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Abstract

Detection of human actions in long untrimmed videos is an important but challenging task due to the uncon-

strained nature of actions present in untrimmed videos. We argue that untrimmed videos contain multiple

snippets from actions and the background classes having significant correlation with each other, which

results in imprecise detection of start-end times for action regions. In this work, we propose Vectors of

Temporally Correlated Snippets (VTCS) which addresses this problem by finding the snippet-centroids

from each class which are discriminant for their own class. For each untrimmed video, non-overlapping

snippets are temporally correlated with the snippet-centroids using VTCS encoding to find the action pro-

posals. We evaluate the performance of VTCS on the Thumos14 and ActivityNet datasets. For Thumos14,

VTCS achieves a significant gain in mean Average Precision (mAP) at temporal Intersection over Union

(tIoU) threshold 0.5, improving from 41.5% to 44.3%. For the sports-subset of ActivityNet dataset, VTCS

obtains 38.5% mAP @0.5 tIoU threshold.

Keywords: temporal action detection, action proposals, 3D-Convolutional network (C3D), bag of words,

k-means clustering

1. Introduction

With the advancement in information and communication technologies, sensing devices have now be-

come pervasive. The pervasiveness of camera devices has enabled recording of video data at any time and
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anywhere. That gives rise to massive amounts of untrimmed video data being produced, which typically 

consist of several human-related activities and actions including some background activities as well. There-

fore, there is a need for computer vision based methods to detect the actions of interest in such long and 

untrimmed videos so that they can be further processed for recognition purposes. Temporal action detection 

attempts to address this problem by detecting the start and end of an action of interest in an untrimmed 

video sequence. Having a long untrimmed video as an input to the process, temporal action detection en-

tails answering, ‘when does an action instance start and end and to which action class it belongs to?’. Other 

than actions of interest, all other actions and background activities comprise the background class. In con-

trast to temporal action detection approaches, human action recognition approaches [1, 2] only identify the 

action class in already trimmed video sequences. In contrast, temporal action detection also processes the 

untrimmed videos and provides information about the starting and ending points of all instances of actions 

present in the video. Due to the unrestricted nature of long untrimmed videos in both space and time, the 

task of temporal action detection is more challenging than conventional action recognition. Existing meth-

ods for temporal action detection have unsatisfactory performance as they are still unable to find the precise 

start-end times of each action instance present in long untrimmed videos. Temporal action detection has 

become a significant area of research due to its abundant applications in security and surveillance, health 

monitoring, video analytics and other domains.

Existing methods for temporal action detection have several disadvantages. First, these methods tend 

not to make use of the discriminative power of the snippet-centroids, which gives rise to incorrect detec-

tions as there exist several small clips having multiple frames (called snippets) that have high correlation 

with different actions as well as with the background snippets. Hence, these methods fail to distinguish an 

action of interest from other actions of interest and from the background class. In our previous work, we 

proposed the Bag of Discriminant Snippets (BoDS) [3] approach. BoDS utilizes the discriminant impor-

tance of key-snippets in the encoding process by learning the weights of key-snippets. BoDS classifies the 

candidate regions into action or background in an unsupervised manner which resulted in many incomplete 

action proposals of small duration. To overcome this problem requires the mapping of snippets to highly 

correlated snippet-centroids, extracted per-class, during encoding. For each snippet-centroid, the sum of 

maximum correlation with the best matching snippets per proposal is found, called Vectors of Temporally
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Correlated Snippets (VTCS). For the incomplete proposals, the resulting VTCS will have less contribution 

of each action class therefore it will be filtered out. Second, many existing approaches [4–9] entail two-

stage models, i.e., ‘proposal generation + classification’, which need a separate features extraction step for 

each stage which makes them computationally expensive.

This work also proposes a two-stage paradigm to detect multiple actions from untrimmed videos, which 

uses the same visual encoder for both stages hence it is more computationally efficient than [4–9]. In the 

first stage, the proposed method detects multiple action regions while rejecting the background regions. In 

the second stage, it classifies each action region into one of the predefined action classes. In both stages, 

the proposed VTCS based visual encoder is used to discriminate snippets belonging to multiple actions and 

background classes. VTCS is integrated with features from a 3D-Convolutional network (C3D) [10].

The proposed VTCS based temporal action detection framework has the following contributions:

1. A visual encoding method, called it VTCS, which discriminates multiple actions from each other and

from the background actions. An efficient method is proposed to aggregate multiple video snippets

into candidate proposals of varying length at each time step of the untrimmed video.

2. A simple yet effective two-stage temporal action detection framework that unrolls over an untrimmed

video to encode and recognize multiple actions present in the given video. It can be learned using

trimmed as well as untrimmed videos (utilizing the ground truth information for starting and ending

times and the category label).

