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Abstract

In this work, we propose to automate the pre-cancerous tissue abnormality anal-

ysis by performing the classification of image patches using a novel two-stage

convolutional neural network (CNN) based framework. Rather than training a

model with features that may correlate among various classes, we propose to

train a model using the features which vary across the different classes. Our

framework processes the input image to locate the region of interest (glandu-

lar structures) and then feeds the processed image to a classification model for

abnormality prediction. Our experiments show that our proposed approach im-

proves the classification performance by up to 7% using CNNs and more than

10% while using texture descriptors. When testing with gland segmented im-

ages, our experiments reveal that the performance of our classification approach

is dependent on the gland segmentation approach which is a key task in gland

structure-guided classification.
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1. Introduction

Adenocarcinoma is a prevalent type of colorectal cancer which appears to

arise from the glands in the epithelial tissue and affects various body organs,

including colon, prostate, lungs and breast. It is believed that adenocarcinoma

occurs due to various genetic changes affecting the growth mechanism of cells5

[1] which causes the glandular structure to lose their normal morphological

properties. In this study, our focus is on the colorectal adenocarcinoma (CRA)

which accounts for more than 90% of colorectal cancer [2] and arises from the

lining of the colon wall. In the case of adenocarcinoma, the glandular structures

are currently considered as one of the important biomarkers for tumour grade10

determination. Normal glands appear to be in circular or ellipsoidal shape

depending on the cutting plane. While the shape of malignant glands would

deviate from the normal shape and the extent of the deviation would define the

grade of the tumour to be either of a low grade or a high grade tumour in the

two-tier grading system.15

The advent of whole slide scanners has promoted the digital pathology in

the clinical and research community. In the literature, most of the work on

the development of an automatic system is focused on differentiating between

benign/normal and malignant images while some for identifying different grades

of cancer. In computational pathology, the identification of non-cancerous ab-20

normal tissue is a challenging task due to their similarity with the normal and

cancerous tissue. A very few works can be found on the identification of other

abnormalities which are non-cancerous [3, 4] but in clinical practice, are sub-

stantial to locate as they can lead to carcinoma. In this study, we present an

autonomous framework where stress is given to the abnormal tissue due to their25

ability to developing cancer and the need to learn distinctive features to increase

the inter-class variability.

In this work, we consider pixel-level features to discriminate between normal,

abnormal and cancerous images. These pixel-level features are learned from

the glandular structures while ignoring the non-glandular tissue region. The30
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contributions of this paper are three-fold: (i) we propose a novel framework that

harnesses gland-guided criteria of classification, by extracting features from the

most discriminatory region of interest (ROI), (ii) we collected a colorectal image

dataset, of medically significant tissue classes using our halogen-microscopic

visual field acquisition system, and iii) extensive evaluation of our proposed35

method using a number of hand-crafted and CNN learned features. The scope

of this study does not fall within the range of a mere application of CNN for

the classification of histology images. Its purpose is to build a novel CNN

based framework inspired by the histological need of the data under study.

The benefits of our approach are experimentally verified using different types40

of features and this approach can be applied to other organ’s cancerous and

pre-cancerous tissues (breast and lung etc) possessing glandular structures.

The next section surveys the related work on classification and segmentation

of histology images. In section 3, the clinical aspect of our dataset is explained.

Section 4 presents our proposed framework while in section 5, we give details of45

our dataset and evaluation measures and present results along with the discus-

sion. Finally, we conclude our study in section 6.

2. Related Work

In literature, studies on the classification of adenoma and adenocarcinoma

can be divided into three categories: one which employs morphological features50

of the glands and its components while the second category uses the texture

features and the third category makes use of deep learning approaches for strat-

ification. One of the earliest work on morphological features [5] formulates an

index based on the extent of variation in size and illumination of glands and its

roundness to differentiate between benign and malignant prostate images. Naik55

et al. [6] performed three two-class classification of prostate tissue images: be-

nign vs grade-3 cancer, benign vs grade-4 cancer and grade-3 vs grade-4 cancer.

