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Abstract：In order to resolve the problem of excessive processing time and inadequate accuracy 

caused by existing algorithms in robot vision image reconstruction, a block variable step size 

adaptive compression sensor reconstruction algorithm is proposed. The algorithm integrates the 

regularized orthogonal matching pursuit technique in a seamlessly efficient manner to obtain 

consistent and accurate signal reconstruction outcomes. To apply this technique, a set of selected 

atoms is initialized by setting fuzzy threshold. Subsequently, inappropriate atoms are excluded, 

and an iterative procedure is initiated to update the set so as to approximate the signal sparsity in 

a stepwise fashion. In comparison with commonly used algorithms, the proposed algorithm 

achieved the lowest signal recovery and reconstruction error. Findings from this study indicate that 

our proposed hybrid paradigm may lead to positive advancement towards the development of 

intelligent robotic vision systems for industrial applications. 

 

Keywords: Compressing sensing, Signal reconstruction, Matching pursuits, Sparsity, 

Reconstruction algorithm. 

 

1. Introduction 

Intelligent robot vision systems are multifunctional automated mechanical agents with 
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capabilities to sense their environment, make decisions autonomously, provide control, and 

perform multiple tasks [1]. The rapid development of robotic technology began in the late 

1950s when there was massive need for automation across different emerging industries. In 

recent years, intelligent robot technology has been widely utilized in various fields such as 

driverless cars, object detection and tracking in crowded environments, and defense 

intelligent home services [2-3]. In principle, a robot vision system integrates a set of a sensors, 

(a combination of camera hardware and computer programs) that enables the device to 

process visually perceived data in a manner that would allow proper interpretation of its 

content [4-8]. In such applications, the sensors are mostly designed to replicate the abilities of 

the human vision system using intelligent algorithms embedded into electronic devices [9]. In 

other words, the vision sensors are configured to acquire images, convert the sampled signals 

into digital image formats, and then extract reproducible characteristic signals through the 

integrated algorithm. Interestingly, it has been reported that such robotic vision systems could 

judge the scene in its environment independently and control its own actions in a seamlessly 

efficient manner. Meanwhile, real-time aspects and high efficiency of image signal sampling 

play important role in determining the overall performance of the robot vision system. 

 

Modern-day robots are designed to operate in a structured environment. Due to the 

complexity and unpredictability of the external environment and the limitations of existing 

vision systems, current intelligent robots are unable to completely achieve their intended 

objectives [10-13]. In addition, unlike the for human vision, it is difficult for a robotic system to 

track and detect multiple objects simultaneously [9]. For this reason, much related research 

has focused on improving the performance of robot vision systems (particularly remotely 

controlled systems) by utilizing only a small percentage of the available image signal. If 

robotic vision systems are to operate efficiently and perform well in an unstructured 

environment, they require a great deal of intelligence and flexibility. 

 

In developing a robotic vision system, it is often necessary to carry out remote transmission 

after data processing and storage, which greatly increases the overall operation cost. In the 
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past, developers have tended to compress the data representing signals, leading to loss of 

big data samples [10]. At present, intelligent robot vision systems are based on traditional 

Nyquist sampling techniques.  As a consequence, robots are slow to respond and cannot 

accomplish many tasks at a time. In addition, as sampling frequency is high and the amount 

of sampling data is very large, the computation process is very complex [12, 14]. In 2016 

Donoho proposed a framework for compressed sensing of an object [14] to address this 

problem. The theory behind this approach consists of three parts: sparse signal; design of 

measurement matrix; and a reconstruction algorithm. The theory assumes that objects and 

images have sparse representation, which can be achieved using an orthogonal transform 

basis and an over-complete dictionary. 

 

The traditional orthogonal transform basis includes discrete wavelet transform and discrete 

cosine transform. Since the basic shape of atoms in these transforms is fixed and scarce, the 

sparsest representation of an image cannot be achieved. Because of this problem, the study 

of flexible and efficient sparse bases has become a leading research direction in the recent 

years. One of the proposed solutions in this direction uses training algorithms such as MOD 

[15] and KSVD [16] [17]. These training algorithms usually involve sparse coding and 

dictionary updating which cannot be easily optimized, particularly during real-time usage. 

