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Abstract 

This paper illustrates how process data can be used to identify behavioral patterns in a 

computer-based problem-solving assessment. Using sequence-mining techniques, we identify 

patterns of behavior across multiple digital tasks from the sequences of actions undertaken by 

respondents. We then examine how respondents’ action sequences (which we label “strategies”) 

differ from optimal strategies. In our application, optimality is defined ex-ante as the sequence of 

actions that content experts involved in the development of the assessment tasks identified as 

most efficient to solve the task given the range of possible actions available to test-takers. Data 

on 7,462 respondents from five countries (the United Kingdom, Ireland, Japan, the Netherlands, 
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and the United States) participating in the Problem Solving in Technology-Rich Environment 

(PSTRE) assessment, administered as part of the OECD Programme for the International 

Assessment of Adult Competencies (PIAAC), indicate that valuable insights can be derived from 

the analysis of process data. Adults who follow optimal strategies are more likely to obtain high 

scores in the PSTRE assessment, while low performers consistently adopt strategies that are very 

distant from optimal ones. Very few high performers are able to solve the items in an efficient 

way, i.e. by minimizing the number of actions and by avoiding undertaking unnecessary or 

redundant actions. Women and adults above the age of 40 are more likely to adopt sub-optimal 

problem-solving strategies.  
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Leveraging Process Data to Assess Adults’ Problem-Solving Skills: Using Sequence Mining to 

Identify Behavioral Patterns across Digital Tasks 

1. Introduction 

The ability to solve complex problems has been identified as a critical skill for success in 

21st century societies and labor markets (Organisation for Economic Co-operation and 

Development [OECD], 2009, 2011, 2012; Schleicher, 2008).The Survey of Adult Skills, a 

product of the Programme for the International Assessment of Adult Competencies (PIAAC), 

was the first international large-scale survey to be predominantly administered on a computer 

and to assess adults’ problem solving in technology-rich environments (PSTRE). PIAAC 

surveyed representative samples of adults in more than 30 countries, assessing their information-

processing skills (in literacy, numeracy and PSTRE) and collecting a wealth of background 



information on their education, labor market experience, and engagement with tasks requiring 

information-processing skills.  

PSTRE is defined as the ability to “use digital technology, communication tools and 

networks to acquire and evaluate information, communicate with others and perform practical 

tasks”, and “to solve problems for personal, work and civic purposes by setting up appropriate 

goals and plans, accessing and making use of information through computers and computer 

networks” (OECD, 2009).  

Computer delivery of the PSTRE assessment allowed the collection of information on 

how respondents interacted with the testing interface, including how much time they spent on 

each item and which actions they took to solve them. This information is recorded in log files 

and is commonly referred to as “process data” (He & von Davier, 2015, 2016).  

In this paper we make use of process data from the PSTRE assessment to characterize 

problem-solving strategies in ways that generalize across tasks building.  For this exploratory 

study, we use PSTRE data from five high-income countries. Cross-cultural differences in the use 

of different cognitive processes during reasoning and problem solving have been observed, 

leading researchers to hypothesize that socio-historical traditions have the potential to lead to 

differences in cognition. For example, Nisbett (2003) illustrated how individuals in East Asia 

tend to think holistically, dialectically, and on the basis of their experience, whereas Westerners 

tend to think analytically, logically, and abstractly. Because of brain plasticity, cultural 

differences can lead to differences in brain activity (Han et al., 2013; Han & Ma, 2014; 

Huttenlocher, 2002) and behavioral responses to certain stimuli across countries (Choi et al., 

1999; Han et al., 2013; Markus & Kitayama, 2010; Masuda, & Nisbett, 2001). Similarly, 

differences in the experiences that individuals have because of age, gender and the use of digital 



technologies could lead to differences in how an individual approach and consequently solves 

problems. While experimental results suggest that cross-cultural differences in reasoning exist, it 

remains to be established if differences in reasoning reflect generalized differences in cognitive 

processes or, rather, the ease with which individuals adopt particular strategies but remain able to 

mobilize the use of other strategies when in need (Nisbett, 2003). The use of process data from 

an interactive problem-solving assessment can become a powerful tool to better identify and 

characterize problem-solving processes. For example, it can reveal if individuals engage in 

under- or over-exploration of the problem space before providing an answer and how consistent 

they are in these behaviors across problem tasks that require the mobilization of different skills.  

 

1.1. The Value of Process Data in Large-Scale Assessments 

 Data stored in log files, referred to as process data in the present study, contain 

information on the actions undertaken by test takers via the computer interface and when each 

action occurred 1. Process data were originally collected to cross-validate response data but are 

being increasingly used to explore respondents’ test-taking behaviors. For example, they have 

been used to infer students’ reading strategies (Lee & Jia, 2014; Goldhammer et al., 2013); to 

traack students’ inquiry-based learning processes (Lämsä et al., 2020); to identify problem 

solving strategies (Goldhammer et al., 2014; He et al., 2019); and to analyze the relationship 

between problem-solving strategies and background characteristics (Liao et al., 2019; He et al., 

2018, 2019). A review of recent studies based on log file data from PIAAC can be found in 

Goldhammer et al. (2020). 

                                                           
1 In principle, all interactions between the participant and the computer delivery platform are actions. For example, 

any time a mouse is clicked and any time the participant types something the participant engages is an action. 

However, not all actions were recorded and stored in PIAAC log files. Only actions that were meaningful for 

scoring an item were recorded. 



Process data provide information that cannot be easily observed from response data (Guo 

et al., 2018; Zhu & Feng, 2015; Liu et al., 2018; Chen et al., 2019), and that can be used to 

characterize the approaches respondents engage in when responding to questions on a test 

(Goldhammer et al., 2013; Hahnel et al., 2014). Once such approaches are identified, researchers 

can see if they differ across different population subgroups (defined in terms of age, gender, 

country, socioeconomic background, migration background, or educational attainment; see for 

instance Eichmann et al., 2020; Liao et al., 2019; He & von Davier, 2016; Ercikan et al., 2020).   

Process data have been used extensively in the educational literature in the context of 

educational data mining, learning analytics and artificial intelligence. For example, process data 

on patterns of keystrokes has been used to examine writing behavior (e.g., Deane et al., 2020; 

Guo et al., 2020). Process data has also been used to examine if learning can be fostered through 

the use of AI-operated instructional environments (e.g., Biswas et al, 2005; 2010); to monitor the 

development of problem-solving skills in game-based assessments (e.g., Shute et al., 2016), and 

how AI systems can be used to measure human intelligence (e.g., Embreston, 2014). 

Furthermore, the educational literature has explored how process data can be used to develop 

tools and methods that enable efficient processing of educational data (e.g., Paquette et al., 2020; 

Baker & Inventado, 2014).   

