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Abstract. As an efficient image contrast enhancement (CE) tool, adaptive gamma correction (AGC) was 
previously proposed by relating gamma parameter with cumulative distribution function (CDF) of the 
pixel gray levels within an image. ACG deals well with most dimmed images, but fails for globally bright 
images and the dimmed images with local bright regions. Such two categories of brightness-distorted 
images are universal in real scenarios, such as improper exposure and white object regions. In order to 
attenuate such deficiencies, here we propose an improved AGC algorithm. The novel strategy of negative 
images is used to realize CE of the bright images, and the gamma correction modulated by truncated CDF 
is employed to enhance the dimmed ones. As such, local over-enhancement and structure distortion can be 
alleviated. Both qualitative and quantitative experimental results show that our proposed method yields 
consistently good CE results. 
 
Keywords: image enhancement, contrast enhancement, adaptive gamma correction, negative image, CDF 
truncation, dimmed image, bright image. 
 

1. Introduction 
 

      Contrast enhancement (CE) refers to the image enhancement on contrast by adjusting the dynamic 

range of pixel intensity distribution [1]. CE plays an important role in the improvement of visual quality 

for computer vision, pattern recognition and digital image processing. In real applications, we usually 

encounter digital images with poor contrast or abnormal brightness, which may result from different 

factors, such as the inexperience of taking photographs and the inherent deficiency of imaging devices. 

The capturing scenes with low or high illuminance intensity may also lead to reduced contrast quality. 

Despite of visual quality degradation, low contrast might hinder the further applications of a digital image, 

including image analysis and understanding, object recognition and digital printing, etc. As such, it is 

essential to enhance the contrast of such distorted images before further applications. 

     Existing CE techniques can be categorized into pixel-domain [2-12] and transform-domain ones [13-17] 

according to the data domain they are applied to [6]. The former relies on pixel intensity operation, while 

the latter implements CE in the transformation domain of an image, such as discrete cosine transform 

(DCT) [13-15], Wavelet [16] and Curvelet [17]. Generally, the pixel-domain CE techniques might be used 

more widely in real applications due to low requirements on computational cost and parameter setting.  
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      There exist a large category of pixel-domain CE techniques based on the redistribution of gray levels, 

such as histogram equalization (HE) and its related methods [1-3]. HE implements pixel intensity mapping 

by directly equalizing the cumulative distribution function (CDF) of the input image's gray level histogram, 

which becomes as uniform as possible after CE. Despite the merit of high computational efficiency, HE 

owns the limitation to incur over-enhancement if high peaks exist in the input histogram [4]. In order to 

attenuate such deficiency, the improved local HE [2] and brightness preserving bi-HE [3] are developed. 

As another influential work, Arici et al. propose a general histogram modification (HM) framework for CE, 

which is considered as an optimization problem [4]. It minimizes a cost function which includes the 

penalty of histogram deviation from primary to uniform histograms, histogram smoothness and black & 

white stretching. Although HM successfully avoids the unnatural look caused by excessive enhancement, 

its enhancement results are rather sensitive to parameter setting. Gaussian mixture model is also proposed 

to model the image intensity distribution which is partitioned into several intervals [5]. Pixel gray levels in 

each interval are mapped to the appropriate output interval according to dominant Gaussian component 

and interval-wise CDF. Although good visual effects are gained, such a method has a high computational 

cost.  

      Recently, the spatial entropy-based contrast enhancement (SECE) is proposed to incorporate the spatial 

distribution of pixel intensities into the design of mapping function [6]. After dividing an input image into 

non-overlapped blocks, the distribution of spatial entropy is first calculated from blockwise 2D spatial 

histograms, and then equalized for implementing CE. SECE can consistently yield visually improved and 

pleasing outputs without attractive distortions, regardless of the available contrast on input images. 

However, as pointed out in the later improvement works [7, 8], SECE is found to enjoy the insufficient 

enhancement strength limit. In [9], noisy low-light images are enhanced by recurring to structure-texture-

noise decomposition model of images. Besides, human visual perception [18, 19] and advanced machine 

learning techniques, such as deep learning [20], are also used to design efficient CE algorithms.  