3. VTCS based temporal action detection framework attains state-of-the-art temporal action detection

performance on benchmark datasets.

The rest of the paper is organized as follows: Section 2 presents the review of related temporal action 

detection methods; Section 3 introduces the proposed VTCS based temporal action detection method. Ex-

perimental results are discussed in Section 4 and the conclusions are given in Section 5.

2. Related Work

Recently, Convolutional Neural Networks (CNNs) have succeeded to improve the recognition accuracy

for the task of human action recognition [1, 10]. However, temporal action detection approaches [11, 12] 
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still need improvement. The conventional approaches for action detection make use of snippet-based clas-

sifiers [13–15] for detecting actions. Segment-CNN (SCNN) [4] uses 3D convolution to integrate temporal 

structures, but this method depends on the architecture beneath [10], which provides for only 16 frames. An 

action detection method, which is based on the Pyramid of Score Distribution Feature (PSDF) is presented 

in [11]. The computational complexity of PSDF is very high since it draws motion information at multiple 

scales. In [5], a Structured Segment Network (SSN) is proposed for modeling human activities in long 

untrimmed video sequences, based on a structured temporal pyramid.

The Temporal Actionness Grouping (TAG) method is discussed in [6] to find variable sized action 

proposals. This method is less feasible in practice for real-time applications and scenarios, as it depends 

on two thresholds for differentiating the action regions from the background as well as incomplete regions. 

Motion History Images (MHIs) are used in [16] for generating action proposals from untrimmed videos in 

an unsupervised way. However, this approach is dependent on the extraction of precise silhouettes, which 

is very hard and challenging for real-time videos and moving cameras. Convolutional De-Convolutional 

(CDC) Networks [7] detect action boundaries with the help of dense prediction at each frame. However, 

CDC depends on other action proposal approaches, e.g. [4], to generate proposals. Cascaded Boundary 

Regression (CBR) [9], Regional C3D (R-C3D) [17] and Temporal Unit Regression Network (TURN) [8] 

methods provide boundary refinement based on temporal boundary regression. However, these methods do 

not perform well for high tIoU thresholds.

Temporal Action Localization Network (TAL-Net) is proposed in [18], based upon the Faster RCNN 

[19] object detection framework. TAL-Net produced improved temporal action localization results for the 

Thumos14 and ActivityNet dataset, yet it is computationally expensive as it requires separate stages for 

proposal generation and classification. Complementary Temporal Action Proposal (CTAP) is put forward 

in [20] to generate action proposals. CTAP initially takes the proposals generated by TAG [6] and sliding 

windows. Then it applies a complementary filter to obtain precise action proposals. CTAP requires multiple 

stages to obtain precise action proposals which are then classified using the SCNN [4] action detector.
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Figure 1: Block diagram of the proposed VTCS based temporal action detection method. For a given untrimmed video, VTCS
based temporal action detection unrolls over each time step t and detects the foreground/background regions using a Fully Con-
nected (FC) network. Proposals classified as foreground are further passed to SVM classifiers (learned on the trimmed action
classes) which gives the final classification label and probability for each action proposal.

3. Temporal Action Detection System Overview

Given an untrimmed video V = { fn}Nn=1 with a total of N frames, the goal is to localize all the occurrences

of actions of interest present in the video. Each video V has m action occurrences in the ground truth G =

{(gm, g
′

m, lm)}
G
m=1, where gm, g

′

m and lm are the start time and the end time of the occurrence m respectively.

lm represents the action label and lm ∈ {a1, · · · , aC}, with a total of C action classes. The regions beyond gm

and g
′

m are considered as background regions which are represented as the aC+1 class i.e. the background

class.

The proposed framework generates a set of candidate proposals in a sliding-window manner and cate-

gorizes each of them into C + 1 classes (where the extra class corresponds to the background class) through

three main modules: visual encoder, snippet aggregation and proposal classification module. The visual
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encoder module is used to extract the discriminant representation from the temporal regions of the test and 

training videos. It does that by first computing the snippet-based features at each time step and then by 

extracting class-specific clusters, which we call them snippet-centroids, from snippet set of C + 1 classes of 

the training data. These snippet-centroids are used for the encoding of candidate proposals and the training 

data. The snippet aggregation module aggregates multiple snippets of the untrimmed video into candidate 

proposals that are likely to contain actions of interest. The proposal classification module has two stages. 

In the first stage, the candidate proposal is classified into an action or a background proposal using an FC 

(fully connected) layer followed by a sigmoid function. In the second stage, the candidate proposal classi-

fied as foreground is further passed into class-specific SVM classifiers which predict the action category of 

the foreground proposal. Both stages share the same visual encoder which makes it computationally fast.

