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Abstract—Many of the proposed machine learning (ML) based
network intrusion detection systems (NIDSs) achieve near
perfect detection performance when evaluated on synthetic
benchmark datasets. Though, there is no record of if and
how these results generalise to other network scenarios, in
particular to real-world networks. In this paper, we investigate
the generalisability property of ML-based NIDSs by extensively
evaluating seven supervised and unsupervised learning models
on four recently published benchmark NIDS datasets. Our
investigation indicates that none of the considered models is
able to generalise over all studied datasets. Interestingly, our
results also indicate that the generalisability has a high degree
of asymmetry, i.e., swapping the source and target domains
can significantly change the classification performance. Our
investigation also indicates that overall, unsupervised learning
methods generalise better than supervised learning models in
our considered scenarios. Using SHAP values to explain these
results indicates that the lack of generalisability is mainly due
to the presence of strong correspondence between the values of
one or more features and Attack/Benign classes in one dataset-
model combination and its absence in other datasets that have
different feature distributions.

1. Introduction

A quick search of the academic literature in network
intrusion detection systems (NIDSs) reveals that there are
hundreds of proposals based on machine learning (ML)
algorithms. In most of these proposals, the performance
is evaluated using a publicly available benchmark NIDS
dataset such as UNSW [1], CIC-IDS [2], and KDD99 [3].
For this purpose, like in other fields that use machine
learning, the benchmark dataset is divided into the training
and test subsets, the ML models are trained on the training
subset and evaluated on the test subset. In some of these
studies, such as [4] and [5], multiple benchmark dataset
are used in this way. That is, the ML model is trained and
tested on each benchmark dataset separately.

While the accuracy, detection rate and other performance
metrics reported in many of these studies are near perfect,
and the studies are designed and performed rigorously, these
excellent results have unfortunately not translated into ML-

based NIDSs in practical network deployments with close
to 100% detection performance.

We believe that an investigation into the generalisability
properties of ML-based NIDSs is an important, but so far
under-investigated step towards bridging the gap between
the excellent results achieved by the academic research com-
munity, and the practical impact of the research. In particu-
lar, we assume that the setup/environment in which bench-
mark NIDS datasets are created/collected varies among the
different available benchmark datasets, and most likely also
varies significantly from the characteristics of potential real-
world deployment networks.

Applying machine learning for detecting unseen datasets
and unseen classes of the same datasets has been explored in
many previous works. This includes studies that investigate
zero-day/unseen attack detection such as [6] and [7] or
studies that examine domain adaptation and transfer learning
in the field of ML-based NIDSs such as [8] and [9]. Though,
none of these works specifically investigates the general-
isability in ML-based NIDSs. Perhaps the only previous
works that partially/indirectly investigate the generalisability
of ML-based NIDSs are [10] and [11] in which the cross-
evaluation of ML-based NIDSs has been explored. Apart
from these studies that have been discussed in the related
works of this paper, we have not been able to find other
works considering the generalisability of these NIDSs.

Our work aims to address this gap by taking advantage
of four recently published NIDS benchmark datasets [12],
which have been converted from their original format into
a common NetFlow-based format, with an identical feature
set. We evaluate the generalisability in both directions across
different datasets, i.e., each dataset is used as the training
and test dataset, against all other datasets. In addition, we
evaluate the generalisability of both supervised as well as
unsupervised learning models.

Then we compare the results of single domain evalua-
tion, in which the same benchmark dataset is used for both
training and evaluation, with the results of generalisability
evaluation in which a trained model is evaluated against the
other three benchmark datasets. Finally, we apply the Shap-
ley values [13] on data and models in different scenarios
and explain the generalisability by comparing the Shapley
values for different experiments.
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2. Related Works

While there is no previous work systematically eval-
uating the generalisability of ML-based NIDSs, there are
two previous studies that partially investigate evaluation of
ML-based NIDSs via datasets unseen during training which
include [10] and [11].

