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Utilizing Early Engagement and Machine Learning to
Predict Student Outcomes

Abstract

Finding a solution to the problem of student retention is an often-required task

across Higher Education. Most often managers and academics alike rely on

intuition and experience to identify the potential risk students and factors.

This paper examines the literature surrounding current methods and measures

in use in Learning Analytics. We find that while tools are available, they

do not focus on earliest possible identification of struggling students. Our

work defines a new descriptive statistic for student attendance and applies

modern machine learning tools and techniques to create a predictive model.

We demonstrate how students can be identified as early as week 3 (of the

Fall semester) with approximately 97% accuracy. We, furthermore, situate this

result within an appropriate pedagogical context to support its use as part of a

more comprehensive student support mechanism.

Keywords: Machine Learning, Learning Analytics, Student Retention.

2010 MSC: 68-U35, 68-T10, 97-B40

1. Introduction

Student retention, the practice of avoiding situations where Higher Education

(HE) students do not continue their studies to a successful outcome, is an area

of active research and study [1, 2]. Methods and responses to retention, and

student engagement in general have been varied [3, 4]. Most fit into two broad5

categories; reactive - where tutors and support staff respond to specific cases and

causes, or preventative - action designed to target larger groups of students to

highlight the successes and benefits they all enjoy. The general actions usually
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aim to raise overall student satisfaction, counteracting any local discontentment

(both organizationally - within a department or course, and temporally - a10

particular point in time).

It has long been held that academic performance is not necessarily the

only factor involved in retention problems [5]. Reasons can include a complex

psycho-social interplay of factors leading to intuitive responses from educators

rather than decisions based on data [6]. As such, the results of these responses15

are varied. Those educators with experience in dealing with both academic and

pastoral issues will, undoubtedly, out-perform their less experienced colleagues.

To meet retention (and others, such as pastoral care) goals, educators require

the development of rapid decision models, processes, and support to both identify

and mediate issues uncovered. Learning Analytics products and tools are progressing20

to help in this endeavor. However, these products either do not focus on earliest

possible identification or require significant human interpretation as to the best

course of action.

Our research has been focused on providing the earliest possible identification

of students that would benefit from tutor intervention. We hypothesize that by25

applying machine learning techniques to data already collected about session

attendance, we would be able to make such an identification.

Within this paper we present four contributions;

1. evaluation of several candidate machine learning methods using derived

metric measuring student attendance/engagement to produce predictions30

of student outcome.

2. a case study using a full academic year and the trained model at Bangor

University, UK.

3. discussion of related issues, including student motivation and potential

interventions tutors may wish to undertake.35

4. a substantial view on the ethical and data protection issues as part of the

overall discussion (see Section 5).
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2. Related Work

Attendance at timetabled sessions has been found to be a consistent predictor

of likely student retention [7]. The same study also correlated attendance40

and outcome of ‘developmental’ courses, which usually occur in the first year

of a degree program. While the debate over a cohesive model including all

plausible causes of student departure rages; there has been broad agreement

that engagement with a course usually leads to higher achievement [8, 9, 10].

Previous studies [11, 12, 13] have shown that one of the most successful45

strategies for retaining students is an early intervention (with varying definitions

of ‘early’). Robbins, Oh, Le, and Button examined the link between types of

intervention showing a possible 13% increase in retention when linked to an

academic skill or attendance [14]. Learning Analytics tools do include methods

that can be used to support early interventions, but they are not designed for50

that purpose.

West et al. conducted a study linking learning analytics specifically to

retention indicators and efforts [15]. Their findings show that students self-reporting

issues is the most common data source when provided with fixed categories.

However, when given a free-form answer field, the majority of comments singled55

out ‘class attendance’ as the most offered answer. This result was also reported

by Anderson, Whittington, and Li [16] confirming that attendance can be used

as a strong indicator of a student’s final grade.

Various Learning Analytic predictive models exist in both literature and

commercial use. One class attempts to predict students as either passing or60

failing based on their educational resource usage, such as Virtual Learning

Environments (VLEs), Libraries, and other support services [17, 18, 19]. Usage

patterns can vary drastically meaning these systems require time to build up

a profile of each new class. There is usually a correlation between reduced

engagement with support and teaching resources, but the analytics can only65

flag a potential issue with any given student. A weak correlation means that

the ‘usage’ is only one factor in the model, and usage alone cannot be used to
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make a definitive prediction due to the variances observed.

The second class of products/tools and accompanying research uses marks/grades

to predict the likelihood of a poor outcome or retention issues [20, 21]. These70

models have a high success rate in flagging poor outcomes as they are directly

descended from the constituent components of that outcome. There is one

drawback to using grades as the predictor variables; at the point grades are

awarded, the student cannot do anything to influence them. This deficiency

may be acceptable where there are multiple or formative assessments but fails75

in courses with single and/or major summative assessments.

During the late 2000s and early 2010s, a third meta-class became popular

where the previous two styles of analytics were combined with in-person interviews

or oral/written depositions [22, 23]. The findings in this work show that both

teachers and students are looking for more insight into why any particular80

flagged event was significant, rather than mere reporting of statistics and lists.

