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A B S T R A C T

We live in a world that is being driven by data. This leads to challenges of extracting and
analyzing knowledge from large volumes of data. An example of such a challenge is intrusion
detection. Intrusion detection data sets are characterized by huge volumes, which affects the
learning of the classifier. So there is a need to reduce the size of the training sets. Fortunately,
inspection and analysis of available intrusion detection data sets showed that many instances
are very similar and do not provide relevant information to the classification process. This
prompted to look for possibilities to use a fast algorithm that, as much as possible, removes
similar instances in intrusion detection data sets while enforcing the detection rate. In this
work, a new fast instance reduction algorithm is presented. The proposed algorithm provides
greater efficiency during the training stage, without significantly affecting the efficacy during
the intrusion detection task.

. Introduction

Intrusions in telecommunications networks are among the most used and harmful malicious activities. Statistical intelligence
eports, provided by the Kaspersky Lab company, indicate that Distributed Denial of Service (DDoS) attacks1 during the first quarter
f 2020 include attacks that lasted up to twenty days affecting the availability of necessary services [1]. In this sense, the entities
roviding ICT2-based services require automated techniques to detect intrusions in the shortest possible time [2].

Intrusion detection in telecommunications networks, from a classification point of view, generally includes two steps: (1) building
classification model from a training data set and (2) using that model for classification, in this case, to detect intrusions. Intrusion
etection data sets are characterized by having large volumes [3], which can affect both steps, since some classifiers may need to
rocess the data several times, either during the training or the classification stage.

A straightforward way to reduce the time cost in the above two steps is to minimize the size of the training data set by using
n instance selection algorithm. However, developing a fast and scalable solution that allows reducing the training set to efficiently
uild a classification model, providing greater efficiency to the intrusion detection process, without significantly affecting its efficacy,
urns out to be a challenge.

To address this problem, some data sets collected in intrusion detection scenarios were analyzed, and the following annotations
ere performed:
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Fig. 1. Supervised approach scheme.

Fig. 2. Unsupervised approach scheme.

Fig. 3. Instance selection in the supervised scheme.

• Some instances of the training set are similar to each other, and differ only in few features with slightly different values,
therefore, they do not provide additional information for building the classification model.

• Training data sets are composed of a large number of instances, which could number in the hundreds of thousands and even
more than a million instances. Calculating the degree of similarity or some equivalent metric between each pair of instances
requires a high time cost. Furthermore, many algorithms use up available resources, mainly RAM memory, when processing
data sets with these characteristics [4].

Based on the previous observations, this work presents an algorithm for selecting instances that allows to reduce data sets
from intrusion detection scenarios, with high efficiency and without significantly affecting the efficacy during the classification
stage. The proposed algorithm uses a combination of heuristics that include a label generation stage and a relabeling stage, which
allow to identify similar instances efficiently. Subsequently, similar instances are eliminated keeping only one representative. These
stages provide the proposed instance selection algorithm with high performance for processing large volumes of data where other
algorithms, of the same type, usually have poor performance.

The remainder of this paper is organized as follows. Related works are described in Section 2. The proposed algorithm is
introduced in Section 3. In Section 4, the experimental results using different intrusion detection data sets are discussed. Finally,
our conclusions and future work are outlined in Section 5.

2. Related work

A wide number of classification algorithms have been proposed for intrusion detection [5]. These techniques are based on two
specific approaches: supervised and unsupervised.

The supervised approach requires prior domain knowledge [6], i.e., a previously labeled data set is needed from which it is
possible to extract representative patterns of malicious activities (build a classification model) to classify new instances (see Fig. 1).

On the other hand, the unsupervised approach usually detects abnormal actions from established normal behavior [7]. Normal
behavior is modeled using an unlabeled training data set that reflects historical information (see Fig. 2). Once the normal behavior
has been defined, it can be compared to the current behavior. This allows to determine if there have been any significant changes
in the behavior that suggest an anomaly.

This work is focused on improving the performance of supervised classification algorithms by reducing the number of instances
in the training data set. As shown in Fig. 3, the instance selection process is performed using the original data set and the output
of this process (i.e., the reduced data set) is used by the classifier to build the classification model.

The volume and quality of the data set are two important aspects to guarantee a good performance in a classifier. However, the
time needed by a classifier to process a data set, composed of a large number of instances, can be affected, either at the training or
classification stage [8]. This problem is most noticeable when using instance-based classifiers.

In general, not all instances in the training set provide relevant information to the classification process. In other words, the data
set may contain unnecessary instances. There are two common types of unnecessary instances:
2
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• Noisy instances: These are instances that can cause misclassifications of new instances. One of the main causes of this type of
instance is the errors produced during the data collection process.

• Similar instances: These are instances whose descriptive features can be generalized by some other instances in the training
set, which makes them unnecessary. These types of instances are very common in intrusion detection scenarios, although they
also occur in data sets where instances of the same class are very similar.

Similar instances are usually caused by large volumes of data generated by telecommunications services. Suppose that, for an
ntrusion detection task, it is necessary to construct a classifier which allows to distinguish between attacks and normal instances. If
he training data set is composed of instances associated with a Distributed Denial of Service attack, there must be a large number
f instances that are very similar to each other, for example those originating from the same source [9]. These similar instances
rovide less information than other instances, that are generated by a different sources, but are also related to the DDoS attack,
aking them unnecessary for classifier training.

Suppose that a classifier is trained with 𝑛 instances from a data set of size 𝑚 > 𝑛, and that it can achieve the same efficacy as a
classifier trained on all 𝑚 instances. Then it would be more advantageous to train with the smaller data set, since it would provide
reater spatial and time efficiency to the classifier.

Assuming the circumstances described above, there is a need to select only those instances that preserve or degrade the quality
f the training set to a lesser extent.