      Gamma correction is also a popular pixel-domain CE method, which is cost-effective and good at 

dealing with bright and dimmed images [1, 11, 12, 21]. However, the manual selection of appropriate 

gamma values is often time-consuming. As for adaptive gamma correction (AGC), the gamma parameter 

is modulated by the statistics extracted from images, and therefore set automatically. Huang et al. 

proposed the AGC with weighting distribution (AGCWD) by setting gamma as a function of CDF [11]. 

AGCWD behaves well in enhancing dimmed images which own low average brightness and seem black, 

as shown in Fig. 1(a). 
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      In this paper, we focus on the CE of brightness-distorted images which own a relatively high or low 

global intensity. The existing AGC techniques are revisited and improved formally. We find that such 

methods are incapable to be directly used to enhance globally bright images, and the image structure in 

local bright regions may be lost in enhancing dimmed images. In order to attenuate such deficiencies, we 

propose an improved AGC method by integrating the strategies of negative images and CDF truncation. 

Substantial test results verify the effectiveness and efficacy of our proposed method in enhancing both 

dimmed and bright types of contrast-distorted images. 

      The rest of this paper is organized as follows. AGC is revisited and analyzed detailedly in Section 2, 

followed by the improved AGC scheme proposed in Section 3. Section 4 shows experimental results. The 

conclusion is drawn in Section 5. 
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Fig. 1 CDF-based adaptive gamma parameter. (a)(b) Example dimmed image and its adaptive gamma curve. Here, the intensity 
channel is referred. 

 

2. Prior Works on Adaptive Gamma Correction 
 
      In [11], a typical AGC method is proposed by relating gamma parameter with CDF. The transformed 

pixel intensity T(l) is computed as  

( )

max
max

T( )
l

l
l round l

l

  
   

   
.                                                          (1) 

where    =1-l c l =1-  0
l
x p x , l=0, 1, 2, ..., 255 is the CDF of gray levels in the input image.  p x  

denotes the normalized gray level histogram. round [·] is the rounding operation. Here, 8-bit grayscale 

images with maximum pixel intensity lmax=255 are exampled. As shown in Fig. 1(b), the gamma value 

 l
 
monotonically decreases from 1 to 0. As such, most of the low-valued pixels in dimmed images will 

be stretched. The pixel dynamic range of resulted images will be extended, so that CE can be achieved.  
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      Furthermore, a weighting distribution function is used to smooth the primary histogram [11]. That is,  

min
max

max min

( )
( )w

p l p
p l p

p p


 

     
                                                         (2) 

where   is the adjusted parameter,    max minmax , min
ll

p p l p p l   . Then  wp l
 
is normalized for yielding

 '
wp l . As shown in Fig. 2(a), the histogram weighted by 1   becomes relatively flat and smooth at low 

intensities, so that the adverse effects are lessened [11].  
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Fig. 2 AGCWD method. (a) The weighted pixel intensity histogram of the image in Fig 1(a); (b) its corresponding CDF curve; 

(c)(d)(e) enhanced images with the weighting factor  = 1, 0.5, 1.5, respectively.  

 

      In the formal AGCWD algorithm [11], Eq. (1) is updated by replacing  l  with the  w l  derived 

from  '
wp l . As shown in Fig. 2(b), the corresponding CDF  wc l  from  '

wp l  can be adjusted via  . Figs. 

2(c)(d)(e) show the corresponding enhancement results of AGCWD.  

      Although such prior AGC methods are effective in enhancing the contrast of most dimmed images, the 

image distortion may be incurred in bright regions due to the improper setting of rather low gamma values 

for large pixel intensities. Moreover, such AGC methods fail to enhance the contrast of globally bright 

images, which own distinctly different distribution of pixel intensities.  
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Fig. 3 Flowchart of the proposed image contrast enhancement algorithm. 