Within Learning Analytics this is known as moving from descriptive analytics

to insight analytics [24].

There are several predictive models developed and presented in the literature,

discussed later in this section. These works broadly fall into one of two groups:85

identification of groups or sub-populations; and exploration of the efficacy of

including other data-sets. Most of the work on learning analytics deals with

either the US or Australian systems, although we also examine cases from UK

HE institutions as they are particularly relevant.

There have been several studies into the statistical worth of ‘performance90

indicators’ and ‘metrics’ to describe students [25, 26, 27]. While the relative

merit conclusions differ slightly, all three of these studies support the idea that

metrics need to be individualized. The level of resolution could vary, from

specific metrics for the institution based on the rationale of deploying analytics

to different factors being considered for each student. This view is supported95

by Gašević et al. cautioning against a one-size-fits-all analytics approach [28].

Baker et al. studies which factors are most telling of success in online

courses and how early these can be used [29]. As the courses are entirely
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computerized, the factors are entirely based on activity as a surrogate for

engagement/attention. They report 65% - 70% accuracy based on metrics100

obtained in the first week of the course. This level of accuracy is not sufficient

to be considered predictive, which the study admits, but the authors do feel

this is strong enough to support intervention with a student. Ye and Biswas

conducted a similar study into Massive Online Open Course (MOOC) data [30].

Their study found that better prediction rates were found when using timely105

data, in this case a behaviour, within the previous week.

JISC, a UK not-for-profit technical and policy support organization for

post-compulsory education, has conducted a thorough review of the state of

learning analytics in HE [31]. As part of this report, the authors present 11 case

studies. Each focuses on a different aspect of learning analytics. These include110

‘Early Alert’ at the University of New England - where the system developed has

the same mission as our work. Their approach, however, correlated emoticon

and text input to a ‘wellbeing status’. Where this dipped or remained low,

students are gradually offered more and more support. This project caused a

decrease in the attrition/dropout rate from 18% to 12% [32].115

Nottingham Trent University created the ‘NTU Student Dashboard’ as a

pilot project in deploying learning analytics. The system is considered predictive

as it correlates low engagement with the high risk of a poor outcome. The model

derives an engagement metric from multiple sources including VLE interaction,

library usage, attendance checks and submissions of assessments. Interestingly,120

retention is not a particular concern in this institution, but they acknowledge

that the dashboard will assist in this regard. The main goal is to foster and

improve the relationship between the student, the institution and their tutor.

Therefore the system focuses on a positive engagement metric, rather than the

negative risk factor for withdrawal. This project found that 27% of first-year125

undergraduates had changed their behaviour based on the information presented.

Learning analytics is not to be seen as a ‘silver bullet’. While analytics can

assist educators, they cannot provide every answer. This is the same conclusion

Pardo and an international team arrived at. Their study looked at the usefulness
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of predictive models in assisting educators. They found that provision of a130

learning analytics platform is not the catalyst some believed it would be. The

educators required more support with identifying the groups or clusters within

their cohorts to design appropriate interventions [33].

Evaluation of these efforts, in real-world terms, is difficult. By the very

nature of deploying analytics and educational interventions, the resulting data-set135

is altered. This means that producing a control or objective group becomes an

ethical dilemma for the educators and researchers [34]. Scientific rigor demands

an impartial evaluation. However, this would mean knowingly and deliberately

withholding intervention from some students that may be in dire need of it.

Gašević et al. remind us that while the technology and science are a fundamental140

necessity, the entire endeavor relates to improving learning experiences [35].

3. Applying Machine Learning to Engagement

The primary goal of this work is to make early identification of students that

would benefit from intervention possible. While some of the work undertaken

could further the search, the authors are not intending to locate the ‘best’145

predictors for retention nor engagement. This work is specifically looking for

the earliest possible, accurate identification of students that may be at risk of

low achievement and/or a retention problem.

Therefore, we conducted a set of feature selection experiments to ascertain

at what point the attendance becomes a reliable predictor of students’ academic150

outcome for the academic year. These experiments were conducted using the

WEKA [36] workbench, classifiers, and tools.

3.1. Data Collection and Structure

Bangor, as with other UK HE institutions, sets out an Engagement Monitoring

policy. Under this policy, all students’ attendance will be monitored through155

checks of their student ID in most, if not all, sessions. Staff are equipped with

bar-code scanners which record the unique number of each ID card along with
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a time stamp. At the end of each monitored session, this record is uploaded

to a central database. Each time stamp is then matched with the timetabled

session in which it was taken. The database also allows for meetings with their160

assigned tutor to be recorded, along with other custom events.

As part of the student’s registration, they agree to various processing of

this data - including for analytics purposes. In Bangor’s policy documents (and

through various engagement activities), the purpose of these analytics is covered

at length. The aim is to enhance the experience of every student, not to simply165

‘spy’ or ‘check up on them’. The students have responded positively to this

approach and readily provide permission to use their data in this and other

analytics systems.

