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Abstract

The diffusion equation model is a popular tool in room acoustics modeling. The

3-D Finite Difference (3D-FD) implementation predicts the energy decay func-

tion and the sound pressure level in closed environments. This simulation is

computationally expensive, as it depends on the resolution used to model the

room. With such high computational requirements, a high-level programming

language (e.g., Matlab) cannot deal with real life scenario simulations. Thus, it

becomes mandatory to use our computational resources more efficiently. Many-

core architectures, such as NVIDIA GPUs or Intel Xeon Phi offer new opportu-

nities to enhance scientific computations, increasing the performance per watt,

but shifting to a different programming model. This paper shows the roadmap

to use massively parallel architectures in a 3D-FD simulation. We evaluate the

latest generation of NVIDIA and Intel architectures. Our experimental results

reveal that NVIDIA architectures outperform by a wide margin the Intel Xeon

Phi co-processor while dissipating approximately 50W less (25%) for large-scale

input problems.
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1. Introduction

The technology of both hardware and software has evolved considerably

in the past ten years. Modern architectures use several cores with different

functionality, performance and energy efficiency. Those cores can be divided

into latency-oriented (for control-dominated tasks) and throughput-oriented (for

data-driven tasks). Throughput-oriented cores are usually pseudo-independent

external devices, connected through a PCIe bus to a host machine. In fact,

NVIDIA Graphics Processing Units (GPUs) and Intel Many Integrated Core

(MIC) architectures [1][2] are used in the most powerful supercomputers avail-

able nowadays [3].

NVIDIA GPUs are programmed through APIs such as OpenCL or CUDA [4],

accessible from languages like C/C++, Fortran just to name a few. Intel accel-

erators are based on a simpler programming model, sharing many similarities

with regular CPUs, making it more accessible for developers.However, develop-

ing applications on such architectures is still not a straight-forward task. Indeed,

programmers in the scientific community need to use the latest breakthroughs in

both; high performance computing and in the specific field of interest (e.g., im-

age processing, computational modeling or acoustic diffusion) to deal with chal-

lenges of the next century. This vertical approach enables remarkable advances

in computer-driven scientific simulations (the so-called hardware-software co-

design).

A particular interest to us is the diffusion processes of the acoustic energy.

This model is used to predict the sound field in arbitrary shape rooms and non-

homogeneous distribution of the sound absorption [5]. A 3D finite differences

(3D-FD) method was presented by Navarro et al. [6] as an alternative technique

to solve the systems of equations for the acoustic diffusion equation model but in

the time domain. The proposed 3D-FD method provides some schemes to solve

the diffusion equation in a transitional regime. Therefore, the sound pressure
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level decay curve can be predicted in all receiver positions of the discretized room

with only a single execution of the algorithm. However, the simulation of some

room scenarios, e.g. long rooms and coupled rooms, requires a very small spatial

discretization or cell size to obtain accurate results. If the spatial resolution of

the discretization increases, the number of cells shows a cubic growth, and thus

the computational requirements exceed the resources of traditional computing

systems.

Although GPUs has been used for main room acoustics modeling techniques

like ray-based modeling and wave based modeling [7], the parallelization of

the 3D-FD acoustic diffusion implementation is a new trend [8]. Moveover,

acceleration of the diffusion equation is a challenging mathematical problem

both in 2D; ultrasonic and radar [9], heat equation [10] and flow model [11], and

in 3D; reaction-diffusion problems [12] and explicit heat equation [12], however it

has not been applied to the acoustic diffusion Dufort-Frankel approximation [6].

This paper describes the acceleration of a 3D-FD kernel within the room

acoustics simulation to show the benefits of hardware-software co-design. Our

starting point is a Matlab implementation that is rewritten in ANSI C to lever-

age sequential architectures. Then, we drive this application through the latest

accelerator architectures in the market; i.e. Nvidia GPUs and Intel Xeon Phi

architectures. By porting the code to these platforms, our simulations improve

both elapsed time and energy consumption. Finally, we share our experiences

with readers to let them know insights about programmability issues on both

novel platforms. Our major contributions include the following:

1. A low level implementation (i.e., C/OpenMP) of the Matlab 3D-FD kernel.

This implementation outperforms Matlab in a factor of 5x, when running

on a single thread. This shows that the programming effort is worth once

the algorithm is mature enough and will not change over time.