3. Proposed Method 
 

      The overview of our proposed CE scheme is indicated in Fig. 3. It should be pointed out that here we 

focus on the CE of two types of brightness-distorted images, i.e., the dimmed and the bright ones. As for 

an input image  ,x yI , x=1, 2, ..., M, y=1, 2, ..., N, its type is first identified by thresholding the statistical 

quantity 

t

t

m T
t

T


 I

 
                                                                         (3) 

where  ,= x ym x y MN  I I . The constant Tt is defined as the expected global average brightness for 

normal natural images. The experimental statistics from several standard image databases show that Tt is 

appropriate to be set as about the half of maximum pixel intensity, i.e., 128 for 8-bit images. The input 

image is judged as dimmed if t <- t , and bright if t > t , where t  is the threshold used for distinguishing 

brightness-distorted images from normal ones. The images with normal illuminance  tt   are found to 

be unfit for AGC-based enhancement, thus they would not be addressed by our techniques. Here, t is set 

experimentally in consideration of the trade-off between enhancement quality and technical applicability. 

      In terms of the identified image types of bright and dimmed, the ACG based on negative image and 

CDF truncation are applied respectively for achieving contrast improvement and brightness restoration.  

3.1. AGC via Negative Image 

      CE of bright images is novelly proposed by applying AGCWD to their negative version. Specifically, 

the negative image denoted by I' is formally defined as  

' ( , ) 255 ( , )x y x y I I
   

                                                              (4) 

where x=1, 2, ..., M, y=1, 2, ..., N. Figs. 4(a)(b) show an example input image and its negative image. We 

can see from Fig. 4(c) that the pixel intensity distribution of such a negative image is similar as that of a 

dimmed image. Since large high-value pixels in the primary bright image are reversed by Eq. (4), I' owns 
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massive low intensity pixels and can be considered as a dimmed image. As a result, the AGCWD can be 

subsequently applied to I', which yields an immediate enhanced image Ie
'. Lastly, Ie

' is reverted back to 

positive image space for yielding the final enhanced image Ie shown in Fig. 4(f). 
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Fig. 4 Negative-image-based AGC. (a)(b) Example bright image and its negative version; (c) pixel intensity histograms; (d) 

adaptive gamma curves; (e)(f) enhancement results of ACGWD and negative-image-based AGC, respectively. Here, = 0.25.  

 

      We can see that such negative image-based AGC method relies on the successfulness of AGCWD in 

enhancing the dimmed negative image. In Fig. 4(d), an early and rapid decrease occurs in the adaptive 

gamma mapping curve generated from the negative image. Consequently, both the brightness and contrast  

can be enhanced reasonably. However, if AGCWD is directly applied to the bright image, a worse result 

shown in Fig. 4(e) would be gained due to the used improper mapping function. 

      Specifically, our proposed negative-image-based AGC algorithm is described briefly in Algorithm-1. 

It should be mentioned that the weighting factor   used here needs to be addressed elaboratively, since 

the statistical histogram of natural images may be asymmetric. As such, the setting of   for enhancing 

bright images is different from that for dimmed images. 
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Algorithm-1: Negative-image-based AGC Algorithm 

Step-1. Obtain the negative image I' of the input image according to Eq. (4). 

Step-2. Obtain the gray level histogram p(l ) of I', and compute pw(l ) via Eq. (2). 

Step-3. Compute ( )w l =1-cw(l ), where cw(l ) is the CDF derived from normalized pw(l ). 

Step-4. Apply pixel value transformation to I' according to Eq. (1) and yield Ie
'.  

Step-5. Output the enhanced image Ie= round [255- Ie
'], where round[·] is rounding operation. 

 

3.2. AGC via Truncated CDF 

      As shown in Fig. 1(b), the input pixels with different intensities are corrected with different gamma 

values in AGCWD. For example, there are more than 70% pixels within [0, 50] for the primary dimmed 

image shown in Fig. 1(a). Their corresponding applied gamma decreases rapidly from 1 to around 0.25. As 

such, the dimmed pixels can be brightened evidently due to the use of relatively small gamma values. That 

can be seen from the enhanced results shown in Figs. 2(c)(d)(e), which look globally brighter than the 

original image and the details in dimmed regions become visible. This is the reason why AGCWD works.  