In this study, a set of various morphological features extracted from the bound-

ary of the detected lumen and nuclei are used for classification. In [7], Nguyen
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et al. presented an approach to classify images into benign, grade 3 carcinoma60

and grade 4 carcinoma of prostate. Their classification approach considers the

overall structure of the gland by extracting the features from its various compo-

nents: lumen, nuclei surrounding the gland, blue mucin and overall gland itself.

Peng et al. [8] extracted morphological features of glands including the size,

circularity and density of gland distribution to distinguish between malignant65

and non-malignant prostate images. Gultekin et al. presented a two-tier decom-

position of tissue for the classification of colon tissue images. They formulated

a new metric to characterize the glandular morphology and is referred to as

dominant blob scale [9]. For classification, they extract graph-based features

from the glandular objects. In another study [10], authors proposed a novel70

metric, Best Alignment Metric (BAM) to compute the distance between the

shape of glands with a normal gland shape. This study demonstrated a strong

correlation between the grade of colorectal cancer and BAM based features.

In [11, 3, 4, 12], several texture features have been tested for a better rep-

resentation of colorectal histology images. In [13], Chaddad et al. used a set of75

three texture features extracted from the glandular regions. For gland segmen-

tation, the authors have employed an active contour model which comes with

certain limitations: long run time, proper parameters selection and initializa-

tion of contour. In another study [14], Olgun et al. formulated a novel texture

descriptor specifically for adenocarcinoma to classify the images into normal,80

low grade and high grade. Their proposed approach is inspired by the local

binary pattern method.

The gland segmentation is a pre-requisite step in all the morphological based

approaches as well as in region-specific feature-based approaches. In all the

above mentioned previous studies except [10], hand-crafted features and active85

contours have been used for gland segmentation. Recently there has been an

increased interest of the research community in applying deep learning to the

histology images for various tasks including segmentation and classification. In

2015, MICCAI GlaS challenge on segmentation of glands in H&E stained his-

tology images was organised. In this challenge, out of 6 top ranking methods,90
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5 were based on CNNs [15]. In [10] and [16], UNET and multi-scale UNET are

used for gland segmentation respectively. To improve the gland segmentation

performance, there has been an encouraging number of architectures proposed in

literature quite recently. CNNs have been extensively used for the classification

of histology images as well. However, there is not much work on the analysis of95

adenocarcinoma. In [17], authors have employed a simple CNN to classify col-

orectal tissue images. Apart from adenocarcinoma, they have been extensively

employed to other cancer types. In most of the previous work, GoogleNet and

ResNet have been observed to be the utmost choice of the researchers due to

their state-of-the-art results.100

All the studies mentioned above on the classification of adenocarcinoma ex-

cept [11] and [17] are focused on discriminating the malignant images from the

normal/benign images and advancing it further to identify the extent of malig-

nancy (low or high grade). While there are very few studies on identifying the

non-cancerous abnormalities (hyperplasia, low-grade and high-grade dysplasia)105

which can lead to carcinoma at some point if left untreated. These abnormalities

have been taken into account in our study and the proposed approach is designed

while keeping these samples in mind. The morphological features of the glands

have been shown to differentiate malignant glands from the normal glands with

a high margin. But this may not be the case with abnormal non-cancerous110

glands since the abnormal glands may appear in circular/ellipsoidal shape and

are of the same size as that of normal glands. Therefore, the morphological

features of glands may not serve as a good representation of the pre-cancerous

abnormalities. Contrary to morphological features, pixel level features or fea-

tures that capture the internal structure of gland may perform better since the115

internal structure of abnormal glands appear to be different from the normal

glands and is the focus of this study.
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3. Clinical Aspect of Our Dataset