Within the database, at any point in time, there would be k observations

for each student. Each observation is coded as either one for an attendance and170

zero otherwise. These observations are recorded in the set z = 〈z1, z2, ..., zk〉.

Initially, a ratio of sessions attended was considered - termed Engagement Ratio

or ER - defined mathematically as Equation (1).

ERk = 1/k

k∑
j=1

zj (1)

Ultimately this proved to be less effective for prediction of the student outcome.

See Section 3.6 for details of the experiment that lead to abandoning this metric.175

The second metric, termed the Bangor Engagement Metric (BEM), combined

both attendance and non-attendance into a single reading. In the absence of

definitive guidance from past work, we crafted the metric independently and

based on an idealized view of attendance. It is formed, for any point in time, as

the number of sessions attended less the number of sessions missed. Using the180

same set of k observations in set z, the metric is formally defined as Equation (2).

BEMk =

k∑
j=1

(−1)(1−zj) (2)

As the structure and timetable for each program variant is different, it is

not possible to compare the raw set z. To provide a common number of results,
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and frame of reference, the items in the set are summed by academic week.

Each student now has a consistent 12 ER and BEM values for each complete185

semester. Examination attendance is also monitored using the same process,

adding an additional six readings for a year. This totals 30 BEM readings for a

complete academic year.

The data-set includes three biographical variables; the numeric codes for

the student’s program, the school, and the year of study. These elements are190

handled as categorical data in the data-set forcing a set of values. In addition,

each student is assigned one of five Academic Standing codes signifying the

completion state of that academic year/level. The Academic Standing code is

the class label that the machine-learning model needs to match/predict. These

codes are;195

• PA - pass.

• FN - fail (cannot progress).

• FC - conditional fail (requires supplementary assessment).

• RY - repeat the year/level.

• RS - repeat a single semester.200

3.2. Sources of (Potential) External Effects

While attendance is often a student choice there are several factors that are

beyond their control. These range from the basic and somewhat expected, such

as sickness, to more impacting work and family commitments. There may also

be demographic considerations, such as religious events, that can also influence205

the student’s attendance.

Micere’s meta-study of US college entrants, their characteristics and demographics

[37] shows a significant demographic shift in completion rates. However, the

raw data on engagement shows only Black males having a significant drop in

traditional involvement with their studies. A meta-analysis of over 21,000 US210

college students [38], has shown a weak relationship between student characteristics
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and their attendance. In this case, characteristics means personality traits or

qualities such as diligence rather than any demographic or social division. The

student population can also be divided by study mode, full-time or part-time.

Micere’s study did examine this factor, and the impact of part-time employment215

and was rejected as a significant factor.

When a student is completing their studies part-time, their overall attendance

value will be lower proportionate to the number of credits they are completing.

Their resulting BEM value will be expected to be lower by the same proportion,

allowing for class schedule differences. As a result of these findings, this study220

has chosen not to place any specific corrections or biases into the construction

of the Bangor Engagement Metric. If this information were included in the

model, it can be a bias that will cause specific over-fitting to the data. By not

including these specifics, the algorithms (and resulting model) must generalise

the patterns of attendance for all circumstances.225

3.3. Initial Data Exploration

Our initial data-set contained the weekly values of all undergraduate students’

BEM, program, and year of study for the 2016/17 academic year at Bangor

University. These were the most recent historical and complete results. As a

result, we can match predicted outcomes with the ground truth for each student.230

This set has; N = 4970 instances, n = 32 features and C = 5 classes.

The first exploration of this data found that while the skew and mean of

each weekly set of metrics changed marginally, it remained a normal distribution.

Figure 1 shows the population using 20 bins calculated from the maximum range

of the Engagement Metric. The Heat-map also shows that as the academic year235

progresses, the range of engagement widens. This result confirms those found

by other studies [39] and anecdotal evidence from colleagues.

Subsequent explorations examined time series plots of individual student

data. These were split by year/level and department due to the large amount

of over-plotting when visualizing the entire set. The observations made hold240

true for all divisions in the data-set. Figure 2 shows the results for the 2016/17

9
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Figure 1: Heat-map showing relative population density at each academic week. Each week

has 20 bins calculated from the maximal range of the Bangor Engagement Metric. The darker

a cell the more students occupy that position.
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freshman (first year) cohort for Computer Science. The stand-out observation

is that allowing for a certain amount of variance; students tend to remain on

their starting trajectory throughout an academic year. Some of these students

were already the beneficiaries of pastoral care. This observation would call into245

question the effectiveness or timeliness of staff efforts.

This figure also clearly shows the inevitable outliers in any cohort. The

topmost line (green/solid) could be assumed to be the most diligent student

who attends all sessions and will therefore pass. The bottom-most (again a

greed/solid in this example/plot) would fit the profile of a naturally talented250

student that feels that they do not need to attend sessions but is also expected

to pass.