In [10] it is shown that the near perfect performance of
simple supervised ML models on the dataset used for their
training considerably drops when evaluated on other, un-
seen benchmark datasets. This study uses the Kyoto+ [14],
gureKDD [15] and NSL-KDD [16] NIDS datasets which are
published in 2006, 2008 and 2009 respectively. However, the
Kyoto+ dataset is not included in the evaluation of unseen
datasets, due to the difference in the feature set with other
datasets. While this study discusses cross evaluation of ML-
based NIDSs, it does not investigate the factors for the
poor performance on the ML-models on unseen benchmark
datasets. In addition, the results presented in [10] are based
on only two old benchmark datasets, which makes it hard
to draw conclusions about the generalisability of ML-based
NIDSs more broadly. Furthermore, the study only includes
the supervised learning models and does not include an
evaluation of unsupervised learning models.

The [11] is the other work in which the cross evaluation
of ML-based NIDSs is discussed. The main focus of this
study is proposing a framework for cross evaluation of
ML-based NIDSs by creating various combinations of the
Benign and Attack classes of one or more datasets for the
training and evaluation. The proposed framework consists
of 10 different combinations in which combination num-
ber 4 considers generalisation capabilities. In this scenario
while the Benign class of the same dataset is used for the
model training and evaluation, the attack classes of different
datasets are used for the training and evaluation. Then they
provide the results for this generalisation evaluation, and
show that there is a significant performance drop in detecting
various attacks. The study uses the same 4 datasets used
in our study for the uniform scenarios but provides the
detection ratios for the Botnet, DoS and Other (all the other
classes) separately. While this is the closest study to what
we are doing in this paper, using the Benign class of the
same dataset in the training and evaluation makes it different
from our work that evaluates generalisability over a full new
dataset.

Although the two above works partially study the gener-
alisability of ML-based NIDSs, their main focus is a differ-
ent subject. As such, they do not investigate different aspects
of generalisability such as the effect of swapping the source
and target datasets. More importantly, since generalisability
is not the main focus of these works, they do not investigate
the reason behind lack or existence of the generalisability
between two datasets. In addition, the fact that [11] uses
the Benign class of the same dataset for the training and
evaluation, and the importance of the Benign traffic in ML-
based NIDSs as shown in [17], makes their investigations
completely different from the objective of our study.

3. Datasets

Table 1 shows the summary information of the four
datasets used in this study, all in NetFlow (NF) format.
These datasets, which include NFv2-UNSW-NB15, NFv2-
CIC-2018, NFv2-ToN-IoT and NFv2-BoT-IoT [12], are con-
verted from their original formats published as UNSW-
NB15 [1], CIC-2018 [2], ToN-IoT [18] and BoT-IoT [19]
respectively. The first version of the NetFlow format datasets
(NFv1) with 20 features has been published in [4], and the
second version, that is used in this work and includes 43
features, is discussed in [12]. The procedure for converting
the original format into NetFlow and the labelling of the
converted flows are also explained in [12].

The three original datasets UNSW-NB15, ToN-IoT and
BoT-IoT are published by same research group. Since the
network setup used for the traffic generation for each dataset
is very different, they represent different network environ-
ments and represent a valid basis for the evaluation of
the generalisability of NIDSs. This is also the case for
CIC-2018, the fourth considered dataset, which has been
generated by a different research group in a completely
different network setup.

TABLE 1: Summary information of classes in the NetFlow
datasets studied in this paper

Dataset Records (#) Class Class (#) Class (%)