An encoding strategy is proposed to represent every candidate region which not only discriminates the 

action instances from each other but also from the background regions. An overview of the proposed action 

detection system is shown in Figure 1. The remainder of this section first provides the details of the visual 

encoder module (Section 3.1) which is the building block for the other two modules. Then, the snippet 

aggregation (Section 3.2) and the proposal classification (Section 3.3) modules are discussed in detail.

3.1. Visual Encoder

To extract the low-level spatiotemporal information from the video frames, C3D [10] is used. C3D has 

been chosen for feature extraction as it has been effectively used by other temporal action detection 

methods [4, 13, 14] to extract unit-level features, but the method can be used with other features. The unit is 

a snippet containing δ frames. Each video V is first segmented into T = N / δ non-overlapping snippets. 

Following standard practice [4, 10, 13, 14], δ is set to 16 frames to extract C3D features. For each video V , 

the snippet-level C3D features {st}t=1 are extracted. A C3D model pre-trained on the publicly available 

Sports1M dataset is used [10]. The output of the fc6 layer is used as the snippet-level C3D features.

3.1.1. Extracting snippet-centroids

Given a set of training videos, each training video is first divided into snippets to obtain their correspond-

ing D-dimensional C3D feature representation. The snippet-centroids from each class are then extracted. 

It is important to extract the snippet-centroids from each class because the snippets within a specific action
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Figure 2: An example of snippet-centroids (one per class) from the 12 action classes of Thumos14 dataset. Although each snippet
has a duration of 16 frames, for better visualization only one image is shown from each snippet.

class are not in general fully independent, but instead they can have similarity with the snippets of the other

classes including the background class. To find a discriminant representation for the action and background

regions, we need to find snippet-centroids from each class. To achieve this, class-specific clustering is per-

formed on the training data to find the K snippet-centroids from C + 1 classes. For the class ai, all snippets

are compiled into a snippets matrix Xi ∈ RD×ni (i ∈ {1, · · · ,C + 1}) where ni and D are the total number of

snippets for class ai and the dimension of the feature vector respectively. For each snippet matrix Xi, class-

specific clustering using K-means is performed using Euclidean distance to extract K snippet-centroids.

k-means clustering starts with K randomly selected snippet-centroids, which act as the initial points for

every cluster. Each snippet in the training data is assigned to the nearest snippet-centroid and then the

centroids of newly formed clusters are recomputed. This process is repeated until newly formed snippet-

centroids do not change. However, random initialization of snippet-centroids may lead to different cluster

centres since k-means might get stuck in a local optimum and may not converge to the global optimum. To

address this issue, k-means is run 20 times using different initializations of snippet-centroids and the final

snippet-centroids of the run that resulted in the lowest sum of sumd is selected. sumd is a K-dimensional

vector, where its ith element represents the sum of point-to-centroid distances within cluster i. In this way,

the newly formed clusters do not change. For C + 1 classes, K × (C + 1) snippet-centroids {S j}
K×(C+1)
j=1 are

obtained from the training data. An example of some snippet-centroids is given in Figure 2.

3.1.2. VTCS encoding

After extracting snippet-centroids from the training data, they are used to encode a video clip contain-

ing a varying number of snippets into a fixed-length r epresentation. For e ach s nippet a t t ime s tep t , its
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corresponding C3D feature representation st is first extracted. Then, the correlation of each snippet s t with 

K × (C + 1) snippet-centroids is calculated and the index of the snippet-centroid having a maximum correla-

tion is obtained using Equation 1 below. For each snippet st, its corresponding encoded vector vt is obtained 

using a hard-voting scheme to vote for the best matching snippet-centroid using Equations 1-3:

j = arg max
1≤r≤K×(C+1)

corr(st, S r) (1)

vt[ j] = corr(st, S j) (2)

corr(st, S r) =
1

D − 1

D∑
i=1

(
st[i] − µst

σst

)(
S r[i] − µS r

σS r

) (3)

where σ and µ represent the standard deviation and mean values respectively and D represents the dimension 

of the feature vector. vt is a vector of size K × (C + 1) initialized with all zeros. Then, the correlation of st 

with best matching snippet-centroid S j is added at the j-th index. Note that in vt, indexes 1 · · · K indicate 

snippet-centroids belong to the first c lass, i ndexes ( K +  1) · · · 2 K i ndicate s econd c lass a nd s o o n. The 

dimension of vt depends upon the number of targeted classes, therefore a simple hard voting scheme is 

preferred for encoding than other high dimensional super vector encoding approaches [21]. Finally, for any 

region h with oh and o′h as starting and ending times respectively, the aggregation of multiple snippets into 

a fixed-length encoded vector is done using:

φ(h, oh, o
′

h) =
oh+o

′

h−1∑
i=oh

vi (4)

Note that the obtained representation φ also produces a K × (C + 1) dimensional vector where each of its 

elements represents the sum of maximum correlation for each of the corresponding snippet-centroid.