The instance selection algorithms can be classified, according to their selection strategy, Filter [10] and Wrapper [11]. The Filter
algorithms select the subset of instances independently from some classifier. On the other hand, the Wrapper algorithms select the
subset of instances based on the results achieved by some classifier. In this approach, those instances that do not contribute to the
efficacy of the classifier are not included in the reduced data set.

The non-use of classifiers within the selection process makes the Filter algorithms more efficient than the Wrapper ones. This
means that the Filter algorithms perform better, in terms of execution time, than the Wrapper algorithms, since their selection
criteria are not based on the classifier. However, this characteristic means that the Wrapper algorithms obtain greater efficacy, in
terms of accuracy, than the Filter algorithms in classifiers for which they are designed. However, since the Filter algorithms are more
efficient than Wrapper ones, their application is feasible in real intrusion detection scenarios, where large volumes of data need to
be processed in the shortest possible time. Therefore, this research focuses on the Filter algorithms proposed to select instances in
intrusion detection scenarios.

The improved intrusion detection approach described in [12] consists of an algorithm based on the correlation coefficient
obtained between two instances. Considering the degree of statistical correlation between two variables, it is possible to obtain
values in the range [−1, 1]. The closer to 0 the value, the lower the relationship between the evaluated instances. If the value
obtained is close to −1 or 1, it indicates a negative or positive correlation respectively. A positive correlation is when the relationship
between two variables is linear and direct, so that a change in one of them predicts the change in the other. This type of correlation
is directly proportional. In the case of negative correlation (inversely proportional), the relationship between one variable and
another is opposite, that is, when one variable changes, the other changes towards the opposite. Therefore, when one variable has
high values, the other has low values, the more this value tends to −1, the more evident this covariation will be. This type of
correlation is inversely proportional. The authors suggest that if the correlation value obtained between two instances exceeds a
predefined threshold, these instances are largely statistically similar to each other, which is why it is possible to discard one of
them. In this sense, given two instances 𝑛1 = (𝑎̌1,𝑛1 , 𝑎̌2,𝑛1 ,… , 𝑎̌𝑙,𝑛1 ) and 𝑛2 = (𝑎̌1,𝑛2 , 𝑎̌2,𝑛2 ,… , 𝑎̌𝑙,𝑛2 ), its correlation coefficient 𝑟(𝑛1, 𝑛2) is
computed using Eq. (1), where the variable 𝑎̌𝑖,𝑛1 represents the value of the 𝑖th feature of instance 𝑛1, while 𝑎̄𝑛1 is the average of
the feature 𝑎 values in 𝑛1.

𝑟(𝑛1, 𝑛2) =
∑𝑙

𝑖=1(𝑎̌𝑖,𝑛1 − 𝑎̄𝑛1 )(𝑎̌𝑖,𝑛2 − 𝑎̄𝑛2 )
√

(𝑎̌𝑖,𝑛1 − 𝑎̄𝑛1 )
2
√

(𝑎̌𝑖,𝑛2 − 𝑎̄𝑛2 )
2
. (1)

A drawback of the [12] proposal relates to the fact that to calculate the correlation between two instances 𝑛1 and 𝑛2, the nominal
eatures of 𝑛1 must be equal to their corresponding ones at 𝑛2. This implies that two instances having all their values equal except
nominal value, may be statistically similar, while it is not possible to calculate its correlation coefficient to decide to get rid of

ne, or not.
Some instance selection algorithms rely on clustering. Their objective is to transform the training data set 𝐷 into clusters and

hen, to select the instances that define the centers of these clusters. The proposal introduced in [13] consists of an incremental
lustering-based algorithm. The first step is to partition 𝐷 into subsets 𝐷̌𝑐𝑗 , where each one will be composed by instances associated
ith a single class 𝑐𝑗 ∈ 𝐶, being 𝐶 the set of classes present in 𝐷.

The next step is to calculate the centroid 𝜁𝑐𝑗 of each subset 𝐷̌𝑐𝑗 and estimating the Euclidean distance 𝜀(𝜁𝑐𝑗 , 𝑛𝑖), such that 𝑛𝑖 ∈ 𝐷̌𝑐𝑗 ,
etween each centroid and its corresponding instances. The authors propose partitioning each subset again, but this time using a
ifferent criteria. For a subset 𝐷̌𝑐1 belonging to a class 𝑐1, the average 𝜀̄ of the distances calculated for each instance 𝑛𝑖 ∈ 𝐷̌𝑐1
s estimated concerning to its centroid 𝜁𝑐1 . Using the value of 𝜀̄, divide 𝐷̌𝑐1 into two subsets, one consisting of instances that meet
(𝜁𝑐1 , 𝑛𝑖) > 𝜀̄ and another composed of instances that meet 𝜀(𝜁𝑐1 , 𝑛𝑖) < 𝜀̄. This process is repeated for each subset until a predetermined
umber of subsets per class is obtained. The next step is to select a representative instance from each subset. To estimate the degree

̌ ̌
3

f representativeness 𝜌(𝑛𝑖, 𝐷𝑐𝑗 ) of an instance 𝑛𝑖 in a subset 𝐷𝑐𝑗 , the distance for each centroid of a class other than 𝑛𝑖 is computed,
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as well as the distance from the K -closest neighbors of 𝑛𝑖, which are added to the set 𝐷̌𝑛𝑖 (see Eq. (2)). The most representative
instance of each cluster is included in the reduced data set 𝐷̌.