 

1.2. Extracting Information from Process Data  

Although there is broad agreement on the potential of process data, no consensus has yet 

been reached on how best to analyze them. Various disciplines can contribute appropriate 

methods, such as data mining, machine learning, natural language processing, social network 

analysis. These methods are typically applied when handling “big data” with complex structures.   



Recent studies of process data from large-scale assessments rely on n-gram analysis to 

extract key actions (or subsequences of actions) associated with final item responses (He & von 

Davier, 2016; Stadler et al., 2019; He et al., 2018). Other studies have developed new 

measurement models for occurrences of actions to assess the latent traits of interest (LaMar, 

2018; Liu et al., 2018), or to examine actions as recurring events (Xu et al., 2018). Finally, 

dissimilarity measurement has been used to extract latent variables from sequences of actions 

(Tang et al., 2020). These sequence-derived latent features can accurately predict the final 

responses of test-takers, as well as performance on other items and various cognitive traits. 

Despite rapid methodological developments, the study of how best behavioral patterns 

can be compared across multiple test items and how such patterns can be meaningfully 

interpreted is still at a preliminary stage. A major challenge is that features derived from process 

data are usually item dependent and is therefore difficult to construct variables that summarize 

behavior across items. This is especially the case for problem-solving items since they make 

extensive use of scenario-based designs. Methods that rely on disassembled variables such as 

n-grams (He & von Davier, 2016) or sequential factors in Hidden Markov Models (LaMar, 2018) 

are unlikely to be appropriate for the study of behaviors across items because such methods are 

generally highly specific to individual test items.  

By investigating patterns of behaviors across multiple tasks that are embedded in various 

contexts and scenarios, we innovate on previous research that has examined respondents’ 

problem-solving behaviors focusing only on single items or tasks (Stadler et al., 2019; Liao et 

al., 2019; Xu et al., 2018; Greiff et al., 2015).  

Our approach for identifying behavioral patterns that are comparable across items relies 

on indicators based on the distance between the observed sequence of actions performed by 



respondents and “optimal” sequences, i.e. strategies that item developers and subject domain 

experts defined ex-ante as being optimal ways to solve the task.  

 

1.3. Distance Function over Sequences 

Sequential pattern mining is a data mining method designed to deal with sequential data. 

It extracts useful sequential patterns from a large set of sequences (Kour, 2017; Sharda et.al, 

2018). A sequence database consists of sequences of ordered elements or events recorded with or 

without time-stamped information (Febrer-Hernandez & Hernardze-Palancar, 2012). Sequence 

distance functions are designed to measure sequence (dis)similarities in sequence mining. A 

common approach for detecting patterns in action sequences consists of converting the 

information contained in action sequences into distance measures (Dong & Pei, 2007). In the 

context of problem-solving processes, sequence distance measures can be defined to describe 

how action sequences differ either from each other (Tang et al., 2020) or with respect to pre-

defined sequences (Hao et al., 2015; He et al., 2019). In the application of this paper, a set of pre-

defined sequences were defined ex-ante by content experts involved in the design of the 

assessment tasks. These sequences identify optimal path(s) that test takers could follow to 

correctly solve a problem-solving task, i.e. they represent sequences consisting of the minimum 

number of actions a test taker could take given no prior knowledge of the solution space.  

Character alignment-based distance functions are broadly used in sequence (dis)similarity 

metrics. These algorithms can be local window based or whole sequence based; they can also be 

edit distances or more general pairwise similarity score-based distance. For instance, the edit 

distance function, also called the Levenshtein distance (Levenshtein, 1965, 1966), between two 

sequences 𝑆1 and 𝑆2 defines the minimum number of edit operations (i.e., deletion, insertion and 



substitution) that are needed to transform 𝑆1 into 𝑆2 (Jurafsky & Martin, 2000). The Hamming 

distance between two sequences is limited to cases where the two sequences have identical 

lengths and is defined as the number of positions where the two sequences are different 

(Hamming, 1950). The Longest Common Subsequence algorithm (LCS; e.g., Hirschberg, 1975, 

1977) that will be used in the current study identifies the longest subsequence that is common to 

two given strings. The length of the LCS is defined as the degree of closeness between the two 

strings. This metric was first introduced in the educational assessment literature by Sukkarieh et 

al. (2012), who used the LCS to detect careless errors in respondent-provided sequences to 

analyze the scoring of technology-based tasks in PIAAC. Tang et al. (2020) employed a 

dissimilarity measure first developed by Gomez-Alonso and Valls (2008) to quantify both the 

dissimilarity among the actions from two sequences and the count of actions that occurred 

uniquely in one sequence only.  

 BLAST and PSI-BLAST (Altschul et al., 1997), FASTA (Pearson & Lipman, 1988; 

Pearson, 1990), SSEARCH (Smith & Waterman, 1981) and HMM-based methods (Karplus, 

Barrett, & Hughey, 1998; Johnson et al, 2010) are widely used similarity searching programs 

that produce accurate statistical estimates to identify sequences that share significant similarity 

and have similar underlying structures. The information contained in distance measures 

developed with these methods and applications can be further aggregated by employing 

exploratory dimensionality reduction techniques such as principal component analysis and 

hierarchical clustering (Hao et al., 2015), or multidimensional scaling (Tang et al., 2020). 

 

2. Aim and Research Questions 



The main objective of this paper is to show how the behavioral information that is stored 

in log files can be used to characterize problem-solving strategies in ways that generalize across 

tasks. We establish the extent to which individuals are able to adopt optimal problem-solving 

strategies, whether they under- or over-explore the problem space, how consistently they adopt 

the same behavior when solving tasks designed to engage different skills, and if these behavioral 

patterns are associated with the likelihood that individuals correctly solve the task at hand. 

To do so, we first measure the distance between action sequences adopted by respondents 

and reference action sequences (which are defined ex-ante as the optimal method or methods to 

solve an item) using the longest common subsequence method (LCS) (Cormen et al., 2001; 

Sukkarieh et al., 2012). We construct indicators to characterize the behavior of respondents 

across multiple PSTRE tasks, and analyze differences across countries, as well as across 

population subgroups within each country. We compute four indicators that summarize the 

response strategies, also referred to as behavioral patterns in this work and that are comparable 

across individuals: similarity (how close on average the observed sequence of actions was to a 

reference optimal sequence); consistency of similarity (how the distance between the observed 

and the reference sequence varied across items); efficiency (if respondents solved items using the 

minimum possible number of actions) and consistency of efficiency (if the ability of respondents 

to use the smallest number of actions possible varied across items). This study pursues three 

research questions:  

1. To what extent adults consistently adopt strategies that are close to the optimal 

strategies? Do respondents in different countries tend to display different 

behavioral patterns, i.e. do they differ on indicators of similarity, consistency of 

similarity, efficiency and consistency of efficiency? 



