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Abstract

As robots are increasingly being viewed as social entities to be integrated
in our daily lives, social perceptive abilities seem a necessary requirement
for enabling more natural interaction with human users. In this paper, we
present an interaction scenario where user play chess with an iCat robot
and propose an affect recognition system that uses computational models
to automatically extract visual features allowing the detection of the level of
engagement with a social robot that acts as a game companion. Experimental
results show that the multimodal integration of head direction information
with facial expressions displayed by the user improves the recognition of the

user’s affective states.
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1. Introduction

The design of an affect recognition module based on the interpretation of
the user’s behaviour is the first step towards the generation of a high quality

Human-Robot-Interaction (HRI). Interactive companions are an example of
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social embodiments which may benefit from the integration of such a “affect
recognition module”. Interactive companions can be useful in many applica-
tions: they can be employed as personal assistants in smart environments,
as interactive toys for therapy and rehabilitation purposes, they can pro-
vide additional functionalities to assist carers, healthcare workers, etc. For
these companions to be able to cover these roles it is necessary that they
are endowed with social capabilities and are sensitive to what happens in
the external world, with a special attention to what the user feels or com-
municates. While significant advances have been made in the field of affect
recognition over the past decade [1][2] the design of such a module to be
integrated in a HRI framework has not been extensively addressed yet. The
need for artificial companions to work in the user’s own social settings and to
create long-term relationships with humans requires then research on affect
recognition to be taken beyond the state of the art.

Many of the affect recognition systems described in the literature mainly
focused on the recognition of basic emotions (e.g., joy, sadness, disgust, sur-
prise, fear, anger, etc.) [3]. While the automated recognition of more complex
states has started to receive some attention only lately [4], research on ar-
tificial companions requires the design of an affective framework in which
the companion’s affect sensitivity goes beyond the ability to recognise proto-
typical emotions, and allows for more variegated affective signals conveying
more subtle states such as, boredom, interest, frustration, agreement, etc.,
to be captured. It is important to stress that the inclusion of affect repre-
sentation into a framework for affect recognition is of primary importance.

Incorporating models and paradigms developed by psychologists for the clas-



sification of affective states [5] is a pressing need, but is still a challenging
issue. Strengthening the connection with psychological models would allow
for the first steps towards the detection of more complex affective states
(e.g., appraisals, blends of emotions, preferences, mood, attitudes, etc.) to
be undertaken.

The design of most existing affect recognition systems was largely based
on databases of acted affective expressions [6]. While acted affective expres-
sions, contrary to spontaneous expressions, can be defined precisely, allow
for the recording of several affective expressions for the same individual,
and can be characterised by very high quality, they often reflect stereotypes
and exaggerated expressions, not genuine affective states, and they are often
decontextualised [1]. The design of an artificial companion would certainly
benefit from the development of affect detectors which are trained and tested
with spontaneous, real-life expressions. Collection of facial behaviour in nat-
uralistic contexts involves several issues, such as the difficulty of recording
several emotional reactions for the same individual. Nevertheless, this is an
issue that must be addressed in the design of an affect sensitive companion,
in which personalisation plays an important role.

Another important issue for affect sensitive artificial companions is the
need for a multimodal affect recognition system. It is expected that a com-
panion is endowed with the ability to analyse different types of affective
expressions, depending on the specific scenario of interaction with the user.
Fusing different affective cues can allow for a better understanding of the
affective message communicated by the user to be achieved. The develop-

ment of novel methods for multimodal fusion should take into consideration



what are the underlying relationships and correlation between the feature
sets in different modalities [1], how different affective expressions influence
to each other and how much information each of them provides about the
communicated affect.