Our previous work i.e. BoDS [3] was based upon Bag of Words (BoW) but with the difference that the 

discriminative power of the key-snippets (centroids) was integrated during the encoding process in terms of 

discriminative weights. BoDS encoding for multiple snippets is calculated based upon the sum of weighted 

histograms, where the weight for the specific cluster is calculated by computing the ratio between the within-
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Figure 3: An example of τ=3 candidate proposals at time step t for a sliding-window of size τ=3 snippets. The size of each proposal
is also shown in the form of a number of frames.

class assignments and the total assignments for that cluster. The proposed VTCS based representation has

the following differences with the BoDS and BoW:

(i) VTCS does not incorporate the weights of the codewords during encoding process as done in BoDS.

(ii) During the encoding process, VTCS finds the correlation of each snippet with the C + 1 snippet-

centroids and assigns the snippet to the snippet-centroid with maximum correlation lets say j as given 

in Equation 1. Then the value of this maximum correlation is update at the jth location in encoding 

vector v as given in Equation 2. Neither BoDS nor BoW, incorporate correlation information in the 

encoding vector.

(iii) VTCS is a two-stage framework which filters the background proposals in the first stage and then 

in the second stage it classifies these proposals in one of the action classes using one-vs-all SVM 

classifiers. On the other hand, BoDS is a single stage framework and it classifies the proposals in one 

of the action classes by finding the maximum sum of weighted votes from the action classes.

3.2. Snippet Aggregation

To obtain the action proposals from the untrimmed videos, a sliding-window strategy is adopted of length 

equal to τ snippets from [3] to generate temporal proposals of multiple durations. At each time

step t, the window is slid while producing left-aligned proposals set Pt = {ph}
τ
h=1. For each snippet in the 

sliding-window, snippet-level C3D features st are first extracted which are then encoded into a vector vt 

using Equation 2-3. For each proposal h in the proposals set Pt, h snippets are accumulated to find a
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fixed-length representation ph = φ(h, oh, o
′

h) using Equation 4, where oh = t and o
′

h = h + t − 1 represent

the start and end times respectively for the proposal h in the sliding-window. Note that at each time step t,

the starting time for each h-th proposal is the same, therefore the aggregated features for the proposal h can

also be extracted in an efficient way using the previously extracted representation ph−1 as given by:

ph = ph−1 + vt+h−1, ∀ h ∈ {1 · · · τ}, p0 = 0 (5)

As the proposals overlap in time, it is therefore more efficient to aggregate different sized proposals using 

sum pooling as the vt is obtained only once for each non-overlapping snippet. Note that for the fixed sized 

window, τ proposals of duration equal to 1 × δ, 2 × δ, 3 × δ, · · · , δ × τ frames are obtained, as shown in 

Figure 3.

3.3. Proposal Classification

After extracting VTCS representation for the candidate proposals, they are categorized into one of the 

C + 1 classes using two stages. In the first stage, the candidate proposals are classified into two classes, i.e. 

action and background, by passing them to the FC network followed by a sigmoid activation (as shown in 

Figure 1). In the second stage, all the proposals classified as action or foreground are passed to the action 

classifier trained for C action classes. In this way, any candidate proposal will be classified into one of the 

C + 1 classes using two stages. Section 4.4, also presents the results for skipping the first stage i.e. the 

FC network stage and passing the candidate proposals directly to the action classifier stage trained at C + 1 

(including background) classes.

For training an FC network, all ground truth occurrences in G of training videos are taken as a positive 

class and the remaining regions which are not the part of the annotated data are treated as a negative class. 

For each training region, its corresponding VTCS representation is found using Equation 4. The negative 

data is randomly sampled to have a 1:1 ratio with the positive data. During testing, each candidate proposal 

i is passed through the trained FC network and classified into either foreground or background via sigmoid 

activation. If the candidate proposals are classified as the foreground (action), they are then classified into 

one of the C action classes using a multi-class classifier based upon the same VTCS representation pi. Since 

every action has different temporal structures, linear class-specific SVMs are trained using the ground truth
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occurrences from C action classes of the training videos. After passing pi to the trained SVM, the class label 

li ∈ {a1, · · · , aC} and the classification scores for each class are obtained.

4. Experiments

4.1. Datasets

For the evaluation of the proposed temporal action detection framework, two publicly available datasets 

are used. First, the challenging Thumos14 dataset [22] is used. This dataset is comprised of untrimmed 

YouTube videos with a total of about 20 hours duration with 20 sports actions. Each untrimmed video has 

a duration of about 3.9 minutes containing multiple instances of an action. Each action instance is confined 

to a small portion of the entire video and the remaining part contains the background segments. Thumos14 

is one of the most challenging datasets as it has large intra-class variability in action classes. For training, 

200 untrimmed validation videos and for testing 213 untrimmed test videos are used.

