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Abstract

This paper proposes a multiscale texture classifier which uses features extracted from both magnitude and
phase responses of subbands at different resolutions of the dual-tree complex wavelet transform decomposi-
tion of a texture image. The mean and entropy in the transform domain are used to form a feature vector.
The proposed method can achieve a high texture classification rate even for small number of samples used in
training stage. This makes it suitable for applications where the number of texture samples used in training
is very limited. The superior performance and robustness of the proposed classifier is shown for classifying
and retrieving texture images from image databases.
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1. Introduction

Content-based image retrieval (CBIR) from unannotated image databases has been gaining interest of
the research community due to tremendous growth in size of online digital images. A typical CBIR system
consists of two main parts: 1) feature extraction and 2) similarity measurement. First, features such as
shape, texture and colour, which constitute the image signature are generated to represent the content
of a given image. The similarity of a query image to the images in database is then measured using an
appropriate distance metric.

The ability to classify texture, where texture is used to represent the content of an image, is a fundamental
requirement of a CBIR system. For texture classification Gabor filters, wavelet transforms, finite impulse
response filters have been widely used. The Gabor filter is appealing because of its simplicity and support
from neurophysiological experiments [1]. Gabor filters have been used for texture segmentation despite being
based on texture reconstruction [2], [3]. A general Gabor filter bank is often too large since it is designed
to capture general texture properties. However, textures can be classified using a small set of filters, which
gives rise to the filter selection problem. The wavelet based texture classifiers are similar to Gabor based
methods with the Gabor filters replaced by the Discrete Wavelet Transform (DWT) [4, 5, 6, 7, 8, 9]. The
DWT based methods employ multiscale decomposition to extract high-frequency components from wavelet
subbands for texture representation. However the DWT is shift variant, thus a shift in the signal degrades
the performance of DWT based classifiers.

DWT has also been used for texture retrieval. For example, the generalized Gaussian distribution (GGD)
and Kullback-Leibler distance metrics have been used in the DWT domain [10]. The similarity measure
and feature extraction are jointly considered for the estimation and detection in a maximum likelihood
framework, providing a definition for similarity measurement using Kullback-Leibler divergence (KLD). The
performance of the texture retrieval system then depends on modelling the marginal distribution of wavelet
coefficients using GGD and on the existence of a closed form for the KLD between GGDs. DWT has
limited directionality, i.e., wavelet subbands are oriented at directions of 0◦, 45◦ and 90◦ at each scale of
decomposition, which makes it difficult to discriminate texture patterns oriented at other directions. In
order to improve directional selectivity, two-dimensional (2-D) rotated wavelet filters that are non-separable
and oriented were used to improve the texture retrieval performance of the standard DWT [8]. The aim was
to improve characterization of diagonally oriented textures.
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However, DWT is not robust to shift [11] which means that small shifts in the input signal can cause
major variations in the distribution of energy between DWT coefficients at different scales. This makes it
difficult to use features extracted from DWT coefficients in supervised pattern classification applications.
Since the wavelet filters of DWT are separable and real, DWT has poor directional selectivity for diagonal
features because [11]. These characteristics are major obstacles for robust feature representation. The shift
invariance can be achieved by using the undecimated form of the dyadic filter tree but this suffers from
increased computation requirements and high redundancy in the output information. Gabor wavelets can
be used as an alternative to DWT. They are designed to be directionally selective and are robust to shift
since they are non-decimated, but they are therefore overcomplete and hence computationally expensive.
The dual-tree complex wavelet transform (DT CWT) has been shown to be approximately shift invariant
and has limited redundancy [11]. They have good selectivity and directionality in 2-dimensions (2-D) with
Gabor-like filters. The DT CWT has efficient order-N computation which is only 4 times the simple DWT
for image processing.

The afore-mentioned advantages of DT CWT and its multiscale structure make it appealing for texture
classification and retrieval [12]. In our recent work, we used DT CWT subbands to design a multiscale
texture classifier [13]. The classifier uses simple statistical features of the mean and standard deviation of
the magnitude of DT CWT subbands in different scales. The multiscale classifier is further improved by
employing Bayesian inference [14]. The dimensionality of multiscale feature vectors is reduced using principal
component analysis (PCA). The class conditional probability density function of low-dimensional feature
vectors for each texture class is then estimated by using Parzen-window estimate with identical Gaussian
kernels and is used to represent the texture class. A query texture image is classified as the corresponding
texture class with the highest a posteriori probability according to a Bayesian inferencing. Performance gain
with respect to the classifier in [13] is achieved at the expense of higher computational complexity. The
inter-scale phase relationships of complex transform coefficients are also studied and a wrapped Cauchy or
von Mises distribution is utilised to model the relative phase distributions [15]. The phase and magnitude
information of the complex wavelet coefficient are combined into a real measure to describe the intensity
variation of a texture [16]. The measure is modelled with the real generalized Gaussian distribution (GGD)
and the model parameters are used as the texture feature during the classification [16]. However, the
model based methods share a general problem of computational complexity in fitting the model to the data
extracted from DT CWT decompositions.