𝜌(𝑛𝑖, 𝐷̌𝑐𝑗 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑∣𝐶 ∣
𝑙=1,𝐷̌𝑐𝑗 ≠𝐷̌𝑐𝑙

𝜀(𝜁𝑐𝑙 , 𝑛𝑖) 𝑆𝑖
∑∣𝐷̌𝑛𝑖 ∣

𝑙=1,𝑛𝑙∈𝐷̌𝑛𝑖
𝜀(𝑛𝑙 , 𝑛𝑖) = 0

∑∣𝐶 ∣
𝑙=1,𝐷̌𝑐𝑗 ≠𝐷̌𝑐𝑙

𝜀(𝜁𝑐𝑙 ,𝑛𝑖)

∑
∣𝐷̌𝑛𝑖 ∣

𝑙=1,𝑛𝑙∈𝐷̌𝑛𝑖
𝜀(𝑛𝑙 ,𝑛𝑖)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(2)

The algorithm presented in [14] also uses the Euclidean distance, but this time for calculating the closest K -neighbors of each
nstance 𝑛 ∈ 𝐷. After this step, for each instance 𝑛, its effectiveness 𝐸𝑛 is calculated using Eq. (3). The variable 𝐸̌𝑛 (reward) indicates
he number of closest neighbors that belongs to the same class to 𝑛, and 𝐸̂𝑛 (penalty) represents the number of closest neighbors

with a different class to 𝑛.

𝐸𝑛 = 𝐸̌𝑛 − 𝐸̂𝑛. (3)

Let 𝜇 be a predefined threshold. Those instances with 𝐸𝑛 ≥ 𝜇 are added to 𝐷𝑆𝐴𝐹𝐸 ; otherwise they are added to a 𝐷𝑇𝐸𝑀𝑃 .
Instances with 𝐸𝑛 < 0 probably introduce some noise, and therefore, they can be eliminated from both sets 𝐷𝑆𝐴𝐹𝐸 and 𝐷𝑇𝐸𝑀𝑃 .
If 𝐷𝑇𝐸𝑀𝑃 ≠ ∅ then the process is repeated for each instance 𝑛 ∈ 𝐷𝑇𝐸𝑀𝑃 . Once 𝐷𝑇𝐸𝑀𝑃 = ∅, then 𝐷𝑆𝐴𝐹𝐸 is partitioned into ∣ 𝐶 ∣,

ith 𝐶 being the set of possible classes in 𝐷𝑆𝐴𝐹𝐸 . The RNNR [15] algorithm is applied to each of the obtained partitions. For an
nstance 𝑛, the RNNR algorithm searches all instances for which 𝑛 is its closest neighbor. In this way, instances that can represent
ther instances of the same class are selected. Finally, all the selected instances of each partition are combined and the reduced set
̌ is obtained.

Another instance selection algorithm based on clustering approach is proposed in [10]. This algorithm consists of dividing the
ata set according to the number of classes. Then, the instances with the same class are grouped into several clusters following an
stablished criteria [10]. From each cluster 𝜍𝑖 obtained, a defined quantity 𝑚 of representative instances is selected. The process
f selecting a representative instance consists of three fundamental steps. The first step is to calculate the density of each instance
𝑗 ∈ 𝜍𝑖. The density of an instance is given by the number of neighbors it has with a distance less than a threshold. Then an
nstance is randomly selected from 𝜍𝑖 and added to the set of representative instances 𝐷̌. In the second step, for each instance
𝑗 ∈ 𝜍𝑖, the smallest distance between 𝑛𝑗 and the instances selected in 𝐷̌ is obtained. Finally, with the density and the minimum
istance obtained, for each instance a probability is estimated. The rest of representative instances are selected based on a weighted
robability distribution [10].

The Filter algorithms discussed above rely primarily on distance measures [10,13,14] and correlation measure [12] to perform
nstance selection. However, a distinctive aspect of the analyzed algorithms is that all of them look for similarities between the
nstances that compose the original training data set, and then select those instances that compose the reduced data set. Considering
he volume of data handled in intrusion detection scenarios, computing the similarity or some equivalent metric for each pair of
nstances in a data set is a very expensive and inefficient process. For this reason, instance selection algorithms tend to have a high
omputational cost when applied to intrusion detection tasks, since their computational complexity is directly associated with the
ize of the training set. This characteristic may lead to the fact that the use of these algorithms is not feasible in practice. The process
f reducing the data set can also result into quality improvement of the data, namely in cases where the removal of instances that
o not provide relevant information to the classifier.

Instance selection algorithms mostly present solutions that involve a complex analysis of the data to finally select a subset of
nstances that represent the original data set. If the aforementioned is taken into account, the presence of a large number of similar
nstances describing the same class is a typical problem in intrusion detection scenarios. Therefore, our goal is to deal with this
ssue.

. Proposal

The Fast Instance Reduction Algorithm (FIRA) proposed in this work consists of three fundamental stages: (1) label generation,
2) relabeling and (3) duplicated removing (see lines 1–3 of Algorithm 1).
Algorithm 1: FIRA(𝐷, 𝑘)

Entrada: 𝐷: Training data set, 𝑘: number of subsets
Salida: 𝐷̌: Reduced data set

𝐿 ← 𝐿𝑎𝑏𝑒𝑙_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝐷, 𝑘) // Labels are generated1
𝐷𝐿 ← 𝑅𝑒𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔(𝐷,𝐿) // Feature values are relabelled2
𝐷̌ ← 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑_𝑅𝑒𝑚𝑜𝑣𝑖𝑛𝑔(𝐷𝐿) // Duplicated instances are removed3

return 𝐷̌4

The main step of the label generation stage is the discretization of the continuous features. The discretization process tries to go
rom an uncountably infinite set 𝑎̌ (see Eq. (4)) to a countable finite set ä (see Eq. (5)).

𝑎̌ = {𝑥 ∣ 𝑥 ∈ [0, 1]}, ∣ 𝑎̌ ∣= ∞, (4)
4
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𝑎̈ = {𝑥𝑗 ∣ 𝑥𝑗 = 𝑗 △𝑥}, ∣ 𝑎̈ ∣= 𝑙, (5)

where ∣ 𝑎̌ ∣ represents the cardinality of the set 𝑎̌, △𝑥 = 1
𝑙 and 𝑗 = 1, 2,… , 𝑙.