Second, the ActivityNet dataset [23] is used. Similar to previous work [12, 8, 23], the proposed method 

was evaluated on the ‘Sports’ subset of ActivityNet-v1.1 dataset. Although both datasets share some sports 

activities, the average action duration in Thumos14 and ActivityNet datasets is 5 and 50 seconds respec-

tively. Moreover, on average, Thumos14 videos are two times longer than those of ActivityNet videos i.e. 

233 vs. 114 seconds. This difference in action and video length reflects the diverse nature of both datasets 

in terms of coarseness and temporal structures. The results on five top-level subsets of ActivityNet-v1.3 

dataset are also reported.

Mean average precision (mAP) is used as a standard evaluation measure for both datasets. mAP is 

calculated at temporal Intersection over Union (tIoU) thresholds from 0.3 to 0.7 with a step of 0.1. The 

publicly available toolkit, provided by Thumos14 [22], is used to calculate mAP.

4.2. Implementation Details

During the testing phase, a sliding window of length equal to τ snippets is used to generate the 

candidate proposals of variable lengths. The value of τ is set by utilizing information from the training set 

on the maximum possible duration of actions. τ=64 snippets (1024/16=64, 16 being the snippet duration) 

are used, as the maximum duration of actions in Thumos14 dataset is about 1024 frames. The maximum 

action duration in ActivityNet dataset is about 1600 frames, therefore τ is set to 100 snippets (1600/16). In 

this way
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Figure 4: Evaluation of the effect of snippet-centroids on test videos of THUMOS-14 dataset.

at each time step t, proposals of multiple durations are obtained, which may overlap with each other. For the 

classification of obtained action proposal into one of the C  classes, linear SVMs in one-vs-all fashion are 

used with cost=100, where cost is used as a parameter to smooth the decision boundary between data points 

of different classes. After classifying action proposals into C classes, non-maximal suppression (NMS) is 

performed to remove the overlapping proposals having an overlap ratio greater than 0.7 with each other, as 

done in other temporal action detection methods [4, 14] .

4.3. How snippet-centroids affect mAP?

This experiment is carried out to assess the effectiveness of using different snippet-centroids K extracted 

per-class on the system performance in terms of mAP.

From the training data, for each class K snippet-centroids are generated by using the class-specific k-

means clustering. The effect on the method’s performance of using different number of snippet-centroids 

per class is assessed with K ∈ {2, 4, 8, 16}. Figure 4 plots the mAP values achieved for a different number of 

snippet-centroids K. From Figure 4 it can be seen that there is a small difference between mAP values 

obtained for a different number of snippet-centroids. It can also be observed that by extracting only few 

snippet-centroids, e.g. K = 2, the proposed method achieves higher mAP value as compared to other values 

of K. A drop in mAP can be seen when snippet-centroids are increased from 2 to 16. This is because
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Table 1: Impact of using two-stage vs. single-stage VTCS based temporal action detection framework on the mAP for Thumos14
dataset.

IoU threshold 0.3 0.4 0.5 0.6 0.7

VTCS-Single-stage framework 44.3 43.2 39.0 36.6 30.2
VTCS-Two-stage framework 52.3 49.5 44.3 39.3 30.0

by increasing the number of snippet-centroids, the distance between them will be smaller which causes 

incorrect assignment of snippets to these snippet-centroids.

An experiment is also performed to use global clustering instead of per-class clustering to extract 

snippet-centroids. Per-class clustering with K = 2 resulted in 2 × (C + 1) clusters. Therefore, to have 

a fair comparison with the results obtained by per-class clustering using K = 2, a total of 2 × (C + 1) clusters 

are extracted globally. Results in Figure 4 indicate a significant difference (of about 8% in mAP for tIoU 

thresholds from 0.3 to 0.7) between global clustering and per-class clustering with K = 2 although both 

have the same dimensions for the proposal representation. This reveals that VTCS performs best with per-

class clustering because of equal contribution of each class during the encoding process. For both datasets, 

K = 2 will be used for the rest of experiments to extract per-class snippet-centroids as it achieves higher 

mAP.