Apart from determining the grade of cancer, the identification of abnor-

malities is carried out in pathological practice. Some of the abnormalities can120

progress to develop into carcinoma depending on their extent of aberrance from

normalities. Different treatment plans are advised for patients with different

abnormalities. Therefore, correct identification is significantly important. For

instance, small hyperplastic polyps (HP) are considered benign, most likely to be

cured by simple excision and are unlikely to recur. Whereas, dysplastic polyps125

are irreversible, possess the ability to progress to carcinoma and the patient is

subjected to continuous follow-up. Dysplasia is one of the critical precancerous

class, particularly in case of inflammatory bowel disease since there is a possibil-

ity of progression from no dysplasia to low-grade dysplasia which may progress

to high-grade dysplasia and then to carcinoma. However, in clinical practice,130

carcinoma often appears to form without following this pattern. Keeping this in

mind, we have built a dataset consisting of images of normal, carcinoma (CA)

and two types of abnormal (non-cancerous) tissues: hyperplastic polyp (HP)

and tubular adenoma with low-grade dysplasia (TA LG). The visual appear-

ance of the glandular structure belonging to these classes is dissimilar such as135

1) the normal glands appear circular or elliptic in shape, depending on the cut-

ting plane, with well defined internal structure, 2) in hyperplastic polyp, there

will be well-formed, elongated glands and crypts with serrated (saw tooth) or

star-shaped lumen inside, 3) in tubular adenoma with low-grade dysplasia, the

gland lining surrounded by the epithelial cells would not follow its normal spa-140

tial behaviour and these cells may change in size and their number and 4) in

carcinoma, individual glands may not be differentiable, the extent of which de-

pends on the grade of cancer. Example images of all these four classes obtained

using our microscope-based image acquisition system are shown in Figure 1.
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Figure 1: Examples images of four different classes of colorectal tissue: a) Normal, b) Hyper-

plastic polyp (HP), c) Tubular adenoma with low grade dysplasia (TA LG) and d) Carcinoma

(CA). These images are captured using RGB camera mounted over a microscope with halogen

illumination.

4. Methodology145

To reduce the correlation in the representation of colorectal images belonging

to our different classes, we removed the non-glandular area from the images. To

achieve this, we carried out a gland segmentation using a convolutional neural

network (CNN) trained on a large dataset captured using a commercial whole

slide image (WSI) scanner, different from the dataset designed for this study.150

To imitate the colour distribution of training images of this network, we pre-

processed our dataset. Following the segmentation, we have adopted CNN based

classification to learn the features of glandular structures. The overall flow of

our methodology is shown in Figure 2.

4.1. Image Pre-processing155

It is a general practice in computational pathology to have stain normaliza-

tion step in a pipeline or to follow a stain invariant approach by performing stain

augmentation. Due to the use of a microscope with halogen illumination, the

appearance of our acquired dataset varies significantly from the images scanned

using commercial WSI scanners. To scale down the stain difference between our160

acquired dataset and the dataset used to train the segmentation network, we

performed stain normalization using Reinhard method [18].

7



Figure 2: The overall system workflow.

4.2. Gland Segmentation

Gland segmentation was performed using CNN based UNET architecture

proposed by Ronneberger et al. [19]. In a previous study [10], this network was165

adapted and trained on a very large colorectal dataset of RGB images of size

428 × 428 pixels extracted from Haematoxylin and Eosin (H&E) stained WSIs

at 20x magnification. For further details on this network architecture and its

training, readers are referred to [10]. Since our dataset was acquired at 10×

magnification, therefore to use this network, we resampled our dataset using170

a bicubic interpolation method at a scaling factor of 2. During inference, we

extracted the overlapping patches of size 428 × 428 pixels because the network

produces an output probability map of size 244 × 244 pixels, smaller than the

input image size due to the unpadded convolution layers. The segmentation

map for any given image was generated by merging these small-sized proba-175

bility maps. After merging, we observed some artefacts around the border of

merged maps. To reduce their appearance, we performed inference with patches
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extracted with 25% more overlap. The fusion of the output probability maps

was carried out using alpha blending. Thresholding was then performed on the

fused segmentation maps to reduce the false positives and the threshold value180

was selected empirically. Moreover, hole filling was performed and to further

reduce the appearance of false objects, area-based thresholding was applied.

