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Abstract: This study is aimed at showing the applicability of mutual information, namely 

auto-mutual information function for condition monitoring in electrical motors, through 

age detection in accelerated motor aging. Vibration data collected in artificial induction 

motor experiment is used for verification of both the original auto-mutual information 

function algorithm and its hardware implementation in Verilog, produced from an initial 

version made with MATLAB HDL (Hardware Description Language) Coder. A 

conceptual model for industry and education based on a field programmable logic array 

development board is developed and demonstrated on the auto-mutual information 

function example while suggesting other applications as well. It has also been shown that 

attractor reconstruction for the vibration data cannot be straightforward. 
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1. Introduction 

The question of motor age identification using vibration signals has been studied 

thoroughly in the past [1,2]. Methods based on dynamical systems theory have been 

proposed [3], but they ask for more thorough insight, which is provided in this paper. This 

study provides an analysis of dynamical system properties of artificial motor aging 

vibration data, a novel method for age detection and an implementation of this method in 

an innovative conceptual model.  

Regarding realization, the idea of condition monitoring algorithm implementation in 

hardware is not new [4-6]. There have been efforts to implement some new and specific 

algorithms in hardware, but some classical algorithms have been neglected as their 

applicability to condition monitoring was not acknowledged. Implementations so far, as 

in general case of condition monitoring as well, have been focused on machine learning 

[4], while the work presented here will focus on a signal processing technique from the 

dynamical systems theory. 

In work presented here, we introduce a novel framework for condition monitoring 

prototyping and training, which we use as the platform for a hardware implementation of 

auto-mutual information function calculator. While it is usually used in dynamical 

systems theory for attractor reconstruction, here we show that the auto-mutual 

information function is a good indicator of motor state, when applied to its vibration 

signals. 

In the second section of the paper, we present the fundamental concepts our 

implementation relies on: the auto-mutual information function, hardware description 

and the problem of the artificial motor aging. While describing the listed concepts, we 

also discuss the way we implement them. In the third section, we show the results of our 
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proposed solution applied to two fundamentally different problems of condition 

monitoring, artificial and non-artificial motor aging. Finally, we discuss the results 

obtained before drawing conclusions and implications for future work. 

2. Materials and methods 

2.1. Auto-mutual Information Function 

To calculate Lyapunov exponents which are suggested as a feature useful for motor 

condition determination in earlier work [3], the attractor has to be reconstructed. Since in 

general, we do not have more than one or at most two time series from the process (and 

the underlying dynamics have higher dimensions), other coordinates in phase space need 

to be generated. A common approach is one using a delayed version of the existing 

coordinates and applying the Takens theorem [7]. This method depends heavily on two 

parameters, the delay time and the embedding dimension. 

There is no optimal algorithm for these parameters, but some plausible approaches were 

introduced. For example, the delay time can be determined using auto-mutual information 

function [8], while a false neighbor-like approach can be used for embedding [9]. After 

this attractor reconstruction, the Lyapunov exponent can be calculated. The most used 

algorithm for that is one proposed in [10], but others have been proposed as well, such as 

Sato’s [11], which is the algorithm for Lyapunov exponent calculation in MATLAB 

compatible OpenTSTOOL software [12] based on non-linear time series algorithms and 

methods presented in [13]. 

As the auto-mutual information function (AMIF) is going to be used extensively in this 

letter, it will be defined here. 

For systems S and Q with discrete states s1 , s2 , … , sn and q1 , q2 , … , qm with respective 

probabilities Ps(s1), … , Ps (sn) and Pq(q1), … , Pq(qm) the mutual information function 
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I(Q,S) is the number of bits of q that can be predicted on average given a measurement of 

s: 
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where Psq(si,qj) is the probability that s=si and q=qj. In order to apply this in experimental 

data, Psq is to be estimated by partitioning of S-Q plane into elements. Psq is represented 

by the ratio of the number of points in an element and the total number of points. 

After obtaining the first minimum of the auto-mutual information function (seen in a 

graphical representation in Figure 1 for a motor vibration signal), its index can be used as 

the delay time for generation of other coordinates in the phase space. Cao's dimension 

estimation algorithm is applied to determine the number of such coordinates. Abscissa 

value where its characteristic d1 drops for the first time denotes the embedding dimension. 

Furthermore, its d2 characteristic is used for determinism checking: it is constant in case 

of pure stochastic signals. After these two parameters (delay time and embedding 

dimension) are acquired, the reconstruction is straightforward. 