Artificial companions have to be designed so as to be able to work in the
users’ own settings. This requires a companion’s affect recognition system to
be robust in real world conditions: face detectors and body and facial features
tracking systems which are robust to occlusions, illumination changes, non-
rigid head motions, etc., are some of the most important requirements for a
companion to successfully work in real environments [7]. Real world scenarios
means that the companion must infer the user’s state in real-time. This
poses several issues, such as, for example, the segmentation and the analysis
of the temporal dynamics of face or body gestures and expressions, since the
possibility for a user’s affective state to start at any time is a crucial factor
in real-time affect recognition [8][9].

An important issue to be considered in the design of an affect recognition
system for artificial companions is represented by taking into consideration
the context in which an affective expression is displayed (e.g., characteristics
of the person expressing the emotion, environment in which the emotion
is displayed, what the person is doing (i.e., their task), underlying mood,
behaviour displayed by the companion, presence of other people, etc.). As
suggested by [7], there can be as many emotions as the patterns of appraisal
results. This highlights the importance of the evaluation of a stimulus event
for the generation of the emotional response. In the same way, artificial

companions must be able to evaluate how the recognised affective state relates



Figure 1: A user playing chess with the iCat.

with the conditions external to an individual that elicited the emotional
response. In this paper we focus on a specific interaction scenario where user
play chess with an iCat robot [10] as depicted in Figure 1 and we propose an
affect recognition system that uses computational models to automatically
extract contextual information and visual features allowing the detection of
the level of engagement with a social robot that acts as a game companion.
Built on a 3D distribution of facial features extracted by face API we can track
a face and recover the valence and interest towards the game companion
to infer the player’s emotional state. The feeling index fuses data on the
facial expression and head direction information to accurately and robustly
predict the engagement of the player with the companion. Experimental
results show that the multimodal integration of head direction information
with facial expressions displayed by the user improves the recognition of the

user’s affective states.



2. Modalities and Affect Recognition Framework

Contractions of facial muscles induced movements of the facial skin and
changes in the appearance of facial features such as eyebrows, nose and
mouth. Their shape and location can alter immensely with facial expres-
sions and head pose variations. To be able to reason about the shown ex-
pression and the facial muscle actions that produce it, one must first detect
the current appearance of the facial features. To do so, we track a set of
facial points illustrated in Figure 2, the locations of which alter as the cur-
rent appearance of the facial features changes with facial expressions and
head pose variations. A standard webcam, positioned in front of the user
captures the nonverbal behaviour displayed by the children during the game
and the interaction with the robot. The system performs tracking of head
movements and salient facial points via faceAPI, a real-time face tracking
toolkit from Seeing Machines!, and estimates the gaze direction of the user
based on head direction and rotation data. Furthermore, geometrical facial
features extracted from the tracked facial points are used to detect users

affective behaviour.

2.1. Parameters for AU Detection

Although muscle actions are of high importance one is unable to track
them analytically without resorting to explicit sensors [11]. However, a sub-
set of them can be deduced from their visual results, that is, the deformation
of the facial tissue and the movement of some facial surface points. This rea-

soning resembles the way that humans visually perceive emotions, by noticing

thttp:/ /www.seeingmachines.com /product /faceapi
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Figure 2: Facial feature tracking.

specific features in the most expressive areas of the face, the regions around
the eyes and the mouth [12]. In our study, we are confined in these three
components and then determine 3D distributions of the facial feature points
which are representative of the boundary between these components and skin.
By using the symmetry of the human face we have optimized the number of
facial features used by 23 [13]. Figure 3 shows the facial feature points that
we use in our research. «;, a vector expressing the coordinate of a feature

point, is introduced and is described as:
a; = (24,9, 2), i =11,1.2,---,53 (1)

The origin of X-Y-Z coordinate system is assigned to be the tip of the nose.
The information of the 23 facial feature points is used to calculate the 3D
distances corresponding to the respective 3D faces. The coordinates of the
facial feature points are transformed into a common coordinate system by
subtracting the coordinates of the origin, denoted by the tip of nose (depicted

as 4.1) . The transformed i, coordinate, 3; can be calculated by:

B; = a; —origin, i=11,1.2,---,5.3 (2)



Figure 3: Facial feature points.