This process allows to map continuous variables onto discrete values. Also, similar instances whose continuous features values
are slightly different are matched. More generally, two objectives are pursued with this algorithm, the first one is efficiency during
the reduction process, and the second one is no impairment of data quality in terms of significant reduction of the classifier efficacy.
Taking this into account, we proceeded to select a discretization method that conforms to these objectives.

There are two widely used approaches to carry out a discretization process: (1) supervised and (2) unsupervised. Supervised
methods make use of a finite set of classes to partition continuous features [16]. Otherwise, unsupervised methods do not take
class labels into account, which makes them more efficient than supervised ones [16]. It is valid to highlight that in intrusion
detection scenarios there are data sets composed by different type of attacks (classes). For example, the KDD’99 [17] data set,
which is considered a reference and widely used in intrusion detection tasks, has 23 different types of attacks. This can affect the
performance of supervised techniques. An experiment on how a supervised technique can be affected is shown in the next section.

There are some comparative works where the algorithm k-Means is used as an unsupervised discretization method [18]. In these
studies it is concluded that k-Means obtains more consistent and favorable results than the other unsupervised methods evaluated.

lso, k-Means preserves the original distribution of the feature, which makes the results similar to those obtained by the supervised
ethods.

Another aspect that favors the use of k-Means over other unsupervised methods is its efficiency. The time complexity of k-Means,
for all 𝑁 instances, is given by (𝑁 ∗ |𝐴| ∗ 𝑘 ∗ 𝑖), where |𝐴| represents the cardinality of the feature set, 𝑘 is the number of clusters
and 𝑖 is the number of iterations required for the algorithm to converge. This order of complexity allows k-Means to achieve superior
performance, in terms of efficiency, to other unsupervised methods [18]. Considering that efficiency is a fundamental aspect for the
proposed algorithm, k-Means was selected to generate the continuous feature labels. In this sense, given a value k, the algorithm
follows four main steps:

1. Divide the data set into 𝑘 nonempty subsets.
2. The centroid is computed for each subset.
3. Each element is assigned to the closest subset.
4. When no more assignments are possible, return to step 2. This is repeated until convergence is achieved.

To make this process faster, the Create_Labels_k-Means(𝑘) function, used to generate labels with k-Means, was executed in parallel
(see line 1 of Algorithm 2). The number of processes that are executed will be limited by the number of processors available on
the computer used. Applying data parallelism, it was defined that each processor was going to perform the discretization process
on different features. With the processes running, the set of values 𝑎̌𝑖,𝐷 is added to the task queue, which takes the 𝑖th feature 𝑎𝑖 of
continuous type, such that 𝑎𝑖 ∈ 𝐴, where 𝐴 represents the set of features that make up 𝐷 (see lines 2–6 of Algorithm 2). Starting
from the set of values 𝑎̌𝑖,𝐷 that 𝑎𝑖 can take, a restriction is added for the value of 𝑘 (see Eq. (6)).

Algorithm 2: Label_Generator(𝐷, 𝑘)
Entrada: 𝐷: Training data set, 𝑘: number of subsets
Salida: 𝑇𝐿: Label dictionary

multiprocessing.Init(Create_Labels_k-Means(k),taskQueue,cpu.Count)1
foreach 𝑖 in range(1,|𝐴| + 1) do2

if 𝑎𝑖.type == continuous then3
multiprocessing.workQueue.put(𝑎̌𝑖,𝐷, 𝑇𝐿[𝑎𝑖])4

end5

end6
multiprocessing.Wait.taskQueue.empty()7
multiprocessing.Wait.all_Processes.stop()8

return 𝑇𝐿9

𝑘 =
{

|𝑎̌𝑖,𝐷| 𝑖𝑓 |𝑎̌𝑖,𝐷| < 𝑘
𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(6)

Once the labels for 𝑎̌𝑖,𝐷 are generated, they are saved in the dictionary 𝑇𝐿 using the feature 𝑎𝑖 as a key. Every time a processor
ends up with a set of values 𝑎̌𝑖,𝐷 it starts with the next one in the queue (see Fig. 4).

After processing the features in 𝐴, the proposed algorithm waits for all the tasks added to the queue to be solved (see line 7
of Algorithm 2). When the task queue is empty, it is verified that no process is executing any task (see line of 8 Algorithm 2). In
the case that a process is busy, the algorithm waits for it to finish and then stops. Finally, on line 9 the Algorithm 2 returns the 𝑇𝐿
dictionary that contains the labels associated with the value ranges of each continuous feature.
5
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Fig. 4. Data parallelism used in FIRA.

The next stage that takes place in FIRA is relabeling, which consists of replacing the values of the continuous features with their
corresponding labels (see line of 2 Algorithm 1). For this, the label dictionary 𝑇𝐿 obtained in the previous stage and the data set 𝐷
are used. The direct mapping of a continuous value 𝑣𝑗 with its corresponding label 𝑥 is given by Eq. (7), where 𝜎(𝑎̌𝑖,𝐷)𝑥 is the 𝑥th
set of value ranges computed by 𝑘-Means for 𝑎̌𝑖,𝐷. The result is a relabeled data set 𝐷𝐿 that contains the same instances as 𝐷 except
that instead of the continuous values, there are their corresponding labels.

𝜔(𝑣𝑗 ) = 𝑥 ∣ 𝑣𝑗 ∈ 𝜎(𝑎̌𝑖,𝐷)𝑥. (7)

Finally, the instance reduction is performed on the relabeled data set 𝐷𝐿 (see line of 3 Algorithm 1). The duplicated removing
stage, as the name suggests, consists of eliminating the duplicate instances of 𝐷𝐿. An instance is considered duplicate if there is at
least one other instance with the same class and feature values. In this way, those instances that were similar and became the same
after the relabeling process will be represented by a single instance. As shown in the Algorithm 3, to eliminate duplicate instances,
an iteration over 𝐷𝐿 is performed, where each instance 𝑛, such that 𝑛 ∈ 𝐷𝐿, is searched in the data dictionary 𝑇𝐷 (see lines 1–5
of Algorithm 3). If 𝑛 is not found, it is inserted as a key in 𝑇𝐷 (see line 3 of Algorithm 3). After iterate over 𝐷𝐿, the instances that
make up the keys of 𝑇𝐷 are assigned to the reduced data set 𝐷̌ (see line 6 of Algorithm 3). The final result of FIRA is a reduced
training set 𝐷̌ ready to be used by a classifier to build the classification model (see line 4 of Algorithm 1).