2. Extension of the C implementation of the 3D-FD method to fully uti-

lize the cores and Streaming SIMD Extensions (SSE)/Advanced Vector

Extensions (AVX) vector instructions, in both Intel CPUs and Xeon Phi
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co-processors.

3. A data-parallel scheme on GPUs is deployed using Compute Unified De-

vice Architecture (CUDA) programming model. Our design proposes a

singular tiling technique to exploit data-locality via shared memory.

4. Current hardware generation based on NVIDIA Kepler/Maxwell GPUs

and Intel MIC architecture are compared to reveal solid advantages of

GPUs concerning energy efficiency and performance enhancements. The

CUDA implementation shows much better performance (up to 2x) than

the Intel Xeon Phi implementation and better energy efficiency; up to 5x

better Energy Delay Product (EDP).

5. Our results nominate the NVIDIA’s GPUs as the best accelerator option,

giving the best performance and the lowest power consumption results.

Moreover, considering pricing and performance-oriented metrics like the

EDP, NVIDIA high-end GPUs (980GTX) are better suited for computing

the 3D-FD Kernel.

The rest of the paper is organized as follows. Section 2 briefly introduces

basic concepts. Section 3 describes the implementation details of the targeted

3D-FD kernel in both platforms. Section 4 reports our evaluation methodology

before showing the main experimental results in Section 5. Finally, Section 6

concludes the paper and shows possible directions for future work.

2. Background

2.1. Discrete Element Method (DEM) Simulation using Finite Differences

2.1.1. Acoustic Diffusion Equation Model

Diffusion process has been successfully applied to predict room-acoustic pa-

rameters, such as the reverberation time and the sound pressure level, in dif-

ferent room scenarios [13]. Recently, a theoretical model was proposed based

on the energy radiative transfer equation to generalize the modeling techniques,

which make use of the sound particles propagation approach [14]. This energy
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transfer theory allows to formulate the foundations of the geometrical acoustics

techniques [15] encompassing the diffusion equation model between them.

The acoustic diffusion equation model is stated to be accurate mostly in low

absorption rooms and to predict the late part of the room impulse response [13].

From this estimated room impulse response, it is possible to calculate the sound

pressure level and the reverberation time at every position of the enclosure.

The diffusion equation model for the sound energy density w(r, t) at position

r defined on a domain V and time t, which includes a sound source term P (t)

located at position rs, consists of a partial differential equation with mixed

boundary conditions [13, 16],

∂w(r, t)

∂t
− D∇2w(r, t) + cmw(r, t)

= P (t)δ(r− rs) in V, (1)

−D∂w(r, t)

∂n
= AX(r, α)cw(r, t) on ∂V. (2)

Eq. (1) is an homogeneous parabolic partial differential equation, where ∇2

is the Laplace operator and D = λc/3 is the diffusion coefficient with c being the

speed of sound. This diffusion coefficient takes into account the room geometry

through its mean free path λ, which indicates the average distance that a sound

particle travels between two consecutive collisions [17]. In the classical acoustic

theory, the mean free path in a room is given by λ = 4V/St, with volume V

and total interior area St. The term cmw(r, t) accounts for the atmospheric

attenuation within the room, where m is the absorption coefficient of air [18].

Eq. (2) is a mixed boundary condition that models the local effects on the

sound field induced by different degrees of absorption on the surfaces. The

term n represents the unity vector normal to the boundary surface. This equa-

tion allows one to express the distribution of the surface absorption properties

through the absorption factor AX = AX(r, α), where α is the absorption coeffi-

cient. Different definitions of AX have been presented in the technical literature,

each depending on the assumed physical theory. In this paper, the modified ab-

sorption factor [14, 16] is adopted to perform the simulations in Eq. (3):
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AX = AM (r, α) =
α(r)

2(2− α(r))
. (3)

2.1.2. Finite Difference Implementation of the Acoustic Diffusion Model

The finite difference method is a numerical technique used to solve a differ-

ential equation over a given region subject to the specified boundary conditions,

based on a finite difference approach of the involved derivatives of a partial

differential equation. When the finite difference approach is used, the problem

domain is discretized so that the values of the unknown dependent variable are

considered only at a finite number of nodal points or cells instead of at every

point over the region. A discretized function is defined as follows in Eq. (4).

w(r, t) = w(i∆x, j∆y, k∆z, n∆t) = wni,j,k, (4)

The temporal index n and the spatial indexes i, j and k have been introduced

together with the temporal discretization ∆t and spatial discretizations in the

cartesian axis ∆x, ∆y and ∆z. Latters are defined as the inverse of the temporal

and spatial resolutions respectively. For example, low resolution implies large

cell sizes and high resolution implies small cell sizes.