Each j; value is normalized, Bl , by dividing it by the width of the eye(distance
between points 2.1 and 2.5) in order to compensate the distance effect be-
tween client faces. Thus we obtain the information BAZ for each facial expres-

sion of client.

w = Pa1 — Pas (3)

B, = Bifw (4)

Moreover, in order to cancel out an individual variation and reflect the facial
feature points movement more vividly, we calculate the 3D Distance Vectors

depending on several facial feature points. Distance between two feature

points is defined by:
(Bi = B) = 18 — B (5)
Six different distances, which are used to form the distance vector for the

facial expression recognition, are given from Eq.6 - Eq. 11. In Eq. 6, the
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average of the three distances (between points 2.2—2.8, 2.3—2.7, and 2.4—2.6)
is used in order to minimize the effect of a possible erroneous feature location
that may contribute to the respective distance. This approach is adopted in
Eq. 7, Eq. 8 and Eq. 11 respectively.

Openness of eyes:

Ay = %[(65.2 — B28) + (B3 — fa7) + (Paa — B2o)] (6)
Height of eyebrows:
Ao = 3[(Bhs — o) + (o — Bas) + (Bor — o) )
Openness of mouth:
Az = %[(5&2 - 3:;.8) + (/3:;.3 - 5;,.7) + (55.4 - 5;.6)] (8)
Width of mouth:
Ay = (Bs5 — Ba1) (9)
Stretching of lip:
As = (Bas — Ba1) (10)
Openness of jaw:
Do = 3[(B1 — Bie) + (552 = o) + (B — o) ()

We transform the calculated distances into a set of Action Units (AUs) de-
scribing the facial expressions captured in the image sequence. We use a set
of temporal rules and a fast 3D distance based procedure to encode 10 AUs
occurring alone or in combination in an input face image sequence. Table 1

provides the list of the utilized rules.



Table 1: Rules for detecting AUs from a face image sequence. The value of € and v have

been decided based upon the threshold description provided by the relevant rule.

AU1 Pulls the eyebrows’ inner corners upward, causes the skin of the
rule 1 | centre forehead to wrinkle horizontally.

IF Ay > ¢ AND (13— (22) >y THEN AU1 is in action
AU2 Pulls the eyebrows’ outer corners upward, causes the skin of the
rule 2 | lateral forehead to wrinkle horizontally.

IF Ay > ¢ AND (11— B24) >y THEN AU2 is in action
AU4 Pulls the eyebrows closer together, produces a bulge between the
rule 3 | eyebrows, and lowers the eyebrows slightly.

IF Ay <€ AND (12— (23) <y THEN AUA4 is in action
AUb Raises the upper eyelid and widens the eye opening.
ruled | IF Ay >e¢ AND (Ba3 — (ao7) >y THEN AU5 is in action
AUG6 Raises the cheeks and narrows the eye opening.
rule 5 | IF Ay <e AND Ay <~y THEN AUG6 is in action
AU7 Raises the lower eyelid and narrows the eye opening.
rule 6 | IF Ay <e AND (B12— (a3) <y THEN AUT is in action
AU12 | Pulls the lip corners upward obliquely.
rule 7 | IF Ay <e AND Ay >~ THEN AU12 is in action
AU17 | Pushes the chin boss and lower lip upward and stretches the skin
rule 8 | on the chin boss.

IF A¢ <€ AND (B33 — B37) <y THEN AU18 is in action
AU23 | Tightens the lips slightly making the lips appear narrower.
rule9 | IF Ay >e€ AND (B33 — B37) <y THEN AU23 is in action
AU27 | Parts the lips but does not stretch the mouth.
rule 10 | IF A3 >e¢ AND Ay <~y THEN AU27 is in action
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3. Experiments

3.1. AU Detection Results

For evaluating AU detection area underneath (A’) the receiver-operator
characteristic (ROC) curve is used. ROC curve is obtained by plotting true

positive against the false alarm rate as the decision threshold varies. We
A(1_A)