4.3. Image Classification

Using the segmentation map, all the pixel values of the stain normalized

images were set to zero if the corresponding pixels in the segmentation map185

were classified as background by the segmentation network. The resulting im-

ages were then used to train the CNN network for classifying the images into

four classes. We employed three different networks: GoogleNet, ResNet50 and

DenseNet for the classification of gland segmented RGB images. These networks

have given outstanding results in patch-based classification of histopathology190

images. DenseNet, due to its connectivity pattern, requires less number of pa-

rameters as compared to ResNet and GoogleNet. However, all these networks

with millions of parameters are considered deeper and are prone to over-fitting

when trained with a small size dataset. To avoid network over-fitting to the

training set, we increased the number of training images using different aug-195

mentation methods including flip, rotation and elastic distortion (both barrel

and pincushion distortion). Augmentation was performed on the overlapping

patches of size 428 × 428 pixels, extracted from images of size 480 × 640 pixels.

With augmentation, we were able to generate more than 9000 patches per class.

During the learning phase, the training patches of size 256 × 256 pixels were200

randomly cropped from the augmented images to further mitigate the chances

of over-fitting. We performed inference over patches of size 256 × 256 pixels in

a sliding window fashion across the test images. To evaluate our classification

results against the ground truth labels assigned by the pathologist, instead of

taking the final prediction from the network we took softmax probabilities for205

all the patches extracted from a test image. These probabilities were then aver-

aged across each class and the maximum of averaged probabilities was used to
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obtain the final prediction for a test image.

5. Experimental Material, Results and Discussion

5.1. Dataset210

This study was reviewed and approved by the Qatar University’s Institu-

tional Review Board (QU-IRB) and Al-Ahli Hospital Ethical committee which

includes Medical Director and members from the different departments (Inter-

nal Medicine, General Surgeon and Ophthalmology) of Al-Ahli Hospital before

the study began. The colorectal tissue slides and the related clinical data were215

obtained from the Pathology and Laboratory Medicine lab at Al-Ahli hospital,

Qatar after de-identification. These slides belong to 151 different patients and

the informed patient consent was obtained from all subjects. A total of 164

tissue slides stained with H&E stain were obtained, taken from the year 2007 to

2016. For 141 patients, one biopsy slide per patient was provided while for the220

remaining 10 patients a maximum of 3 slides per patient were used. On each

biopsy slide, the region for each class (Normal, HP, TA LG and CA) was marked

by the pathologist. Digital images of size 480× 640 pixels were captured at 10x

microscopic magnification from the marked regions using our visual field imag-

ing system consisting of a Canon PowerShot A650IS digital camera mounted225

over a halogen illuminated microscope. For each class, 50 images were captured

and hence in total 200 images were used for the experiments presented in this

paper. Although, this is a small dataset in terms of a number of images available

for training and validation. However, this dataset contains enough histological

diversity since it is acquired from 151 different patients tissue samples. There-230

fore, it could be used to demonstrate the generalizability of any classification

based method after increasing this dataset using augmentation.

5.2. Evaluation Measures

Since the network is trained to differentiate among different classes based

on the glandular features, its performance greatly relies on the output of the235

10



segmentation network. To evaluate the efficacy of the trained segmentation

network on our dataset, we evaluated its output after thresholding against the

ground truth gland boundary. For the evaluation, we calculate the segmentation

accuracy at both the pixel and object levels. Two metrics are used for both

cases: Dice index and Jaccard index. These indices measure the overlap between240

ground truth and network segmented binary images. At the object level, these

two indices measure how well each network segmented gland overlaps with the

ground truth gland and vice versa. For classification evaluation, commonly

used measures are used: accuracy, sensitivity, specificity and F1-score. The

formulation of pixel-level and object-level dice and Jaccard index is given in245

Supplementary Materials document.