3.4. Feature Selection

Armed with previous findings, a new set of experiments was devised. They

aimed to determine when these trajectories could be separated into the final255

academic standings. This is a feature selection task, a process where the metrics

are evaluated for their worth in a classification problem. The process aims to

keep metrics that do describe differences accurately, and therefore drop those

that are irrelevant or redundant.

Floating Search methods have already been shown to provide superior results260

in less computational time. Therefore the Sequential Forward Selection (SFS)

method was chosen [40, 41]. This method operates by selecting the strongest

(usually defined as the highest accuracy) individual feature, then pairing this

with all others to find the strongest pair, and so on.

The initial experiment utilized SFS and the Nearest Neighbor (1-NN) classifier,265

an approach followed by Kudo and Sklansky [42]. Due to the PA/pass class

drastically outnumbering other labels, the F-Measure statistic [43] is used to

measure performance. This experiment produces a ranked list of features that

should be considered. The top four features (in order) were found to be School,

Week 4 BEM, Week 5 BEM, and Week 3 BEM. A check of these results was270

made, utilizing the 1-NN classifier and the selected features. Table 1 shows
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Figure 2: Time-series plots showing the 2016/17 1st Year Cohort in Computer Science and

Linguistics at Bangor University. Each line represents one student, and is colored by their final

academic standing at the end of the year. Academic standings in the legend are; PA/pass,

FN/fail, FC/supplementary work required, RY/repeat year, and RS/repeat semester.
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Table 1: Experimental results using the 1-NN classifier and the top four algorithmically

selected features. The last row shows the weighted average, based on relative class size, for

the entire classification problem. (TP = True Positive, FP = False Positive, Prec. = Precision,

AUC = Area under ROC Curve)

Class TP Rate FP Rate Prec. Recall F-Measure AUC

Pass 0.914 0.764 0.878 0.914 0.896 0.628

Supplementary 0.118 0.062 0.166 0.118 0.138 0.565

Repeat Year 0.051 0.013 0.058 0.051 0.054 0.632

Fail 0.161 0.022 0.198 0.161 0.178 0.668

Repeat Semester 0 0 0 0 0 0.699

the results of this experiment. The headline result is a LOOCV accuracy of

80.10%, and an weighted F-Measure value of 0.788. However, these results also

show very low F-Measure values for the least represented classes.

Encouraged by this result, a further attempt increased the accuracy, by275

using a C4.5 Pruned Tree classifier [44] and the same protocol and features,

to 84.85%. However, this choice actually weakened the predictive power for

students that would need to complete supplementary work, with this class’

F-Measure dropping to 0.023.

As the algorithmic results pointed toward early weeks from the fall semester,280

the next set of experiments tracked the accuracy when progressively adding

weekly data. These experiments used the same C4.5/LOOCV combination; the

results are shown in Table 2. The best overall accuracy achieved was 86.20%,

which includes all of the weeks of the fall semester. This does not meet the

stated goal of early identification of students. The second best result, 86.10%,285

or just 0.10%/five students less, required only the first three weeks’ values

without the school and year of study being included. Using this model, tutors

would be in a position to potentially make appropriately targeted interventions

from academic week 4. Each experiment was conducted both including and

excluding two additional features; the students school/department and year of290

study. The rationale for year of study was to examine if cohortal effects were
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sufficiently large to influence the model. The school/department was included

as the mode of study within each discipline is likely to be different. Without an

extra discriminator, the model was in danger of being over-generalized to ignore

these differences.295

Table 2: Results from testing successive week feature sets, using C4.5 Trees with Leave One

Out Cross Validation. Rows are arranged by accuracy.

Weeks School/Year Inc. Accuracy %
Per-Class F-Measure

PA FC RY FN RS

1-12 Y 86.20 0.935 0.202 0.068 0.190 0.000

1-3 N 86.10 0.926 0.049 0.000 0.231 0.000

1-4 N 86.04 0.929 0.040 0.065 0.149 0.000

1-4 Y 85.77 0.929 0.151 0.019 0.178 0.000

1 N 85.75 0.923 0.000 0.000 0.000 0.000

1 Y 85.75 0.923 0.000 0.000 0.000 0.000

1, 2 Y 85.75 0.923 0.000 0.000 0.000 0.000

1-5 N 85.73 0.927 0.058 0.065 0.245 0.000

1-5 Y 85.71 0.929 0.141 0.075 0.211 0.000

1-6 Y 85.69 0.930 0.135 0.038 0.200 0.000

1-6 N 85.69 0.927 0.075 0.041 0.216 0.000

1-3 Y 85.65 0.928 0.139 0.000 0.110 0.000

1, 2 N 85.59 0.924 0.000 0.000 0.056 0.000

1-12 N 84.35 0.923 0.103 0.017 0.183 0.000

These experiments provided sufficient evidence that there is sufficient predictive

power by using only the first three weeks BEM values to provide a suitable

model. It also shows that including discriminator features, such as year, school,

or program increases some F-Measures. A further experiment is needed to

determine which of these three discriminators is most powerful. This will result300

in a selected feature set of:

• Week 1 BEM Value

• Week 2 BEM Value

14



• Week 3 BEM Value

• School, Program, or Year305

• Academic Standing (Class Label)

3.5. Classifier Selection

To this point, the success metric had been the overall classification accuracy,

the number of students correctly matched to their actual outcomes. However,

the authors quickly realized that accurate classification into all five classes, while310

ideal, is not strictly required. Identification of potentially at-risk students is not

contingent on which failure mode they may achieve, just that it is not expected

to be a pass. With this extra constraint, it would be reasonable to reduce

the problem to a two-class classification problem and re-categorize the student

outcomes. However, it is still useful information for tutors to understand the315

severity of the potential outcome by mode.