4.4. Two-stage vs. single-stage framework

Section 3.3 pointed out that a two-stage temporal action detection framework is used for the classifica-

tion of candidate proposals, where the first stage is used to filter the background proposals and the second 

stage is used to predict the class label of each proposal. This section reports an ablation study to see the 

impact of using only a single-stage to categorize the candidate proposals directly into C + 1 classes. For 

this, we directly train multi-class linear SVMs over VTCS representation of training data from C + 1 classes 

while skipping the FC network. Results in Table 1 show that the proposed two-stage frame performs better 

than a single-stage framework. It can be seen from Table 1 that the difference in mAP for both frameworks 

decreases from 0.3 to 0.6 tIoU thresholds. This is because, the background regions having less overlap 

with the ground truth regions may classify into action regions resulting in high false positives that will 

decrease the mAP values for lower tIoU thresholds. The two-stage framework filters out the background 

proposals in the first stage. Therefore, in the second stage the detected action proposals are categorized into
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Table 2: Comparison of run-time in terms of FPS calculated for a video taken from Thumos14 dataset of duration 3 minutes (with
30FPS).

Methods Framework FPS

Sparse-prop [24] Two-stage 10.2
SCNN [4] Multi-stage 60.0
DAPS [14] Two-stage 134.3
CDC [7] Single-stage 500.0
TURN [8] Two-stage 880.8
R-C3D [17] Two-stage 1030.0
BoDS [3] Single-stage 1279.0
VTCS (Ours) Two-stage 1141.0

C action classes more accurately. For the rest of experiments, the two-stage framework based on VTCS 

representation will be used.

4.5. Run-time comparison

Table 2 reports the run-time comparison of the proposed VTCS based method with other methods [3, 4, 

7, 8, 14, 17, 24]. The proposed VTCS based temporal action detection approach runs at 1141 Frames Per 

Second (FPS) on a single Nvidia TITAN Xp GPU. All methods given in Table 2 are based upon C3D based 

unit-level feature extraction except Sparse-prop [24] and CDC [7] which use Improved Dense Trajectories 

(IDT) [25] and CDC features respectively. Note that VTCS is faster than the other two-stage methods, 

e.g. it is about 1.3 times faster than TURN [8] and 1.1 times faster than R-C3D [17] which also use C3D 

features to represent video units. BoDS [3] was tested on an Nvidia TITAN Xp GPU and SCNN [4] on a 

GTX 980 GPU. DAPS [14], R-C3D [17], TURN [8] and CDC [7] were tested on a single Nvidia TITAN 

X GPU. SCNN [4], DAPS [14], R-C3D [17], CDC [7] and TURN [8] require multi-scale sliding windows 

during training stage, therefore these methods are computationally expensive. As the proposed VTCS-based 

approach has the ability to reuse the same visual encoding module for both stages (proposal generation and 

classification) and it can be trained with trimed positive and negative example videos, it is faster than other 

two-stage action detection methods. However, BoDS [3] is about 1.1 times faster than VTCS as it is based 

upon a single-stage temporal action detection framework. However, Section 4.6.1 points out that VTCS 

achieves high mAP value at multiple tIoU thresholds.
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Table 3: Temporal action detection performance on Thumos14 dataset in terms of mAP (%) @ different tIoU thresholds. Results
are sorted in ascending order at 0.5 tIoU where - indicates that results are not available.

IoU threshold 0.3 0.4 0.5 0.6 0.7

Sparse-prop [24] - - 13.5 - -
DAPs [14] - - 13.9 - -
SST [13] - - 13.9 - -
FG [12] 36.0 - 17.1 - -
PSDF [11] 33.6 26.2 18.8 - -
SCNN [4] 36.3 28.7 19.0 10.3 5.3
CDC [7] 40.1 29.4 23.3 13.1 7.9
TURN [8] 44.1 34.9 25.6 - -
TPN [26] 44.1 37.1 28.2 20.6 12.7
TAG [6] 48.7 39.8 28.2 - -
R-C3D [17] 44.9 35.6 28.9 - -
SS-TAD [15] 45.7 - 29.2 - 9.6
SSN [5] 51.9 41 29.8 - -
CTAP [20] - - 29.9 - -
ETP [27] 48.2 42.4 34.2 23.4 13.9
CBR [9] 50.1 41.3 31 19.1 9.9
TAL-Net [18] 53.2 48.5 42.8 33.8 20.8
BoDS [3] 54.9 47.2 41.5 37.5 31.6
VTCS [Ours] 52.3 49.5 44.3 39.3 30.0

4.6. Comparisons with the state-of-the-art

4.6.1. Thumos14 dataset

Table 3 provides comparative results between the proposed VTCS-based method with other temporal 

action detection methods for the Thumos14 dataset. In this case, the proposed method outperforms the 

state-of-the-art approaches including SCNN [4], Single-Stream Temporal Action Detection (SS-TAD) [15], 

PSDF [11], SST [13], TAG [6], action detection from Frame Glimpses (FG) [12], DAPs [14], SSN [5], CDC 

[7], TURN [8], CBR [9], Temporal Preservation Networks (TPN) [26], R-C3D [17], Evolving Temporal 

Proposals (ETP) [27], TAL-net [18], CTAP [20] and BoDS [3].