      However, there exists a serious problem in AGCWD. As shown in Figs. 2(c)(d)(e) (locally magnified 

versions in Fig. 10), the edges in bright regions, i.e., the white lid of wheels and white shirts, disappear or 

weaken after CE. Such detail loss phenomenon is typically incurred by AGCWD in enhancing the images 

with bright regions, which are universal in real applications. This deficiency should attribute to the used 

overly low gamma values in transforming the median and high intensity pixels. Fig. 5 indicates that  w l  

continues to monotonously decrease from 0.25 towards 0 in processing the remaining pixels with gray  
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Fig. 5 Adaptive gamma curves of AGCWD (  w l ) and CDF-truncated AGC (  '
w l ) for enhancing the image in Fig. 1(a). 
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levels within [50, 255]. Especially for the bright regions which typically own high intensity pixels, for 

example  , 125x y I , the applied gamma is below 0.1 so that highly condense pixels move towards 255. 

Hence, it causes annoying over-saturation and over-enhancement which obscure the edge and structure 

textures in bright regions. 

 The above investigations indicate that the bright regions degraded by AGCWD should attribute to the 

inappropriate setting of gamma parameter. To attenuate such deficiency, we propose to truncate the CDF 

curve for limiting it below a reasonable threshold. As such, the corresponding CDF-based gamma can 

avoid being decreased overly towards zero. Specifically, as illustrated in Fig. 5, we improve the AGCWD 

method by truncating the adaptive gamma parameter as follows, 

    ' max , 1w wl c l                                                                  (5) 

where max(·,·) is the maximizing operator.  is the threshold used for CDF truncation. When cw(l) is 

larger than 1- ,  '
w l  would be boosted to  . As such, the bright image regions would not be corrected 

with a rather low gamma value, and the detail loss could be avoided. Through such truncation,  '
w l

 
keeps 

larger than  so that the contrast adjustment for bright pixels are restricted reasonably. Meanwhile, the 

gamma value  is also small enough for extending the dynamic range of dimmed pixels.  

 Overall, our proposed CDF-truncated AGC algorithm is briefly summarized as Algorithm-2. Note that 

our proposed CE approaches can be extended to enhance color images by applying them to the luminance 

channel and preserving chrominance channels in a certain color space. 

 

Algorithm-2: CDF-truncated AGC Algorithm 

Step-1. Obtain gray level histogram p(l ) of the input image I. 

Step-2. Compute pw(l ) according to Eq. (2). 

Step-3. Compute  '
w l

 

according to Eq. (5). 

Step-4. Output the enhanced image Ie by transforming I according to Eq. (1). 

 

4. Experiments and Discussion 
  

4.1. Dataset, Algorithms and Performance Measures 

 Both bright and dimmed contrast-distorted images are collected as input test images, which could be 

simulated or direct camera-outputs. Without loss of generality, the bright and dimmed input images are 
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simulated by respectively applying the gamma corrections with   0.3 and 2 to the images from Kodak 

[22], BSD500 [23] and UCID [24] standard databases. 

 Performance comparison tests are also conducted. The compared CE algorithms include HE [1], HM 

[4], AGCWD [11], IMADJ (Matlab function 'imadjust') [10] and SECE [6]. HSV color space is selected 

and the V channel image is enhanced in all referred tests. 

 Currently, the performance assessment of CE algorithms is still a challenge task [25-27]. In order to 

keep consistency with prior works and apply the latest research achievements, the metrics EMEG 

(Expected Measurement of Enhancement by Gradient) [6], GMSD (Gradient Magnitude Similarity 

Deviation) [28] and PCQI (Patch-based Contrast Quality Index) [25] are simultaneously used as objective 

assessment of CE algorithms. EMEG is defined as  

 
1 2

, ,
, ,

, ,
1 11 2 , ,

1 1
EMEG max ,

255 1 1

dx h dy hk k
i j i j

dx l dy l
i j i j i jk k

 

 
 

 
      


I I

I
I I

                                        (6) 

where the input image I is divided into k1k2 overlapping sub-blocks Ii, j of size 8×8 pixels. ,
,

dx h
i j

I , ,
,

dx l
i j

I  are 

respectively the highest and lowest values of absolute row-based block derivative, while ,
,

dy h
i j

I , ,
,

dy l
i j

I  are the 

column-based ones. The blocks with high contrast own high EMEG values, where the maximum value is 1. 

Contrarily, EMEG of smooth blocks is relatively low and reaches as low as 0. That is, EMEG(I) [0,1]  . 