2. What is the association between the adoption of different behavioral patterns and 

problem-solving proficiency?  

3. Do behavioral patterns adopted by respondents while solving the PSTRE 

assessment differ systematically by gender, age, and familiarity with ICT skills at 

home and work?  

 

3. Material and Methods 

3.1.  PSTRE in PIAAC 

The PIAAC study was administered in over 40 countries between 2012 and 2017. It 

consisted of a background survey designed to collect a wide range of socio-demographic 

information from respondents (such as their educational attainment, their labor market status, and 

information on familiarity with ICT and the use of digital technologies at work and in everyday 

life) and of an assessment of literacy, numeracy and problem solving in technology-rich 

environments (PSTRE). While the literacy and numeracy assessments have been administered 

either on paper or on a computer, by its nature the PSTRE assessment was only accessible on a 

computer, and adults with insufficient familiarity with digital devices were excluded from the 

assessment and were only tested in literacy and numeracy.  The PSTRE assessment required 

individuals to engage with complex, interactive tasks, and the computer-based delivery allowed 

some of these interactions to be recorded and stored in log files (Goldhammer et al., 2013). 

For each PSTRE item, the test interface tried to mimic commonly used digital platforms 

and environments, such as email clients, web browsers, or spreadsheets. Although most test 

items used in the PSTRE assessment are confidential and cannot be disclosed, a number of 

sample items were released (OECD, 2011) and are reported in Appendix A. The item reported in 



Figure A1, for instance, required test takers to access and evaluate information in the context of a 

simulated job search involving navigation across three different environments. Test takers had to 

find and bookmark one or more websites that did not require users to register or pay a fee. In this 

item, process data and path tracking could be used to better assess the respondent’s level of 

understanding of the item, beyond the mere response data (merely whether the respondent solved 

the item correctly or not). For example, one of the websites shown in Figure A2 meets the 

specified criteria, but the relevant information about fees and registration is not on the opening 

page. If a respondent bookmarks this site as a correct answer without clicking on the “Learn 

More” link to view the relevant information, shown in Figure A3, one might interpret that 

response differently than if the third page had been viewed. This breadth of information, 

combined with frameworks that specify behaviors of interest, allows us to learn more about what 

adults know and can do relative to the problem-solving construct as conceptualized in PIAAC. 

PSTRE was conceived along three dimensions: a cognitive dimension, a technology 

dimension, and a task dimension (OECD, 2012). The “cognitive dimension” refers to the mental 

structures and processes that are activated when a person engages with a problem with the aim of 

solving it. Four sub-dimensions were identified: setting goals and monitoring progress, planning 

and self-organizing, accessing and evaluation information, and making use of information by 

selecting, organizing and transforming information. The “technology dimension” refers to the 

devices, applications and functionalities through which adults are expected to solve problems 

(e.g., email, web browser, or spreadsheets). The “task dimension” refers to the circumstances 

that trigger a person’s awareness and understanding of the problem and determine the actions 

needed to be taken to solve the problem. For instance, a test taker may be faced with a complex 

issue to find out more about a medical treatment and decide to look for relevant information on 



the web. Single or multiple steps and/or constrains (e.g., time conflict in booking a meeting 

room) may be involved in the task, with implicit (e.g., move emails to different folders) and/or 

explicit instructions (e.g., identifying specified information in a spreadsheet).  More information 

on the development and implementation of the PSTRE in PIAAC study refer to the PIAAC 

Reader’s Companion (OECD, 2019a). 

Table 1 presents an overview of item contents, technological environments and cognitive 

dimensions for the seven interactive PSTRE items which we will use in the empirical analysis.  

[Insert Table 1 around here.] 

 

3.2.  Data 

This paper uses both response and process data on the seven items that were administered 

in the second module of PSTRE (PS2) in PIAAC in five countries: England/Northern Ireland 

(United Kingdom), Ireland, Japan, the Netherlands, and the United States. These countries were 

selected because they display a large range of PSTRE proficiency levels, facilitating the 

investigation of potential differences in problem-solving behaviors across countries with 

different performance levels.2 The full distribution of PSTRE skills in these countries is reported 

in Appendix B. 

Table 2 summarizes the characteristics of the respondents in our sample. The data refer to 

7,462 respondents: 55% of them were women, and their average age was 39 years old 

(S.D.=13.6). Approximately half of the whole sample attained a level of education higher than a 

high-school diploma; this share was lowest in the Netherlands (at around 34%) and highest in 

                                                           
2 Performance in PSTRE can be categorized in four levels: below level 1 (0–240), level 1 (241–290), level 2 (291–

340), and level 3 (341–500). For more details, refer to OECD (2016). 



Ireland (around 67%). The comparative data on the use of digital technologies at work and at 

home revealed a lower use in Japan than other countries, which was consistent with recent 

findings in the OECD Digital Economy Outlook (OECD, 2020). This report indicates that Japan 

is the country with the lowest average daily time spent using Internet, mobile Internet and social 

media in 2019. While the sample of adults that participated in PIAAC was designed to be 

representative of the adult population aged 16-65 living in each country, respondents could be 

excluded from the PSTRE assessment because they lacked sufficient familiarity with ICT 

devices, or because they simply decided to opt out of the computer-based assessment (CBA) and 

took the assessment using paper-based instruments (in which case they would only be assessed in 

literacy and numeracy). The percentage of exclusion from the computer-based assessment by 

country level, shown in the last column in Table 2, was in a range of 9.7% to 36.8%3 among the 

five sample countries in the current study. On average across countries that participated in 

PIAAC, around 25% of the overall sample was administered the paper-based route and therefore 

did not participate in the PSTRE assessment (OECD, 2013).  

 [Insert Table 2 around here.] 

Around 3% of the total PIAAC sample had only information on either process data or 

response data and were therefore dropped from the analysis resulting in a final sample size of 

7,462 individuals in our study. Considering the complexity of multiple language input, we 

transferred all the actions related to keyboard input (e.g., type in “a” or use Shift & Ctrl) as a 

general keystroke labeled as “key”. The frequency of “key” was counted into the number of 

actions. 

                                                           
3 In Japan, 61.8% of the respondents who completed the background questionnaire took the CBA, while 36.8% took 

the paper-based assessment without taking the PSTRE. This number is higher than the international average of 

23.9% respondents who took the paper-based assessment (OECD, 2016). The percentage of exclusion from CBA 

explains the degree of potential bias of the sample in the PSTRE. 



 

3.3.  Materials 

By design, all respondents were presented the seven PSTRE items in the same order. No 

limits in terms of time or in terms of number of actions were imposed.  