In this paper, we show that texture classification without a complicated model can be achieved by using
simple statistical measures extracted from magnitude and phase of DT CWT subbands. We improve the
performance of our previous work [13] by using both magnitude and phase of the complex subbands of
DT CWT. The additional information provided by the phase combined with the magnitude of the complex
subbands results in more discriminative feature vectors. We also modified the texture feature vector structure
to increase its discriminability. The new classifier is applied to both supervised texture classification and
texture retrieval problems.

The paper is organized as follows. Section 2 presents DT CWT. Section 3 presents the proposed multiscale
texture classifier, the learning and classification of texture features for different texture classes, and the
process of texture retrieval. The experimental results and discussions are presented in Section 4. Finally,
Section 5 concludes the paper.

2. Dual-tree complex wavelet transform

The DWT is not shift invariant due to the decimation during the transform. A small shift in the input
signal generates very different wavelet coefficients. The DT CWT [11] exhibits approximate shift invariance
and improved directional resolution. It achieves perfect reconstruction and good frequency characteristics
using two parallel fully decimated trees with real coefficients. The one-dimensional (1-D) DT CWT is
implemented using a pair of filter banks operating on the same data simultaneously as shown in Figure 1.
The upper iterated filter bank (denoted with index a) represents the real part of a complex wavelet transform,
meanwhile the lower one (denoted with index b) represents the imaginary part. There are two sets of filters
used, the filters at level 1, and the filters at all higher levels.
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Figure 1: Implementation of the 3-level 1-D DT-CWT using two filter banks operating as two parallel trees on the same data,
where H0i and H00i are low-pass wavelet filters and H1i and H01i are high-pass wavelet filters. The outputs from the upper
and lower trees are interpreted as the real and imaginary parts of the DT CWT coefficients, respectively.

Figure 2: The real (top row) and imaginary (bottom row) parts of the impulse responses of the DT CWT filters for the 6
directional subbands, all illustrated at level 4 of the transforms. The complex wavelets provide 6 directionally selective filters.
From left to right, 15◦, 45◦, 75◦, −75◦, −45◦, and −15◦ subbands.
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Figure 3: (a) Shift dependence of the DWT: signal reconstructions from wavelet and scaling function components at levels 1
to 4 of the DWT decompositions of 16 shifted step responses; and (b) Shift invariance of the DT-CWT: signal reconstructions
from wavelet and scaling function components at levels 1 to 4 of DT-CWT decompositions of 16 shifted step responses.

To better understand the shift dependence of the DWT, an input signal consisting of a step function
at sixteen different shifts is decomposed using a four level DWT as shown in Figure 3(a). In each case,
the input is a unit step, shifted to 16 adjacent sampling instants in turn. Each unit step is passed through
the forward and inverse version of the DWT. The figure shows the input steps and the components of the
inverse transform output signal, reconstructed from the wavelet coefficients at each of levels 1 to 4 in turn
and from the scaling function coefficients at level 4. Summing these components reconstructs the input
steps perfectly. The 4-level DWT decomposition of 1-D signal X produces real-valued high-pass subbands
of X1,1, X2,1, X3,1, X4,1, and real-valued low-pass subband X4,0 at the final level of decomposition. The
reconstructed signals shown in the second row of Figure 3(a) are reconstructions only from subbands X1,1

and X4,0 with the other subbands set to 0, i.e., X2,1 = 0, X3,1 = 0, and X4,1 = 0. Similarly, the third, fourth,
and fifth rows are reconstructed only from X2,1 and X4,0, X3,1 and X4,0, and X4,1 and X4,0, respectively.
The signals in the last row is reconstructed only from X4,0. If the the transform is shift invariant, then
the reconstructions from the same subbands should be similar shape. However, the shift dependence of
the transform is evident from the varying energy in each of the reconstructed signal. To demonstrate the
shift invariance of the DT CWT, the same procedure is applied except DWT is replaced with DT CWT as
shown in Figure 3(b). The figure shows the input steps and the components of the inverse transform output
signal, reconstructed from the DT CWT wavelet coefficients at each of levels 1 to 4 in turn and from the
scaling function coefficients at level 4. Summing these components reconstructs the input steps perfectly.
Good shift invariance is shown when all the 16 output components from a given level are the same shape,
independent of shift in the input signal. It is clear that the DT-CWT provides good shift invariance.

Similar to 2-D DWT, the pair of trees are applied to the rows and then the columns of the image
to compute the 2-D DT CWT decomposition of images. This operation results in six complex high-pass
subbands at each level and two complex low-pass subbands on which subsequent stages iterate in contrast
to three real high-pass and one real low-pass subband for the real 2-D transform.

The table of coefficients of the analysing filters in the first stage and the remaining levels are shown
in Table 1 and Table 2, respectively. The filters are chosen from [11] by considering shift invariance and
directional selectivity at the same time. The coefficients of the synthesis filters are simply the transposes
of the analysis filters (orthogonal filters). However, in this paper, we only use texture features extracted
from DT CWT subbands which are resulted from S-level DT CWT decomposition of an input image. The
impulse responses of the six complex wavelets associated with the analysis filters given in Table 1 and Table 2
are illustrated in Figure 2 are shown in Figure 2. As can be noticed from Figure 2, there are six subbands
characterising features along lines at angles of θ = {±15◦,±45◦,±75◦}. On the other hand, the equivalent 3
bandpass responses for DWT as shown in Figure 4 clearly reveals absence of directional selectivity in DWT
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Table 1: First level coefficients of the analysis filters.