In this paper, the chosen 3D-FD solution for the acoustic diffusion equation

will be the Dufort-Frankel scheme [19], published in [6], because its suitability

and attractive features (e.g., it is unconditionally stable). For simplification, let

us define β0ν = (2D∆t)/(∆ν)2, where ν = [x, y, z], and β0 =
∑

ν=[x,y,z]

β0ν , so

the finite difference scheme for Eq. (1) is as follows in Eq. (5),

wn+1
i,j,k (1 + β0) = wn−1

i,j,k (1− β0)− 2∆tcmwni,j,k

+ β0x(wni+1,j,k + wni−1,j,k)

+ β0y (wni,j+1,k + wni,j−1,k)

+ β0z (w
n
i,j,k+1 + wni,j,k−1). (5)

The source term, included as a soft source, is added at the suitable position

as wn+1
is,js,ks

= wn+1
is,js,ks

+ 2∆tPnis,js,ks .
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Additional relations are needed to make the number of equations equal to

the number of unknown variables. These variables are obtained from boundary

conditions, explained as follows.

A second-order accurate difference of the boundary conditions [6] of Eq. (2)

is used to ensure the accuracy of the approximation. For simplicity, the finite

difference approximation of boundary surface oriented on the x-axis at both

positions x = 0 and x = lx is presented.

wn+1
0,j,k =

4wn+1
1,j,k − w

n+1
2,j,k

3 +
2AX0,j,k

∆x

D

, (6)

wn+1
Lx,j,k

=
4wn+1

Lx−1,j,k
+ wn+1

Lx−2,j,k

3 +
2AXLx,j,k

∆x

D

. (7)

The derivation for dimension y and dimension z is straightforward.

Thus, Eq. (6) and Eq. (7), together with Eq. (5) are the complete finite

difference approximations of the acoustic diffusion equation in 3D subjected to

mixed boundary conditions. These approximations are implemented in Section

3 for different parallel architectures.

2.2. NVIDIA GPU and Intel MIC Architectures

Heterogeneous computer architectures that combine general-purpose mul-

ticore CPUs with specialized accelerators have become a viable solution to

build high performance supercomputers, as demonstrated by Titan at ORNL

(NVIDIA GPGPUs), Tianhe-2 at NSCC (Intel Xeon Phi), and Stampede at

TACC (Intel Xeon Phi) in the recent Top500 list [3].

NVIDIA introduced its CUDA architecture in 2006 [4]. CUDA allows users

to program GPUs for general purpose computing. In a few years, the GPGPU

(General Purpose for GPUs) field expanded and became one of the best ways

to achieve high performance from commodity processors. CUDA is based on a

hierarchy of abstraction layers; the thread is the basic execution unit; threads

are grouped into blocks, each of which runs on a single multiprocessor, where

they can share data on a small but extremely fast memory. A grid is composed

7



of blocks, which are equally distributed and scheduled among all multiproces-

sors. The parallel sections of an application are executed as kernels in a Single

Instruction Multiple Data (SIMD) fashion, that is, with all threads running the

same code. A kernel is therefore executed by a grid of thread blocks, where

threads run grouped in batches (warps), which are the scheduling units.

The Intel MIC architecture combines many Intel CPU cores onto a single

chip [2]. The Xeon Phi co-processor is the first product based on this architec-

ture. The main advantage of these accelerators is that they provide a general-

purpose programming environment similar to that provided for x86 CPUs. This

co-processor is capable of running applications written in industry-standard pro-

gramming languages such as Fortran, C, and C++. Each co-processor consists

of more than 50 cores clocked at 1GHz or more. The number of processors ac-

tually depends on the generation and model of the specific co-processor. Each

core contains a 512-bit wide vector unit (VPU) with vector register files (32 reg-

isters per thread context). It also features an in-order, dual-issue x86 pipeline,

four-way hyper-threading, 32 KB of L1 data cache, and 512 KB of L2 cache

that is kept fully coherent by a global-distributed tag directory.

The Intel Xeon Phi co-processor is delivered in form factor of a PCIe device.