Table 3 summarizes information about the characteristics of the action sequences 

undertaken by respondents. The first column presents the average length of action sequences by 

each item. Item U16 involves freestyle typing (i.e., the constructed response required to solve the 

item is not simply employing standardized symbols or numbers). Since U16 is the only item with 

this feature, it presents a relatively high peak in the length of action sequences compared to other 

items. The difficulty of the items can be mapped in the different levels that characterize the 

PSTRE scale, which is presented in the second column of Table 3.4 The most difficult items were 

classified at Level 3 and the easiest were classified at Level 1. The last two columns of Table 3 

report the number of reference sequences and the minimum number of actions needed to solve 

each item. Reference sequences are predefined optimal sequences: they were defined ex-ante by 

item developers and subject experts as the best ways to successfully complete the task. In our 

context “best” means that at any action node, reference sequences consisted of actions that were 

necessary to reach a successful solution to the problem presented. For any item/assessment task, 

it is possible to identify multiple reference sequences when alternative actions can be taken by 

respondents at a specific action node. Among the seven items in this study, only one item (U23) 

was designed to have a single optimal path of actions. Average sequence length was positively 

                                                           
4 The difficulty level in PIAAC was derived by a linear transformation from the item parameters into the 

performance score scale. See more details in the PIAAC technical report (OECD, 2016). 



correlated with the minimal number of required actions by each item. Test takers generally 

undertook more actions than specified in the reference sequences.   

[Insert Table 3 around here.] 

3.4.  Methods 

We analyzed test takers’ actions using the LCS method (Cormen et al., 2001; Sukkarieh 

et al., 2012). The basic idea behind this approach is to identify differences between a reference 

sequence (RS) and the sequence of actions taken by a test taker to solve a particular test item 

(observed sequence, OS). This can be accomplished by computing for each item a measure of the 

distance between the observed and the reference sequence. These distances can be aggregated or 

compared across items and used to construct indicators that characterize the behavior of 

respondents during the assessment. Specifically, we propose two sets of indicators to 

characterize general behavioral patterns across items and subgroups of respondents: (1) 

similarity and consistency of similarity, and (2) efficiency and consistency of efficiency.  

Similarity captures how much, on average, an individual’s sequence deviates from a 

reference sequence (or the closest reference sequence in the case of items designed to have 

multiple reference sequences). It is a measure of the average degree of overlap between the 

sequences of actions taken by respondents across items and the corresponding reference 

sequences.  

Consistency of similarity captures the degree to which respondents follow strategies that 

are consistently close or far from the relevant reference sequences across different items. It is 

computed as the standard deviation of the distances between observed sequences and reference 

sequences across items (i.e. the standard deviation of similarity). A consistent individual is 

someone who, over multiple items, either always follows very closely the optimal sequence, or 



that always deviates from it to the same extent (in other words, consistency is maximized when 

the distance between the observed and the reference sequence is constant across items).  

Efficiency measures the ability of respondents to solve items using the minimum possible 

number of actions and is operationalized by the number of actions undertaken by a respondent 

more than the number of actions contained in the reference sequence. High efficiency indicates 

that no or little excess (redundant) actions occur.  

Finally, we develop an indicator of consistency of efficiency. In line with consistency of 

similarity, consistency of efficiency measures the degree to which respondents are equally 

efficient (or inefficient) across different items and is computed as the standard deviation of 

efficiency across items.  

 

3.4.1. Computing LCS 

The LCS of a set of sequences is a subsequence whose length equals the maximum 

number of actions that are shared, in sequential order, with the reference sequences. For instance, 

suppose the observed sequence X for respondent i consists of the following string of actions: [A, 

A, B, A, D, E] (each letter represents one type of action). The reference sequence Y is [A, B, C, 

D, E]. The LCS is the longest string of actions that are present in sequential order in both X and 

Y, in this case [A, B, D, E]. The length of the LCS is then 4. The algorithm used to compute the 

LCS is presented in the Appendix C. 

If there is no overlap between the two sequences, the length of the LCS is 0. In cases with 

unequal length of sequences, the maximum length of LCS equals the length of the shorter one of 



the two sequences.5 As an illustration, we make the following concrete example6 in the box 

below: the first line is the predefined reference sequence (RS). It is then followed by the action 

sequences of two different test takers’ (OS1 and OS2). LCS1 and LCS2 are the two longest 

common subsequences derived from OS1 and OS2, respectively.  

In this example, the problem is framed in a spreadsheet environment. According to the 

reference sequence (RS), respondents are expected to “start an item (Start), click into the 

spreadsheet (SS) environment, click the searching tool button (Search), type in the full name (to 

identify the person in request), go to the email (E) environment, type in the person ID, click on 

the Next button, and finally confirm to transit to the next item”. The length of the RS is 8. The 

first test taker used 13 actions (that’s the length of OS1) to solve the task, with 7 actions 

overlapping with the RS (and thus 7 is the length of LCS1). The second test taker only used 5 

actions (the length of OS2), all of which were also contained in the RS; as a result, the length of 

LCS2 is 5. 

[Insert Box 1 around here] 

 

It is also possible to adapt the LCS method to fit situations in which multiple solutions for 

a task exist: in these contexts, the reference sequence that generates the longest LCS when paired 

with the observed sequence will be retained as the solution path that the respondent was most 

likely to follow. 

Figure 1 presents an example of deriving the LCS for PSTRE item U19a. The first two 

RSs involve the use of the search function and both RSs have a total length of 11. The remaining 

                                                           
5 See He et al. (2019) for more details on applying the LCS method to process data. 
6 Samples of actions and descriptions are available from the online PIAAC log data analyzer, which is a tool that 

extracts actions from the strings contained in raw log files. The log data analyzer is available at: 

https://dbk.gesis.org/dbksearch/sdesc2.asp?no=6712&db=e&doi=10.4232/1.12955 



two RSs involve the use of the “sort” function and have a total length of 9. The action sequence 

of a hypothetical individual who used 25 steps to complete the task is also presented. The LCS 

was calculated by matching the individual action sequence with RS_1 to RS_4 separately, which 

resulted in LCS1 to LCS4. The LCS4 whose length equals 9 appears as the longest among the 

four, meaning this individual’s observed action sequence had the maximal similarity with RS_4. 

Therefore, it is assumed that the respondent tried to follow RS_4, and LCS4 was retained.  

 

[Insert Figure 1 around here.] 

 

For some problem-solving items, only one strategy can be used to reach a correct 

solution. In such cases, the action sequence is highly correlated with the final response. If a 

respondent misses a key action, his or her chances of giving the correct answer will be greatly 

reduced.  

We finally measured the length of the observed sequence for each respondent in order to 

investigate whether the individual sequence was shorter or longer than necessary and construct 

an indicator of efficiency. All computations were performed using the Program R version 3.6.2. 