Tree a Tree b

H0a H1a H0b H1b

0.02674876 0.04563588 0.02674876 0.04563588
-0.01686412 -0.02877176 -0.01686412 -0.02877176
-0.07822327 -0.29563588 -0.07822327 -0.29563588
0.26686412 0.55754353 0.26686412 0.55754353
0.60294902 -0.29563588 0.60294902 -0.29563588
0.26686412 -0.02877176 0.26686412 -0.02877176
-0.07822327 0.04563588 -0.07822327 0.04563588
-0.01686412 0 -0.01686412 0
0.02674876 0 0.02674876 0

Table 2: Remaining levels coefficients of the analysis filters.

Tree a Tree b

H00a H01a H00b H01b

0.00325314 -0.00455690 -0.00455690 -0.00325314
-0.00388321 0.00543948 -0.00543948 -0.00388321
0.03466035 0.01702522 0.01702522 -0.03466035
-0.03887280 -0.02382538 0.02382538 -0.03887280
-0.11720389 -0.10671180 -0.10671180 0.11720389
0.27529538 -0.01186609 0.01186609 0.27529538
0.75614564 0.56881042 0.56881042 -0.75614564
0.56881042 -0.75614564 0.75614564 0.56881042
0.01186609 0.27529538 0.27529538 -0.01186609
-0.10671180 0.11720389 -0.11720389 -0.10671180
0.02382538 -0.03887280 -0.03887280 -0.02382538
0.01702522 -0.03466035 0.03466035 0.01702522
-0.00543948 -0.00388321 -0.00388321 0.00543948
-0.00455690 -0.00325314 0.00325314 -0.00455690

at 45◦.
The Figure 5 illustrates the decomposition of the texture image both in the DT CWT and the DWT

domain. For each decomposition only two levels are shown. From these figures it is clearly evident that the
DT CWT can distinguish the direction in many different orientations compared to the DWT.

3. Proposed method for texture classification and retrieval

3.1. Feature extraction

The S-level DT CWT decomposition of an W ×H image I results in a decimated dyadic decomposition
into s = 1, 2, . . . , S scales, where the size of subbands at each scale is W/2s×H/2s. Each decimated scale has

a set Cs of 6 subbands of complex coefficients, denoted as Cs = {α
(s)
1 eiθ

(s)
1 , . . . , α

(s)
6 eiθ

(s)
6 } corresponding to

responses of the 6 subbands respectively orientated at −15◦, −45◦, −75◦, 15◦, 45◦, and 75◦. For each subband

orientation at scale s there are two responses: magnitude (α
(s)
i ) and phase (θ

(s)
i ) responses, i = 1, . . . , 6.

Each response is a 2-D data of size W/2s × H/2s, and normalized as follows:

α
(s)
i =

α
(s)
i

E
(

α
(s)
i

) , θ
(s)
i =

θ
(s)
i

E
(

θ
(s)
i

) (1)
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Figure 4: The impulse responses of the DWT filters for the 3 directional subbands, all illustrated at level 4 of the transforms.
From left to right, 0◦, 45◦, and 90◦ subbands.

(a) (b) (c)

Figure 5: The 2-level decomposition of the (a) original texture image in both, (b) the DWT, and (c) DT CWT domain

where

E
(

α
(s)
i

)

=

H/2s

∑

y=1

W/2s

∑

x=1

α
(s)
i (x, y)2 ,

E
(

θ
(s)
i

)

=

H/2s

∑

y=1

W/2s

∑

x=1

θ
(s)
i (x, y)

2
.

Texture features are extracted using image statistics. Unlike in [13] where the variance and entropy
are defined in terms of only the magnitude of the DT CWT subbands, in this paper we define a variance
M1(r) and an entropy M2(r) that incorporate both the magnitude and phase responses as the features for

r, r ∈ {α
(s)
i , θ

(s)
i }, i.e.,

M1(r) =
22s

HW

H/2s

∑

y=1

W/2s

∑

x=1

(r(x, y) − µ(r))2,

M2(r) = −
22s

HW

H/2s

∑

y=1

W/2s

∑

x=1

r(x, y)
2
log(r(x, y)

2
),

where

µ(r) =
22s

HW

H/2s

∑

y=1

W/2s

∑

x=1

r(x, y).

Using Mk(r), k ∈ {1, 2}, the following feature vectors are defined for scale s using the set Cs:

FMk,α,s =
[

Mk(α
(s)
1 ) . . .Mk(α

(s)
6 )

]

,

FMk,θ,s =
[

Mk(θ
(s)
1 ) . . .Mk(θ

(s)
6 )

]

,
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Fα,s =

[

FM1,α,s

‖FM1,α,s‖

FM2,α,s

‖FM2,α,s‖

]

,

Fθ,s =

[

FM1,θ,s

‖FM1,θ,s‖

FM2,θ,s

‖FM2,θ,s‖

]

,

Fs =

[

Fα,s

‖Fα,s‖

Fθ,s

‖Fθ,s‖

]

, (2)

where ‖.‖ is the second norm (i.e., the signal energy).
Given an image I, the multiscale feature vector is extracted by combining different realizations of Eq. 2

for different values of scales s, i.e.;

FI
S =

[F1 F2 · · · FS ]

‖[F1 F2 · · · FS ]‖
(3)

=
[

f I
S,1 f I

S,2 f I
S,3 · · · f I

S,24S−2 f I
S,24S−1 f I

S,24S

]

,

where FI
S is a vector of 24S elements.