 

Compressed sensing reconstruction algorithms proposed in the past include convex 

optimization [18], greedy class reconstruction module, and Bayesian reconstruction module 

[19]. Although the convex optimization algorithm has good reconstruction effect, it takes more 

time to reconstruct than the greedy class reconstruction approach. Meanwhile, the greedy 

class reconstruction algorithm has been widely adopted because of its fast computation and 

simple structure. These algorithms are based on the elements of the transform matrix (the 

dictionary) that best matches the signal during iteration. 

 

Commonly used greedy algorithms include: Matching Pursuit (MP) [20], Orthogonal MP (OMP) 

[21], Regularized Orthogonal OMP (ROMP) [22], and Generalized Orthogonal Matching 

Pursuit (gOMP) [23]. These algorithms rely on sparsity knowledge for accurate reconstruction. 
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In many applications where the sparsity can be unknown, sparse adaptive MP (SAMP) [24] 

and regularized adaptive MP (RAMP) [25] are preferred as they can reconstruct the original 

image more accurately. In order to address, the need for both fast convergence and high 

reconstruction accuracy under unknown sparsity, in this paper we propose a hybrid algorithm 

called generalized backtracking regularized adaptive matching pursuit (GBRAMP). Our 

algorithm will contribute towards the realization of accurate identification of support sets in 

robot vision systems.  

 

Specifically, based on the reconstruction of unknown sparsity signals, we propose a 

generalized backtracking regularized adaptive matching pursuit algorithm that utilizes a 

variant of the ROMP algorithm to exploit the advantages of regularization techniques towards 

fast and effective atom selection in combination with a backtracking screening approach to 

estimate sparsity. We give experimental results which via a verify the performance of the 

proposed hybrid method and compared its performance with existing methods. In particular 

we compare the performance of our algorithm with that of existing reconstruction algorithms, 

including: OMP, ROMP, StOMP, Subspace pursuit (SP), Compressive sampling matching 

pursuit (CoSAMP) and gOMP. 

 

In summary, the contributions of this study are threefold. First, a generalized backtracking 

regularized adaptive matching pursuit algorithm based on the reconstruction of an unknown 

sparsity signal, that exploits the advantages of regularization technique towards effective 

selection of atoms in combination with backtracking screening. Second, validation of the 

performance of the proposed hybrid method compared to the existing reconstruction 

algorithms: OMP, ROMP, StOMP, Subspace pursuit (SP), the Compressive sampling 

matching pursuit (CoSAMP) and gOMP. Third, discussion of how the proposed hybrid 

paradigm may lead to positive advancement towards the development of intelligent robotic 

vision systems for industrial applications. 

 

This paper is organized as follows. We first introduce the background of compressed sensing 

and signal reconstruction in Section 2, then the proposed GBRAMP algorithm in Section 3. 
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The experimental setup is also given in Section 4. Then, the performance of the proposed 

algorithm was investigated in comparison with the other existing reconstruction algorithms in 

Section 5. Finally, the paper is concluded in Section 6. 

 

2. Compressed sensing and signal reconstruction 

Compressed sensing is a collection of signal processing techniques used for signal 

representation from a small number of measurements. In principle, a typical compressed 

sensing-based problem could be modeled as follows. Suppose 𝒙 ∈  ℝ𝑵 is a one-dimensional 

signal of length n and sparsity k, where k<<n, the measured value y of length m is obtained 

by means of a measurement matrix Φ of 𝒎 ×  𝒏, which is expressed as in (1):  

𝑦 = 𝛷𝑥                                                                                          (1) 

On the other hand, the sensed signal x may not itself be sparse, but it may be sparse on a 

certain basis, that is x = 𝜳s, where s is the sparse vector and 𝜳 is the sparse matrix. 