5.3. Implementation Details

The gland segmentation masks were generated for all the images using

adapted UNET architecture. For classification, various CNNs were trained us-

ing gland segmented images and ground truth labels provided by the pathol-250

ogist. For validation purpose, each network was trained three times for cross-

validation, with completely non-overlapping training and testing dataset. We

used strong cross-validation where training and testing split was carried out at

the patient level rather than at image level. To avoid overfitting and to compen-

sate for the small dataset, we randomly extracted patches of size 256 × 256 × 3255

pixels from the images of size 480 × 640 × 3 pixels in each epoch. All the

networks were trained for 20 epochs with a batch size of 30 images and with

the same initial weights and learning rate policies. The best network was se-

lected to generate the results, based on the validation accuracy. For efficient

back-propagation, we updated the parameters after every 10 iterations of batch260

processing (batch accumulation [20]). Stochastic gradient descent was used as

an optimization method with a learning rate initially set at 0.01 and was decre-

mented thrice by a factor of 10.
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Table 1: Evaluation of segmentation maps against the ground truth with respect to each class.

Normal HP TA LG CA Average

Dicepixel 0.904 0.820 0.844 0.748 0.829

Jaccpixel 0.847 0.713 0.666 0.619 0.711

Diceobject 0.827 0.709 0.739 0.612 0.722

Jaccobject 0.779 0.615 0.552 0.501 0.612

5.4. Gland Segmentation Results

Table 1 shows the segmentation accuracy in terms of pixel-level and object-265

level Dice and Jaccard indices for the images of all four classes. We observed

pixel-level index values in the range of 0.62 to 0.90, with the best overlap

achieved for Normal images and the lowest overlap for the images of CA class

which are challenging to segment due to a wide variation in their shape and

appearance. Similar findings are observed in the case of object-level indices,270

thus demonstrating the performance of the network in identifying each gland as

a separate object. These values are in the range of 0.50 to 0.87. The qualitative

results of the segmentation maps generated for each class along with the ground

truth boundary-filled cavities are shown in Figure 3.

5.5. Image Classification275

The evaluation of our classification method is performed for the representa-

tive features extracted from three categories of images: a) the raw images Iraw

using classical approach, b) the ground truth segmented images IGTS and c)

the network segmented images INS . The classification accuracy obtained with

GoogleNet, ResNet and DenseNet for all three categories (Iraw, IGTS and INS)280

are shown in Table 2. The accuracy obtained with these networks for each class

is shown in Supplementary Fig. 1. The lowest, middle and highest-ranking cat-

egories are highlighted with green, blue and red colour respectively. GoogleNet

achieved the best accuracy in each category and its per class F1-score can be

found in Table 3. These results show that our segmentation guided approach285

surpassed the classical unsegmented approach. The average time for end-to-end
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Figure 3: Qualitative results of gland segmentation. First, second and third row shows the

original images, overlay of ground truth and UNET generated masks over the original images

respectively. Each individually segmented gland is highlighted with a different color.

processing (both segmentation and classification) of an image of size 480 × 640

pixels with GoogleNet, DenseNet and ResNet50 are 1.35, 1.50 and 1.40 seconds

respectively.

Table 4 shows the overall accuracy, sensitivity, specificity and F1-score along290

with two different categories. In the first category, CA class is considered as

a positive class in which case the performance of the network segmented clas-

sification approach is comparable to that of ground truth segmented and the

classical approach (using Iraw images). In the second category, TA LG due to

its increased risk of developing carcinoma is considered as a positive class along295

with CA. The results of this category and the overall results demonstrate the ef-

ficacy of segmentation guided approach in identifying the most significant classes

when compared with the classical approach. Our comparison results obtained

for the network generated and ground truth segmented images based on the

above two categories show that the network can differentiate among classes us-300

ing partial representative features obtained from glandular regions. This shows
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that our network segmented system can identify these two positive classes, even

when the segmentation of ROI is not very accurate. Furthermore, the predic-

tion analysis of unsegmented and segmentation guided approach with the given

dataset demonstrates the complexity of HP class as it is often misclassified as305

Normal and vice versa and has been observed to be confused with CA in light

of our experimental results. This is demonstrated by the confusion matrices as

shown in Supplementary Table I, II and III. It can be seen that none of the

normal images is misclassified as CA and vice versa; the complexity of the given

classification task is due to the addition of HP and TA LG classes. We also310

conducted experiments to differentiate among different grades of cancer; the

details of which are presented in the Supplementary Materials document.