At that point, the Lyapunov exponents can be calculated by applying any of the proposed 

algorithms. Namely, the Sato's algorithm finds the Lyapunov exponent for the time series 

as the slope of the particular probability curve in its rising part. 

 
Figure 1. Auto-mutual information function for vibration series 0 (a) and 7 (b). 
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2.2. Hardware Description 

Since this research is not conducted on a dedicated motor testbed, this practical 

implementation should have the possibility to be verified using the existing data records 

in a Hardware-in-loop (HIL) setup. Validation of condition monitoring methodologies in 

HIL setup has been done before, so it can be considered a reliable procedure [14]. 

While a generalized form of this device will be discussed in this subsection, a particular 

algorithm (auto-mutual information function) is chosen as a proof of concept to be 

implemented for demonstration purposes. 

The system that is going to be developed within this study will have a physical system on 

chip (SoC) doing the condition monitoring and a virtual motor. Virtual motor's vibration 

is physical monitoring system's input, while the output of the physical system does not 

necessarily have to return to the virtual motor, which would make this more of a driven 

prototype than an HIL. As we are going to see, this system is, in fact, closer to the original 

concept of HIL.  

Altera's FPGA (Field Programmable Gate Array) development board DE2i-150 is chosen 

for this project. This board's contents feature a combination of Altera Cyclone IV FPGA 

and an Intel Atom processor. This compact board, 26.7 cm × 17.6 cm × 4.2 cm weighing 

under 1 kg is easily transported, programmed through USB interface with a PC from 

Altera's Quartus II IDE. Altera's software enables easy SoC building with their own 

implementable processor Nios-II, and the Atom processor can run any operating system 

(Yocto Linux is pre-installed).* 

The project outline is shown in Figure 2a, representing the following idea: 

                                                           
* Altera Inc. DE2i-150 Development Kit FPGA System User Manual. Terasic 2013. 
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1. The emulator subsystem can reproduce already recorded vibration data and send 

it to the FPGA design. 

2. The FPGA design is an implementation of a vibration processing algorithm that 

accepts inputs either from the emulator subsystem or the real sensors. 

3. Control input is a simple switching scheme in which the emulator subsystem and 

the FPGA algorithm implementation are informed of the working mode: emulator 

is commanded which of the predefined files to reproduce, and the FPGA part is 

informed whether to expect inputs from sensors or the emulator subsystem. 

4. Sensor input is an accelerometer with analog-to-digital conversion suitable for 

real-life applications with induction motors. 

5. Output can be any display representing the state of the motor as determined by the 

FPGA implemented algorithm. 

6. The server is an external computer capable of commanding the emulator on its 

own. 

To make this general design realistic, DE2i-150 board is used, and the design from Figure 

2a becomes the concrete system in Figure 2b. 

1. The emulator subsystem is C-code running on Intel Atom with Yocto OS 

communicating with FPGA through PCIe interface. 

2. The FPGA design is placed on the Altera Cyclone IV. 

3. Control input can be either the set of switches from the DE2i-150 board or the IR 

remote controller with DE2i-150's IR receiver. 

4. Sensor input is DE2i-150's on-board three-axis accelerometer. 
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5. Output can be the DE2i-150's LCD or Ethernet (or Intel Wi-Fi) since it is 

relatively simple to make a web server on the FPGA part using Nios-II (an out-

of-the-box web server solution is delivered with all DE2 boards). 

6. The server is an external computer capable of commanding the emulator through 

SSH (Secure Shell). This can also be done using wireless, so the boards act as 

parts of a wireless sensor network. 

It is worth noting that the emulator and the algorithm can coexist in a single chip: we use 

separate entities (FPGA and Intel Atom processor) for enhanced performance of the 

emulator, but it could have been on the FPGA together with the algorithm 

implementation, as a separate module connected to the same bus. Another convenient 

reason to use separate chips is keeping the emulator fixed (processor + dedicated memory) 

and non-volatile while changing the algorithm implementation all the time (FPGA). 

A system like this one is another contribution in introducing HIL to curricula which is a 

growing trend for over a decade now [15,16] and enabling dynamical learning in areas of 

embedded systems design, condition monitoring, signal processing and even web 

programming if everything is done through (web) servers. 