Therefore, the expression in equation (1) could be re-represented by equation (2) as follows: 

𝑦 = 𝛷𝛹𝑠                                                                                         (2) 

It is worth noting that the problem of compressed sensing-based reconstruction is mainly 

aimed at recovering the original sparse signal x from the measured value y of m < n, and 

usually if m < n, the inverse problem is ill-posed. However, the sparsest solution expressed in 

equation (2) could be obtained by solving the constrained optimization problem which is 

expressed as follows in equation (3):                          

𝑚𝑖𝑛‖𝑠‖0, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 =  𝛷𝛹𝑠                                                                    (3) 

where ‖𝑠‖0 =  ∑ |𝑠𝑗|
0𝑛

𝑗=1 ; and s is the number of nonzero components. Since Equation (3) 

represents a non-convex optimization problem that requires quantifying a subset of the 

dictionaries and identifying the smallest subset representing signal x which increases the 

signal size exponentially. According to a major result of compressed sensing theory, if x is 

k-sparse, the waveforms are independent and identically distributed randomly, and the 

number of measurement M, satisfies the condition in (4) 

  𝑀 ≥ 𝑐 ∙ 𝑘 ∙ log(𝑛
𝑘⁄ )    ; 𝑐 = 𝑠𝑚𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                   (4) 
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Therefore, the signal x can be reconstructed by solving the convex problem in (5).  

𝑚𝑖𝑛‖𝑠‖1, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 =  𝛷𝛹𝑠                                                               (5) 

where Equation (5) is known as basic pursuit.  

 

The major objective of a reconstruction algorithm is to maximize the reconstruction of the 

original signal using low-dimensional data observed by the measurement matrix. Although the 

convex optimization technique (basic pursuit) has a good reconstruction effect, it is not 

practical to apply due to high computation time requirements. At present, among the three 

most adopted groups of reconstruction algorithms, greedy algorithms are the most studied in 

compressed sensing due to their fast reconstruction and low computation capability. They can 

provide a solution to the reconstruction problem in a step-by-step iterative manner that can be 

easily understood. However, more attention is paid to the sparse unknown reconstruction for 

greedy algorithms, because it does not require the precondition of known signal sparseness. 

Hence this form of application is more common. 

 

Commonly used greedy algorithms include: SAMP and RAMP. They approximate sparseness 

by setting an initial step and expanding the support set in a stepwise manner. The 

backtracking adaptive orthogonal matching pursuit algorithm reconstructs the unknown 

sparseness signal by backtracking detection. Recently a forward-backward tracking algorithm 

has been proposed to better estimate sparsity by iteratively accumulating the difference 

between the forward and backward steps. The energy-based adaptive matching pursuit 

algorithm increases the sparsity level gradually according to the increase of the iteration 

residual energy. In addition, the difference-based sparsity adaptive reconstruction algorithm 

uses the rate of change between the measurement matrix and the residual inner product 

elements to approximate the sparsity adaptive. To overcome these limitations, a generalized 

backtracking regularized adaptive matching pursuit algorithm (GBRAMP) is proposed in this 

study. 

 

3. The proposed algorithm 
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In this section, we briefly introduce the existing ROMP algorithm, then give a detailed 

description of our proposed generalized backtracking regularized adaptive matching pursuit 

algorithm (GBRAMP algorithm). The ROMP algorithm is an improved algorithm of the 

conventional MP and OMP algorithms, and its basic operational principle is driven by the 

OMP algorithm. It uses a regularization method to select several qualified elements per 

iteration to quickly classify the elements, thus shortening the time taken for signal 

reconstruction. The execution process of the ROMP algorithm is stated as follows:  

Step 1: 

Atomic selection: Based on the OMP algorithm, the ROMP module selects an element by 

using the absolute value of the inner product between the elements of the measurement 

matrix Φ and residual r, to calculate the correlation coefficient u=< Φ, r >. After that, K atoms 

(i.e., column atoms corresponding to the largest K value in Φ) matched with residual values 

are put into set J. 

Step 2: 

Regularization: According to the measurement of the correlation coefficient │𝒖(𝒊)│ ≤

𝟐│𝒖(𝒋)│𝒊, 𝒋 ∈ 𝑱, elements in the set are divided into groups. The set of elements with the 

largest correlation coefficient are input into group 𝑱𝒐 . 

