solutions. McGraw
Hill Professional.

Netfilter (2012). The netfilter.org project. http://netfilter.org/ , accessed on March 2012.

ReAssure (2012). Reassure official website. http:/projects.cerias.purdue.edu/reassure/, accessed on March 2012.

Rigney, C., Willens, S., Rubens, A., & Simpson, W. (2000). Remote Authentication Dial In User Service (RADIUS).
RFC 2865 (Draft Standard). Updated by RFCs 2868, 3575, 5080.

Riley, R., Jiang, X., & Xu, D. (2009). Multi-aspect profiling of kernel rootkit behavior. In Proceedings of the 4th ACM
European conference on Computer systems, EuroSys *09 (pp. 47-60). New York, NY, USA: ACM.

Romero-Zaldivar, V.-A., Pardo, A., Burgos, D., & Kloos, C. D. (2012). Monitoring student progress using virtual
appliances: A case study. Computers & Education, 58(4), 1058 — 1067.

Sharma, S. K. & Sefchek, J. (2007). Teaching information systems security courses: A hands-on approach. Computers
& Security, 26(4), 290 — 299.

Shaw, R., Chen, C. C., Harris, A. L., & Huang, H.-J. (2009). The impact of information richness on information security
awareness training effectiveness. Computers & Education, 52(1), 92 — 100.

Siddiqui, A., Khan, M., & Akhtar, S. (2008). Supply chain simulator: A scenario-based educational tool to enhance
student learning. Computers & Education, 51(1), 252 — 261.

Smith, J. & Nair, R. (2005a). The architecture of virtual machines. Computer, 38(5), 32 — 38.

Smith, J. & Nair, R. (2005b). Virtual Machines: Versatile Platforms for Systems and Processes. Morgan Kaufmann.

Vega-Gorgojo, G., Bote-Lorenzo, M. L., Asensio-Pérez, J. 1., Gémez-Sanchez, E., Dimitriadis, Y. A., & Jorrin-Abelldn,
1. M. (2010). Semantic search of tools for collaborative learning with the ontoolsearch system. Computers & Educa-
tion, 54(4), 835 — 848.

VMWare (2012). Vmware official website. http://www.vmware.com/, accessed on March 2011.

Winters, T., Ausanka-Crues, R., Kegel, M., Shimshock, E., Turner, D., & Erlinger, M. (2006). Tinkernet: a low-cost
and ready-to-deploy networking laboratory platform. In ACE ’06: Proceedings of the Sth Austalian conference on
Computing education (pp. 253-259). Darlinghurst, Australia, Australia: Australian Computer Society, Inc.

Xen (2012). Xen official website. http://www.xen.org/, accessed on March 2011.

Yang, T. A., Yue, K.-B., Liaw, M., Collins, G., Venkatraman, J. T., Achar, S., Sadasivam, K., & Chen, P. (2004). Design

19

of a distributed computer security lab. J. Comput. Small Coll., 20(1), 332-346.
Yurcik, W. & Doss, D. (2001). Different approaches in the teaching of information systems security. In Security,”
Proceedings of the Information Systems Education Conference (pp. 32-33).

20

<segment label=interna, host=172.29.16.21>
<host ip=10.0.10.5, template=windows/>
<host ip=10.0.10.6, template=windows/>
<host i1ip=10.0.10.7, template=windows>
<config file=sysadmin.xml/>
<display host=172.29.16.22/>
</host>
<gateway template=firewall ipin=10.0.10.1
ipout=10.0.11.2 linkto=dmz>
<ipchains rule="allow tcp 80 outbound"/>
<ipchains rule="allow tcp 25 outbound"/>
<ipchains rule="allow tcp 22 outbound"/>
</gateway>
</segment>
<segment label=dmz, host=172.29.16.20>
<host 1p=10.0.11.5, template=dvl>
<service name=www, port=80, user=root/>
<service name=sshd/>
</host>
<host i1ip=10.0.11.6, template=dvl>
<service name=smtp/>
<service name=sshd/>
</host>
<gateway template=firewall ipin=10.0.11.1
ipout=213.18.21.77 linkto=interna>
<ipchains rule="allow tcp 25 inbound">
<ipchains rule="allow tcp 80 inbound">
</gateway>
</segment>
<segment label=internet, host=172.29.16.19>
<host ip=213.18.21.7, template=windows/>
<host 1p=213.18.21.70, template=dvl>
<event at=5ml6s>
<attack template=portscan>
<param name="ip"
value="213.18.21.77"/>
<param name="range"
value="1..1024"/>
</attack>
</event>
</host>
<gateway template=plain linkto=dmz/>
</segment>

Figure 3: Example of an XML file for scenario description.

21