 

3.4.2. Generating Indicators across Multiple Tasks  

To aggregate the information extracted from the LCS across items, we constructed a set 

of indicators covering similarity, consistency of similarity, efficiency, and consistency of 

efficiency. 

Similarity and consistency of similarity. For each item, similarity is defined as the ratio 

between the length of LCS (i.e., 𝑙𝑒𝑛(𝐿𝐶𝑆) ) and the length of the reference sequence (i.e., 



𝑙𝑒𝑛(𝑅𝑆)). As it is always true that 𝑙𝑒𝑛(𝐿𝐶𝑆) ≤ 𝑙𝑒𝑛(𝑅𝑆), similarity will always lie in the [0,1] 

interval. The higher the ratio, the more similar the observed sequence is to the reference 

sequence.  

To capture the extent to which a respondent can consistently follow the reference 

sequences across different items, we looked at the distribution of similarity for each person 

across items. The mean of this distribution (SM) is defined as the average degree of similarity 

across items (and is simply labelled “similarity” in the paper). A higher value of SM indicates 

that, on average, a respondent solved problems by following the reference sequences closely. 

The standard deviation of this distribution (SSD) is used as an indicator of consistency of 

similarity. A low value of SSD implies that the distance between the observed and the reference 

sequence did not vary much for the same respondent across the seven items, while a high value 

suggests an inconsistent pattern, with the OS close to the RS in some items but far in others.   

Efficiency and consistency of efficiency. Efficiency is defined as the ratio between the 

length of LCS and the length of the observed sequence (i.e., 𝑙𝑒𝑛(𝑂𝑆)) and measures to what 

degree the LCS and the actual observed sequence overlap. As it is always true that 𝑙𝑒𝑛(𝐿𝐶𝑆) ≤

𝑙𝑒𝑛(𝑂𝑆), the ratio between them would be a number within the [0,1] interval. A ratio close to 1 

implies that a large proportion of the LCS can be matched with the OS, namely, the person 

solved the problem in an efficient way without performing too many actions that do not belong 

to the reference sequence.  

The mean of this distribution (EM) is simply defined as the degree of efficiency across 

items. A higher value of EM indicates that a respondent on average solves problems in an 

efficient way (i.e., with few redundant actions). The standard deviation of this distribution (ESD) 



is used as an indicator for consistency of efficiency to examine whether a respondent can 

maintain a constant degree of efficiency across items.  

 

3.4.3. Distribution of Measurement Indicators  

The shortest possible observed action sequence (in this case the log file would record the 

sequence “Start, Next, Next_OK”) means the respondent skipped directly to the next item 

without interacting with the task at hand. We treated these cases as missing answers and code 

them as “Nonresponse (NR).” To avoid confusion in interpreting the results across items, all 

respondents with at least one occurrence of an NR sequence pattern were excluded from the LCS 

analysis. This resulted in the loss of 2,160 respondents, and in a final sample size of 5,302 

respondents.  

All four indicators (SM, SSD, EM, and ESD) were found to be approximately normally 

distributed (see Appendix D). To facilitate the analysis, we divided the indicators in three groups 

denoted by “low”, “moderate” and “high” values, where low values comprise cases more than 

one standard deviation below the mean, high values cases more than one standard deviation 

above the mean, and moderate values those between these two thresholds. The SM and SSD (i.e., 

average similarity and consistency of similarity) were then mapped in a matrix, classifying 

individuals into nine subgroups (Table 4). The first digit in the group name indicates the degree 

of consistency of similarity (1 is high consistency, 3 is low consistency). The second digit in the 

group name indicates the degree of average similarity (1 is low, 3 is high). For instance, 

respondents in group S13 consistently followed patterns that were very similar to the reference 

sequences, i.e. show high average similarity and high consistency of similarity. Analogously, 



efficiency and consistency of efficiency were mapped in a similar matrix, which resulted in nine 

groups defined by the degree of average efficiency and consistency of efficiency. 

 

[Insert Table 4 around here.] 

   

After classifying respondents according to the four indicators, we analyzed the 

relationship between behavioral patterns and performance in the PSTRE assessment, as well as 

the association with background variables. In order to do this, we use one-way analysis of 

variance (ANOVA) statistics with Bonferroni post-hoc correction. 

   

4. Results 

4.1.  Behavioral patterns 

To answer the first research question, we examined to what extent respondents followed 

patterns similar to the reference sequences and how consistently they did so across different 

items. Figure 2 displays the association between the similarity index (horizontal axis) and the 

consistency of similarity index (vertical axis). The reference lines 𝑋 = 0.51 and 𝑋 = 0.81 

indicate thresholds for the three similarity groups (i.e., low-, moderate-, and high-similarity 

group), while the reference lines 𝑌 = 0.15 and 𝑌 = 0.25 indicate thresholds for the three 

consistency groups (i.e., low-, moderate-, and high-consistency groups). Over two-thirds of 

respondents belonged to the high- and moderate-consistency groups. This tendency appears more 

obvious in the low- and high-similarity groups. Among respondents with low consistency, the 

groups S31 (group with low consistency and low similarity located at the upper-left corner) and 

S33 (group with low consistency and high similarity at the upper-right corner) had the lowest 



proportion of respondents (2.6% and 0.3%, respectively). Within the high-similarity group, 98% 

of respondents adopted moderately or highly consistent strategies. Over 81% of respondents 

were in the moderate- and high-similarity groups, meaning that the large majority of respondents 

followed the reference sequences. Within the high-consistency group, respondents with low, 

moderate, and high similarity values were represented in equal proportions. However, this ratio 

was substantially different for the low-consistency group, where the proportion of low-, 

moderate-, and high-similarity groups was 14%, 84%, and 2%, respectively. Three conclusions 

can be drawn from results presented in Figure 2:  

First, most respondents adopted strategies similar to the predefined ones. This can be 

seen by the small proportion of respondents in the low-similarity cells S11, S21 and S31. 

Second, respondents with average levels of similarity tend to display average levels of 

consistency (cell S22), meaning that for these respondents the distance between the observed and 

the reference sequences does not vary much across items. Third, respondents at the extreme of 

the similarity distribution, i.e. whose sequences were on average very close or very far from the 

reference sequence, tended to do so in a very consistent way across items (meaning that the 

distance between the observed and the reference sequences varied very little across items).     

 

[Insert Figure 2 around here.] 

 

When looking at results for individual countries, Japan and the Netherlands, the two 

countries with the highest average performance in the PIAAC PSTRE assessment, displayed a 

higher degree of similarity than the other countries. On average, respondents from these two 

countries followed the reference action sequence more often than respondents in countries with 



lower levels of performance. The one-way ANOVA on a single-factor country, reveals 

significant differences in similarity between the five countries, F(4,5297) = 39.52, P < 0.001; 

the Bonferroni post hoc correction showed that the similarity indicators on average in Japan and 

the Netherlands are significantly higher than in the other three countries. By contrast, no obvious 

country differences were observed in the indicator consistency of similarity, except for Japan, 

where the indicator was slightly lower than in the other countries (suggesting higher levels of 

consistency for Japanese respondents). The ANOVA test resulted in F(4,5297) = 9.10, P <

0.001; the Bonferroni post hoc correction showed Japan was significantly lower than the other 

countries. 

