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Abstract. Dropping probability of handoff calls and blocking probabil-
ity of new calls are two important QoS measures for cellular networks.
Call admission policies, such as fractional guard channel and uniform
fractional guard channel policies are used to maintain the pre-specified
level of QoS. Since the parameters of network traffics are unknown and
time varying, the optimal number of guard channels is not known and
varies with time. In this paper, we introduce a new dynamic guard chan-
nel policy, which adapts the number of guard channels in a cell based on
the current estimate of dropping probability of handoff calls. The pro-
posed algorithm minimizes blocking probability of new calls subject to
the constraint on the dropping probability of handoff calls. In the pro-
posed policy, a learning automaton is used to find the optimal number
of guard channels. The proposed algorithm doesn’t need any a priori
information about input traffic. The simulation results show that per-
formance of this algorithm is close to the performance of guard channel
policy for which we need to know all traffic parameters in advance. Two
advantages of the proposed policy are that it is fully autonomous and
adaptive. The first advantage implies that, the proposed policy does not
require any exchange of information between the neighboring cells and
hence the network overheads due to the information exchange will be
zero. The second one implies that, the proposed policy does not need
any priori information about input traffic and the traffic may vary.

1 Introduction

With increasing popularity of mobile computing, demand for channels is on
the rise. Since number of allocated channels for this purpose is limited, the
cellular and micro cellular networks are introduced, in which the service area is
partitioned into regions called cells. Introduction of micro cellular networks leads
to improvement of network capacity but increases the expected rate of handoff.
When a mobile host moves across the cell boundary, handoff is required. If an
idle channel is available in the destination cell, then the handoff call is resumed;
otherwise the handoff call is dropped. Dropping probability of handoff calls (Bh)
and blocking probability of new calls (Bn) are important quality of service (QoS)

M.H. Shafazand and A M. Tjoa (Eds.): EurAsia-ICT 2002, LNCS 2510, pp. 643–650, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



644 H. Beigy and M. Meybodi

measures of the cellular networks. Since the disconnection in the middle of a call
is highly undesirable, Bh is more serious than Bn. In order to control Bn and Bh,
call admission control (CAC) policies are introduced. The call admission policies
determine whether a new call should be admitted or blocked. Both Bn and Bh

are affected by call admission control policies. The simplest CAC policy is called
guard channel policy (GC) [1]. Suppose that the given cell has C full duplex
channels. The guard channel policy reserves a subset of channels, called guard
channels, allocated to a cell for sole use of handoff calls (say C − T channels).
Whenever the channel occupancy exceeds the certain threshold T , the guard
channel policy rejects new calls until the channel occupancy goes below T . The
guard channel policy accepts handoff calls as long as channels are available. As
the number of guard channels increased, Bh will be reduced while Bn will be
increased [2]. It has been shown that there is an optimal threshold T ∗ in which
Bn is minimized subject to the hard constraint on Bh [3]. Algorithms for finding
the optimal number of guard channels are given in [3,4]. These algorithms assume
that the input traffic is a stationary process with known parameters. The GC
policy reserves an integral number of guard channels for handoff calls. In order
to have more control on Bn and Bh, limited fractional guard channel (LFG)
policy is introduced, which reserves a non-integral number of guard channels [3].
It has been shown that there is an optimal threshold T ∗ and an optimal value
of π∗ for which Bn is minimized subject to the hard constraint on Bh [3]. An
algorithm for finding such optimal parameters is given in [3]. Since the input
traffic is not a stationary process and its parameters are unknown a priori, the
optimal number of guard channels is different for different traffic. In such cases
the dynamic guard channel policy can be used. In dynamic guard channel policy,
the number of guard channels varies during the operation of the cellular network.