Algorithm 3: Duplicated_Removing(𝐷𝐿)
Entrada: 𝐷𝐿: Relabelled data set
Salida: 𝐷̌: Reduced data set

foreach 𝑛 in 𝐷𝐿 do1
if not 𝑇𝐷.ℎ𝑎𝑠_𝑘𝑒𝑦(𝑛) then2

𝑇𝐷.𝑛𝑒𝑤_𝑘𝑒𝑦(𝑛)3
end4

end5
𝐷̌ ← 𝑇𝐷.𝑘𝑒𝑦𝑠()6

return 𝐷̌7

Fig. 5 shows the FIRA workflow diagram. First, multiple Label_Generator processes run in parallel, one process for each available
CPU core. The Label_Generator process includes the 𝑘-Means algorithm as part of the strategy to group the closest continuous values
and associate them with a single label. The result of this process is a dictionary of labels 𝐿, which is used in the relabeling stage
to replace continuous values with their corresponding labels. Finally, the removal of duplicate instances is performed obtaining the
reduced data set 𝐷̌.

The novelty of this work lies mainly in the heuristic used that involves a sequence of processes to achieve a higher performance
than that reported by other algorithms in the literature. The label generation, the relabeling process and subsequently removing
duplicate instances allow to identify and remove similar instances without the need to calculate a similarity measure between each
pair of instances in the data set. This characteristic offers efficiency, in terms of execution time, higher than that achieved by other
algorithms reported in literature, without significantly affecting the efficacy, in terms of accuracy, of the classifiers. The following
section shows the experimental results that validate this claims.

4. Experiments and results

To evaluate the performance of the algorithm introduced in this work, a computer equipped with a 3.2 GHz Intel Quad-Core
processor and 8 Gb of RAM memory was used. The experiments were carried out on two data sets: KDD’99 and CDMC 2013.
6
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Fig. 5. FIRA workflow diagram.

KDD’99 [17] is considered a reference data set and has been used extensively for the evaluation of intrusion detection
proposals [19]. This data set contains a wide variety of simulated intrusions on a military network. The training data set has 22
different types of intrusions, plus the ‘‘normal’’ class. The test data set contains 37 intrusion types, plus the ‘‘normal’’ class. All these
intrusions are associated with 4 categories: (1) Probe, (2) DoS, (3) U2R and (4) R2L.

As in the reviewed works, all instances in these experiments are classified into two types: ‘‘attack’’ and ‘‘normal’’. The training
set contains is 494021 instances, while the test set contains 311029. Each instance is made up of 41 features, 9 of which are discrete
and 32 are continuous.

A statistical analysis of the KDD’99 data set carried out in [20], revealed some drawbacks that affect the performance of several
intrusion detection systems. This fact led to propose a new data set called NSL-KDD [20], which consists of selected records of the
complete KDD’99 data set. The full NSL-KDD training collection with 125973 instances and the full NSL-KDD testing collection with
22544 instances were used in our experiments. Like KDD’99, the NSL-KDD data set contains 41 features out of which 9 are discrete
and 32 are continuous. Also, all the instances were classified into two types, ‘‘normal’’ and ‘‘anomaly’’.

In the case of CDMC 2013 [21], it is a data set created from a real intrusion detection system. Without loss of generality, CDMC
2013 was divided into a training set with 40000 instances and a test set with 37959 instances. Each instance is made up of 7 numeric
features, in addition to the feature that defines the class.

KNN and SVM classifiers have been widely used in intrusion detection tasks, reporting good results in terms of efficacy [22].
In addition, KNN have been found to be an efficient technique, during training stage, and useful for intrusion identification due to
better generalization ability in complex domains. However, the efficiency of the KNN classification process is often affected when
the classification model is built from large volumes of data [23]. On the other hand, the complexity of the time taken to train a
classifier is also a major concern, because many supervised learning algorithms, such as SVM, require very expensive calculations
in the presence of large data sets [23]. Taking into account that the complexity of both classifiers is dependent on the volume of
data used during training, it was decided to choose both classifiers to evaluate the quality of the reduced data sets.

The efficacy of the classifiers is estimated with the accuracy (𝐴𝑐𝑐) measure defined in Eq. (8), where 𝑇 +, 𝑇 −, 𝐹+ and 𝐹− represent
true positives, true negatives, false positives, and false negatives, respectively.

𝐴𝑐𝑐 = 𝑇 + + 𝑇 −

𝑇 + + 𝑇 − + 𝐹+ + 𝐹− ∗ 100. (8)

The first experiment aims to show how the use of a discretization technique different from the one conceived in the proposed
algorithm can influence the performance of FIRA. For this, k-Means was replaced by the Minimum Description Length (MDL) [24],
which is a supervised discretization technique widely used in intrusion detection scenarios [16]. The MDL-based discretization
technique does not require a 𝑘 value to be defined. In the case of using k-Means, it is possible to define such value, and thus, adjust
the size of the data set to be obtained; the smaller the value of 𝑘, the more the data set is reduced, and vice versa. Given the above,
k-Means was evaluated for different values of 𝑘. These values were chosen with the purpose of obtaining a reduced data set of a
size similar to that obtained with MDL. This allowed to make the following comparisons.