Similar to the proposed method, SS-TAD [15] and SST [13] also produce right-aligned times. However, 

these methods require multiple sliding windows to produce dense training data during the training stage. 

Instead, here only the ground truth annotations are used for training the SVM classifier, therefore the method 

proposed here is computationally efficient. SCNN [4], DAPS [14] and TURN [8] produce action proposals 

using multi-scale sliding windows, therefore these methods are computationally expensive. The state-of-
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Figure 5: Comparison of per-class average precision (%) for Thumos14 dataset at 0.5 tIoU threshold.

the-art methods i.e. [18], [9], [27] and [5] require multiple networks for producing action proposals, for their 

refinement and for their classification tasks. However, a two-stage framework is proposed in this paper, 

in which both stages share the same encoded features which makes it computationally fast.

The proposed VTCS based temporal action detection approach respectively achieves 2.3%, 2.8% and 

1.8% gain in mAP at 0.4, 0.5 and 0.6 tIoU threshold than BoDS [3]. The significant improvement in mAP 

over the previous methods [4–9, 11–15, 17, 18, 20, 26, 27] for high tIoU thresholds and comparable results 

with [3] shows that VTCS can detect actions from untrimmed videos more precisely. The average precision 

of each action class is also provided in Figure 5. It can be observed that the proposed VTCS based temporal 

action detection achieves better average precision for 11 out of 20 action classes with large margins as 

compared to other methods and mAP for the Thumos14 dataset, higher than other methods.

Average number of retrieved proposals. For the Thumos14 dataset, the performance of the proposed method 

is assessed in terms of mAP by extracting different numbers of action proposals per video at tIoU threshold 

equal to 0.5. Table 4 presents a comparison with other state-of-the-art methods for the Thumos14 dataset at 

0.5 tIoU overlaps, showing that the proposed method attains better performance compared to other action

16



Table 4: Temporal action detection performance in terms of mAP (%) at different number of proposals using 0.5 tIoU threshold for
Thumos14.

Methods @50 @100 @200 @500 @1000

Sparse-prop [24] 5.7 6.3 7.6 8.2 8
SCNN [4] 5.6 7.7 10.5 13.5 13.5
DAPs [14] 8.4 12.1 13.9 12.5 12.0
SST [13] 10.9 13.2 13.9 13.1 12.0
TURN [8] - - - - 25.6
VTCS [Ours] 19.1 29.2 36.5 42.9 44.3

Table 5: Temporal action detection performance on ActivityNet-v1.1 dataset in terms of mAP (%) @ different tIoU thresholds.
Results are sorted in ascending order at 0.5 tIoU where - indicates that results are not available.

IoU threshold 0.3 0.4 0.5 0.6 0.7

[23] - - 33.2 - -
FG [12] - - 36.7 - -
TURN [8] - - 37.1 - -
BoDS [3] 51.1 45.0 38.1 34.2 29.0
VTCS [Ours] 50.7 45.0 38.5 32.0 28.1

proposals obtained by computationally expensive methods such as SCNN [4] and Sparse-prop [24]. Fur-

thermore, the results also show that the approach provides a satisfactory mAP using only a few number of 

temporal proposals.

4.6.2. ActivityNet dataset

For the Sports subset of ActivityNet-v1.1 dataset, the proposed VTCS based method is compared with 

[23], FG [12], TURN [8] and BoDS [3] as shown in Table 5. The Sports subset contains 21 actions named: 

‘Archery’, ‘Bowling’, ‘Bungee’, ‘jumping’, ‘Clean and jerk’, ‘Cricket’, ‘Curling’, ‘Discus throw’, ‘Dodge-

ball’, ‘Doing motocross’, ‘Hammer throw’, ‘High jump’, ‘Javelin throw’, ‘Long jump’, ‘Paintball’, ‘Playing 

kickball’, ‘Pole vault’, ‘Shot put’, ‘Skateboarding’, ‘Starting a campfire’, ‘Triple jump’ and ‘Volleyball’. 