The second generation (Knights Landing) may, however, be used as stand-alone

processor. The architecture runs a Linux operating system and can execute

native applications. Nonetheless, binaries for this architecture are not com-

patible with other Intel CPUs. Native execution is not the only method to

employ the co-processor. Offload models and hybrid message passing interface

(MPI) jobs may be more suitable for complex applications. However, because

our interest lies in the evaluation of performance and optimization methods, we

restrict our discussion to native execution. Finally, to program applications on

the Xeon Phi, users need to capture both functionality and parallelism. Being

an x86 SMP-on-a-chip architecture, Xeon Phi offers full capability to use the

same tools, programming languages, and programming models as a regular Intel

Xeon processor. Specifically, tools like Pthreads, OpenMP, Intel Cilk Plus, and

OpenCL are readily available. Given the large number of cores on the platform,
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a dedicated MPI version is also available.

3. 3D-FD Implementations for Massively Parallel Architectures

This section describes the implementation details of a 3D-FD acoustic dif-

fusion equation model kernel. The algorithm proposed in this work are only

applied to Eq. (5), i.e. to those cells within the simulated enclosure volume;

which actually represents close to the 95% of total execution time. First we

developed a sequential C version starting from the Matlab code. Next, we

present two different parallel implementations based on the sequential code: (i)

an OpenMP latency-oriented implementation optimized for the Xeon Phi archi-

tecture (with SIMD support), (ii) an optimized CUDA implementation for the

NVIDIA GPU architecture.

3.1. Sequential Baseline

Multigrid methods based on stencil patterns or computations are widely used

in scientific applications, especially in physics, chemistry or signal processing.

Much of the time consumed by a multigrid algorithm is due to the smoother

used by it. In this work we focus on the 3D-FD implementation of the acoustic

diffusion equation model kernel previously presented in Section 2.1.

wnwn+1 wn-1

wpos wact want

Figure 1: Stencil pattern for 3D-FD of the acustic difffusion equation model. Based on a

multigrid method.

Figure 1 shows a multigrid method to implement a stencil computation based

on this update equation, and Algorithm 1 shows the sequential baseline for

this algorithm. It is implemented as a quad-nest loop traversing the complete

computational domain by updating each grid point. Three 3D variable arrays

are involved in the main computation loop (wn+1, wn−1 and wn). We consider
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the absorption coefficient of the medium (in this case the air inside the room

(m)), the speed of sound (c) and the time discretization (dt) in addition to the

constant equation inside the room (β0). There is generally no need to store the

entire space-time grid (namely wn+1, wn−1 and wn), and so the code uses three

copies of the spatial grid, swapping their roles on alternate time steps. Although

this loop nest is simple and fairly easy to understand, its performance may suffer

from poor cache locality. Some basic transformations can be applied safely

to improve the performance of the generated target code on any architecture

without exploiting knowledge about stencil codes [20].

Algorithm 1 The sequential pseudocode for the calculation of the propagation

of the acoustic energy density.

1: for i = 0; i ≤ Iterations; i+ + do

2: for x = 0;x ≤ XDIM ;x+ + do

3: for y = 0; y ≤ Y DIM ; y + + do

4: for z = 0; z ≤ ZDIM ; z + + do

5: wn+1[x, y, z] = (wn−1(x, y, z) ∗ (1 − β0)+

6: β0x ∗ (wn(x+ 1, y, z) + wn(x− 1, y, z))+

7: β0y ∗ (wn(x, y + 1, z) + wn(x, y − 1, z))+

8: β0z ∗ (wn(x, y, z + 1) + wn(x, y, z − 1))−

9: 2 ∗ dt ∗ c ∗m ∗ wn(x, y, z)+

10: 2 ∗ dt ∗ Pn(x, y, z))/(1 + β0);

11: end for

12: end for

13: end for

14: end for

3.2. OpenMP Implementation with Vectorization in Intel Xeon Phi

3.2.1. OpenMP

This Section describes the OpenMP implementation for the Intel architec-

tures. OpenMP [21] is an API to develop parallel applications on shared-memory

architectures mainly. The programming model is based on a set of compiler di-

rectives (pragmas) and a library of routines to query and tune some aspects of
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the execution.

The compiler provided by Intel to generate code for the Intel Xeon Phi archi-

tecture supports OpenMP 4.0 version. The execution model used by OpenMP

is based on the fork-Join pattern. The sequential parts of the program are

executed by a single thread while the parallel parts are executed by multiple

threads. A very large number of parallel applications are based on for-loops, in

which the same code is executed for multiple data elements. Such applications

can be easily parallelized using the directive #pragma omp parallel for. This

directive has some clauses that can be used to fine-tune the parallelization. Such

optimizations include the scheduling model, variable privacy among threads or

the reduction of the intermediate results for each iteration.