Although EMEG is sensitive to noise, it is still expected that EMEG(Ie) > EMEG(I) [6]. 

 GMSD is a full-reference image quality assessment for measuring the perceptual similarity between 

two images via gradient comparison [28]. Here, GMSD(Ie, Ir) denotes the similarity between the enhanced 

image Ie and the reference image Ir. The GMSD value is lower if the difference is less, and becomes 0 if 

corresponding gradient images are the same. However, we discover that GMSD may fail to reflect the 

discrepancy of mean intensities between two images, which determine the global perceptual brightness.  

 PCQI provides an accurate prediction on the human perception of contrast variations between the 

enhanced and reference images [25]. The PCQI is defined as 

 PCQI ,e r c s iP P P   I I                                                              (7) 

where Pc[0, 2] measures the contrast change of Ie comparing with Ir. Contrast increases if Pc >1, and the 

higher Pc
 
 value implies more improvement. Ps[0, 1] and Pi[0, 1] respectively measure the distortions 

of image structure and mean intensity between Ie and Ir. The higher Ps,  Pi  values mean less distortions. The 

PCQI (P) value provides the overall evaluation metric. 
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 Based on plentiful experimental observations and quantitative verifications, the involved parameters in 

our proposed algorithm are experimentally set as 112, 0.3, 0.5t tT       , 0.25   for enhancing bright 

images and 0.75   for dimmed ones. Such setting could be easily adjusted within a limited range without 

apparently affecting the enhancement results. 

4.2. Qualitative Assessments on Bright Images 

 Qualitative assessment results on the simulated bright type of low-contrast images are shown in Figs. 

6~9 and Tables 1, 2.  

  

 
                        (a)                                               (b)                                        (c)                                (d)            

 
                        (e)                                               (f)                                        (g)                                (h)            
Fig. 6 Results for bright image Hats. (a) Input bright image; Enhanced images obtained by (b) HE, (c) HM, (d) AGCWD, (e) 
IMADJ, (f) SECE, (g) Our proposed algorithms; (h) Original version in Kodak dataset.  
 
 

 
                        (a)                                               (b)                                        (c)                                (d)            

 
                        (e)                                               (f)                                        (g)                                (h)            
Fig. 7 Results for bright image Moto. (a) Input bright image; Enhanced images obtained by (b) HE, (c) HM, (d) AGCWD, (e) 
IMADJ, (f) SECE, (g) Our proposed algorithms; (h) Original version in Kodak dataset.  
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                        (a)                                               (b)                                        (c)                                (d)            

 
                        (e)                                               (f)                                        (g)                                (h)            
Fig. 8 Results for bright image Island. (a) Input bright image; Enhanced images obtained by (b) HE, (c) HM, (d) AGCWD, (e) 
IMADJ, (f) SECE, (g) Our proposed algorithms; (h) Original version in Kodak dataset.  
 
 
 

       
                              (a)                                   (b)                                       (c)                                          (d) 

       
                              (e)                                   (f)                                      (g)                                          (h) 
Fig. 9 Results for bright image Tower. (a) Input bright image; Enhanced images obtained by (b) HE, (c) HM, (d) AGCWD, (e) 
IMADJ, (f) SECE, (g) Our proposed algorithms; (h) Original version in Kodak dataset.  
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Table 1 EMEG (E) and GMSD (G) values (×10-3) of the bright sample images (Figs. 6~9) enhanced by different algorithms. 

   Algo. Input HE HM AGCWD IMADJ SECE Prop. 

   Metric E G E G E G E G E G E G E G 
 
   Hats 43 84 133 99 54 76 52 150 89 31 88 23 99 43 

   Moto 152 87 378 92 309 83 199 182 262 51 262 39 301 44 

   Island 70 81 192 98 101 79 93 146 157 70 155 62 164 62 

   Tower 75 98 224 119 120 73 89 200 158 30 147 28 169 39 

 

Table 2 PCQI (P) values (×10-3) of the bright sample images (Figs. 6~9) enhanced by different algorithms. 

 Algo. Input HE HM AGCWD IMADJ SECE Prop. 