Confusion Matrices are the tool for reporting summary output in classification

tasks, a simple table showing true/actual labels as rows and predicted labels as

the columns. Each cell contains a count of instances/objects that fall at that

intersection. The perfect outcome would be correct counts on the main diagonal320

showing that the true and predicted labels match. All counts elsewhere in the

matrix indicate a classification error. There are two separate regions; above

the diagonal showing false negatives, Type I errors, and below showing false

positives known as Type II errors. Table 3 shows an example confusion matrix

from the C4.5 Feature Selection experiment.325

The shaded cells in the table show classification results where students are

identified as having a positive outcome when in fact they would achieve a

negative one. By re-framing the training of classifiers to minimize Type II

errors, these inaccurate and misleading errors will be minimized as well. This

adjustment was made as it is better to intervene with a student that may well330

succeed on their own than to mis-classify a weak student as passing. Instead

15



Table 3: Confusion Matrix from a C4.5 Feature Selection Experiment. Shaded cells represent

‘problematic’ classifications where a poor outcome would be missed.

↓ Actual / Predicted → PA FC RY FN RS

Pass (PA) 4218 23 2 19 0

Resit1 (FC) 425 28 2 12 0

Repeat Year (RY) 68 3 0 7 0

Fail (FN) 117 10 3 31 0

Repeat Semester (RS) 2 0 0 0 0

1 A student achieving an FC/Resit, or more formally

Conditional Fail, status would need to undertake

supplementary assessments to pass their courses. In

the U.S. system, this would be equivalent of Summer

school/courses.

of minimizing the raw Type II count, maximizing the F-Measure score of all

classes will tend toward the ‘perfect’ classifier.

One final set experiments evaluated suitable classifiers on the initial data-set.

Each experiment ran a combination of classifier algorithm, protocol (Resubstituion,335

or Leave-One-Out), and a cohort discriminator. This discriminator was either

the Academic School or Degree Program. The use of the School and Year was

examined in a previous experiment, but ultimately the Year did not provide any

additional predictive power.

Selecting the final combination, became a multivariate optimization problem.340

The F-Measure for all classes needed to be maximized, along with the final

accuracy rate; while minimizing the difference between the different protocols.

These goals are set to create the best classifier, while resisting over-fitting on

the data set. The results of this benchmark can be found in Table A.4.

All of the classifiers benchmarked have good performance with the majority345

class (PA). This is unsurprising as a pass outcome applies to 85.75% of the

instances. Neither are any of the classifiers able to differentiate the 2 instances
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for the RS (Repeat Semester) class. The selection criteria must therefore revolve

around the accurate prediction of the other failure modes. The F-Measure

provides a surrogate for individual accuracy, therefore the sum of the failure350

mode F-Measures can be used as a comparative metric, in the range [0...5]. The

top six classifiers (ranked by this metric) achieve between 36% and 47% of the

maximum score (1.878/5 to 2.342/5).

The top three classifiers all use the degree program as the cohort discriminator.

These three also have larger differences between the resubstitution and the355

LOO CV protocols. This leads to the conclusion that degree program is less

appropriate when determining the patterns within a cohort, and those of the

preceding or successive cohorts. Excluding program combinations, leave Random

Tree and Random Forest using the School discriminator. The classification of

failure modes is within 1% of each other, whereas Random Tree has an 11%360

edge with the pass class. On that basis, the Random Tree with School will be

used as the classifier of choice.

We believe that classifiers with a stochastic element are able to overcome

local maxima/minima during training. This ability allows the classifier to

provide a more rounded approach to the data-set. When examining the classification365

regions and trees produced by other candidate algorithms; the areas, and numbers

of instances they represent, become to small to avoid misclassification.

3.6. Alternative Metric Experiment

As previously noted, utilizing a percentage of sessions attended is a plausible

alternative to the BEM. Using the same classifier and parameters, we conducted370

a companion experiment but using the proportion data-set instead. The results

were gathered using both the resubstitution and Leave-One-Out CV protocols

from the first three teaching weeks. When using resubstitution, the classifier

achieves 98.28% accuracy with only three students mischaracterized under the

‘on-mission’ metric. However, when using n-Fold Cross Validation, it fairs 12%375

worse (85.90%) with 290 students misclassified. We can conclude from these

results, that the classifier is prone to over- fitting when using the proportion. It
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also achieves 7.66% less in overall accuracy. This would lead to more potentially

unnecessary student interventions. While this is preferred to letting a poor

outcome continue unimpeded, it may cause undue stress for passing students380

that did not require intervention.