W [14] To maximise the

have adopted a common statistic s =
amount of training and testing data, we have used leave-one-subject-out cross
validation. We identify the thresholds of, € and ~ for each AU rule from CK+
database [6]. The CK+ database consists of 593 FACS coded sequences
from 123 subjects eliciting posed facial expressions. In our experiments we
focused on the detection of AUs(1, 2, 4, 5, 6, 7, 12, 17, 23 and 27). The
thresholds were selected that granted at true-positive rate of 80% and a false-
positive rate of 10%. The results of AU detection for 3D distance vector based
approach is given in Table 2. From the results it can be seen that proposed
geometrical distance based features achieve very good detection accuracy.

Even though the performance is slightly low for some AUs 4, 7 and 23, this

is due to small variations in the geometrical orientations of the features.

3.2. Affect recognition

The Inter-ACT corpus [15] has been developed to be a comprehensive
repository of naturalistic and contextualised, task-dependent data for train-
ing and evaluation of an affect recognition system in an educational game
scenario. The Inter-ACT corpus contains 156 six-second videos of the inter-
action between children and an iCat robot that play chess. It is an important

advantage of the model that AUs are objective representations of human ex-
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Table 2: Results showing the area underneath the ROC curve for 3D geometrical based

features for AU detection.

Action Unit | Number of Occurrences | Detection Rate (%)
AU1 173 92.3 £ 2.2
AU2 116 958 £1.9
AU4 191 82.1 £ 3.1
AU5 102 97.6 £ 1.6
AUG6 122 91.3 £ 2.7
AU7 119 80.3 £ 3.9
AU12 111 96.3 £ 2.1
AU17 196 90.1 £ 1.9
AU23 59 82.3 £4.3
AU27 81 973 £ 1.1

pressions and are independent from any assigned interpretation, thus allowing
further high level decisions and processing.

In many application domains the knowledge about the view direction of
the eyes is more important than the orientation of the head, respectively the
face. But the measurements relying on the eyes and the head are usually
related to each other. For simplicity and reducing computational complexity
we defined gaze-tracking as head-direction recognition. By recognising where
a users head is directed we can infer the direction of their gaze. This may
be sufficient to identify whether they are looking at the game companion in
our 3D environment or distinguish between gaze directed at the chess board
or elsewhere. This means that the system knows very accurately where the

user is looking and when they are looking there. In the proposed framework,
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Table 3: Affect descriptions in terms of facial action units and head direction

Affect State | AU criteria Head Direction
Engaged {AU6,AU12} Looking at iCat
Avoidance {AU1,AU2,AU5,AU27} or {AU1,AU2 AU4} | Looking at iCat
Aggressive {AU4,AU5 AU7} Looking at iCat
Calm {AU17} or {AU23} or No AUs in action Looking at iCat
Pleasant {AU12} Looking at board
Confused {AU1,AU2,AU4} or {AU5} Looking at board
Unpleasant | {AU4} or {AU17} Looking at board
Thinking {AU23} or No AUs in action Looking at board
Relax {AU12} Looking elsewhere
Not Engaged | {AU5} or {AU27} Looking elsewhere
Tense {AU4} Looking elsewhere
Tired/Bored | {AU17} or {AU23} or No AUs in action Looking elsewhere

the FACS model and direction of the head are used in real-time to detect
complex behavioural states as listed in Table 3.

Furthermore, we divided each facial action into four temporal segments:
the neutral(no action), onset(beginning), apex(peak), and offset(ending) as
depicted in Figure 4. We define each temporal rule for AU detection in a a
unique way according to relevant rule and using statistical information of the
last 8 consecutive frames of the image sequence. To minimize the the effects
of noise and inaccuracies in facial feature tracking and to enable detection of
the temporal dynamics of displayed AUs, we consider coefficient of variance,
C (e.g. C > 0.05 indicates variance in the 3D distance vector is greater
than 5%), for each 3D distance vector. We identify the thresholds of , p, for

each AU rule from Inter-ACT corpus. Incited by the research findings that
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is true

AU_rule
is false

Figure 4: Temporal rules for AU detection

suggested that temporal changes in neuromuscular facial activity may last
from 1/4 of a second to several minutes [11], the temporal domain has been
determined empirically based on a video frame rate of the input sequence
(i.e., 8 frames approximately have a duration of 1/4 of a second for 30 fps).