 Metric   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P
 

 Hats 752 992 732 538 1210 974 885 1048 841 988 750 617 800 975 674 515 1080 986 952 1015 1076 988 927 987 1124 986 915 1017

 Moto 750 992 709 520 1259 979 876 1089 1159 983 806 923 846 961 642 517 1084 992 880 948 1090 993 868 941 1171 993 899 1048

 Island 754 993 721 534 1245 982 888 1093 909 989 732 653 848 980 659 539 1165 988 932 1078 1148 990 903 1033 1184 990 910 1073

 Tower 687 993 744 500 1226 972 904 1083 917 987 791 709 754 970 691 491 1056 990 933 977 1025 991 890 904 1110 990 912 1004

       

 Fig. 6 shows the results on the image Hats, where (a) indicates the bright image to be enhanced, and 

(b)~(g) indicate the enhanced results generated by different CE algorithms. As shown in Fig. 6(b), 

although HE achieves high contrast, it incurs over-enhancement in shadow regions which look much black. 

Figs. 6(c)(d) show that the contrast improvements yielded by HM and AGCWD are rather weak and even 

void. IMADJ, SECE and our proposed CE algorithm have successfully boost the contrast of distorted 

images without incurring annoying artifacts, and the enhanced results are visually consistent with the 

unaltered standard image shown in Fig. 6(h).  

 Such visual results are consistently validated by corresponding objective performance measurements 

given in Tables 1, 2. Comparing with AGCWD and HM, our method attains higher EMEG, Pc values, 

lower GMSD and higher Ps, Pi values. Such digitals reveal that more contrast improvement and less 

structure/intensity distortions are achieved by our method. Although HE gains high EMEG, Pc values, it 

has high GMSD and low Ps, Pi values which imply large distortions. In terms of performance tradeoff, 

ours is comparative with IMADJ and SECE, since approximate measurements have been obtained by such 

methods. Note that slightly higher contrast improvement may be at the cost of a little more distortions, i.e., 

either the structure or the mean intensity distortion.  

 Similar results are also obtained on the other example images Moto, Island and Tower, as shown in 

Figs. 7, 8 and 9, respectively. We can see that quality of the images enhanced by our method always keeps 

comparative with the state of the art, i.e., SECE, and the classical IMADJ method. HE and HM could  
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              (a)               (b)               (c)               (d)               (e)               (f)               (g) 

Fig. 10 Results for dimmed images Hats, Moto, Island and Tower. (a) Input dimmed image; Enhanced images obtained by (b) 
HE, (c) HM, (d) AGCWD, (e) IMADJ, (f) SECE, (g) Our proposed algorithms. The corresponding locally magnified versions 
are shown in even rows.  
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Table 3 EMEG (E) and GMSD (G) values (×10-3) of the dimmed sample images (Fig. 10) enhanced by different algorithms. 

   Algo. Input HE HM AGCWD IMADJ SECE Prop. 

   Metric E G E G E G E G E G E G E G 
 
   Hats 80 55 130 97 95 56 129 101 82 64 96 45 101 50 

   Moto 208 86 375 91 354 69 393 104 209 87 252 43 294 53 

   Island 89 63 189 97 123 50 184 108 102 67 127 43 147 59 

   Tower 146 56 220 117 186 59 215 92 149 62 161 31 183 71 

 

 

Table 4 PCQI (P) values (×10-3) of the dimmed sample images (Fig. 10) enhanced by different algorithms. 

 Algo. Input HE HM AGCWD IMADJ SECE Prop. 

 Metric   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P
 

 Hats 966 995 804 774 1208 979 887 1054 1061 992 828 875 1190 985 893 1053 976 993 790 767 1074 992 859 919 1110 989 939 1030

 Moto 814 987 824 659 1253 978 876 1083 1222 982 932 1124 1232 974 915 1106 814 987 821 658 983 989 880 857 1121 984 947 1045

 Island 882 995 808 708 1242 989 890 1100 1058 994 872 919 1201 987 893 1067 947 992 813 765 1073 994 893 955 1103 992 943 1031

 Tower 962 995 810 778 1224 978 905 1090 1189 991 933 1099 1213 982 909 1090 969 994 801 775 1083 995 878 948 1160 988 941 1078

 

 

not work well on all sample images, while AGCWD behaves the most badly due to the least contrast 

increase. Such consistent conclusions could also be verified by the corresponding results shown in Tables 

1, 2. 