3.2. Texture learning and classification

Assume that each training set for texture class t consists of K texture samples. In order to perform a
supervised texture classification using DT CWT, the following learning stage for the texture classifier based
on that in [13] but modified to include phase information and the newly defined feature vectors for each
texture class t:

(i) Decompose kth training texture image I
(k)
t using S levels of DT CWT and normalize magnitude and

phase responses of each subband according to Eq. (1).

(ii) Generate feature vector F
I
(k)
t

S for decomposed texture image.

(iii) Repeat steps (i) and (ii) for all sample images in the same texture class and generate texture feature

set Ft,S =

{

F
I
(k)
t

S

}

, and store them in the database.

After the features have been learned for each texture class, the following classification stage is performed
to classify an unknown image Iu:

(i) Decompose an unknown texture image Iu using S levels of DT CWT and extract its feature vector
FIu

S using Eq. 3.

(ii) Calculate the distance between FIu

S and texture feature set Ft,S of each class t as

Dt = d
(

FIu

S ,Ft,S

)

,

where d( ) is similarity function.

(iii) Assign the unknown texture to texture class i if Di < Dj for all i 6= j.

In [13], the similarity function between the query texture and texture class t is simply the normalized
Euclidian distance between the feature vectors of the query texture and the mean feature vector of the
texture class t. In this paper, the average of the distances between a query feature vector and feature
vectors of each sample in each texture class is used, i.e.,

d
(

FIu

S ,Ft,S

)

=
1

K

K
∑

k=1

√

√

√

√

√

1

24S

24S
∑

i=1





f Iu

S,i − f
I
(k)
t

S,i

σt,i





2

,
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where for texture class t

σt,i =

√

√

√

√

1

(K − 1)

K
∑

k=1

(

f
I
(k)
t

S,i − µ

)2

where

µ =
1

K

K
∑

k=1

f
I
(k)
t

S,i .

3.3. Texture retrieval

Texture retrieval is viewed as a search for the best N , i.e., most similar, images to a given query image
Iq from a database of a total M images, Im, m = 1, 2, · · · , M . For this purpose, each image is represented
by a feature vector as in Eq. 3. The similarity between two images is measured by the distance between
the corresponding feature vectors. The goal is to select among the M possible distances images with the N
smallest distances, in a ranked order, that are most similar to Iq.

Given two images Iq and Im, and let F
Iq

S and FIm

S represent the corresponding feature vectors extracted

using S level DT CWT decomposition according to Eq. 3. We define a distance measure, d(F
Iq

S ,FIm

S ), F
Iq

S

and FIm

S as

d(F
Iq

S ,FIm

S ) =
24S
∑

i=1

|f
Iq

S,i − f Im

S,i |

σi
(4)

where σi is defined for the feature vectors of the images in the database, i.e.,

σi =

√

√

√

√

1

(M − 1)

M
∑

m=1

(

f Im

S,i − µi

)2

,

and

µi =
1

M

M
∑

m=1

f Im

S,i .

4. Experimental results

4.1. Data

The effectiveness of the proposed texture feature extraction approach to texture classification is evaluated
by performing supervised classification of several test images with varying texture complexities from two
commonly-used natural texture image databases: 128 images from MIT VisTex colour image database [17]
and 111 monochrome images from Brodatz Album [18]. Each texture image has a size of 512 × 512, with
256 grey levels. Each image is globally histogram equalized to ensure that the textures are not trivially
discriminable simply based on the local mean or local variance. Different portions of the input patterns
of each texture class are selected and used for training the texture classifier. We avoid using the texture
patterns on a texture border for training because these patterns are not representative of the texture.

Each texture image is divided into two non-overlapping parts of size 256× 512, one for training and one
for testing. Overlapped samples are generated from the training texture images using a sliding window of
size K × K (K = 128) which is moved with shifts of ∆ in both the horizontal and vertical directions. The
number of test samples varies with the value of ∆. The value of ∆ is set to 24 to give a reasonable overlap
between two test samples, thus a total of 128 texture samples are used in training for each class. After
training, another 128 samples for each class are used to evaluate the performance of the texture classifier.
Thus, for MIT VisTex database, tests are carried out on 128 × 128 = 16384 sample images.

In texture retrieval tests, MIT VisTex database and Brodatz Album are used together. Each texture
image is uniformly sampled with 8 non-overlapping sub-images of size 128×128, and thus a database of size
239 × 16 = 3824 is constructed. The query image is searched in this large database, and the top matches
for the query image are used in performance evaluations.
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Table 3: Performance results (in %) of different methods for different number of scale S on MIT VisTex texture database.