Step 3: 

Residual updating: By estimating the signal using the least squares method for atoms in the 

support set, 𝑱𝒐 is added to the support set of the last iteration and the residual value is 

updated with the obtained signal. 

 

From the first step of the algorithm execution procedure, it can be seen that the ROMP 

algorithm requires that the sparsity of the signal is known. Hence, when reconstructing image 

signals with unknown sparsity, the reconstruction effect can be abjectly affected by the 

necessity of estimating the sparsity value. In addition, although the ROMP algorithm uses the 

regularization principle to screen the K atoms initially selected, with the increase of iterations 

the support set inevitably contains some incorrect atoms. For this reason, it is necessary to 

introduce backtracking to update the support set. 
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The proposed GBRAMP algorithm is aimed at addressing the above shortcomings of the 

ROMP algorithm. The basic goal of the proposed GBRAMP algorithm is to maintain the 

regularization process whilst at the same time addressing the limitations of the existing 

methods. In the proposed method, the algorithm adaptively chooses atoms by setting a fuzzy 

threshold to increase the randomness of the number of atoms. Then, a set of atoms whose 

indices have the largest energy is selected and put into the set 𝑱𝒐 using the regularization 

method. After merging with the support set of the previous iteration, the non-zero coefficients 

of the signal are calculated using the least squares method. Finally, the process of 

retrospectively updating and expanding the support set to approximate the sparsity is carried 

out. 

 

The maximum coefficient Ɵ of the index corresponding to the non-zero coefficient in 𝑱𝒐 is 

found, and all the indices with a non-zero coefficient greater than β.Ɵ (0 < β < 1) are put into 

the support set I. One of the major purposes of the proposed method is to find the non-zero 

coefficients of the signal. If the coefficients of previously selected atoms are smaller than the 

threshold value β.Ɵ, the previously selected atoms may be incorrect and so are deleted by 

the retrospective method. In this way, cyclic iteration is carried out to complete the 

reconstruction of the signal when the stopping condition is reached. The algorithm terminates 

when the residual value is less than ε. The specific implementation steps of the backtracking 

regularization adaptive matching pursuit algorithm integrated into the proposed method is 

presented in Figure 1. 
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Figure 1. Flowchart diagram of the proposed algorithm, generalized backtracking regularized adaptive 

matching pursuit reconstruction algorithm (GBRAMP)   
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In the above process, the algorithm adaptively selects the initial atoms based on the fuzzy 

threshold, and the number of atoms is determined by the parameter α. When the value of α is 

small, the number of atoms selected in each iteration is large, and the algorithm executes 

faster. Unlike the RAMP algorithm that uses the regularization method to select the group of 

atoms with the most energy, our algorithm employs a retrospective approach that helps to 

gradually expand and update the support set. The number of atoms to be updated in each 

iteration is controlled by a constant beta parameter. This characteristic of our algorithm 

overcomes the shortcomings of the ROMP and SP algorithms that require known sparsity. It 

also allows us to overcome a limitation of the non-backtracking RAMP algorithm for which, 

once selected, incorrect atoms cannot be eliminated, thus affecting the step size. 

 

Another example of the proposed algorithm is that it is based on the characteristics of the 

estimated signal and iterative reconstruction without being affected by a sparseness value 

estimated purely on experience. The reconstruction accuracy and computational complexity 

of the proposed algorithm are balanced by adjusting α and 𝜷. Although this algorithm has 

these advantages, its running time is slightly longer than that of the RAMP algorithm. This is 

due to the addition of backtracking when evaluating sparsity. 

 

 

4. Experiment setup 

Performance comparison between the proposed algorithm and other existing reconstruction 

algorithms was carried out using different simulation models. The experimental procedure is 

divided into two parts: in the first we use a one-dimensional sparse signal and in the second 

we extend the approach to a two-dimensional approximate sparse signal, i.e., the image 

signal. The proposed algorithm was implemented using MATLAB 2016b software running on 

a computer system with the following configuration: Intel (R) Core (TM) i7-2670QM CPU, 

frequency 2.20GHz, and memory 8GB. 