4.3. Qualitative Assessments on Dimmed Images 

      In this subsection, the corresponding qualitative assessment results on dimmed low-contrast images are 

illustrated in Fig. 10 and Tables 3, 4.  

We can see from the locally magnified regions that both HE and AGCWD methods typically incur 

over-enhancement on bright regions, such as top of the hats, edges within the white circle lid and shirts, 

contours of the clouds and textures of the chimney. Details in such image regions are lost to some extent 

after CE. The corresponding distortion measurements Ps, Pi are relatively low. For example on the image 

Island, Ps=0.989, Pi=0.890 for HE and Ps=0.987, Pi=0.893 for AGCWD. On the contrary, our proposed 

CE method avoids such over-enhancement and has Ps=0.992, Pi=0.943, which are more close to 1 and 

signify less distortions. Although such better visual quality is achieved, the given overall metric P for our 

method is instead lower than those of HE and AGCWD due to the affection of Pc. As a result, we believe 

that the PCQI sub-metrics are more reasonable to be treated separately. 
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 A good CE method should achieve a balance between contrast improvement and image distortion. Less 

distortion should be incurred while more contrast improvement is gained. In terms of such viewpoint, our 

proposed method could achieve the comparative results with SECE and HM. Note that HM causes slightly 

apparent global intensity distortion on Hats and Island, which are validated by the low Pi values, 0.828 

and 0.872, respectively. Although IMADJ could boost image contrast adequately, it causes more obvious 

global intensity distortion and the enhanced images are still rather black. 

 

Table 5 Average EMEG (E) and GMSD (G) values (×10-3) of the test images from BSD500 enhanced by different algorithms. 

   Algo. Input HE HM AGCWD IMADJ SECE Prop. 

   Metric E G E G E G E G E G E G E G 
 
   Bright 113 53 265 114 170 49 135 127 188 44 187 30 205 42 

   Dimmed 162 107 270 123 211 100 270 111 193 108 202 77 208 83 

 
 

Table 6 Average PCQI (P) values (×10-3) of the test images from BSD500 enhanced by different algorithms. 

Algo. Input HE HM AGCWD IMADJ SECE Prop. 

Metric   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P   Pc  Ps  Pi   P
 

Bright 825 995 835 689 1232 965 892 1063 1014 989 866 871 868 976 763 643 1094 993 918 997 1096 994 932 1015 1126 992 923 1033

Dimmed 863 984 815 696 1227 957 880 1040 1065 977 872 919 1183 972 891 1034 965 982 834 800 1042 984 878 908 1087 978 902 964

 

4.4. Quantitative Assessments 

 In order to quantitatively evaluate the algorithm performance, bright and dimmed contrast-distorted 

test images are prepared by respectively applying gamma correction with   0.3 and 2 to the 500 images 

from BSD500 dataset. Tables 5, 6 show the average metrics for evaluating the quality of images enhanced 

by different CE methods. Through observing average EMEG and Pc, we can see that all CE methods could 

improve the contrast of input images, and our method is even better than SECE and IMADJ. Nevertheless, 

the average GMSD and Ps of our method are slightly worse than those of SECE and IMADJ. That is to say, 

our method could boost the contrast more remarkably at the cost of weakly intenser image distortion. 

Besides, we could note that Pi of our method on dimmed images (0.902) is higher than those of SECE 

(0.878) and IMADJ (0.834). Overall, such results demonstrate that the performance of our proposed CE 

method is comparative with the state-of-the-art CE methods.  

 Simultaneously, remarkable improvement between AGCWD and our method could be seen from such 

statistical results. As for bright images, the Pc value increases from 0.868 (AGCWD) to 1.126 (Prop.), and 
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Ps, Pi increase from 0.976, 0.763 to 0.992, 0.923, respectively. As for the dimmed images, although 

AGCWD gets higher Pc, it also incurs more serious distortions which can be seen from the relatively small 

Ps, Pi values. EMEG and GMSD metrics shown in Table 5 also consistently validate such conclusions.    

 The same quantitative tests are also conducted on Kodak and UCID datasets, and consistent results 

have been obtained. Our method is also testified to be effective. 