GLCM Method of [8] Method of [13] Proposed
S accr afcr accr afcr accr afcr accr afcr

1 51.33 0.38 67.82 0.25 63.96 0.28 96.51 0.03
2 51.33 0.38 69.92 0.24 71.75 0.22 98.03 0.02
3 51.33 0.38 75.13 0.20 76.03 0.19 98.19 0.01
4 51.33 0.38 75.89 0.19 78.33 0.17 96.97 0.02
5 51.33 0.38 74.87 0.20 79.89 0.16 95.42 0.04

4.2. Performance evaluation metrics

The performance of a texture classifier is measured using a confusion matrix CM [19]. CM is a L × L
matrix for L different texture classes and CM(i, j) refers to the classification rate when samples from class i
are identified as class j. Two figure of merits are used in conjunction with CM: average correct classification
rate (accr) and average false classification rate (afcr), where

accr =
1

L

∑

∀(i,j),i=j

CM(i, j), (5)

afcr =
1

L × (L − 1)

∑

∀(i,j),i6=j

CM(i, j). (6)

In the experiments for texture retrieval, a query image is any one of the 3824 images in our database.
The relevant images for each query are defined as the other 15 subimages from the same image in our texture
database. Following [20], we evaluated the performance of the proposed system in terms of the average rate
of retrieving relevant images as a function of the number of best retrieved images given a distance measure
d used for comparing feature vectors, i.e.,

RTi
=

1

N

N
∑

k=1

P
(k)
Ti

N (k)
, (7)

where RTi
is the average retrieval rate of the database when the best Ti images are retrieved from the

database, P
(k)
Ti is the number of correctly retrieved images among the Ti retrieved images when kth image is

the query image, and N (k) is the total number of relevant images to kth query images. For texture retrieval
database used in this work, N = 3824, and N (k) = (16 − 1) = 15.

4.3. Evaluation of texture classification capability

In the experiments for texture classification, in addition to the proposed method, the methods in [13]
and [8] are implemented. For [13], we employed the same analysis filters as shown in Table 1 and Table 2.
Meanwhile, for [8] we use Daubechies eight tap wavelet low-pass and high pass-filter coefficients respectively
as suggested in [8]. It is worth to mention that the method of [8] employ DWT and rotated wavelet
transform (RWT) to decompose an input image into 6 directional subbands at each level of decomposition
to improve directional selectivity. We also implemented the Haralick texture classification method [21] based
on grey-level co-occurrence matrix (GLCM). Only a subset of the 14 Haralick features (i.e., energy, contrast,
correlation, entropy, homogeneity, cluster shade and cluster prominence) representing the most commonly
chosen ones are used in our study. More details on the extraction of Haralick features can be found in [21].

4.3.1. Comparisons and effect of number of scales

The first experiment is carried on MIT VisTex texture database. The average correct and false classi-
fication rates of different methods for different values of scale parameters S are shown in Figure 6(a) and
tabulated in Table 3. The performance of GLCM is independent of the scale parameter S. However, for
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Figure 6: Performance comparisons (in %) of different methods for different number of scales S on different texture databases:
(a) MIT VisTex database; and (b) Brodatz Album.

(a) (b) (c) (d)

Figure 7: Confusion matrices with maximum correct classification rate of different methods resulted from classification tests
on MIT VisTex texture database: (a) GLCM; (b) Method of [8] when S = 4; (c) Method of [13] when S = 5; and (d) Proposed
method when S = 3.
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(a) (b) (c) (d) (e) (f) (g)

Figure 8: Texture samples from MIT VisTex and Brodatz Album texture databases: (a) Brick.0000; (b) Brick.0001; (c) D43;
(d) D44; (e) D45; (f) D48; and (g) D59.

the purpose of presentation its performance is also tabulated for each value of scale parameter S. It is clear
from test results that the performance of GLCM is the worst. This is mainly due to the co-occurrence
matrices derived from the images in MIT VisTex texture database do not result in discriminative features
for texture classification. The performances of the methods in [8] and [13] are similar. The method in [8]
employs statistical features extracted from both DWT and RWT to achieve better directional selectivity
with respect to only DWT. For each level of texture decomposition, features are extracted from subbands
of both DWT and RWT. Thus, at each level of decomposition, similar to [13], the feature vectors are ex-
tracted from 6 subbands, which are equally distributed between 0-90 degree directions. Since, the direction
representation in DT-CWT transform is better than DWT+RWT, the texture classification performance
of the method in [13] is better than the method in [8] when S > 1. However, when single-level of wavelet
decomposition is considered, i.e., S = 1, the performance of [8] is better than that of [13]. This is due to the
reason that the wavelet filters employed in [13] is longer in length than that of [8] which results in better
directional selectivity when S > 1. It is clear that the proposed classifier outperforms the other classifiers
considered in this paper for different values of S. That is, when the maximum performances are considered,
the proposed method achieves 46.86%, 22.30%, and 18.30% improvements with respect to GLCM, [8], and
[13], respectively. The maximum performance is achieved when S = 3 where the proposed classifier achieves
accr of 98.19% and afcr of 0.01%. The performance of the proposed classifier shows degradations when
S > 3. This is mainly due to insufficient number of data points when S > 3 to extract discriminative features
for the feature vector. The improvement with respect to [13] is due to the design of texture classifier and
consideration of texture features extracted from phase information.