In our case, the parallelization is implemented by adding the: #pragma omp

parallel for private(y, z), where y and z are the indexes of two nested

spatial loops. Those indexes need to be private for every thread to maintain the

program semantics.

3.2.2. Vectorization

This section describes Single Instruction Multiple Data (SIMD) implementa-

tion for Intel architectures based on vectorization. Almost all modern processors

have SIMD units that enable the computation of the same operation simultane-

ously over multiple data elements. Current x86 processors support (Advanced

Vector Extensions) AVX or, at least, Streaming SIMD Extensions (SSE) in-

structions. SSE provides 128-bit registers while AVX extends the functionality

to 256-bit registers. The Intel Xeon Phi cores feature a vector processing unit

(VPU) [22] that significantly increases its computing power. Each VPU sup-

ports a new 512-bit SIMD instruction set that can execute 16 float or 8 double

elements per instruction.

When relying on auto-vectorization, the compiler looks for opportunities

whenever the code is compiled using -O2 or higher. In our case, the paralleliza-

tion process begins using the O3 -vec-report2 compiler options, obtaining a

report with some obstacles for vectorization due to non-contiguous memory ac-
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cesses and loop data dependencies. Two code modifications were developed

to solve this issue. Firstly, vectorization is forced by means of the #pragma

simd feature within OpenMP 4.0. Secondly, the data was aligned for vector-

ization. Typically, this means both: a) aligning the base-pointer where the

space is allocated for the arrays and, b) making sure the starting indexes have

good-alignment properties for each vectorized loop. The mm malloc() and

mm free() instructions are used for this purpose. These routines take an align-

ment parameter (in bytes) in the second argument. In addition, for C/C++

arrays allocated dynamically, the assume aligned(matrix, 64) instruction is

used before the vectorizable loop. Without this clause, the compiler may not

be able to discover the specific alignment used when the matrix was allocated

at runtime.

3.3. CUDA Implementation

This section summarizes the data-parallelism approach developed for the

CUDA architecture. We have studied several data-parallelism approaches but,

for this paper, we only show our best empirically demonstrated CUDA design.

Our main objective here is to provide a comparison among different platforms.

Nevertheless, we refer the reader to , [23], and [24] for a optimization carving

on similar stencil patterns in Nvidia architectures.

NZ

2-D Thread
assignment 
in a block

Figure 2: 2D CUDA blocks design. Each CUDA thread need to loop over Z-axis.

Figure 2 shows our CUDA design. It is based on 2-dimensional block design

dividing the cube into vertical blocks, one for each coordinate (x, y) of size z.

A CUDA thread is assigned to each grid point (x, y) ∈ [1, NZ]. Those threads
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iterate over the z axis. Figure 3 shows the data accessed by each CUDA 2-

D block. We show the data lying on the x-axis. In this way, threads within

the same block can share information through the on-chip shared memory and

the register file, taking advantage of the data-locality that is available on this

computational pattern.

Figure 3: Data accesed by a CUDA 2-D block.

4. Benchmarking Environment

This Section describes the hardware-software environment, the input data

sets and the way power measurements are taken for later use in Section 5.

4.1. Hardware Systems

4.1.1. Intel Xeon and Xeon Phi Co-processor

The evaluation platform is equipped with two Ivy Bridge-EP Intel Xeon

E5-2650 CPUs (2x8 cores in total), and a top-of-the-line Intel Xeon Phi 7120P

co-processor (61 cores). The Intel(R) Xeon(R) CPU E5-2650 v2 at 2.6 GHz has

a 20 MB L3 cache, 8 physical cores, 16 threads and 32 GB of DDR3-1600 main

memory. It provides a theoretical bandwidth of 59.7 GB/s per processor. This

machine is used as our evaluation CPU (Xeon in our figures).

The Xeon Phi 7120P has 61 cores working at 1.238 GHz, and each core can

process 16 single-precision data elements at a time, with maximum 2 operations

(multiply-add or mad) per cycle in each lane (i.e., a vector element). Therefore,

the theoretical instruction throughput is 2416 GFlops. Moreover, the most

important feature of the Xeon Phi co-processors is memory bandwidth. The
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evaluated Xeon Phi has 16 memory channels (32-bit wide). With up to 5 GT/s

of transfer speed, the 7120P provides a theoretical bandwidth of 352 GB/s.