4. Unseen Case Study Results

So far, the results have been testing against the same data-set as the classifiers

have been trained on. The model and practices devised over previous experiments

were applied to a new, previously unseen, data-set. This data is from the385

2015/16 academic year, predating any work on learning analytics at Bangor

University. As a result, this data could not be influenced by any factor, intentional

or not. This data-set comprises N = 4877 instances/students. We utilize the

same n = 4 features (school and Week 1-3 values of the BEM) with the same

C = 5 classes. The experiment trained the model using data from the 2016/17390

academic year, and then tested using the 2015/16 set.

The exact accuracy of model on the unseen data dropped to 84.79% (4135/4877

instances), a difference of 8.77% from the train/test on the same set. This

is understandable as there will be cohort effects, as well a graduating class

introducing different patterns that will no longer be present. These effects can395

also be caused by changes in lower education, filtering their way through the

system, so that the incoming first-year cohort do not act in the same way as

their predecessors.

However, when the model is evaluated against its primary goal, the correct

identification of a potential poor outcome rises to 97.33%. This equates to400

130 students across the institution that would not be identified, but the model

also flags 583 (11.95%) students that would have passed unaided as potentially

requiring intervention. This was deemed to present too high a potential risk to

otherwise capable students. As a result we sought an alternative classifier. Our

classifier evaluation had previously discounted the RandomForest classifier as405

too unstable with changing data; however, it offers a significantly lower Type II
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error rate as well a marginal improvement in overall accuracy.

A new model, using the RandomForest classifier but keeping all other parameters

the same, was created from the 2016/17 data and again tested on 2015/16

results. This model yielded significantly better results. The overall accuracy410

improved to 88.05% (+3.26%/159 instances), while the mis-classification rate for

otherwise passing students dropped to 8.65% (-3.3%/164 instances). Crucially,

the model only marks an additional two students as passing when they would

not, bringing the total to 132 not identified. This constitutes a 0.041% drop in

effective accuracy.415

5. Discussion

Our results show that we have been able to produce a model to identify

potential targets for interventions from an early juncture. The model has

been engineered to minimize collateral damage, but will still misrepresent some

students. Our guiding principle can be seen as a rewording of Blackstone’s420

Formulation (originally applying to criminal law) [45]. The wording becomes;

it is better to intervene with 10 passing students, than to miss a single failing

one. As with all predictive models, it is only as good as the information used

to train it. There will be students that are mischaracterized, so it is imperative

that tutors use this model as an aid instead of a fait accompli.425

As the model is based on attendance, some may argue that any model may

be inappropriate and that the raw values for attendance should be provided

instead. The main rationale for exploring a model is that records show there

are students that have low to no attendance but are still perfectly capable and

do achieve. Similarly, there are students that have perfect attendance and are430

not able to achieve. A model employing machine learning techniques should

be able to account for these counter-patterns. A suitably advanced model will

then naturally reduce collateral damage to either engagement or confidence with

students that are naturally talented.

We have noted that within our results, including the unseen data-set that435
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student trajectories appear fixed. There is a slight amount of variance from week

to week, but no radical changes in behavior. As this data-set is from within the

institution, we are able to correlate dates with other information - such as tutor

visits. This implies that either existing interventions merely prevent a situation

getting worse, or outright fail to achieve the intended goal.440

The authors have taken a global view of achievement and engagement rather

than seeking to identify students that are at risk within one module or subject

area. Therefore, the results of this study need to be viewed in a similar context.

There will be situations where early engagement is an inappropriate measure

on a module level. An individual lecturer could set different criteria for their445

particular learning design (e.g. missing week 6 would be the worst time to

become disengaged due to the material/skill presented that week). Similarly,

this work does not attempt to examine suitability nor competancy of a student

for future academic programs.

The model produced would be most applicable to Directors of Student450

Engagement, Senior Tutors, Directors of Teaching and Learning or another

departmental role most responsible for overarching pastoral and academic care.

As the model seeks to identify potential failing of an entire year, it is less useful

to individual lecturers within a single module/course. While the previously

identified roles will be primarily interested in the findings, it would fall to455

individual pastoral tutors to actually perform any intervention.

When dealing with achievement, welfare, and confidence of a student there

are serious ethical considerations. Interventions, however well- intentioned, will

affect a student’s mindset. How large that effect, and whether it is positive or

negative will depend on the skill and care of the educator involved. Practitioners460

will need to adopt a new approach when dealing with students identified by any

analytics. We would advocate adopting a similar set of principles as in the

modern form of the Hippocratic Oath for clinicians [46]. In the modern version,

practitioners acknowledge that they are not treating a disease or set of symptoms

but a sick human being. This is something educators may end up losing sight465

of, when algorithms make the identifications instead of their own intuition.
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These effects can not only be triggered by an intervention, but also just

from being identified as potentially benefiting from assistance. Some students

could see this as a oblique method of assessing their performance and become

withdrawn [47]. It is with this in mind that any analytics need to be used openly470

and transparently. We do not recommend that students are ‘kept in the dark’

on how and why they have been selected. This position is also advocated by

several ethical investigations [48, 49]. Some even go as far as labeling analytics

as ‘harmful’ when not used in this fashion [50].