The confusion matrix of the average case for the user looking at the game
companion is 95.9% as shown in Table 4. Note that most of the expressions
are detected with high accuracy and the confusion is larger with the Ag-
gressive and Calm behaviours. One reason why Aggressive is detected with
only 92.8% is that in general these behaviour is eyebrow dependent and con-
fusion with Calm is much larger than with the other behaviour as one can
easily observe from naturalistic face images. Results for user looking at the
chess board is presented as a confusion matrix in Table 5. It can be seen
that the highest misclassification occurs between the expressions of Unpleas-
ant and Thinking. The decrease in these recognition rates is attributed to
their similarity especially in low intensities. The main difference between the
Unpleasant and Thinking behaviours lies mostly on the configuration of the

eyebrows, which cannot be effectively captured using depth (at least with
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Table 4: Confusion matrix of affect recognition for “Looking at the iCat”

‘ Engaged ‘ Avoidance ‘ Aggressive | Calm

Engaged |  98.6 0.0 0.0 1.4
Avoidance 0.0 100.0 0.0 0.0
Aggressive 0.0 0.0 92.8 7.2

Calm 1.2 0.0 6.7 92.1

Table 5: Confusion matrix of affect recognition for “Looking at the chess board”

‘ Pleasant ‘ Confused ‘ Unpleasant ‘ Thinking

Pleasant | 96.7 0.0 0.5 2.8
Confused 0.0 99.3 0.0 0.7
Unpleasant 0.0 2.1 88.5 9.4
Thinking 1.7 0.0 8.1 90.2

our point correspondence technique) especially in low intensities, where the
difference is so subtle even for a human eye. Confusing matrix for user look-
ing elsewhere is shown in Table 6. Since both Tense and Tired/Bored tighten
the lips causes misidentification of Tired/Bored when the mouth corners are
tracked. Note that Tense and Tired/Bored are also often confused by hu-
mans. Hence, the distinction between these two behaviours may be more

amenable to appearance features than to geometrical features.

4. Conclusions and Future Work

In this paper, we have presented an initial computational model for the
recognition of engagement with a robotic game companion in an educational

scenario. The proposed approach is based on the automatic analysis of af-
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Table 6: Confusion matrix of affect recognition for “Looking elsewhere”
‘ Relax ‘ Not Engaged ‘ Tense ‘ Tired/Bored

Relax | 99.1 0.0 0.6 0.3
Not Engaged | 0.0 99.2 0.0 0.8
Tense| 0.0 5.4 82.1 12.5
Tired/Bored | 1.2 2.9 9.2 86.7

fective states. Differently from many systems proposed in the literature, our
approach is based on vision-based on real-time extraction of facial features
from videos capturing users behaviour from a non-posed facial behaviour in
naturalistic environment. This allows for the dynamics of facial behaviour to
be analysed in a more comprehensive manner. The evaluation conducted in
the same interaction scenario of the final application suggests that patterns
of facial behaviour with the head direction information can be used to accu-
rately predict the engagement of the children with the robot. Experimental
results highlighted the key role played by the temporal dynamics of neuro-
muscular actions in automatic engagement recognition. The high recognition
accuracy achieved with the computational model makes our approach suit-
able for integration into an affect recognition system for a game companion
in a naturalistic scenario.

Future work to further validate the proposed approach will include a
more comprehensive evaluation with a larger number of video samples to
train the automatic recognition models, as well as the design of a framework
for fusion with other modalities (e.g., contextual information) of interest for

this scenario.
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