 

Figure 2. Generalized system design (a) and particular design on DE2i-150 (b) 
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Since attractor reconstruction is not usually implemented on FPGA devices, choosing to 

implement the AMIF-based method on the device in question is both a novelty and a 

proof of concept. The basis for auto-mutual information function implementation in 

Verilog that is going to be placed on the FPGA is the MATLAB code from [12]. It can 

be simplified generically to the following sequence of steps: 

1. Converting the data into the 1-128 range 

2. Making of histogram A for all data points except for the last lmax, where lmax is the 

maximum lag, m points in total 

3. Making histogram B for m data points starting at index (lag) l , where l changes 

between 1 and  lmax Making common two-dimensional histogram AB for sets A 

and B 

4. For every value v in this common histogram, calculating v ⋅ log2 v/(vA vB) where 

vA and vB are corresponding values in histograms A and B and summing all these 

expressions. This is AMIF(l). 

The procedure repeats until l= lmax. It is easily seen that this is indeed equivalent to the 

previously introduced formula (1). This procedure is shown graphically in Figure 3 as 

well. 

This algorithm however needed to be converted in a real-time form, so that it does not 

wait for the whole data buffer to fill to perform the AMIF computation. This has led to 

the hardware design shown in Figure 4. 

At every received sample from the sensor at the input, the algorithm performs updating 

the histograms and updating the value of the auto-mutual information function. This in 

practical terms means: 
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1. Update two numbers in histogram A: count in the bin the new sample belongs 

to is incremented and the count in the bin the sample that is now being 

removed from the calculation window is decremented. 

2. Same goes for histograms B and AB, with a note that there will be l of these. 

3. The AMIF value is updated by updating the terms in it which have been 

influenced by the new sample (and the removal of the oldest one). This counts 

for two rows and two columns of AB histogram (the added sample column, 

the removed sample column, the delayed added sample row and the delayed 

removed sample row). 

The exchange of information with the memory is limited to updating a small constant 

number of values and fetching a small number of rows and columns of histogram AB. 

The question of implementing the l times repeated parts of the design is addressed later 

in the paper, together with time and space constraints. 

 

Figure 3. Graphical representation of AMIF calculation process 



10 

 

 

Figure 4. Hardware architecture of real-time AMIF calculation 

Of course, other algorithms could have been implemented as well. The existence of 

Altera's megafunctions for FFT (Fast Fourier Transform) makes this procedure easier for 

the Fourier spectrum-based methods. Implementation of other methods may be a part of 

future work.  

2.3. Artificial Aging 

In the artificial motor aging data acquisition process, an induction motor was subject to 

chemical, thermal and electrical artificial aging compliant to the standard procedure.† The 

electrical discharge needed for fluting from the shaft to the bearing to cause bearing 

damage was induced in an experimental setup [17,18]. 

The fluting run of 30 minutes consisted of the 5 HP induction motor running with no load 

and with an external 27 A, 30V AC current to the shaft. In each cycle's end, the motor 

subject to aging was run on full load to measure its performance, recording data at a 

                                                           
† IEEE-117 (1974) IEEE Standard Test Procedure for Evaluation of Systems of Insulation 

Materials for Random-Wound AC Electric Machinery. 
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sampling frequency of 12 kHz. The motor was placed on a motor performance test 

platform. From the experimental setup seen in Figure 5, high-frequency data with a 

sampling frequency of 12 kHz was collected. In this case, we are working with eight 10-

second time series (120,000 samples) representing motor condition from the healthy case 

(state 0) to the last working case (state 7). 

The data collected in this experiment was used in several studies on motor state detection 

based on vibration measurements [3, 18-22].  In this paper, we do not only aim to 

demonstrate the applicability of AMIF-based approach to age determination but also to 

give a wider perspective through implementing it in hardware and offering a framework 

for training and testing purposes. In terms of the relationship of the results presented here 

and results of other methods, a comparison between them can be found in [22]. The 

method proposed here has the advantage of perfectly separating the aged from the good 

condition: it does not give a monotonic indicator of deterioration, but a sharp threshold 

“good – aged”. That makes it the best option in the binary classification option [22]. 

 

Figure 5. The experiment setup: (a) configuration, (b) and (c) cross-section AA' and BB' respectively. 

Numbers 1-4 denote electrical and mechanical measurement sensors, 6-10 accelerometers. [17,18] 
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3. Results 

3.1. Attractor Reconstruction 

Using the OpenTSTOOL, plots of auto-mutual information function for all the time series 

were obtained. Two characteristic plots (for time series 0 and time series 7) are shown in 

Figure 1. First minima for the first four signals are equal to 4, while the first minima for 

the second four signals are equal to one. These values are used for embedding dimension 

estimation. Plots of the dimension-determining Cao characteristics are omitted, but it is 

worth mentioning that the location of the first drop in the characteristic for any of the 

vibration signals is larger than 8. As [23] has shown that with 100,000 points only the 

dimension less than eight can be reconstructed, further reconstruction and Lyapunov 

exponent calculation are not feasible. 