4.1.2. NVIDIA GPU

Kepler and Maxwell are the latest generations of the NVIDIA GPU architec-

ture [25]. Compared to previous designs (i.e., Fermi), they extend the number

of cores within a multiprocessor from 32 to 192 (128 SMM for Maxwell), and the

scheduling units from 2 to up to 8 warps at a time. In addition the L2 cache dou-

bles its size. Despite the resource additions (resulting in a far higher transistor

count per unit area), modern GPUs are three (six) times more power-efficient

than previous generations. This is mainly achieved keeping the frequency below

1 GHz and using a manufacturing process of 28 nm. We target a Kepler-based

architecture (Tesla K40c) and a Maxwell GPU (980GTX). The K40c has 2880

cores running at boost clock of 0.88 GHz, giving a raw processing power up

to 5068 GFLOPS. The memory speed is 3,0 GHz with a 384-bits memory bus

width that provides a bandwidth of 288 GB/sec. The memory size is 12 GB of

GDDR5 with ECC capabilities. The 980GTX has 2048 cores running at 1.1Ghz,

4GB of GDDR5 and a peak memory bandwidth of 224GB/sec.

4.2. Software Environment

The Intel Xeon Phi was programmed using C with OpenMP. We used the

Intel’s ICC compiler (version 14.0.2). In order to produce an executable for the

co-processor in the native execution mode, the code must be compiled with the

flag -mmic. After compilation, the executable must be copied to the co-processor

file system before execution. Sometimes, additional libraries must be copied to

the co-processor or NFS-shared with it. In our evaluation, we transfer the files

using the secure copy tools scp, log in to the co-processor system using ssh,

and run commands on the co-processor from the shell. The evaluated platform

run CentOS 6.5 with MPSS 3.2.3. The CUDA programming model is used to

program the NVIDIA GPUs (Tesla K40c and 980GTX). More precisely, we have

used the CUDA SDK 6.5. The evaluated platforms run Ubuntu 14.04.1. The
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application is executed ten times in a row. We use a trimmed mean (0.3) to

reduce the effects of outliers in the final measurements.

4.3. Input Datasets

This section describes the data of the different input parameters used in our

experiments. The discretized enclosure was a cubical shape room with 8x8x8m3

dimensions. The spatial and temporal discretization were chosen to meet the

conclusions enunciated in [6]. Accordingly, (∆t)2/(∆ν)2 should be of the order

of 10−8 to ensure that the 3D-FD implementation converges to a fixed value with

a low error. Applying this convergence criterion, four different grid resolutions

were created for the simulations; i.e. 128x128x128 (32 MBytes), 256x256x256

(256 MBytes), 384x384x384 (864 MBytes)and 512x512x512 (2048 MBytes) cells.

These grid sizes eventually determine the memory requirements of the imple-

mentations. Memory usage comes mainly from four matrices required in the

computations. Each one uses ( INPUT SIZE3 ) x sizeof(float) bytes of

storage. This estimation has been validated using Valgrind (–tool=memtest).

Previously to the performance experiments, several room scenarios have been

targeted with different input parameters, e.g. absorption factor and diffusion

coefficient, to check the validity and the accuracy of the output data. For the

experiments discussed in Section 5, an absorption coefficient of 0.1, a speed of

sound of 343 m/s, and an atmospheric attenuation of 0.0006 m−1 were chosen.

One sound source of 10−12 W and two receiver locations were defined to store

the room impulse response of 1 second of duration.

4.4. Power Measurement

For decades, power and energy estimations relied on complex models or ex-

pensive external devices. Nowadays, many hardware developers provide means

to give energy/power feedback to application developers and computing cen-

tres. For Intel architectures, the second generation of Core i5 and i7 processors

extended its MSRs1 with energy information, enabling applications to examine

1Model Specific Registers
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their energy efficiency without using external devices. The studied Xeon pro-

cessor includes three energy registers, one for the whole package (PKG), one for

the cores (Power Plane 0 - PP0), and another one for the memory (DRAM).

Latest versions of PAPI libraries (5.0 or higher) [26] include support for reading

Intel’s energy registers. Other platforms such as Intel Xeon Phi are also sup-

ported by PAPI relying on external components (micpower). This component

allows developers to read instantaneous power readings for different parts of the

Xeon Phi board, including core power, total board power, PCI-e power, etc.