The confusion matrices with maximum correct classification rate of different methods are shown as an
image in Figure 7. The confusion matrices as shown in Figure 7 are realizations when maximum correct
classification rate is achieved, i.e., S = 4 for [8], S = 5 for [13], and S = 3 for proposed method. In
Figure 7 a white square corresponds to 1, a black square corresponds to 0, and values in between 0 and
1 are denoted by squares of varying grey shades. Thus, the more white squares there are in the diagonal
of an confusion matrix image, the better is the performance of the corresponding method. It is clear from
the confusion matrices as shown in Figure 7 that the proposed method achieves very high classification rate
and almost diagonal confusion matrix. When the Figure 7 is observed closely, the diagonal element with
index 62 (Food.0009) is classified as 61 (Food.0008). This is due to the reason that both images in original
MIT VisTex texture database are the same. The lowest accr of 88.28% is realized for texture Brick.0000.
Brick.0000 is classified as Brick.0001 with 11.72% of times. Meanwhile, for Brick.0001, the classifier achieves
accr = 91.40%, and Brick.0001 is classified as Brick.0000 with 8.60% of times. The corresponding textures
as shown in Figure 8(a) and 8(b) are very similar in pattern and hard to discriminate.

The second texture classification experiment is carried on Brodatz Album texture database. The average
correct and false classification rates of different methods for different values of scale parameters S are shown
in Figure 6(b) and tabulated in Table 4. Similar to the tests on MIT VisTex texture database, it is clear
from test results that the performance of GLCM is the worst. However, there is an improvement of 9.42%
on texture classification capability of GLCM with respect to results on MIT VisTex texture database. This
is mainly due to the co-occurrence matrices derived from the images in Brodatz Album texture database
result in better discriminative features for texture classification with respect to MIT VisTex texture database.
Similar to results in MIT VisTex texture database, it is clear that the proposed classifier outperforms the
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Table 4: Performance results (in %) of different methods for different number of scale S on Brodatz Album texture database.

GLCM Method of [8] Method of [13] Proposed
S accr afcr accr afcr accr afcr accr afcr

1 60.75 0.36 69.15 0.28 72.72 0.25 95.63 0.04
2 60.75 0.36 77.36 0.21 80.75 0.17 98.21 0.02
3 60.75 0.36 82.55 0.16 86.18 0.13 98.52 0.01
4 60.75 0.36 80.32 0.18 86.88 0.12 96.39 0.03
5 60.75 0.36 78.82 0.19 86.88 0.12 94.48 0.05

(a) (b) (c) (d)

Figure 9: Confusion matrices with maximum correct classification rate of different methods resulted from classification tests on
Brodatz Album texture database: (a) GLCM; (b) Method of [8] when S = 3; (c) Method of [13] when S = 4; and (d) Proposed
method when S = 3.

other classifiers considered in this paper for different values of S. That is, when the maximum performances
are considered, the proposed method achieves 37.77%, 15.97%, and 11.64% performance improvements with
respect to GLCM, [8], and [13], respectively. The maximum performance is achieved when S = 3 where the
proposed classifier achieves accr of 98.52% and afcr of 0.01%.

The confusion matrices with maximum correct classification rate of different methods are shown as an
image in Figure 9. The confusion matrices as shown in Figure 9 are realizations when maximum correct
classification rate is achieved, i.e., S = 3 for [8], S = 4 for [13], and S = 3 for proposed method. It is clear
from confusion matrices as shown in Figure 9 that the proposed method achieves almost diagonal confusion
matrix. The lowest accr of 69.53% is realized for texture D43. The very next lowest value is 82.81%. The
confusion matrix of texture class D43 created from the confusion matrix as shown in Figure 9(d) according
to non-zero entries D43 row is shown in Table 5. According to this matrix, one can say that the texture class

Table 5: The confusion matrix of texture class D43 from Brodatz Album created from confusion matrix of the proposed method
as shown in Figure 9(d) according to non-zero entries of row corresponding to D43.

.

D15 D18 D43 D44 D45 D59 D72 D88 D89 D96
D15 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D18 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D43 0.78 0.78 69.53 14.84 5.47 1.56 2.34 0.78 2.34 1.56
D44 0.00 0.00 6.25 91.41 1.56 0.00 0.00 0.00 0.00 0.00
D45 0.00 0.00 2.34 0.00 91.41 0.00 0.00 1.56 0.00 0.78
D59 0.00 0.00 0.00 0.00 0.00 95.31 0.00 0.00 0.00 0.00
D72 0.00 0.00 0.00 0.00 0.00 0.00 92.97 0.00 0.00 0.00
D88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 92.97 0.78 0.00
D89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.44 0.00
D96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
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Table 6: The confusion matrix of texture class D43 from Brodatz Album created from confusion matrix of GLCM method as
shown in Figure 9(a) according to non-zero entries of row corresponding to D43.

.