Very little practical guidance is provided for educators on specifically how475

to react to analytics flagging one of their students. The guidance available

encourages them to ground the intervention in solid pedagogical terms [51, 52].

One thing is clear, that educators and students must discuss any issues present

frankly and honestly if the student is to fulfill their potential.

These interventions may be as simple as a hallway conversation inquiring480

whether the student is having issues [53]. For some students, knowing that their

tutors have noticed something amiss is enough to effect a change in behavior

[54]. In other cases, usually where the causes for disengagement are more varied,

the intervention will need to be more complex and involve support staff/services

as well as the academics. Current pedagogical research suggests that while the485

mechanics of the intervention are important, the relationship between student

and their support is critically important [55].

With the European Union’s General Data Protection Regulations [56] looming

large on the horizon, institutions (including Bangor) will need to disclose the

manner in which student data is processed. At Bangor, we have taken the490

view that any analytics that can aid staff must also be visible by the student

concerned. We have also developed a position on seeking permission from

students to have their data included. We seek blanket permission for student

data to be included in our model, but allow students to opt-out of having the

resulting analytics used. In this case neither the student nor staff are shown495

the analytics results. This respects the students’ rights under current (and near

future) UK and EU law but does not compromise the availability of complete
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data to the model. Each institution will need to work with their student bodies

and any relevant authorities to form their own implementation policies before

deploying their solution.500

6. Conclusions

As part of this work, we have defined a descriptive metric - the Bangor

Engagement Metric - which appears to hold significant predictive power. Initially

this metric has been used to enhance Bangor University’s existing student

information systems. We have now shown how machine learning can be brought505

to bear on the problem of student retention. Through a set of experiments, we

have selected a combination of classifier and measurements to best meet the

mission of early identification. This combination has achieved an accuracy in

excess of 97%. It minimizes both the number of students needlessly intervened

with and the number of students incorrectly predicted as having a positive510

outcome.

However, as with all machine learning applications the model will not remain

static. Different cohorts of students will progress through their courses, requiring

different patterns to be identified. This means that the training of this model will

be ongoing, including new data and removing aging data. We also recognize that515

models are only as good as their training, meaning that while this model works

for Bangor’s students it will not be identical in other institutions. However; the

method, classifier and features selected would be transferable. Therefore, there

is a need to conduct a longitudinal study, both within Bangor and comparing

like-for-like groups in other institutions.520

References

References

[1] S. McCoy, D. Byrne, Student retention in higher education, in: Economic

Insights on Higher Education Policy in Ireland, Springer, 2017, pp. 111–141.

22



[2] S. M. Paige, A. A. Wall, J. J. Marren, B. Dubenion, A. Rockwell,525

The Learning Community Experience in Higher Education: High-Impact

Practice for Student Retention, Taylor & Francis, 2017.

[3] I. W. Li, D. Carroll, Factors influencing university student satisfaction,

dropout and academic performance: an Australian higher education equity

perspective, National Centre for Student Equity in Higher Education,530

Curtin University, Perth, Western Australia, 2017.

[4] O. Webb, L. Wyness, D. Cotton, Enhancing Access, Retention, Attainment

and Progression in Higher Education: A Review of the Literature Showing

Demonstrable Impact., Higher Education Academy, 2017.

[5] V. A. Lotkowski, S. B. Robbins, R. J. Noeth, The role of academic and535

non-academic factors in improving college retention, ACT Policy Report.

[6] M. S. DeBerard, G. Spielmans, D. Julka, Predictors of academic

achievement and retention among college freshmen: A longitudinal study,

College Student Journal 38 (1) (2004) 66–80.

[7] D. S. Fike, R. Fike, Predictors of first-year student retention in the540

community college, Community college review 36 (2) (2008) 68–88.

[8] A. Seidman, College Student Retention: Formula for Student Success,

ACE/Praeger series on higher education, Praeger Publishers, 2005.

URL https://books.google.co.uk/books?id=ckk5B_ADM_YC

[9] V. Tinto, From theory to action: Exploring the institutional conditions for545

student retention, in: Higher education: Handbook of theory and research,

Springer, 2010, pp. 51–89.

[10] E. N. Shelton, Faculty support and student retention, Journal of Nursing

Education 42 (2) (2003) 68–76.

[11] C. P. Veenstra, A strategy for improving freshman college retention, The550

journal for quality and participation 31 (4) (2009) 19.

23

https://books.google.co.uk/books?id=ckk5B_ADM_YC
https://books.google.co.uk/books?id=ckk5B_ADM_YC


[12] L. A. Price, Characteristics of Early Student Dropouts at Allegany

Community College and Recommendations for Early Intervention, Allegany

Community College, 1993.