Real-time power measurement of individual GPU components is also supported

by modern NVIDIA GPUs. This is done by using NVML (NVIDIA Manage-

ment Library) [27], which reports the GPU power usage in real-time. PAPI

provides a component to interact with NVML and retrieve power information

from within the application. Unluckily, the evaluated NVIDIA 980GTX does

not provide access to the power counters with our current setup (driver+NVML

version). We have used an external meter that measures the power dissipated

by the whole system (at-the-wall power) for comparative purposes. We subtract

the power used by the system running a single-threaded application without the

GPU; to the power (steady power) dissipated by the system with the GPU to

estimate the GPU power. Since the GPU version of the kernel only uses 80%

of the CPU resources, we limit resource utilization of the CPU to measure our

steady power.

We report PKG energy information for Intel Xeon, and total board power

for both NVIDIA K40c, 980GTX and Intel Xeon Phi. This type of instrumen-

tation introduces an overhead proportional to the sampling rate. Nevertheless,

performance and power information were obtained in separate runs to minimize

the aforementioned overhead. Temperature affects power readings as much as

5% every 8-10 degrees Celsius [28]. Since we run the application ten times in

a row we have ample time to warm up. Table 1 summarizes of the hardware

characteristics of the analyzed systems.
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Table 1: Hardware Specification Summary

System Peak Performance Mem. Bandwidth

Xeon 2650v2 2x166 GFlops 2x59.7 GB/s

Xeon Phi 7120P 2416 GFlops 352 GB/s

K40c 5068 GFlops 288 GB/s

980GTX 4612 GFlops 224 GB/s

5. Experimental Results

This Section presents our energy and performance evaluation of the 3D-FD

kernel on the target platforms. The best configuration of thread count for each

platform, 8 threads for Xeon (dual socket E5-2650v2@2.6Ghz, 4 threads per

socket), 244 threads for Xeon Phi, and 256 threads per block for the GPUs is

chosen for running the experiments. We show performance, energy and EDP

(energy delay product) information for different cubic room resolutions previ-

ously explained in Section 4.3.

Figure 4 shows runtime information (logarithmic scale) as well as speedup2

(secondary Y axis) for all the evaluated platforms and optimal thread count.

For small room sizes the performance of the Xeon CPU is very similar to that

of the K40c, while the 980GTX is almost twice as fast. However, we feel that

the implementation effort for GPU/accelerators does not pay off for this size.

Nevertheless, as soon as the problem size increases, the accelerators start to pay

off. Given the memory-bound nature of the kernel this is mostly because of the

increased memory level parallelism (MLP). For all resolutions there is a clear

advantage of the GPUs over both Xeon Phi and CPU implementations, however,

the CUDA implementation effort is substantially higher when compared to the

Xeon Phi. GPUs perform the computations approximately twice as fast as the

Xeon Phi for all problem sizes, providing a peak speedup of 20x for sizes of 384

and 512 over the single threaded CPU implementation. Given the substantial

performance increase of the Xeon Phi for problem sizes over 384 we think a

2Over the single threaded CPU implementation.
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Figure 4: Runtime (prim. Y) and Speedup (sec. Y) for different room resolutions

i.e. 128x128x128 (32 MBytes), 256x256x256 (256 MBytes), 384x384x384 (864 MBytes)and

512x512x512 (2048 MBytes) cells.

different data organization can provide further improvements for this platform.

On the other hand, Figures 5 and 6 show both energy and EDP as well

as the average power dissipation (secondary Y axis) given the optimal thread

count for each platform. It is important to note that the GPUs require a CPU

to work, but CPU power was not accounted for the GPU computations. It is

also worth mentioning that the second generation of Xeon Phi accelerators can

work without a main CPU. Results show superior overall energy efficiency of the

GPUs despite the higher technology factor (28nm vs 22nm), while providing half

the run-times. Average power dissipation of the GPUs does not change much

with problem sizes, and is close to 140 Watts. The Xeon CPU average power

is reduced as we increase problem size, since it spends more time waiting for

data than doing useful computations (around 115W). For the Xeon Phi there

is a better matching between the code and the input size/data organization for

384 and 512 sizes. This is translated both in better performance and higher
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Figure 5: Energy (prim. Y) and Average Power (sec. Y) for different room resolutions

i.e. 128x128x128 (32 MBytes), 256x256x256 (256 MBytes), 384x384x384 (864 MBytes)and

512x512x512 (2048 MBytes) cells.

CPU/Power dissipation (around 190W).