3.2. Automated Hardware Description 

MATLAB's HDL Coder enables conversion of MATLAB m-files to VHDL/Verilog for 

most of Altera's FPGA chips, so the conversion of the auto-mutual information function 

code was conducted automatically. Before having the HDL Coder convert the m-file to 

Verilog, adjustments must be made on the available code. However, the code produced 

by the converter is additionally manually optimized and prepared for the particular 

hardware deployment, memory manipulation, etc. 

To complete the standalone system, one only needs to provide the C-code to run on the 

Atom processor which would feed the data stream to the FPGA, together with a module 

to buffer the data. Since this Verilog code's verification has been conducted in MATLAB 

by using the testbench environment, there was no need for the development of the C-side, 

but it is conceptually clear. 
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The AMIF update part in Figure 4 is the only computationally demanding part of the 

design: it performs 4n multiplications, 8n logarithm calculations and 8n additions where 

n is the number of sampling levels. For a single value of l this brought the design in our 

testing phase to 3 thousand logic elements used (the rest of the logic can be ignored for 

this analysis) for 128 sampling levels. Having 150,000 logic elements available in the 

development system we used, this meant the possibility of implementing all l repetitions 

of the AMIF updates (and corresponding histograms) in parallel: for 15 lag values it had 

us using less than 10% of the elements available. 

Regarding the input frequency achievable, the design has no problem with frequencies up 

to 3 MHz. Since the sampling frequency of the data in our case was 12 kHz, we note that 

executing l repetitions could have been done on a single module in a loop without 

affecting real-time properties of the algorithm. For 15 lag values this approach lowers the 

effective frequency to 200 kHz, which is still an order of magnitude above the sampling 

frequency of the accelerometer data. 

3.3. Motor age detection 

Results of workbench tests on 512 samples from different parts of artificial motor aging 

signals are shown in Table 1. The testing was conducted by taking 15 windows of 512 

samples from each of the artificial motor aging vibration series and leading it to the AMIF 

module with 32 sampling levels. These low figures both in terms of the number of 

samples and the number of sampling levels are taken to show how low can the 

optimization go, and still provide insightful results for condition monitoring. Smaller 

numbers here also mean simpler synthesis, as the histogram implementation has the 

complexity of n or n², where n is the number of sampling levels. If we use the MATLAB 
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HDL Coder directly, for small values of n this can directly be implemented on the FPGA, 

even without using the RAM chips. 

Table 1. 15x8 testing on hardware implementation of AMIF 

 

Sample/series 0 1 2 3 4 5 6 7 

Mean 3.73 3.67 2.67 2.4 1 1.87 1.73 1 

Std. dev. 0.7 1 0.7 1.2 0 1.2 1.4 0 

 
Table 2. 10 x 8 testing of AMIF on non-artificial aging 

 

Day 1 2 3 4 5 6 7 8 

Mean 2.7 2.9 2.8 2.5 2.7 2.5 1.9 1.9 

Std. dev. 0.7 0.7 1.3 0.5 1 1.1 0.7 1 

 

Tests ran on this system also include: the 120,000 samples (whole time series) test, 16,000 

samples test, both run on the vibration time series; surrogate data test on 120,000 samples 

phase shuffled vibration data; validation of the algorithm on 8192 samples of Rossler 

chaotic time series. 

Another test was conducted to confirm the applicability of this system, following the 

example set in [19], where data from non-artificial aging process was used to confirm the 

efficiency of an algorithm designed on artificial motor aging data. The experimental data 

were collected in a study‡ [24] where a motor was running for 8 days, collecting 1-second 

long vibration data at 10-minute intervals before breaking down due to bearing failure. In 

this study, just like in [19] data from the accelerometer placed on the later failed bearing 

was used (Figure 6). Ten 1 second samples were randomly picked for each day and 

algorithm was applied to them with results shown in Table 2. 

                                                           
‡ Lee J, Qiu H, Yu G, Lin J. Rexnord Technical Services. Bearing data set. IMS, 

University of Cincinnati, NASA Ames Prognostics Data Repository, 

http://ti.arc.nasa.gov/project/prognostic-data-repository, 2007. 
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Figure 6. Setup in non-artificial motor aging case [24] 

Results obtained in this section indicate a relationship between the motor age and the 

index of the first auto-mutual information function minimum. This link will be discussed 

in detail in the following section. 