Learning automaton (LA) is a reinforcement learning technique and has been
used successfully in many applications such as telephone and data network rout-
ing [5,6], solving NP-Complete problems [7,8,9,10] and capacity assignment [11],
to mention a few. In this paper, we propose an adaptive and autonomous call
admission control algorithm, which uses LA. This algorithm uses only the cur-
rent channel occupancy of the given cell and dynamically adjusts the number of
guard channels. The proposed algorithm minimizes the blocking probability of
new calls subject to the constraint on the dropping probability of handoff calls.
Since the learning automaton starts its learning without any priori knowledge
about its environment, the proposed algorithm does not need any a priori infor-
mation about input traffic. One of the most important advantage of the proposed
algorithm is that no status information will be exchanged between neighboring
cells. The exchange of such status information increase the performance of the
proposed algorithm. The simulation results show that the performance of this
algorithm are near to performance of GC policy that knows all traffic parameters.

The rest of this paper is organized as follows: The section 2 presents the
performance parameters of guard channel policy. The LA briefly is given in
section 3. The proposed LA based dynamic guard channel policy is presented in
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section 4. The computer simulations is given in section 5 and section 6 concludes
the paper.

2 The Blocking Performance of Guard Channel Policy

The blocking performance of guard channel policy is computed based on the
following assumptions.

1. The arrival process of new and handoff calls is poisson process with rate λn

and λh, respectively. Let λ = λn + λh.
2. The call holding time for both types of calls are exponentially distributed

with mean µ−1.
3. The time interval between two calls from a mobile host is much greater than

the mean call holding time.
4. Only mobile to fixed calls are considered.
5. The network is homogenous.

The above first three assumptions have been found to be reasonable as long as
the number of mobile hosts in a cell is much greater than the number of channels
allocated to that cell. The fourth assumption makes our analysis easier and the
fifth one lets us to examine the performance of a single network cell in isolation.
Suppose that the given cell has a limited number of full duplex channels, C, in its
channel pool. We define the state of a particular cell at time t to be the number
of busy channels in that cell, which is represented by c(t). The {c(t)|t ≥ 0} is a
continuous-time Markov chain (birth-death process) with states 0, 1, . . . , C. The
state transition rate diagram of a cell with C full duplex channels and dynamic
guard channel policy is shown in figure 1.
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Fig. 1. Markov chain model of cell

Because of the structure of the Markov chain, we can easily write down
the steady-state balance equations. Define the steady state probability Pn =
limt→∞ Prob[c(t) = n] for state n = 0, 1, . . . , C. Then, the following expression
can be derived for Pn (n = 0, 1, . . . , C).

Pn =




ρk

k! P0 k = 0, 1, . . . , T − 1

ρkαk−T

k! P0 k = T, . . . , C,

(1)

where ρ = λ/µ, α = λh/λ and P0 is the probability that all channels are free
and given by the following expression.

P0 =

[
T−1∑
k=0

ρk

k!
+

C∑
k=T

ρkαk−T

k!

]−1
(2)
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Thus, dropping probability of handoff calls, Bh(C, T ), ie equal to Bh(C, T ) =
ρCαC−T

C! and blocking probability of new calls is equal to Bn(C, T ) =
∑C

k=T Pk.
The objective of call admission control policies is to find a T ∗ that minimizes

the Bn(C, T ∗) given the constraint Bh(C, T ∗) ≤ ph. The value of ph specifies
by the quality of service of the network. In order to find the optimal value of
T ∗, in [3] a binary search and in [4] a linear search algorithms are given. These
algorithms assumes that the all parameters of input traffic are known in advance.

3 Learning Automata

The automata approach to learning involves the determination of an optimal
action from a set of allowable actions. An automaton can be regarded as an
abstract object that has finite number of actions. It selects an action from its
finite set of actions. This action is applied to a random environment. The ran-
dom environment evaluates the applied action and gives a grade to the selected
action of automata. The response from environment (i.e. grade of action) is used
by automata to select its next action. By continuing this process, the automa-
ton learns to select an action with best grade. The learning algorithm used by
automata to determine the selection of next action from the response of environ-
ment. An automaton acting in an unknown random environment and improves
its performance in some specified manner, is referred to as learning automaton
(LA). Learning automata can be classified into two main families: fixed structure
learning automata and variable structure learning automata [12].