URL http://files.eric.ed.gov/fulltext/ED361051.pdf555

[13] S. A. Martin, Early intervention program and college partnerships, ERIC

Digest.

[14] S. B. Robbins, I.-S. Oh, H. Le, C. Button, Intervention effects on college

performance and retention as mediated by motivational, emotional, and

social control factors: integrated meta-analytic path analyses., Journal of560

Applied Psychology 94 (5) (2009) 1163.

[15] D. West, H. Huijser, D. Heath, A. Lizzio, D. Toohey, C. Miles,

B. Searle, J. Bronnimann, Higher education teachers’ experiences with

learning analytics in relation to student retention, Australasian Journal

of Educational Technology 32 (5) (2016) 48–60.565

[16] T. Anderson, C. Whittington, X. J. Li, Classes to passes: Is class

attendance a determinant of grades in undergraduate engineering subjects?,

in: AAEE2016 CONFERENCE Coffs Harbour, Australia, 2016.

[17] K. E. Arnold, M. D. Pistilli, Course signals at purdue: Using learning

analytics to increase student success, in: Proceedings of the 2nd570

international conference on learning analytics and knowledge, ACM, 2012,

pp. 267–270.

[18] B. Daniel, Big data and analytics in higher education: Opportunities and

challenges, British journal of educational technology 46 (5) (2015) 904–920.

[19] Q. Nguyen, B. Rienties, L. Toetenel, Unravelling the dynamics of575

instructional practice: A longitudinal study on learning design and vle

activities, in: Proceedings of the Seventh International Learning Analytics

& Knowledge Conference, LAK ’17, ACM, New York, NY, USA, 2017, pp.

24

http://files.eric.ed.gov/fulltext/ED361051.pdf
http://files.eric.ed.gov/fulltext/ED361051.pdf
http://files.eric.ed.gov/fulltext/ED361051.pdf
http://files.eric.ed.gov/fulltext/ED361051.pdf
http://doi.acm.org/10.1145/3027385.3027409
http://doi.acm.org/10.1145/3027385.3027409
http://doi.acm.org/10.1145/3027385.3027409
http://doi.acm.org/10.1145/3027385.3027409
http://doi.acm.org/10.1145/3027385.3027409


168–177. doi:10.1145/3027385.3027409.

URL http://doi.acm.org/10.1145/3027385.3027409580

[20] C. Herodotou, B. Rienties, A. Boroowa, Z. Zdrahal, M. Hlosta,

G. Naydenova, Implementing predictive learning analytics on a large scale:

The teacher’s perspective, in: Proceedings of the Seventh International

Learning Analytics & Knowledge Conference, LAK ’17, ACM, New York,

NY, USA, 2017, pp. 267–271. doi:10.1145/3027385.3027397.585

URL http://doi.acm.org/10.1145/3027385.3027397

[21] S. Rovira, E. Puertas, L. Igual, Data-driven system to predict academic

grades and dropout, PLOS ONE 12 (2) (2017) 1–21. doi:10.1371/

journal.pone.0171207.

URL https://doi.org/10.1371/journal.pone.0171207590

[22] C. Heaton-Shrestha, S. May, L. Burke, Student retention in higher

education: what role for virtual learning environments?, Journal of Further

and Higher education 33 (1) (2009) 83–92.

[23] D. T. Tempelaar, B. Rienties, Q. Nguyen, Towards actionable learning

analytics using dispositions, IEEE Transactions on Learning Technologies595

10 (1) (2017) 6–16.

[24] A. G. Picciano, The evolution of big data and learning analytics in american

higher education., Journal of Asynchronous Learning Networks 16 (3)

(2012) 9–20.

[25] R. Ball, R. Wilkinson, The use and abuse of performance indicators in uk600

higher education, Higher Education 27 (4) (1994) 417–427.

[26] D. Draper, M. Gittoes, Statistical analysis of performance indicators in

uk higher education, Journal of the Royal Statistical Society: Series A

(Statistics in Society) 167 (3) (2004) 449–474.

[27] G. Richards, Measuring engagement: Learning analytics in online learning605

(2011).

25

http://dx.doi.org/10.1145/3027385.3027409
http://doi.acm.org/10.1145/3027385.3027409
http://doi.acm.org/10.1145/3027385.3027397
http://doi.acm.org/10.1145/3027385.3027397
http://doi.acm.org/10.1145/3027385.3027397
http://dx.doi.org/10.1145/3027385.3027397
http://doi.acm.org/10.1145/3027385.3027397
https://doi.org/10.1371/journal.pone.0171207
https://doi.org/10.1371/journal.pone.0171207
https://doi.org/10.1371/journal.pone.0171207
http://dx.doi.org/10.1371/journal.pone.0171207
http://dx.doi.org/10.1371/journal.pone.0171207
http://dx.doi.org/10.1371/journal.pone.0171207
https://doi.org/10.1371/journal.pone.0171207
http://www.academia.edu/download/37420980/Kazan2011-Measuring_Engagement_vf2.docx


URL http://www.academia.edu/download/37420980/

Kazan2011-Measuring_Engagement_vf2.docx
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