A similar investigation was conducted on efficiency and consistency of efficiency across 

the five countries. Japan showed a significantly lower average efficiency and higher consistency 

of efficiency than the other four countries, suggesting that adults in Japan usually performed 

more actions than necessary. A set of boxplots of general patterns in similarity and efficiency 

(SM, SSD, EM, ESD) across five sample countries is provided in Appendix E.  

One possible explanation for the lower efficiency of respondents in Japan is the fact that 

a typo was present in the Japanese version of items U19a and U19b: a space between two words 

that is optional in real life settings was required if respondents were to proceed in the context of 

the assessment items. This typo pushed Japanese respondents to execute redundant actions to 

explore the solution, for instance, to keep on making typing errors (due to the unknown space 

between the two words) or switch strategies from searching to sorting function. This issue might 

cause a lower efficiency in the Japanese group in the first two items, resulting in longer response 

time and more actions.  



The correlation between similarity and efficiency across all the five countries showed a 

negative value (-0.31). These results imply that those in the high-similarity group usually 

undertook considerably more steps than necessary to provide a response. Few respondents were 

able to achieve both high efficiency and high similarity at the same time. 

 

4.2.  The Association between Behavioral Patterns and Problem-Solving Proficiency 

To answer the second research question, we examined the association between response 

strategies, and overall proficiency in PSTRE. We found a high and positive correlation (0.79) 

between scores in the PSTRE assessment and the similarity indicator, implying that respondents 

who achieved higher scores tended to perform sequences of actions that were close to the reference 

sequences.  

Figure 3 shows the association between similarity and PSTRE proficiency scores. The 

horizontal axis stands for the similarity groups nested by their consistency subgroups, and the 

vertical axis for respondents’ PSTRE scores. A clear increasing trend is observed in the three 

clusters from low to high similarity with the increasing PSTRE proficiency scores. 

Consistency of similarity was also correlated with proficiency, but as expected the 

relationship varied according to the degree of similarity: within the moderate- and high-similarity 

groups, adults who were more consistent (i.e., S12, S22, S13, and S23) performed slightly better 

than respondents in the low-consistency groups (i.e., S32 and S33). Among respondents in the 

low-similarity group, those who adopted more consistent sequences (group S11) showed the 

lowest performance score. This makes perfect sense, as these individuals consistently adopted 

strategies very dissimilar from the reference sequences.  

 



[Insert Figure 3 around here.] 

 

The relationship among proficiency in PSTRE and the four indicators derived from 

process data is further explored in Figure 4, which presents the associations between average 

similarity and consistency of similarity (plot A), as well as average efficiency and consistency of 

efficiency (plot B). In Figure 4 the horizontal axis stands for the degree of average similarity and 

efficiency and the vertical axis for consistency index, respectively. Within each set of indicators, 

four panels are defined by the PSTRE proficiency levels (level 3 is the highest).  The mean 

values and standard errors by each indicator are reported in the accompanying table. The average 

degree of similarity significantly increased from 0.39 to 0.83 as respondents’ proficiency in 

PSTRE increased. Adults in the two middle proficiency levels (i.e., level 1 and level 2) showed a 

more dispersed distribution of both similarity and consistency of similarity compared to adults in 

the extreme proficiency levels (e.g., below level 1 and level 3). This figure confirms that 

following the predefined optimal path is a good proxy of final performance in the assessment. 

In contrast, we did not find a strong relationship between the degree of efficiency and 

proficiency in PSTRE. Adults who scored below level 1 showed a slightly more dispersed 

distribution of efficiency than adults in the other three levels, suggesting a mixture of patterns in 

efficiency in this group. Some test takers within this group frequently used very short sequences, 

while some performed a very large number of actions, using almost every button in the interface. 

The narrowest band (i.e., ESD=0.21) was noticed in the distribution of adults in proficiency 

level 3, who displayed the lowest degree of efficiency. This suggests that it was very difficult to 

achieve high scores in an efficient way, that is, minimizing the number of redundant or useless 

actions.  



 [Insert Figure 4 around here.] 

 

4.3.  Differences by Socioeconomic Background in Behavioral Patterns 

To answer the third research question, we examined the relationships between the 

indicators of similarity and consistency of similarity and sociodemographic characteristics of 

respondents such as gender, age, and (self-declared) familiarity with ICT.  

 

[Insert Table 5 around here.] 

 

Results presented in Table 5 suggest that women were more likely than men to be in the 

low- and moderate-similarity groups (by approximately 4 and 3 percentage points, respectively). 

Men were more likely to be in the high-similarity group (by 7 percentage points). This gender 

gap was present in all countries, although to different degrees: the smallest difference between 

males and females was found in Japan and the highest in Ireland. Interestingly, women generally 

displayed more consistent behaviors, especially when their average similarity was low or 

moderate (i.e., S11, S12, S21 and S22). Men’s behavior tended to be less consistent; however, 

men in the high similarity group tended to be more consistent than women in the same group 

(see e.g. cells S13 and S23). 

 An ANOVA analysis revealed significant age differences, F(2, 5299) = 69.53, P <

0.001. Younger respondents typically had higher levels of the similarity indicator; the average 

age of respondents in the high-, moderate-, and low-similarity groups was 34.7, 37.2, and 41.5 

years, respectively. Respondents in group S11—characterized by high consistency and low-



similarity—were the oldest (average 44 years old), and those in group S13 —characterized by 

high consistency and high similarity – were the youngest (average 34 years old).  

Significant age differences in the degree of consistency were also found within groups 

defined by levels of similarity. In the low-similarity group, average age dropped from 44 to 38.5 

years as the degree of consistency decreased. The opposite was found in the high-similarity 

group, where adults with lower levels of consistency tended to be significantly older (average 41 

years old). However, because of the small sample size in S33, this result may not be sufficiently 

reliable to draw generalizable conclusions. The findings in socio-demographic variables (age and 

gender) kept in line with Hämäläinen et al. (2019) where younger and male adults were found to 

have a greater chance of being strong problem-solvers especially with their parents having a 

tertiary or upper-secondary degree.  