For the KDD’99 data set, the average number of labels generated by FIRA using the MDL-based discretization technique is 10.
By using this number with k-Means, the proposed FIRA (𝑘 = 10) algorithm obtains a smaller data set compared to the previous one,
7
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Table 1
Efficacy achieved on the KDD’99 data set using FIRA
with different discretization techniques.

Algorithm SVM KNN Instances

FIRA (MDL) 88.14 88.09 40262
FIRA (𝑘 = 10) 87.28 87.37 24132
FIRA (𝑘 = 14) 88.20 88.17 38431

Table 2
Efficacy achieved on the NSL-KDD data set using FIRA
with different discretization techniques.

Algorithm SVM KNN Instances

FIRA (MDL) 70.94 74.68 8415
FIRA (𝑘 = 11) 70.12 74.07 7334
FIRA (𝑘 = 14) 71.23 74.79 8221

Table 3
Efficacy achieved on the CDMC 2013 data set using FIRA
with different discretization techniques.

Algorithm SVM KNN Instances

FIRA (MDL) 94.90 95.01 1207
FIRA (𝑘 = 18) 94.72 94.83 821
FIRA (𝑘 = 20) 95.05 95.12 1071

with approximately 50 % fewer instances (see Table 1). This fact leads to classifiers obtaining less efficacy using FIRA with k-Means.
owever, using the FIRA (𝑘 = 14) algorithm, the reduced data set is almost similar in size to that obtained with MDL, although

lightly smaller. Under these conditions, the classifiers achieved their best efficacy.
The MDL discretization technique generates 11 labels for the NSL-KDD data set (see Table 2). When using FIRA with k-Means

𝑘 = 11), a behavior similar to that observed in the previous comparison is appreciable. That is, FIRA with k-Means (𝑘 = 11) obtains
smaller data set than using MDL (approximately 1000 fewer instances), which negatively affects the efficacy of the classifiers. By

ncreasing the value of 𝑘 to 14, the number of instances in the reduced set approaches, but does not exceed, the number obtained
ith the MDL technique. However, the efficacy reported by the classifiers using the data set reduced by FIRA with k-Means (𝑘 = 14)
xceeds that obtained by FIRA with MDL.

For CDMC 2013 data set (see Table 3), the average number of labels generated using MDL-based discretization technique is
8. In this case, a comparison similar to the previous one can be established, obtaining the best results using FIRA with k-Means
𝑘 = 20).

As could be observed in the previous experiments, using k-Means (𝑘 = 20) it is possible to obtain a smaller data set than using
DL. Even under these circumstances, the reduced data set with k-Means provides greater efficacy to the classifiers. The selected

alue of 𝑘 could be larger, but this would imply a greater number of instances in the reduced data set, which would result into less
fficiency. Therefore, for each data set, different maximum values of 𝑘 were defined for k-Means, which allowed to obtain a data
et smaller than the obtained by MDL, and still provide greater efficacy to the classifiers.

Taking into account that the KDD’99 data set can be used for a multiclass classification problem, the following experiment was
erformed by only using this data set. The experiment consists of evaluating the efficiency of both discretization techniques in binary
lassification and multiclass classification problems. For this, three different configurations of KDD’99 were used, according to the
umber of classes:

1. KDD’99 with 2 classes (Normal and Attack).
2. KDD’99 with 5 classes (Normal, Probe, DoS, U2R and R2L).
3. KDD’99 with 23 classes (Normal and 22 different types of attack).

As shown in Fig. 6, when processing the KDD’99 data set with a low number of classes (2 and 5 classes), the MDL discretization
echnique shows better execution time than k-Means. However, the k-Means input parameters have an influence on its performance.
or example, the parameter for the number of iterations was the default one, which is 200 iterations. If this value is reduced, the
xecution time of k-Means is also reduced, but more experimental work would be needed to define an optimal value of iterations that
o not subsequently compromise the quality of the generated clusters. On the other hand, when the KDD’99 data set is processed as
more complex multiclass classification problem (23 different classes), more in line with a real-world scenario, it can be observed
ow the performance of MDL is affected: here k-Means shows a linear behavior that does not affect its execution time. This shows
ow a supervised discretization technique can affect its efficiency when processing data sets with a high number of classes.

Taking into account that FIRA using k-Means provides a better efficacy to classifiers than using MDL, even with a smaller data
et, and that k-Means shows higher efficiency than MDL in data sets with a high number of classes, it is feasible to use k-Means as
discretization technique in the proposed algorithm.
8
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Fig. 6. Runtime reached by FIRA with different discretization techniques over KDD’99 data set.

In the following experiments the performance of FIRA is evaluated and compared regarding to the results achieved by the instance
selection algorithms proposed in [10,12–14] that were analyzed in Section 2.

Before evaluating the efficiency of the proposed algorithm, its time complexity was estimated. FIRA consists of three fundamental
steps. The first step consists of the generation of labels (𝑓1), where the k-Means algorithm is used. As described in the previous
section, the time complexity of k-Means, for all 𝑁 instances, is (𝑁 ∗ |𝐴| ∗ 𝑘 ∗ 𝑖) [25]. Considering that k-Means is used to
discretize the values of continuous features, in the worst case, its time complexity is given by (|𝐴𝐷| ∗ 𝑘 ∗ 𝑖), where |𝐴𝐷| is the
cardinality of the feature set with more different values in 𝐷. In the relabeling stage (𝑓2) each instance is traversed, replacing the
feature values with their corresponding labels, by performing a logarithmic search in a dictionary. Assuming that each feature takes
the maximum possible values, in the worst case, its complexity is given by (𝑁 ∗ log |𝐴𝐷|). Duplicated removing (𝑓3) is the most
expensive of the three stages. The process consists of iterating through each instance and checking if it has already been added
to a hash table. In general, this search has a complexity of (1), but in the worst case, it can reach the time complexity of (𝑁).
Therefore, in the worst case, the order of time complexity is (𝑁2). Considering the previous analysis, the time complexity of each
step would be defined as follows: 𝑓1 ∈ (|𝐴𝐷| ∗ 𝑘 ∗ 𝑖), 𝑓2 ∈ (𝑁 ∗ log |𝐴𝐷|) and 𝑓3 ∈ (𝑁2). As shown in Eq. (9), when applying
the sum rule, the complexity that defines the FIRA algorithm is (𝑁2).