Variable structure learning automata are represented by triple < β, α, T >,
where β is a set of inputs actions, α is a set of actions, and T is learning algo-
rithm. The learning algorithm is a recurrence relation and is used to modify the
state probability vector. It is evident that the crucial factor affecting the perfor-
mance of the variable structure learning automata, is learning algorithm. Various
learning algorithms have been reported in the literature. Let αi be the action
chosen at time k as a sample realization from probability distribution p(k). In
linear reward-εpenalty algorithm (LR−εP ) scheme the recurrence equation for
updating p is defined as

pj(k + 1) =




pj(k) + a × [1 − pj(k)] if i = j
if β(k) = 0

pj(k) − a × pj(k) if i �= j
(3)

pj(k + 1) =




pj(k) × (1 − b) if i = j
if β(k) = 1

b
r−1 + pj(k)(1 − b) if i �= j

(4)

The parameters 0 < a < 1 and 0 < b 	 a represent step lengths and r is the
number of actions for learning automata. The a and b determine the amount of
increase and decreases of the action probabilities, respectively. If the a equals
to b the recurrence equations (3) and (4) is called linear reward penalty(LR−P )
algorithm.
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if (NEW CALL) then

set g ← LA.action ()

if (c(t) < C − g )then

accept call

if (B̂h < ph ) then

reward action g

else

penalize action g

end if

else

reject call

if (B̂h < ph ) then

penalize action g

else

reward action g

end if

end if

end if

Fig. 2. LA based dynamic guard channel algorithm

4 LA Based Dynamic Guard Channel Policy

In this section, we introduce a new LA based algorithm (figure 2) to determine
number of guard channels when the parameters λn, λh, and µ are unknown and
possibly time varying. In this algorithm, LA is used to adjust number of guard
channels. Assume that the cell has C full duplex channels. Let the number of
guard channels at time instant t denoted by g(t) is in interval g(t) ∈ [gmin, gmax],
where 0 ≤ gmin ≤ gmax ≤ C. In the proposed algorithm, each base station has a
LA with gmax − gmin + 1 actions, where action αi denotes that the base station
must use g(t) = gmin + αi − 1 guard channels. The proposed algorithm can be
described as follows. When a handoff call arrives at the given cell and a channel
is available, then the call is accepted; otherwise it is dropped. When a new call
arrives at the given cell, LA associated to the cell selects one of its actions,
say αi. If the cell has at least gmin + αi − 1 free channels, then the incoming
call is accepted; otherwise it is blocked. Then the base station computes the
current estimate of dropping probability of handoff calls (B̂h) and then compare
this quantity with the specified level of QoS (ph). If the incoming new call is
accepted and the current value of (B̂h) is less than ph then action αi is rewarded;
otherwise penalized. If the incoming new call is blocked and the current value
of (B̂h) is greater than ph then the action αi is rewarded; otherwise the action
αi is penalized. The comparison of current estimate of dropping probability
of handoff calls and the specified level of QoS (ph) is done to guarantee the
specific level of QoS. The proposed algorithm requires less resources (bandwidth
of the wired-line network) than other distributed call admission algorithm for
which the status of all neighboring cells are needed for determination of guard
channels. In other distributed call admission algorithms, status information must
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Fig. 3. The comparison of guard channel policy and dynamic guard channel policy

be exchanged between neighboring cells in the case of arrival of a call, departure
of a call, and handoff of a call. However, the exchange of status information can
be used to speed up the convergence of the proposed algorithm, which results
an improvement of the proposed algorithm. Since the learning automata begin
their learning without a priori knowledge about its environment, the proposed
algorithm does not require any information about input traffic. Even though the
priori information about input traffic is not needed by the algorithm, availability
of such information may be used to find a better learning algorithm in order to
choose a better learning algorithm for adaptation of traffic parameters. The use
of a priori information in the proposed algorithm needs to be investigated. The
proposed algorithm at the beginning does not perform well but as it proceeds, the
performance of the algorithm approaches to its optimal performance. Initially,
the proposed guard channels randomly.