D12 D15 D22 D25 D39 D43 D44 D59 D107
D12 68.75 0.00 0.78 0.00 0.00 3.91 0.00 0.00 0.00
D15 0.78 96.09 0.78 0.00 0.00 1.56 0.00 0.00 0.00
D22 2.34 0.00 82.03 0.00 0.00 0.00 0.00 0.00 0.00
D25 0.00 0.00 0.00 71.88 18.75 0.00 0.00 0.00 0.00
D39 0.00 0.00 0.00 0.00 60.16 0.00 1.56 25.78 0.00
D43 4.69 2.34 3.13 3.13 3.13 41.41 10.94 21.09 4.69
D44 2.34 7.03 0.00 0.00 10.16 25.00 21.09 34.38 0.00
D59 0.00 0.00 0.00 0.00 2.34 0.00 0.00 67.97 0.00
D107 0.78 0.00 3.91 0.00 0.00 0.78 0.00 0.00 62.50

Table 7: The confusion matrix of texture class D43 from Brodatz Album created from confusion matrix of method in [8] as
shown in Figure 9(b) according to non-zero entries of row corresponding to D43.

.

D25 D43 D44 D48 D59 D91 D107 D108
D25 92.97 0.00 0.00 0.00 0.78 0.00 0.00 0.00
D43 0.78 56.25 17.19 15.63 3.13 3.13 3.13 0.78
D44 0.00 17.97 50.00 29.69 0.00 0.00 0.00 0.00
D48 0.00 0.00 0.00 99.22 0.78 0.00 0.00 0.00
D59 0.00 0.00 0.00 9.38 71.09 0.78 0.00 0.00
D91 0.00 0.00 0.00 7.81 13.28 62.50 0.00 0.00
D107 0.00 0.00 0.00 0.00 0.00 0.00 85.94 9.38
D108 0.00 4.69 0.00 0.00 0.00 0.00 14.84 58.59

D43 is mainly misclassified as D44 and D45. The corresponding texture images are shown in Figure 8. When
texture images of size 128×128 are cropped from these images, it is highly possible that those images might
sample regions with uniform grey-level without any texture on them. Because of this reason, the proposed
method has performance degradation on this texture. However, when the context of texture images are
observed, one can say they have similar pattern, e.g., circular patterns. Similarly, the confusion matrices of
texture D43 for GLCM method, method of [8], and method of [13] are given in Table 6, Table 7, and Table 8,
respectively. The GLCM method mainly misclassifies the texture D43 into D44 and D59. Meanwhile, the
methods of [8] and [13] perform similarly, and mainly misclassify D43 as D44 and D48. The texture images
D48 and D59 are also shown in Figure 8. However, when the image patterns of D48 and D49 are closely
observed, one can say that the resemblance to D43 is not high. This also shows that the proposed method
makes better classification in terms of contextual information embedded in texture images.

As can be observed from Table 3 and Table 4, the performance of the proposed multiscale classifier
depends on the number of scales S used in feature extraction. The proposed algorithm performs well for
S = 3 on 128 × 128 test images. However, when the image size gets larger, it might be necessary to use
higher values of S to achieve high classification performance. Meanwhile, for the smaller size of images,
the lower values of S should be selected. Thus the performance of the proposed method can be further
improved when the number of scales are automatically estimated by considering the size and content of the
input image.

4.3.2. The effect of the number of samples used in training

Figure 10 and Table 9 show the performance results of the proposed method for different values of K
used in training on texture classification when S = 3. The experiments are carried out on the same set of
test textures used in previous experiments on MIT VisTex and Brodatz Album texture databases. It is clear
that even when K = 4, the proposed classifier achieves a correct classification rate of 75.72% and 81.64% on
MIT VisTex and Brodatz Album texture databases, respectively. This rate is better than that of the GLCM
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Table 8: The confusion matrix of texture class D43 from Brodatz Album created from confusion matrix of method in [13] as
shown in Figure 9(c) according to non-zero entries of row corresponding to D43.

.

D25 D43 D44 D45 D48 D59 D91 D107
D25 92.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D43 1.56 54.69 17.97 0.78 14.84 2.34 3.91 3.91
D44 0.00 25.00 42.97 0.00 28.13 3.13 0.78 0.00
D45 0.00 74.22 0.00 18.75 0.00 0.00 0.00 0.00
D48 0.00 0.00 0.00 0.00 98.44 0.00 1.56 0.00
D59 0.00 0.00 0.00 0.00 9.38 60.16 10.94 0.00
D91 0.00 0.00 0.00 0.00 9.38 6.25 70.31 0.00
D107 0.00 0.00 0.00 0.00 0.00 0.00 0.00 93.75
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Figure 10: The texture classification performance of the proposed method on MIT VisTex and Brodatz Album texture databases
for different number of texture samples K used in training stage when S=3: (a) Results on MIT VisTex texture database; and
(b) Results on Brodatz Album texture database.

method and almost the same with the methods of [8] and [13] when they are trained using full training set
of 128 texture images per texture class. This makes the proposed method useful for texture classification
applications where the number of texture samples used in training is limited. Ignoring very small fluctuations
on the performance curves in Figure 10, the performance of the proposed classifier stabilises when K > 8.

4.4. Evaluation of texture retrieval capability

The effectiveness of an image retrieval system is measured using a average retrieval rate graph. In
constructing such a graph, the top matching Ti texture images for a query texture image are retrieved
from a database, and for each retrieval, the average retrieval rate is calculated according to Eqn. (7). It is
empirically found that for the database constructed for texture retrieval experiments, the other methods, [8]
and [13], perform the best when S = 5 is used in wavelet decomposition. Thus, comparisons are presented
for S = 5.