𝑓1 + 𝑓2 + 𝑓3 ∈ (𝑚𝑎𝑥(|𝐴𝐷| ∗ 𝑘 ∗ 𝑖,𝑁 ∗ log |𝐴𝐷|, 𝑁
2)) = (𝑁2). (9)

The computational complexity of the compared algorithms were not given in the reviewed papers. However, by analyzing the
pseudocode and the explanations given by the authors it was possible to infer the time complexity of the proposals. The algorithms
proposed in [10,12–14], in the worst case, have the same time complexity as FIRA ((𝑁2)), however the execution times are
different.

Fig. 7 shows the execution time (in seconds) taken by each algorithm to process different volumes of the KDD’99 data set,
represented by the number of instances. Note that FIRA was executed for different values of 𝑘. As explained above, these values
were chosen with the purpose of obtaining reduced data sets of similar size to those obtained by the analyzed algorithms. In practice,
it is possible to rely on measures that allow obtaining an optimal value of k, that is, a value of k that minimizes the intra-cluster
distance while maximizing the inter-cluster distance. The use of the Silhouette coefficient is usually common for these cases [26].
However, if you want to directly influence the size of the data set, you can define the value of k manually.

As can be seen in Fig. 7, the FIRA execution time and the value of 𝑘 are directly proportional. This is because 𝑘 defines the
maximum number of labels that are generated for each feature. With more labels, there will be fewer duplicate instances. Therefore,
the fewer duplicate instances there are in the relabeled data set, the greater the execution time of the duplicated removing stage,
since a greater number of instances are added to the hash table. However, the FIRA execution time for any of the 𝑘 values used is
considerably less than in the [10,13,14] proposals.

In the case of the [12] proposal, it is fair to compare it with the execution time reported by the FIRA algorithm for 𝑘 = 4, since
with this value FIRA obtains a reduced data set of similar size to the one obtained by [12]. In this sense, FIRA is up to five times
faster than the [12] algorithm. In general, it can be observed that regardless of the value defined for 𝑘, FIRA proved to be more
efficient than the other proposals evaluated. Furthermore, it can be seen that FIRA scales linearly with respect to 𝑘.

Although the time complexity of FIRA and some reported algorithms is the same, FIRA achieves the best results in terms of
9
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Fig. 7. Runtimes when processing different volumes of KDD’99.

Table 4
Efficacy achieved on the KDD’99 data set.

Algorithm Classifier 𝐴𝑐𝑐 Instances

Original

KNN

92.81 494021
[12] 84.87 2768
[13] 88.91 61758
[14] 88.03 48854
[10] 88.97 61202
FIRA (𝑘 = 4) 85.04 2621
FIRA (𝑘 = 10) 87.37 24132
FIRA (𝑘 = 15) 88.21 41736
FIRA (𝑘 = 20) 89.17 60375

Original

SVM

92.30 494021
[12] 84.23 2768
[13] 88.97 61758
[14] 88.12 48854
[10] 89.02 61202
FIRA (𝑘 = 4) 84.85 2621
FIRA (𝑘 = 10) 87.28 24132
FIRA (𝑘 = 15) 88.25 41736
FIRA (𝑘 = 20) 89.05 60375

with many duplicate instances. This requires a number of instances less than 𝑁 to be stored in the hash table, which prevents a
time complexity of order 𝑁2 (worst case) being reached at this stage.

Once the data had been reduced, an experiment focused on evaluating the quality of the new data set was performed. For this,
the KNN and SVM classifiers were trained with the data sets obtained by each instance selection algorithm, as well as with the
original data set. Once the classification models for each data set were built, they were evaluated with their respective test data
sets. The results achieved, in terms of efficacy, are discussed below.

In Table 4 it can be seen how FIRA, with 𝑘 = 20, reduces the data set to a greater extent than the proposals of [10,13], and
still provides greater efficacy than both proposals in the classifiers. On the other hand, using FIRA with 𝑘 = 15, the reduction of the
data set is greater than that of [14] algorithm; however, the efficacy achieved by the classifiers trained with the data set reduced
by FIRA (𝑘 = 15) exceeds the reported efficacy using the data set reduced by the [14] proposal. A similar comparison can be done
for FIRA (𝑘 = 4) and the [12] proposal.

Note, that the number of instances shown by each algorithm in Table 4 is the same for both classifiers (KNN and SVM). This is
because each algorithm reduces the data set only once and the reduced data set is evaluated in each classifier separately, obtaining
different results.

The results achieved on the NSL-KDD and CDMC 2013 data sets are shown in Tables 5 and 6 respectively, where similar results
to those discussed above can be seen.

In the Tables 4–6, it can be observed how efficacy improves as the value of 𝑘 gets larger. This improvement is due to the fact that
when 𝑘 increases, more labels are created for each continuous feature, which causes that, after the relabeling process, the number
10
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Table 5
Efficacy achieved on the NSL-KDD data set.

Algorithm Classifier 𝐴𝑐𝑐 Instances

Original

KNN

79.36 125973
[12] 73.81 7303
[13] 75.90 11417
[14] 74.89 8610
[10] 75.99 11692
FIRA (𝑘 = 4) 65.73 2006
FIRA (𝑘 = 10) 73.88 7113
FIRA (𝑘 = 15) 74.92 8515
FIRA (𝑘 = 20) 76.02 11046

Original

SVM

75.39 125973
[12] 69.87 7303
[13] 72.80 11417
[14] 71.60 8610
[10] 72.86 11692
FIRA (𝑘 = 4) 60.61 2006
FIRA (𝑘 = 10) 69.91 7113
FIRA (𝑘 = 15) 71.67 8515
FIRA (𝑘 = 20) 72.95 11046

Table 6
Efficacy achieved on the CDMC 2013 data set.