NFv2-BoT-IoT 37,763,497

Benign 135,037 0.36
DDoS 18,331,847 48.54
DoS 16,673,183 44.15

Reconnaissance 2,620,999 6.94
Theft 2,431 0.01

NFv2-CIC-2018 18,893,708

Benign 16,635,567 88.05
DDOS-HOIC 1,080,858 5.72

DoS-Hulk 432,648 2.29
DDoS-LOIC-HTTP 307,300 1.63

Bot 143,097 0.76
Infilteration 116,361 0.62

SSH-Bruteforce 94,979 0.50
DoS-GoldenEye 27,723 0.15
FTP-BruteForce 25,933 0.14

DoS-SlowHTTPTest 14,116 0.08
DoS-Slowloris 9,512 0.05

Brute Force-Web 2,143 0.01
DDOS-LOIC-UDP 2,112 0.01
Brute Force-XSS 927 0.01

SQL Injection 432 0.01

NFv2-ToN-IoT 16,940,496

Benign 6,099,469 36.01
scanning 3,781,419 22.32

xss 2,455,020 14.49
ddos 2,026,234 11.96

password 1,153,323 6.81
dos 712,609 4.21

injection 684,465 4.04
backdoor 16,809 0.1

mitm 7,723 0.05
ransomware 3,425 0.02

NFv2-UNSW-NB15 2,390,275

Benign 2,295,222 96.02
Exploits 31,551 1.32
Fuzzers 22,310 0.93
Generic 16,560 0.69

Reconnaissance 12,779 0.53
DoS 5,794 0.24

Analysis 2,299 0.10
Backdoor 2,169 0.09
Shellcode 1,427 0.06

Worms 164 0.01
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Since the sizes of these datasets are different, e.g. NFv2-
UNSW-NB15 has 2,390,275 flows and the BoT-IoT dataset
has 37,763,497 flows, we used a stratified (with regards to
classes) sampling strategy with a size of 1,000,000 flows
and we ran all the experiments on the sampled datasets.

As can be seen, all these datasets come with a Benign
class and various numbers of different attack classes. Since
the set of attack classes is different for each dataset, we
therefore focus on binary classification only, i.e. Benign
vs Attack traffic in our analysis. Consequently, all attack
classes of each dataset are aggregated under a single class
called Attack. Hence, the datasets used in this study have
two classes, i.e. Benign and Attack.

Initially, when we ran the experiments related to un-
supervised learning algorithms, we noticed that the perfor-
mance (F1-Score) of the models was very poor when trained
or evaluated on two datasets NFv2-BoT-IoT and NFv2-ToN-
IoT, in both single domain or multi-domain evaluations. This
was mainly due to the unrealistically high imbalance of the
datasets, i.e. the ratio of the Attack to Benign records, as
can be seen in Table 1. Accordingly, we created and used
a balanced version of all four datasets (via down sampling)
in terms of Attack-Benign labels, and used for the unsuper-
vised learning models experiments. These datasets, extended
with a “-b” suffix such as NFv2-BoT-IoT-b, indicate the
balanced version of the (e.g. NFv2-BoT-IoT) dataset.

4. Single Domain Evaluation

In this section we evaluate the ML-based NIDSs using
the common method of NIDS evaluation i.e., using a single
dataset for the training and evaluation. In this method, a
publicly available benchmark NIDS dataset is divided into
the training and test subsets, and the ML model is trained
and tested against these subsets of the same dataset. In
some cases, such as [4] and [5], more than one dataset
is selected for the evaluation. However, the ML model is
trained and tested/evaluated against each dataset separately,
and the generalisability across datasets is not considered.
Since the training and test data are both collected from the
same environment, this approach is referred to as single
domain evaluation.

4.1. Supervised Learning

Initially, we evaluate supervised learning methods via the
single domain evaluation approach. There are many previous
studies which achieve a very high detection performance
using this approach, based on the same benchmark NIDS
datasets that we consider in this paper, but in their original
(non NetFlow) format, in particular UNSW-NB15 [1] and
CIC-2018 [2]. Since the NetFlow version of these datasets
have been published relatively recently, there are only a few
studies such as [4], [5] and [20], that have used them.
However, we cannot use their results in our comparisons
because we need to evaluate the same model later in the
multi-domain setup, and these studies do not provide such
evaluation. As such, we use the result of our experiment,

even for the single-domain evaluation, which might be found
in the literature.

We chose four simple supervised learning models in-
cluding two deep and two shallow learning methods. For
the deep learning we chose the same number of layers and
nodes from two different architectures. The first model is a
simple Feed Forward neural network with 5 hidden layers,
each with 10 nodes. The second model is a Long Short-Term
Memory (LSTM) network with the same number of layers
and nodes on each layer. For the shallow learning methods,
we used a Random Forest and an Extra-Tree classifier, which
allow us to easily implement our NIDSs without much effort
to tune hyperparameters.