Previous research indicates that adults who more often use ICT devices at work or at 

home perform better in the PSTRE assessment than those who rarely use them (Liao et al., 2019; 

He et al., 2018). Table 5 presents information on the extent to which engaging in tasks that 

require the use of ICT skills at work and at home is associated with behavioral indicators 

extracted from process data. Levels of ICT use at work were significantly different across adults 

belonging to different similarity groups in ANOVA F(2,3542) = 48.13, P < 0.001. Differences 

remained significant after correcting for the pairwise comparisons. However, no significant 

differences emerged by levels of consistency for the moderate- and high-similarity groups. This 

suggests that making more frequent use of ICT skills at work was predictive of higher similarity 

to the reference sequences, but not of higher consistency.  

Similar results were found in the associations with the use of ICT at home. A significant 

difference was found across the three similarity groups in the ANOVA test, F(2,5012) =



89.31, P < 0.001. However, differences were no longer significant in the post-hoc test that 

corrects for pairwise comparisons between the moderate- and high-similarity groups. This means 

that frequency of use of ICT at home is a less discriminating factor than use of ICT at work. 

Significant differences in consistency were found only for the group displaying low similarity. 

 

5. Conclusions and Discussion 

The use of digital technologies in assessment programs offers researchers and 

policymakers new opportunities to collect and analyze information such as process data (Mislevy 

et al., 2012; Kirsch et al., 2017). This promises to be beneficial for researchers, assessment 

specialists, and educators, providing information for interpretation and analysis to allow for 

better understanding of test takers’ behaviors. So far, advances in understanding cognitive 

processes involved in problem solving have been hampered by the reliance of researchers on 

either measures that are easily generalizable across assessment items but lack specificity and 

detail (such as timing information) or measures that provide a rich characterization of the 

problem-solving process of test takers for a specific test item but cannot be generalized.  

In this paper we exploited the LCS method to derive indicators that can capture and 

characterize the strategies followed by adult participating in a problem-solving assessment across 

a variety of items. We found consistent behavioral patterns for a large number of respondents 

across five countries. More consistent patterns were observed in groups performing at either high 

levels or low levels in the test. We also found that the degree of similarity, and the consistency of 

similarity across items, was a significant predictor of overall performance in the test both at the 

individual and country level.  



We found that men were more likely than women to use strategies similar to the 

reference ones, while women showed more consistent patterns across items. Younger 

respondents were more likely than older respondents to follow reference sequences when solving 

digital tasks. Respondents engaging more frequently (at work or home) with tasks that require 

ICT skills were also more likely to follow optimal strategies. These findings are especially 

helpful for policymakers to better understand the general patterns by different subgroups.  

Our study also has some limitations. The sample used in the current study included all 

respondents who were administered problem-solving items at the end of a two-part test, 

irrespective of whether they had received literacy items, numeracy items or other problem-

solving items in the first part of the test. It is therefore possible that individuals who had been 

allocated problem-solving items in the first stage of the assessment might have adopted different 

test-taking strategies as a result of being more familiar with the assessment domain (Avvisati & 

Borgonovi, 2020); unfortunately, the small sample size did not allow such examination. 

 Moreover, the current study does not make use of timing information. This additional 

information could be used in the future to better characterize respondents’ “efficiency”: shorter 

action sequences could in fact entail more time expended overall (von Davier et al., 2019). 

Respondents who have the same action sequences may differ in the time interval between actions 

(Ulitzsch et al., in press).       

The LCS method identifies a single strategy that the respondent was most likely to have 

followed. However, in practice, respondents often use a combination of strategies: they might 

switch from one strategy to another, or they might use multiple strategies to validate their 

solutions. It would be interesting to refine the present LCS approach in future studies to 

accommodate mixed membership of problem-solving strategies. In addition, the LCS method 



used in this study is just one of several possible choices. Alternative choices such as edit distance 

(Hao et al., 2015) and optimal symbol alignment distance (Herranz et al., 2011) could also be 

used and might give similar results. However, these measures are often more computationally 

demanding and are less well suited for visualizing the strategy that has been chosen by 

respondents. 

Finally, different orthographical input of alphabetic-based and character- based languages 

may also impact the length of sequences in problem-solving process such as typing in key 

information in searching function or giving a constructed response to an open-ended question. 

The frequency of keystrokes in character-based language such as Japanese may require more 

actions than the alphabetic-based languages because an extra step to select an appropriate 

homophone is usually involved in typing actions (Ercikan et al., 2020). The effect of language 

variation has been minimized in the PIAAC tasks by using standardized symbols and numbers, 

and only one item required freestyle typing. Overall, we did not find any significant difference in 

the sequence length by language input.  

Future studies could further refine the LCS method developed in this paper and integrate 

information from process data with item response models to get a more accurate estimate of 

respondents’ latent traits. While the analysis of process data can add valuable insights and 

expand the value of the information gathered in the context of large-scale assessments, it is 

important to be mindful of the technical and ethical implications that stem from the use of such 

data and give a meaningful interpretation of the results.  

Future research could also try to use the cognitive diagnostic model to examine the 

relationship between each cognitive dimension and problem-solving skills and identify subskills 

that need a further improvement.  



Besides, cultural and country differences might be reflected in test takers’ process 

patterns. This also leads to new research questions. For instance, whether test takers from 

different cultural backgrounds or different countries adopt the same solution to a digital task, and 

whether the differences in strategies have an association with test takers’ responses to assessment 

items, or to items contained in the background questionnaire that is administered alongside the 

assessment. We believe that process data will play an important role in providing a new angle to 

explore these issues of cultural diversity.   

As valuable as process data can be, they are currently not much more than a byproduct of 

the features of the software used to deliver the assessment. The choice of which information was 

to be recorded in log files was not driven by theoretical or analytical considerations, and 

similarly, items were not explicitly designed with the purpose of identifying any strategy with 

the help of process data (OECD, 2019b). The research potential of process data can be 

maximized if their use for secondary analysis of this type were considered at the item 

development stage. Effort should be made to design items that allow for clear identification of 

different solution strategies; ideally, these different strategies would be mapped to cognitive 

theories that researchers might be interested to test with the aid of process data, thus better 

supporting adult learning and assessments (OECD, 2019b). 
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Box 1 

Example of a Reference Sequence and Longest Common Sequences  

 

 

 

 

 

 

RS (length=8): Start, SS, Search, Type_FullName, E, InputID, Next, Next_OK   

OS1 (length=13): Start, E, SS, E, SS, Search, Type_FullName, Sort, Next, Next_Cancel, E, Next, Next_OK 

LCS1 (length=7): Start, SS, Search, Type_FullName, E, Next, Next_OK 

OS2 (length=5): Start, E, InputID, Next, Next_OK 

LCS2 (length=5): Start, E, InputID, Next, Next_OK 



 

Table 1 

Item Concepts and Cognitive Dimensions of the Seven PSTRE Items in PIAAC PS2 

Item 

ID 
Item Content 

Environments  Cognitive Dimensions 

Email Web Spreadsheet 
 Goal setting and 

monitoring progress 

Planning, self-

organizing 

Acquiring and 

evaluating information 

Making use of 

information 

U19a Club Membership X  X   X  X 

U19b Club Membership   X  X X X  

U07 Book Order  X     X  

U02 Meeting Room X X   X  X  

U16 Relay All X     X   

U11b Locate Email X      X X 

U23 Lamp return X X    X X  

Note: The items are ordered according to the order or appearance in the assessment. 