4. Discussion 

The important result of this research is the delay time as extracted from auto-mutual 

information function (first minimum). The first four time series (representing the first half 

of aging process) have τ =4, while the second four (second half of aging process) have τ 

=1. This is a discriminatory feature for determining roughly the motor age, therefore 

applicable for maintenance. An interesting fact worth investigating further is that the same 

is found for surrogate data as well (applying the surrogate algorithm described in [25]), 

meaning that the "color” of the noise-vibration is dominant in the sense of this feature. 

Still, as it has been seen before [20], Hurst exponent as another signal feature based on 

noise color does not follow a similar pattern. 

How is the auto-mutual information function related to motor health? With the change of 

motor state, amplitude and frequency of motor vibrations change. An energy shift towards 
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higher frequencies due to inner fluting faults has been observed before [17]. With this 

change in frequency and amplitude, it takes fewer samples (less time) for the auto-mutual 

information function to reach the minimum, and hence the index value decreases. It has 

been shown before, however, that observing only frequency or only amplitude is not as 

efficient [17]. 

The second result is the conclusion that no low-dimensional chaos appears in any of these 

vibration signals, leaving two options open: high-dimensional chaos and stochastic 

nature, and the high-dimensional chaos option is unverifiable based on the theoretical 

results in [19]. 

Results obtained from the hardware implementation of AMIF somewhat differ from the 

results from MATLAB for 120,000 samples. Namely, results show a slightly anomalous 

behavior for time series 4 (which has been reported before, cf. [21]). This is not crucial, 

as the 512-point implementation was only for testing purposes. The statistics also show 

the irrelevance of standard deviation for these calculations, as seen in the table. If the 

number of samples is increased to 16,000, no deviation exists at all, and all 16,000 

samples long time series for the particular motor state return the same result. 

It is worth mentioning that the system is validated with the Rossler data with the known 

first minimum of AMIF at sample no. 14 according to [8]. The algorithm returned 14 as 

a result even at low sample counts, therefore verifying itself. This implementation allows 

age differentiation at even a small number of data points (512, which is collected in less 

than 0.05 seconds). That suggests that the working hypothesis that a simple FPGA system 

may be designed for condition monitoring of motors subject to artificial motor aging is in 

fact correct, where a function previously not implemented in hardware got its hardware 

version. While it is true that this algorithm may be implemented efficiently in digital 
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signal processors and other processors, a hardware implementation may improve 

performance and ensure it is not the processing bottleneck. Quick acquisition and 

processing in this case (under 0.1s) enable real-time work. 

The test on other motor data (non-artificial aging) with results shown in Table 2 indicates 

an abrupt change for day 7 and 8, the same behavior seen in [19] and in the original 

research [24] caused by the bearing fault. This pattern matches what has been seen in case 

of artificial motor bearing (i.e. Table 1) and hence supports the possibility of application 

of this method in motor condition monitoring. 

The artificial motor aging dataset has been extensively used ever since the data was 

collected [17], with some results presented in cited publications [3, 18-22]. Similar to the 

results of Lyapunov exponent application in [3] or Hurst exponent application in [20], 

this method shows a clear difference between the results on data set 0 and data set 7. 

However, it also gives a sharp bound in between, at which the state of the motor 

significantly changes. On the other hand, there are methods that can measure motor age 

in a monotonic manner [19, 21] which was not the goal of this method. As mentioned 

earlier a comparison of data provided by all these methods in terms of feature ranking can 

be found in [22]. 

5. Conclusions 

We have here presented a hardware implementation of auto-mutual information function 

serving as a condition monitoring tool for electrical motors and indicating the motor state 

in both artificial and non-artificial motor aging processes. From a wider perspective, a 

flexible framework for condition monitoring and education purposes based on a 

customizable hardware architecture was introduced with the auto-mutual information 

function as a proof of concept. 
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While the attractor reconstruction in the case of motor vibration analysis did not prove to 

be particularly meaningful, the work done here in hardwarization of auto-mutual 

information function calculation algorithm could serve as a basis for a hardware-based 

attractor reconstruction module which would be an effective tool in real-time, practical 

dynamical systems analysis. 

Future work in this area may also involve testing the platform on diverse types of motors, 

implementing different algorithms in the hardware, as well as using the platform in the 

classroom for various courses. Furthermore, development of custom hardware, a 

customized version of the general-purpose FPGA board as seen in this letter is a possible 

next step in this research. Application of auto-mutual information function in the industry 

is yet to be seen. 
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