5.5.1. Correlation between Segmentation and Classification

Our results demonstrated the efficacy of gland-guided approach when com-

pared with the unsegmented approach. However, on comparing the results of315

the networks trained with IGTS and INS , the former network performed better.

This is due to the partial or over-segmentation of the glands and these findings

can be demonstrated with Supplementary Fig. 2. These results are obtained

by predicting the processed IGTS using a network trained with IGTS . The pro-

cessed IGTS were generated by using the ground truth masks that have been320

eroded or dilated with the rolling-ball structuring element of different window

sizes. These results demonstrate that the network’s classification performance

declines when the glandular structures are partial or over-segmented. We also

present our gland-guided classification result with three segmentation networks:

FCN, SegNet and PspNet. The details of their architecture, training and per-325

formance are presented in the Supplementary Material document.

5.5.2. Visual Analysis of GoogleNet Features

The features learned by the GoogleNet for raw images and network seg-

mented images at different layers of the network are shown in Figure 4. Feature

maps from low-level (convolution layers before first inception module, C1 and330
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Table 2: Classification results obtained using different features for three different classification

settings: Iraw, IGTS and INS .

Method Iraw IGTS INS

GoogleNet 0.830 ± 0.02 0.870 ± 0.02 0.850 ± 0.03

DenseNet 0.794 ± 0.08 0.856 ± 0.06 0.819 ± 0.04

ResNet50 0.815 ± 0.01 0.845 ± 0.01 0.840 ± 0.00

LBP [21] 0.718 ± 0.07 0.835 ± 0.05 0.820 ± 0.02

LPQ [3] 0.752 ± 0.06 0.858 ± 0.04 0.812 ± 0.02

BSIF 0.728 ± 0.06 0.836 ± 0.05 0.791 ± 0.04

Morph-Features - 0.640 ± 0.06 0.665 ± 0.01

BAM [10] - 0.685 ± 0.16 0.600 ± 0.04

Table 3: F1-score obtained using GoogleNet.

Normal HP TA LG CA Overall

Iraw 0.793 ± 0.05 0.750 ± 0.06 0.864 ± 0.03 0.911 ± 0.03 0.830 ± 0.02

IGTS 0.869 ± 0.09 0.806 ± 0.04 0.886 ± 0.05 0.922 ± 0.06 0.870 ± 0.02

INS 0.818 ± 0.12 0.765 ± 0.07 0.901 ± 0.06 0.913 ± 0.03 0.850 ± 0.03

C2), middle-level (second inception module, I2) and high-level layers (seventh

inception module, I7) are observed. Feature maps shown in the first and sec-

ond column demonstrate that the trained network has learned the features from

both glandular and non-glandular tissue regions, specifically lower and middle

layers of the network while the higher layer has given discriminatory weighting335

to most of the glandular region. In contrast, features maps shown in the third

and fourth column, the network was explicitly restricted to learn from glandular

tissue region only, which is the most distinguishable region of our dataset.

5.6. Texture Based Features

Texture features are shown to be the efficient representation of the histol-340

ogy images. Therefore, we also conducted experiments with texture features

to analyse the effect of glandular guided based classification. We carried out

experiments with three different texture features: local binary pattern (LBP)
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Figure 4: Output of various intermediate layers of non-glandular and glandular guided CNN.

First row shows the input images while second, third, fourth and fifth rows show features

maps obtained from GoogLeNet layers: C1, C2, I2 and I7 respectively. The scale bar shows

the degree of activation.
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Table 4: Comparison results of GoogleNet trained with three different settings.