4.5. Computation Time 

 A good CE algorithm also requires low computational complexity. We also evaluate the algorithm 

complexity of our proposed method. All algorithms are run on a computer with Intel Core i5-5200U CPU 

@2.2 GHz and 8G RAM. The applied software platform is MATLAB R2013a. The average computation 

time used for enhancing a test image created from BSD500 is computed.  

 As displayed in Table 7, the resulting average computation time per image of our proposed method is 

28.6 ms, which is comparative with that of AGCWD. The additional operations in our proposed method, 

i.e., negative image transformation and CDF truncation, do not incur rapid increasement of computational 

complexity. SECE has a higher time complexity (38.6 ms) than ours. The histogram based approaches 

including HE and HM are testified to own the merit of low complexity. Note that IMADJ is the most fast 

with 1.8 ms per image, which is far below other methods. Such a result attributes to the simplicity of the 

involved data operations, which just comprise simple statistic and stretching of pixel intensities. Moreover, 

the prior results show that impressive visual enhancement effects can be achieved by IMADJ. Generally, 

all CE techniques pursue the same goal of achieving more contrast increasement with less image distortion 

at the cost of less computational resources. 

 

Table 7 Average computation times (ms) of different CE algorithms per test image created from BSD500. 

  Algo. HE HM AGCWD IMADJ SECE Prop. 
   
  Time 12.4 11.8 26.4 1.8 38.6 28.6 

 
 

4.6. CE on Real Distorted Images 

 We also tested the CE performance on real contrast-distorted images, which are selected from UCID 

dataset in terms of the abnormal brightness. Fig. 11 illustrates the results on the bright type of distorted 

images. The high global brightness of such input images is expected to be decreased by CE operations.  

The results demonstrate the effectiveness of our proposed method, which outperforms AGCWD and HE 

distinctly, and resembles the other approaches. Specifically, we could pay attention to the white regions 
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within five example images, i.e., papers with characters, the skirt of a bear doll, cloth in background, text 

on book sides and flowers on the ground, respectively. For example, the wrinkle textures in the skirt and 

cloth regions are eliminated to some extent by AGCWD, but yet preserved well by our method.  

 The enhanced results on real dimmed images are shown in Fig. 12. We can see that HE often incurs 

globally over-enhancement and some annoying artifacts in local regions, such as the sky area. As the prior 

tests on simulated images, AGCWD still behaves badly on white and bright regions, for an instance, the 

tower in the first example image and the billboard with characters 'mm' in the second one. Comparing with 

the results of ours, more textured structure details of tower tops are lost, and the characters are more blurry. 

Note that IMADJ and SECE are both inclined to bring under-enhancement, which could not heighten the 

global brightness properly and the enhanced images are still rather dimmed. Nevertheless, our method and 

HM could efficiently avoid such defects, and in general, superior enhancement effects are achieved. 

 
 

 

 

 

 

 
          (a)             (b)              (c)               (d)                 (e)                  (f)                   (g) 

Fig. 11 Results for real bright images. (a) Input bright image; Enhanced images obtained by (b) HE, (c) HM, (d) AGCWD, (e) 
IMADJ, (f) SECE, (g) Our proposed algorithms. 
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          (a)             (b)              (c)               (d)                 (e)                  (f)                   (g) 
Fig. 12 Results for real dimmed images. (a) Input dimmed image; Enhanced images obtained by (b) HE, (c) HM, (d) AGCWD, 
(e) IMADJ, (f) SECE, (g) Our proposed algorithms. 

 

5. Conclusion 
 

 A new effective and efficient image contrast enhancement method is proposed based on an improved 

adaptive gamma correction. The methodology of negative images is used to enhance the contrast of bright 

images. CDF truncation is proposed to reconstruct the intensity-sensitive adaptive gamma for improving 

the enhancement effects on dimmed images. Extensive qualitative and quantitative experiments show that 

our proposed scheme achieves better or comparative enhancement effects than previous techniques. The 

contrast of both bright and dimmed input images is enhanced effectively and efficiently without incurring 

annoying artifacts. In the future work, we would try to improve the capability of our proposed method in 

enhancing more types of images, instead of limiting to dimmed and bright ones. 
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