5 Simulation Results

In this section, we compare performance of the guard channel [1], the limited
fractional guard channel [3], and the dynamic guard channel algorithms pro-
posed in this paper. The results of simulations are summarized in table 1. The
simulation is based on the single cell of homogenous cellular network system. In
such network, each cell has 8 full duplex channels (C = 8). In the simulations,
new call arrival rate is fixed to 30 calls per minute (λn = 30), channel holding
time is set to 6 seconds (µ−1 = 6), and the handoff call traffic is varied be-
tween 2 calls per minute to 20 calls per minute. The results listed in table 1 are
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obtained by averaging 10 runs from 2, 000, 000 seconds simulation of each algo-
rithm. The objective is to minimize the blocking probability of new calls subject
to the constraint that the dropping probability of handoff calls is less than 0.01.
The optimal number of guard channels for guard channel policy is obtained by
algorithm given in [4] and the optimal parameters of limited fractional guard
channel policy is obtained by algorithm given in [3].

Table 1. The simulation results of the LA base dynamic guard channel policy

GC LFG DGC

Case λh Bn Bh Bn Bh Bn Bh

1 2 0.063507 0.001525 0.031609 0.023283 0.053433 0.010619
2 4 0.077080 0.003538 0.051414 0.020675 0.080966 0.010039
3 6 0.091013 0.005923 0.071632 0.018707 0.125500 0.009964
4 8 0.105002 0.008380 0.092138 0.016706 0.154861 0.010031
5 10 0.120260 0.011877 0.114445 0.015572 0.207490 0.010067
6 12 0.231559 0.004309 0.147902 0.014044 0.245842 0.010017
7 14 0.255346 0.005975 0.204217 0.012675 0.290619 0.009960
8 16 0.275489 0.007999 0.250642 0.011554 0.331478 0.009983
9 18 0.296834 0.010518 0.294441 0.010877 0.377334 0.009953
10 20 0.459183 0.006081 0.384157 0.010182 0.427894 0.010005

By inspecting table 1, it is evident that the performance of dynamic guard
channel policy is close to the performance of guard channel policy. One reason
for the difference in performances of the guard channel policy and the proposed
policy is due to the fact that transient behavior of the proposed algorithm.
Since, the performance parameters (the blocking probability of new calls and the
dropping probability of handoff calls) in the early stages of simulation are far
from their desire value, they affect the long-time calculation of the performance
parameters. However, such effect can be removed by excluding the transient
behaviors of the proposed algorithm, which is shown in figure 3. Figure 3 shows
the evolution of the performance parameters for the guard channel policy and the
proposed dynamic guard channel policy. The traffic parameters used for figure 3
corresponds to case 10 in table 1. By carefully inspecting figure 3 and ignoring
the transient behavior of the proposed algorithm, it can be concluded that the
dropping probability of handoff calls approaches its prescribed value (ph), while
the blocking probability of new calls is less than the corresponding performance
parameter of guard channel policy.

6 Conclusions

In this paper, a dynamic guard channel policy based on learning automata is
given. The proposed algorithm adapts the number of guard channels in a cell
using current estimate of dropping probability of handoff calls. This algorithm
minimizes blocking probability of new calls subject to the constraint on dropping
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probability of handoff calls. The simulation results show that the performance
of this algorithm is very close to the performance of guard channel policy that
knows all traffic parameters in advance. The proposed policy has three advan-
tages: 1) doesn’t require any exchange of information between the neighboring
cells leading to less network overheads. 2) doesn’t need any a priori information
about the input traffic. 3) the algorithms works for time varying traffics.
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