Positive Class Image Type Accuracy Specificity Sensitivity F1-score

CA
Iraw 0.955 ± 0.02 0.967 ± 0.01 0.920 ± 0.03 0.911 ± 0.03

IGTS 0.960 ± 0.03 0.974 ± 0.03 0.920 ± 0.03 0.922 ± 0.06

INS 0.955 ± 0.02 0.960 ± 0.02 0.940 ± 0.02 0.913 ± 0.03

TA LG + CA
Iraw 0.920 ± 0.02 0.929 ± 0.05 0.911 ± 0.08 0.918 ± 0.03

IGTS 0.931 ± 0.05 0.911 ± 0.08 0.951 ± 0.06 0.933 ± 0.05

INS 0.945 ± 0.02 0.930 ± 0.05 0.961 ± 0.05 0.946 ± 0.02

Overall
Iraw 0.915 ± 0.01 0.943 ± 0.01 0.830 ± 0.02 0.829 ± 0.02

IGTS 0.935 ± 0.01 0.957 ± 0.01 0.870 ± 0.02 0.871 ± 0.02

INS 0.925 ± 0.01 0.950 ± 0.01 0.850 ± 0.03 0.849 ± 0.03

[22], local phase quantization (LPQ) [23] and binarized statistical image fea-

tures (BSIF) [24]. LBP and LPQ texture features have been presented as an345

effective representation of colorectal histology images for classification [21, 4, 3].

While BSIF, to the best of our knowledge, is used for the first time for rep-

resenting colorectal tissue images. It is inspired by LBP and LPQ have been

shown to perform better than LBP and LPQ for many non-medical dataset

[24]. All these three features are evaluated in a classification setting by feeding350

them as an input to the SVM classifier. We experimented with four differ-

ent kernels of SVM classifier: linear, polynomial, radial basis function (rbf)

and sigmoid with fine-tuned parameters. From our experiments, we found that

the rbf kernel for SVM gave the best results. The comparison result of these

SVM kernels is presented in Supplementary Fig. 3. The analysis of texture355

features is presented in two perspectives: 1) how effective these features are in

terms of classification accuracy when compared with features learned from the

data itself (using CNNs) and 2) can texture features of glandular region serve

as a fine representation for classification in comparison to texture features of

non-segmented images. The quantitative analysis of these two perspectives is360

given in Table 2 and Supplementary Fig. 4. These results demonstrate that

the features learned from the data itself perform better than the hand-crafted

features, independently if these features are learned from either the gland seg-

17



mented images or non-segmented images. Similar to CNN, texture features

extracted from the segmented glands outperform the features extracted from365

the non-segmented images. However, unlike CNN, the performance gap be-

tween the two (segmented vs non-segmented) is significant (5% to 10%) for all

three texture features; which in case of CNN was observed to be 2% to 7%.

The obtained results confirm the ability of gland segmented texture features to

accurately classify the images.370

5.7. Morphological Features

Additionally, we experimented with a different combination of morpholog-

ical features of the segmented glands. The classification was performed using

all possible combinations of the number of glands in an image with ten differ-

ent morphological features of glands: area, convexity, roundness, aspect ratio,375

elongation, solidity, form factor, compactness, eccentricity and extent. The best

accuracy was obtained with a combination of the number of glands, roundness,

solidity and area of the gland and is observed to be less than the accuracy

obtained using CNN and texture descriptors. We also evaluated our approach

with one published study [10] for which the implementation was available to us.380

This study quantifies the morphology of the glandular structures using a BAM

measure which has been shown to perform well for colorectal grading since the

shape of gland varies across different grades. However, the pre-cancerous glands

tend to retain their spherical shape; therefore, BAM and other morphological

features have failed to perform well for the given task. The accuracy obtained385

using these morphological features is shown in Table 2. The values reported in

Table 2, 3 and 4 are mean ± standard deviation.

6. Conclusion

The histology images belonging to two different classes may have similar

tissue sub-regions which reduces the boundary distance between the classes.390

Therefore the performance of a classifier is hampered. The experimental results
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of this study demonstrate that the classification performance improves if the

model learns from the distinctive features in a histology image. To deal with

this problem and the complexity of pre-cancerous class in the colorectal dataset,

we confined the CNN to learn features from the segmented glands which can be395

used as a fine representation for each class of our interest. In addition to CNN

based learning, we also evaluated our framework using some handcrafted texture

features. We also got the same finding from our experimental results with

handcrafted features. From the variety of features used in this study, we infer

that our glandular guided method performs better classification irrespective of400

any type of features (either data learned or handcrafted).
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