The EDP metric gives additional importance to performance over power

dissipation. For this metric (lower is better), the GPUs outperform the rest of

the platforms, being 5x better than the Xeon Phi and 31x better than the Xeon

CPU for 512. This advantage is slightly lower for 384, obtaining an impressive

4x better EDP than Xeon Phi and 20x better than the Xeon CPU. Nevertheless,

the 980GTX GPUs is around 5 times cheaper than the K40c.

Table 2 provides a brief summary of the performance, energy and EDP

results obtained in our evaluation for different room sizes.

Summary of Results

Finally, we should promote efforts to using massively parallel architecture be-

tween several levels and components of existing software y hardware nowadays.

According to our results, Table 3 shows comparative data through approaches
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Figure 6: EDP (prim. Y) and Average Power (sec. Y) for different room resolutions

i.e. 128x128x128 (32 MBytes), 256x256x256 (256 MBytes), 384x384x384 (864 MBytes)and

512x512x512 (2048 MBytes) cells.

to programmability.

Programmability looks to be a strong indicator of success in the adoption

of the Xeon Phi architecture. Xeon Phi has clearly benefited from a more

compatible programming paradigm even if it has slightly inferior performance

statistics regarding to CUDA.

NVIDIA has the CUDA programming paradigm and accompanying tools.

NVIDIAs CUDA programming environment is much more developed regarding

to Xeon Phi.

6. Conclusions and Future Work

Applications with a real impact on the society can take advantage of the great

advances in the field of high performance computing to overcome emerging chal-

lenges. When physical limitations of silicon-based architectures are threatening

the evolution of processors, massively parallel processors (GPUs and acceler-
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Table 2: Summary of the main empirical results.

Platforms
128 256 384 512

Time Energy EDP Time Energy EDP Time Energy EDP Time Energy EDP

Xeon 32 4 1 708 78 574 2865 324 9277 8885 1286 114228

Phi 54 8 4 448 67 298 1146 170 1947 3759 520 19536

K40 29 3 1 166 21 35 574 82 471 1598 230 3683

980GTX 20 2 0 152 20 30 575 79 454 1510 214 3236

Time (Sec.), Energy (Kilo Joules) and EDP (Joules*Sec.)/100000) for different room resolutions.

Table 3: Results comparative

Approaches to Lenguaje Intel NVIDIA

programmability C Xeon/OpenMP Xeon Phi K40 980GTX

Difficult of programing low low medium high high

Economic cost - - 3000e 3000e 600e

Time speed up(1) 5x 25x 50x 90x 110x

Energy Savings(2) 1 2.63 2.71 3.96 7.81

(1) Speed up over the Matlab Sequential. (2) Normalized against sequential C.

ators) come to the rescue. Programmability of these architectures can be a

challenge for inexperienced developers, but the benefits of a hardware-software

co-design will definitely pay off in the long term.

We have analyzed this synergy between application and hardware, bench-

marking flagship processors from major vendors like Intel and NVIDIA. We

analyze programmability, power, performance and energy using a 3-D Finite

Difference (3D-FD) implementation of the diffusion equation model as our case

study. We develop three different implementations for this room acoustic sim-

ulation kernel:

1. A single-threaded version of the Matlab code migrated to C.

2. A C/OpenMP version with vectorization to leverage the computational

power of CMPs and Intel Xeon Phi accelerators.

3. A data-parallel scheme on GPUs using CUDA to target NVIDIA plat-

forms, where we propose a tiling technique to exploit data locality using

shared memory.

After our empirical evaluation, we nominate the NVIDIA’s Maxwell GPUs
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as the most power efficient accelerator. Moreover, considering performance-

oriented metrics like energy delay product (EDP), NVIDIA high-end GPUs are

better suited for computing the 3D-FD Kernel, with up to 5x improvements

over the Xeon Phi and 31x over the Xeon CPU for big room resolutions (512).

For small problems, CPUs seem to be sufficient in terms of performance and en-

ergy efficiency. However, when problem size increases the independent memory

interfaces/hierarchies (GDDR5) from both accelerators (Xeon Phi) and GPUs

(K40c and 980GTX) offer clear benefits for this memory bounded kernel.

Given the memory boundless of the kernel, an interesting analysis would

be to reduce the frequency of the computation elements (cores), looking for

greater opportunities to reduce power in all platforms. Moreover, as the trend

of parallel computing is to use HPC clusters, we aim to scale our evaluations to

HPC clusters in the future.
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Antonio de Murcia.
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