 

The measurement matrices involved in this paper are all Gauss random matrices while the 
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reconstruction algorithms considered for the comparison are OMP, SP, CoSAMP, ROMP, 

SAMP, gOMP and the proposed GBRAMP algorithm. In each case we set the maximum 

number of iterations M as well as the residual termination condition as norm (r) < 1e-6. In 

addition, for the RAMP and SAMP algorithms, an initial value of 3 was used for the recovery 

ratio is defined as: 

𝐸𝑟𝑟 = 1 −
‖𝑥−𝑥ʼ‖2

‖𝑥‖2
                                                                     (6)  

The performance of the reconstruction algorithms was evaluated using the mean square error 

(MSE) metric described in (7) 

𝑀𝑆𝐸 =  
1

𝑛
 ∑(𝑌𝑖 − 𝑌̂𝑖)2

𝑛

𝑖=1

                                                               (7) 

where n is the length of the signal, 𝑌𝑖 is the original signal and 𝑌̂𝑖 is the reconstructed signal. 

 

5. Results 

In this study, the performance of the proposed algorithm was systematically investigated in 

comparison with the other existing reconstruction algorithms using a number of structured 

experiments. The ability of the proposed and previously proposed methods to reconstruct 

randomly generated dataset for several values of the ambient signal dimension N with fixed 

measurement value M, and sparsity K, was examined. It should be noted that for the signal 

selection, a Gaussian sparse signal with a length of N = 256 and a measured value of M = 128 

was utilized. Analyses of the obtained results have been carried out based on different 

experimental designs, described below. 

 

5.1. Probability of signal reconstruction across sparsity at constant measurement 

value 

We first investigate the probability of exact signal reconstruction with respect to the signal 

sparsity K for a given value of M. In this paper, the signal is said to be accurately 

reconstructed if the non-zero elements of the actual signal x and the recovery signal  𝒙ʼ are in 
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the same positions. Sparsity values ranging from 5 to 90 were chosen and for each value of K, 

100 simulations were performed. We note that the precise reconstruction probability and the 

computation time of the Gaussian sparse signal vary with the degree of sparsity. 

Reconstruction results for the different algorithms are presented in Figure 2, where the x and 

y axes represent the level of sparsity and probability of exact recovery, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Exact recovery ratio performance as a function of sparsity K. Note: Signal length, N =256 and 

fixed measurement value, M= 128. 

 

As shown in Figure 2, the GBRAMP algorithm is able to reconstruct the signal much better 

than the other algorithms, whilst at the same time achieving better sparsity. While the 

reconstruction effect of GBRAMP is better than all of the other methods, the gOMP algorithm 

performs better than OMP, SP, RAMP and ROMP for K<40. Although the signal could not be 

completely reconstructed for 40<K<90, the reconstruction effect of the GBRAMP algorithm is 

much better than for the other algorithms. Meanwhile, OMP and ROMP recorded the worst 

performance because they both deviated from the actual path of reconstruction when K<20 

and K<30 respectively. 
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5.2. Probability of signal recovery across measurement value at constant sparsity 

Using the same procedure as for the first experiment, we then examined the percentage of 

signal recovered against the number of measurements when the signal sparsity K is constant, 

using measurement values ranging from 55 to 100, and K =20. For each measured value, a 

signal of sparsity k was generated. In each case the proposed the sparse signal and the 

percentage of exact reconstruction was computed. The obtained results are presented Figure 

3. 

 

It can be seen that GBRAMP performs better than the other algorithms. In particular, 

GBRAMP was able to recover a good percentage of the sparse signal when M <=75. At M = 

80, both GBRAMP and gOMP could recover 100% of the sparse signal. However, between 

the measured values of 80 to 90, gOMP signal recovery accuracy drops while that of the 

proposed GBRAMP method remains consistent. This observation shows that the proposed 

method is more stable and accurate at different measured values than the other algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The percentage of signal recovered as a function of the number of measurements M in 

dimension N = 256 at a constant value of K = 20. 