 

  



Table 2 

Sample Descriptions by Countries, PSTRE Proficiencies and Background Variables  

 

Sample 

Size in 

Current 

Study 

Sample Proportion by PSTRE Level 
PSTRE Score 

Mean (S.D.) 

Gender 

Female (%) 

Age 

Mean (S.D.) 

Education 

Above high 

school (%) 

ICT at Home 

Mean (S.D.) 

ICT at Work 

Mean (S.D.) 

Percentage of 

Exclusion from 

CBA on Country 

Level 
Below level 1 Level 1 Level 2 Level 3 

GBR 2,317 0.18 0.43 0.35 0.04 276.4 (39.0) 60% 39.4 (13.5) 42% 2.0 (0.9) 2.1 (1.0) 14.1% 

IRL 1,289 0.20 0.46 0.31 0.04 273.8 (39.2) 55% 37.6 (12.3) 67% 2.1 (0.9) 2.2 (1.0) 30.7% 

JPN 1,041 0.12 0.28 0.48 0.12 294.4 (42.5) 49% 38.0 (13.5) 57% 1.5 (0.9) 1.7 (0.9) 36.8% 

NLD 1,487 0.14 0.37 0.42 0.07 285.8 (40.1) 53% 40.8 (14.3) 34% 2.3 (0.8) 2.1 (0.9) 9.7% 

USA 1,328 0.20 0.42 0.33 0.05 274.9 (41.3) 53% 39.1 (14.0) 50% 2.3 (0.9) 2.1 (1.1) 14.9% 

Total 7,462 0.17 0.39 0.38 0.06 280.1 (40.8) 55% 39.0 (13.6) 50% 2.1 (0.9) 2.1 (1.0) 21.2% 

Note: S.D. refers to standard deviation. GBR=England/Northern Ireland (United Kingdom), IRL=Ireland, JPN=Japan, 

NLD=Netherlands, USA=United States. N=7,462, corresponding to test takers in PIAAC in the five countries who were assigned to 

PS2. The last column, percentage of exclusion from CBA on country level indicates the percentage of respondents per country who 

completed the Background Questionnaire took the paper-based assessment because of being opted out (personally refused CBA) or 

excluded (failed in ICT Core Assessment) from the CBA, thus not took PSTRE (data source: PIAAC Tech Report, (OECD, 2016)).  



 

Table 3 

 Sequence Characteristics of the Seven PSTRE Items in PIAAC PS2 (N=7,462) 

Item ID 
Average 

Sequence Length 

Difficulty 

Level 

Number of Reference 

Sequences 

Minimal Number of 

Required Actions 

U19a 19.63 1 4 9 

U19b 21.18 2 4 12 

U07 18.08 2 2 18 

U02 53.02 3 5 25 

U16 97.71 1 16 8 

U11b 29.61 3 18 10 

U23 28.51 2 1 17 

Note: Reference sequences indicate the expert-predefined action sequences for each item. The 

minimal number of actions indicates the least number of actions to correctly solve the item. The 

items are ordered according to the order of appearance in the assessment. The keystrokes are 

counted into the number of actions. The key strokes in different languages were not counted into 

the minimal number of required actions in U16. 
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Table 4 

Matrix of Similarity and Consistency of Similarity 

  

Average Similarity (MEAN) 

M1 

(Low Similarity) 

M2 

(Moderate Similarity) 

M3 

(High Similarity) 

C
o
n
si

st
en

cy
 (

S
D

) 

SD1 

(High Consistency) 

S11 S12 S13 

High Consistency High Consistency High Consistency 

Low Similarity Moderate Similarity High Similarity 

SD2 

(Moderate Consistency) 

S21 S22 S23 

Moderate Consistency Moderate Consistency Moderate Consistency 

Low Similarity Moderate Similarity High Similarity 

SD3 

(Low Consistency) 

S31 S32 S33 

Low Consistency Low Consistency Low Consistency 

Low Similarity Moderate Similarity High Similarity 

 

Note: M indicates the mean level of similarity across items per person. SD indicates the 

standard deviation of similarity across items per person. The degree of average similarity 

is shown by columns. The degree of consistency of similarity is shown by rows. 
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Table 5 

Descriptive Statistics of Gender, Age, and ICT Skills by Similarity Levels  

 Gender  Age  ICT Skills at Work  ICT Skills at Home 

 Male (%) Female (%)  Mean (SE) S.D.  Mean (SE) S.D.  Mean (SE) S.D. 

Low Similarity 16.7% 20.8%  41.51 (0.45) 14.17  1.87 (0.04) 0.94  1.90 (0.04) 0.82 

        S11 4.6% 6.0%  43.79 (0.82) 13.85  1.72 (0.07) 0.89  1.69 (0.06) 0.89 

        S21 9.6% 12.0%  41.11 (0.59) 14.14  1.86 (0.05) 0.94  1.91 (0.04) 0.83 

        S31 2.5% 2.8%  38.45 (1.22) 14.33  1.97 (0.11) 0.95  2.02 (0.08) 0.97 

Moderate Similarity 62.0% 65.2%  37.15 (0.23) 13.32  2.16 (0.02) 0.98  2.25 (0.02) 0.91 

        S12 6.1% 6.9%  37.31 (0.72) 13.34  2.19 (0.06) 0.99  2.23 (0.05) 0.84 

        S22 40.9% 42.4%  37.30 (0.28) 13.36  2.14 (0.09) 0.99  2.26 (0.02) 0.98 

        S32 15.0% 15.9%  36.69 (0.46) 13.24  2.15 (0.04) 1.03  2.21 (0.03) 0.83 

High Similarity 21.3% 14.0%  34.66 (0.36) 10.91  2.40 (0.04) 0.98  2.38 (0.03) 0.80 

        S13 9.0% 5.1%  33.85 (0.57) 11.03  2.40 (0.06) 1.08  2.46 (0.04) 0.81 

        S23 12.1% 8.5%  35.03 (0.46) 10.79  2.38 (0.04) 0.92  2.37 (0.03) 0.79 

        S33 0.2% 0.4%  41.40 (2.61) 10.13  2.47 (0.20) 0.72  2.47 (0.24) 0.95 

Note: SE refers to standard error. S.D. refers to standard deviation. The consistency subgroups nested within each similarity group are 

ordered in a range from high consistency (e.g., S11) to low consistency (e.g., S31). 

 