The texture retrieval performances of different methods are shown in Figure 11 and tabulated in Table 10.
Similar to the texture classification, GLCM achieves the worst performance in texture retrieval. This
is mainly because the database consists of many texture samples with similar grey-level distributions but
different shapes. The texture retrieval performance is significantly increased by employing wavelet transform
techniques which rely on the high frequency components (edges) of texture images at different resolutions.
The performances of the methods in [8] and [13] are almost the same. This is mainly because both methods
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Table 9: The texture classification performance results of the proposed method on MIT VisTex and Brodatz Album texture
databases for different number of texture samples K used in training stage when S=3.

MIT VisTex Brodatz Album
K accr afcr accr afcr

1 56.77 0.34 68.42 0.29
2 66.64 0.26 75.36 0.22
4 75.72 0.19 81.64 0.17
8 83.55 0.13 86.91 0.12

16 89.61 0.08 91.22 0.08
32 93.98 0.05 94.49 0.05
64 96.80 0.03 97.22 0.03

128 98.19 0.01 98.52 0.01
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Figure 11: Texture retrieval performances (in %) of different methods according to the average retrieval rate (RTi
) given in

Eqn. (7) where S = 5 is used for all methods except GLCM method.

use almost the same directionality at each resolution. By using the phase together with the magnitude
information increases the texture retrieval capacity of the proposed method when compared with the methods
in [8] and [13], thus achieving the best performance.

Qualitative evaluation of the proposed method is carried out by visually examining the images of retrieval
results. However, this can only be based on a subjective perceptual similarity since there exists no “correct”
ordering that is agreed upon by all people. In Figure 12, some examples of retrieval results from the proposed
are shown. In Figure 12(a), the query image is Fabric.0013 from MIT VisTex texture database. The system
almost perfectly retrieves all images of the same fabric and also images of other types of fabrics. When
images are carefully observed, one can say that the retrieved texture images are almost the same type. In
Figure 12(b), the query is texture D27 from Brodatz album. In this case, all relevant images except one are
correctly ranked as the top matches following by images of similar textures. The texture image Food.0006 as
shown in Figure 12(c) does not have a certain texture pattern. However, the proposed method can still make
a perfect match according to the top three best matches from the database. The rest of retrieved images
somehow related to the query image. Figure 12(c), the query D77 texture image from Brodatz Album. In
this case, all relevant images are correctly ranked as the top matches following by images of similar textures.
The rest of four matches are similar to the query texture pattern.

The value of S affects the texture retrieval capacity of the proposed method. Figure 13 shows the
performance of the proposed texture retrieval algorithm in terms of RTi

for different number of scales S.
It is clear that the performance of the proposed method increases when the value of S gets bigger at the
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Table 10: Texture retrieval performance results (in %) of different methods according to the average retrieval rate (RTi
) given

in Eqn. (7) where S = 5 is used for all methods except GLCM method.

GLCM Method of [8] Method of [13] Proposed
Ti RTi

(in %) RTi
(in %) RTi

(in %) RTi
(in %)

15 51.12 66.88 72.32 74.22
20 56.40 73.44 78.64 81.24
40 66.27 83.13 86.96 90.24
60 71.07 87.30 90.24 93.62
80 74.43 89.82 92.32 95.71
100 77.06 91.69 93.79 96.99
120 79.06 93.09 94.84 97.98
140 80.76 94.21 95.75 98.74
160 82.21 95.10 96.49 99.37
180 83.50 95.85 97.04 99.94
200 84.67 96.52 97.55 100.00

(a) (b) (c) (d)

Figure 12: Examples of retrieval results from 3824 texture images. The query image is at the top left corner of each group of
images, and the other images are ranked in the order of similarity with the query image from top left plus 1 to bottom right.
The query images are a subimage of: (a) Fabric.0013; (b) D27; (c) Food.0006; and (d) D77.
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Figure 13: Texture retrieval performances (in %) of the proposed method according to the average retrieval rate (RTi
) given

in Eqn. (7) under different scale parameters S.
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expense of higher computational cost.

5. Conclusion

In this paper, we proposed a new texture classifier structure which uses both the magnitude and phase
of DT CWT subbands. The coarse approximation of the signal is not used for feature extraction since it is
more prone to illumination changes. For each texture image, a multiscale texture feature vector is extracted
from the magnitude and phase of DT-CWT subbands at different scales.

It is empirically shown that for texture classification the proposed classifier outperforms recently proposed
texture classifiers. It achieves 98.19% and 98.52% correct classification rates in whole MIT VisTex and
Brodatz Album texture databases, respectively. It is also shown that the use of phase information together
with the magnitude information improves the performance significantly.

The proposed method can achieve a high texture classification rate even for small number of samples
used in training stage. This makes it suitable for applications where the number of texture samples used in
training is very limited.

It is shown that for texture retrieval the proposed texture retrieval algorithm outperforms recently
proposed texture retrieval algorithms. The average retrieval rate of the proposed texture retrieval algorithm
increases when the number of the scales S is increased. However, the increase in performance is achieved at
the expense of an increase in computational load.
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