 

5.3. Evaluation of signal computation time across different sparsity values 
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From the results presented in Figure 4, it can be seen that the running time of GBRAMP is 

longer than that of other algorithms. This is because the GBRAMP algorithm incorporates an 

iterative technique that gradually approaches the sparsity value. It should be noted that, unlike 

the other algorithms, GBRAMP deletes incorrect atoms before each iteration by using 

backtracking. This increases reconstruction quality at the expense of increased running time. 

Generally, it can be observed that as the sparsity level increases, the computation time of all 

reconstruction algorithms increases (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of the complexity of the proposed algorithm and the previous methods in terms 

of the computation time, which was defined as a function of sparsity, K. 

 

5.4. Reconstruction of distorted single-dimensional sparse signal  

In this experiment, we compared the recovery accuracy of the different algorithms when the 

original signal is contaminated with white Gaussian noise. More precisely, an additive white 

Gaussian noise of 10 dB was introduced into the original sparse signal.  Note that the power 

of the sparse signal was measured before the noise was added. Figures 5 (a) and (b) show 

the original sparse signal and the distorted signal, respectively. For each algorithm the 

reconstructed signal from the distorted sparse signal is shown in Figure 6. It is clear that in 

the presence of additive white Gaussian noise, GBRAMP was able to reconstruct the 
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one-dimensional signals with better accuracy than the other algorithms. 

 

 

 

 

 

 

Figure 5: Representation of the originally generated signal (a), and the distorted version of the signal 

using additive white Gaussian noise 
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Figure 6: Exact signal recovery for the proposed GBRAMP method and the other considered 

algorithms when a 10 dB additive white Gaussian was introduced into the original signal 
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5.5. Sparse signal recovery error at different sparsity and measurement values 

A further experiment was conducted to examine the recovery error rate of the proposed 

method compared to that of the other algorithms at different sparsity levels and measurement 

values.  Note that this experiment was carried out to further validate our findings from the 

previous experiments. Table 1 presents recovery error rate results for all the reconstruction 

algorithms at different sparsity K levels when the value of M was set to 128. Table 2 presents 

the recovery error rate results for all the reconstruction algorithms at different measurement 

values when K was set to 20. It can be deduced from both (Table 1 and Table 2), that 

GBRAMP has the least signal recovery error followed by gOMP. These results further show 

the superiority of GBRAMP over the other methods in terms of accurate reconstruction of 

signals. 

Table 1: Signal Recovery Error at different Sparsity K Levels when M=128 

 

Table 2: Signal recovery error at different measurement value when K=20 

 

Sparsity (K) 

Algorithms 10 20 30 40 50 60 70 80 90 100 

OMP 8.55E-32 1.08E-04 8.32E-31 2.25E-04 0.788208 1.904589 2.581068 1.911486 4.541676 3.806002 

ROMP 4.89E-32 0.090446 0.603218 0.617696 1.61684 5.666846 2.649431 4.329278 4.002725 5.664299 

StOMP 4.69E-31 4.90E-31 5.39E-30 0.236549 0.602262 1.108991 1.964226 2.415417 2.992484 3.098453 

SP 5.71E-31 1.56E-30 1.79E-30 5.71E-30 0.646583 2.947934 1.885343 3.25886 2.980691 3.90332 

CoSAMP 7.28E-32 7.63E-31 3.46E-30 1.28E-28 2.094218 8.963196 2.9499 3.583188 4.004406 4.186434 

gOMP 2.69E-31 9.51E-31 1.21E-30 3.40E-30 1.09071 1.855677 3.003511 1.652196 2.661278 5.681467 

GBRAMP 4.89E-33 5.57E-32 1.68E-32 5.00E-31 9.01E-3 0.105173 1.6244 1.148374 2.071809 2.717304 

 

Measurement value when K=20 

Algorithms 32 64 128 512 

OMP 2.33E+00 2.01E-31 6.04E-31 4.07E-31 

ROMP 7.90E-01 1.150267 0.627876 2.95E-31 

StOMP 2.88E-01 3.76E-01 1.15E-30 5.73E-31 

SP 7.74E-01 2.25E-01 6.53E-31 1.17E-30 
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5.6. Percentage of sparse signal recovery at different sparsity K and measurement 

values  

Finally, we investigated the performance of GBRAMP at different sparsity levels and 

measurement values when alpha was set to 0.5. We note that before carrying out this 

experiment we investigated the effect of using different values of alpha ranging from 0.1 to 1.0. 