Table 5 reports the mAP results of the proposed method at different tIoU thresholds while the methods 

proposed in [12, 8, 23] only provide results at 0.5 tIoU threshold. It can be seen that the proposed VTCS 

method resulted in higher mAP value at tIoU thresholds of 0.4 and 0.5 and comparable results at other 

tIoU thresholds. For this dataset, the number of per-class snippet-centroids, K = 2 was adopted, as for 

Thumos14, illustrating the generalization capability of VTCS to another action detection dataset as well.
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Table 6: Comparison results in terms of mAP(%) for five subsets of ActivityNet-v1.3. Numbers in brackets shows the total number
of actions present in each subset.

tIoU threshold 0.3 0.4 0.5 0.6 0.7

Subset BoDS VTCS BoDS VTCS BoDS VTCS BoDS VTCS BoDS VTCS

Household (45) 23.6 21.8 18.2 16.6 15.2 13.3 11.7 11.8 10.1 10.3
Personal care (19) 14.4 16.2 12.0 13.8 8.0 10.9 6.7 8.9 5.7 7.5
Eating and drinking (11) 17.4 18.8 13.2 13.6 12.0 11.2 6.6 7.9 5.0 7.0
Socializing and leisure (37) 35.6 35.9 30.0 30.0 26.0 25.6 22.6 22.7 18.9 19.0
Sports and exercises (88) 49.6 49.9 43.5 43.2 37.4 37.6 32.6 32.7 28.1 28.3

Average 28.1 28.5 23.3 23.4 19.7 19.7 16.4 16.8 13.6 14.4

Subsets of ActivityNet. Table 6 reports comparative results between the proposed VTCS based method with 

BoDS [3] for the 5 top-level subsets: ‘household’,‘personal care’,‘eating and drinking’,‘socializing and 

leisure’ and ‘sports and exercises’ of the ActivityNet-v1.3 dataset. From the results of different subsets, 

it can be seen that the ‘sports and exercises’ attains the highest mAP because the activities present in this 

subset have well-defined temporal ordering. Other subsets, e.g. ‘personal care’,‘eating and drinking’ attains 

less mAP values as compared to ‘sports and exercises’ because the activites present in these subsets do not 

have well-defined temporal ordering and have an unstructured nature. From Table 6, it can be seen that the 

proposed VTCS based method achieves higher mAP as compared to BoDS [3] at different tIoU thresholds.

4.7. Qualitative Results

Figure 6 shows qualitative results for three untrimmed videos from the Thumos14 dataset. Figure 6(a), 

shows the detected vs. ground truth regions for an untrimmed video containing three occurrences of the 

‘Billiards’ action. It can be seen that all occurrences of Billiards action are accurately detected with correct 

class label with tIoU equal to ≥ 0.7 with the ground truth regions. Figure 6(b) also provides qualitative 

results for the example video containing multiple instances of ‘Long Jump’ action. The proposed VTCS 

based method failed to detect correct action labels therefore it is considered as negative detection. Although 

VTCS detects the regions with tIoU equal to 0.88 for both instances, it fails to detect the correct class label 

because, in a single action instance, viewpoint changes for multiple times. Figure 6(c) provides an example 

for ‘Volleyball Spiking’ action, where the method predicted the correct class label, but it fails to detect 

precise boundaries of action. The method was not able to correctly detect the start-end time because this
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Figure 6: Qualitative results for the example test videos from Thumos14 dataset. Action labels for each action instance are shown
and their corresponding start-end times (in seconds) are shown inside brackets. If the tIoU of the detected region with any of the
ground truth region is ≥ 0.5 and if it is classified into the correct action class, then it is considered as a true positive (best seen in
color).

video has a very slow transition.

Although the proposed method obtained improved performance as compared to other methods, it has

some limitations. 1) The dimension of VTCS features is K×(C+1), i.e. it depends on the number of classes. 

Therefore, for large number of classes VTCS will have large dimensions hence it will be computationally 

expensive. 2) It requires a separate stage for proposal generation due to which it cannot operate in an end-

to-end manner to detect the action of interest from the untrimmed videos. Nevertheless, Table 1 presents a 

single-stage version of the proposed VTCS, and it can be seen that the two-stage VTCS framework obtained 

a higher mAP compared to single-stage VTCS. In future work we intend to address these limitations by 

seeking ways of making the dimension of VTCS features independent of the number of classes and by 

using single-stage action detection.
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5. Conclusion

In this work, we have proposed a new encoding scheme, VTCS, which extracts the discriminative

representation for non-overlapping snippets of the untrimmed videos. The proposed approach generates

few snippet-centroids from each class which is used for the encoding process. It uses the same encoding

representation for generating the initial proposals which are then passed to SVM classifiers already learnt at

positive classes. This two-stage temporal action detection framework can run on long untrimmed videos at

high processing speed. Compared to other methods, it does not require sliding windows during the training

stage, as it only utilizes the annotated actions from positive as well as background classes which makes

it computationally more efficient. Experiments show that the proposed two-stage VTCS based approach

attains improved performance for the two datasets used in the experiments and that it outperforms other top

methods.

We plan to use this framework in other video understanding tasks, such as anomaly detection in crowd

scenes, video summarization and sports video analysis and to extend the method to situations with simulta-

neously different actions that might need to be first localised in space and then treated separately.
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