Algorithm Classifier 𝐴𝑐𝑐 Instances

Original

KNN

96.57 40000
[12] 88.17 153
[13] 95.01 1259
[14] 94.47 813
[10] 95.10 1300
FIRA (𝑘 = 4) 88.46 129
FIRA (𝑘 = 10) 92.48 387
FIRA (𝑘 = 15) 94.78 679
FIRA (𝑘 = 20) 95.12 1071

Original

SVM

96.42 40000
[12] 87.94 153
[13] 94.82 1259
[14] 94.29 813
[10] 95.01 1300
FIRA (𝑘 = 4) 88.22 129
FIRA (𝑘 = 10) 92.41 387
FIRA (𝑘 = 15) 94.61 679
FIRA (𝑘 = 20) 95.05 1071

of duplicate instances decreases. As there are fewer duplicates, the original data set is reduced to a lesser extent, conserving more
relevant information which is used by the classifier to achieve better efficacy.

Fig. 8 shows the time taken by KNN to build the classification model on different data sets. As can be seen in Fig. 8(a), the
ime taken to build the classification model is reduced by more than half when FIRA is used on the KDD’99 data. However, the
mprovement in terms of time is practically imperceptible, since the KNN training stage is very fast, being able to process half a
illion instances in less than a second. A similar situation can be seen in Figs. 8(b) and 8(c), where the difference in time is even
ore imperceptible, since NSL-KDD and CDMC 2013 data sets are smaller than KDD’99.

In case of SVM, there is a considerable improvement over the original KDD’99 data set (see Fig. 9(a)). FIRA is able to reduce the
ime taken by SVM to build the classification model with the original data set by more than 82 %. In Fig. 9(a), it can be observed
hat the time consumed by SVM using the [10,13] proposals is similar to that reported using FIRA (𝑘 = 20), only with the latter is
5 s faster. Furthermore, if the execution time of FIRA (𝑘 = 20) and its efficacy are taken into account, it would be more feasible
o use such an algorithm, instead of the [13] or [10] proposals. A similar comparison can be done with FIRA (𝑘 = 15) and the
lgorithm proposed by [14], only in this case the difference in time is more visible, thus the SVM classifier is 196 s faster with the
ata set reduced by FIRA (𝑘 = 15). With the [12] algorithm, SVM reports practically the same time as using FIRA (𝑘 = 4). However,
he results reported in terms of efficacy and size of the reduced data set presented in Table 4 make the use of FIRA (𝑘 = 4) more
easible. The same behavior described for KDD’99 data set is observed in Fig. 9(b) when processing the NSL-KDD data set. On the
DMC 2013 data set, the improvement in time is not perceptible (see Fig. 9(c)). This is due to the fact that the data size is very
mall, so the classifier can process it immediately.

To find out if the achieved results by the evaluated classifiers are significantly different, in terms of efficacy, a statistical test was
11
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Fig. 8. Time taken by the KNN classifier to build its classification model using different data sets.

Fig. 9. Time taken by the SVM classifier to build its classification model using different data sets.

test was applied [27]. Subsequently, to determine which proposals show a statistically similar behavior, the Bergmann–Hommel

post-hoc procedure was performed [28].
12
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Fig. 10. Critical difference diagram with a statistical comparison of the efficacy achieved by the classifiers using different algorithms for instances selection.

The statistical results are presented in a critical difference diagram (see Fig. 10). The critical difference diagram shows in a
compact way the order of the classifiers based on the ranking obtained by the Friedman test, the magnitude of the differences
between them, and the significance of these differences. The position of the classifiers in the segment represents their value in the
ranking, with the classifier furthest to the right being the one with the best result. If two or more classifiers share a thick line it
indicates that they show statistically similar behavior.

As seen in Fig. 10, when the classifiers use the original data set, they obtain the best results. When low values for 𝑘 are used in
FIRA, the data set is reduced to a greater extent, which implies a greater loss of information that leads to a significant impact on
efficacy. However, it can be seen that there are no statistically significant differences between the achieved results by the classifiers
with the original data set and with the data set reduced by FIRA using a value of 𝑘 = 20 and 𝑘 = 15.

The previous result shows that using FIRA, it is possible to considerably reduce the original data set, achieving better efficacy
and efficiency than other reported proposals, without significantly affecting the efficacy regarding to that obtained with the original
data set.

5. Conclusions

Based on observations performed on collected data from intrusion detection scenarios, it was possible to propose an algorithm
to efficiently reduce the data set, without significantly affecting the efficacy during the classification process.

The instance selection algorithm proposed in this work achieves satisfactory results, even in large-volume data sets, where other
proposals are affected, in terms of efficiency. This is due to an effective combination of heuristics that guarantee the consistency
of the algorithm. Using 𝑘-Means to group the values of continuous features without affecting their original distribution, allows to
efficiently identify instances that are somewhat similar. In this way, the similar instances after the relabeling process become the
same, which facilitates the reduction process since with the elimination of duplicate instances it is possible to quickly reduce the
data set.

Implementing instance reduction strategies that ensure acceptable performance in these scenarios is often costly in terms of time
and resources. Taking into account that FIRA showed good performance on a standard PC and also achieved superior results than
other proposed algorithms, in terms of efficacy and efficiency, it is concluded that its use in real scenarios is feasible, where it can
provide a considerable improvement in the performance of intrusion detection systems.

However, as shown in the experiments, increasing the volume of data negatively affects the efficiency of all the algorithms
evaluated, including FIRA. We intend to address this scalability problem in future work with the extension of FIRA to a distributed
environment that allows an efficient handling of large-scale data processing (Big Data).
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