We discovered that setting alpha to 0.5 allowed the sparse signal to be recovered correctly. 

Sparsity K levels ranging between 5 to 25 and measurement value of 0 to 250 were used for 

this experiment. The obtained results are presented in Figure 7. It can be deduced that the 

percentage of signal recovery increases with an increase in the measurement value. 

Furthermore, the proposed algorithm was able to recover the sparse signal accurately when 

45 < M < 120 for different sparsity levels. 

 

Figure 7. The percentage of recovered signals with respect across different measurements and 

sparsity 
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Figure 7. The percentage of recovered signals with respect across different measurements and sparsity 

4. Conclusion 

By exploiting the limitations of the existing regularized orthogonal matching 

pursuit algorithm for signal reconstruction in intelligent robotic vision systems, this 

paper proposes a generalized backtracking regularized adaptive Matching Pursuit 

(GBRAMP) method to overcome such limitations. The proposed algorithm was 

investigated based on a number of evaluation criteria and its performance was 

compared to some commonly used methods. Analysis of the experimental results 

revealed that the proposed method can effectively reconstruct the signal at different 

sparsity level. Though the signal cannot be completely reconstructed at 40 < K < 90, 

but the reconstruction effect of the GBRAMP algorithm was better compared to other 

utilized algorithms. Furthermore, the proposed method was able to recover a good 

percentage of the sparse signal (when M <=75). Similar performance trend was also 

observed in terms of signal reconstruction accuracy when the original signal was 

contaminated with additive white guassian noise and when the proposed method was 

compared to existing algorithms at different sparsity levels and measurement values. 

Summarily, it canpara be seen from all the experimental scenarios employed in this 

study that the proposed method achieved better performance when compared with some 
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CoSAMP 1.15E+00 1.20E+02 1.66E-30 6.58E-31 

gOMP 1.47E+00 1.25E-02 4.21E-31 4.86E-31 

GBRAMP 1.01E+00 1.24E-01 1.05E-31 2.90E-32 
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6. Conclusion 

This paper proposes a generalized backtracking regularized adaptive Matching Pursuit 

(GBRAMP) method to overcome limitations of existing regularized orthogonal matching 

pursuit algorithms for signal reconstruction in intelligent robotic vision systems. The 

operational principle of the proposed GBRAMP method is based on the adaptive selection of 

the required atom set by setting a fuzzy threshold, then regularizing the selected atoms. 

Subsequently, a backtracking strategy is used to detect incorrectly selected atoms, which are 

then are omitted from the updated support set. 

 

The proposed algorithm was investigated using a number of evaluation criteria and its 

performance was compared to some commonly used methods. Analysis of the experimental 

results revealed that the proposed method can effectively reconstruct the signal at different 

sparsity levels. Though the signal cannot be completely reconstructed at 40 < K < 90, the 

reconstruction effect (e.g., percentage of signal recovered) of the GBRAMP algorithm 

compared more favorably to other utilized algorithms. Furthermore, the proposed method was 

able to recover a good percentage of the sparse signal (when M <=75). A similar performance 

trend was observed in terms of signal reconstruction accuracy when the original signal was 

contaminated with additive white Gaussian noise and when the proposed method was 

compared to existing algorithms at different sparsity levels and measurement values. The 

reconstruction of the unknown sparse signal can be achieved with high accuracy and with 

relative ease compared to the existing methods. The obtained experimental results 

demonstrate that the proposed GBRAMP algorithm provides a useful tool for the 

reconstruction of signals in the context of intelligent robot vision systems. 
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