It is possible to search and fine tune the hyperparameters
of the ML-models to achieve the best possible performances
on a training dataset. However, this increases the chance of
over-fitting to the training dataset and reduces the perfor-
mance on other datasets, not seen during the training.

Since in the next steps of this study we are going to
evaluate the performance of these models via the multi-
domain approach, hyperparameter fine tuning will bias the
performance results towards the single domain evaluation.
Accordingly, in order to avoid over-fitting to the training
datasets, we used the default hyperparameters for the dif-
ferent models, as provided by the corresponding software
libraries, i.e. scikit-learn (for the shallow learning meth-
ods) [21] and TensorFlow (for the deep learning meth-
ods) [22].

Table 2 shows the classification performance (F1-Score)
for the four supervised learning models trained and evalu-
ated on the same NetFlow dataset (single-domain evalua-
tion). As can be seen, the performance on each dataset are
mostly consistent across all four ML-based NIDSs (1% to
5% variations), except the Feed Forward NN model, which
its performance is up to 50% different, in one case, from
the rest of models. It is noticeable that even these simple
models, without fine tuning of their hyperparameters, are
able to achieve a very high classification performance in
most cases. For instance, all these simple models have been
able to achieve a F1-Score above 99% on the NFv2-BoT-
IoT dataset, and for the rest of the datasets there is at least
one NIDS model which achieves a F1-Score greater than
92%.

TABLE 2: Performance (F1-Score (%)) of 4 supervised (2
shallow and 2 deep) learning methods when trained and
evaluated on the same dataset

Source/Target Extra
Tree

Random
Forest

Feed
Forward

NN
LSTM

NFv2-BoT-IoT 99.82% 99.82% 99.76% 99.92%

NFv2-CIC-2018 84.62% 95.44% 46.27% 90.17%

NFv2-ToN-IoT 77.63% 77.33% 93.98% 76.38%

NFv2-UNSW-NB15 91.73% 92.17% 90.63% 92.82%
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TABLE 3: Performance (F1-Score (%)) of 3 unsupervised
(semi-supervised) learning methods when trained and eval-
uated on the same dataset

Source/Target IsolationForest oSVM SGD-oSVM

NFv2-BoT-IoT-b 87.58% 72.62% 72.70%

NFv2-CIC-2018-b 85.05% 65.62% 65.60%

NFv2-ToN-IoT-b 57.15% 54.65% 54.64%

NFv2-UNSW-NB15-b 73.67% 76.26% 76.25%

4.2. Unsupervised Learning

While the generalisability of supervised learning models
has partly been investigated for the NIDS application in
a previous study [10], there are no such results for unsu-
pervised learning methods in the context of NIDS, to the
best of our knowledge. As such, we have included three
unsupervised learning models in our investigation. These
models, which include the Isolation Forest (IsolationFor-
est) [23], One-Class Support Vector Machines(oSVM) [24],
and Stochastic Gradient Descent one-Class Support Vector
Machines (SGD-oSVM) [25], are used for the purpose of
anomaly/attack detection in our context.

Although these models are typically considered unsu-
pervised learning algorithms, since they are very sensitive
to anomalies/outliers in the training set [24], we have used
them in a semi-supervised manner. This means the models
are exposed to one class of data during the training phase,
but are tested against both classes.

To achieve this, each benchmark dataset is divided into
the training and test subsets. Then, the Attack samples are
removed from the training subset. Hence, the models are
trained only on normal/Benign data samples and evaluated
against the test subset, which includes samples of both the
Benign and Attack classes.

Similar to the case of the supervised learning models,
we did not fine tune the hyperparameters of the models,
for achieving the best possible performances, and mostly
used the default values provided in the scikit-Learn package.
Table 3 shows the results of applying these three NIDS
models on the four considered benchmark datasets. The
main conclusion from this table can be summarised in
two points. First, all models have lower performance on
NFv2-ToN-IoT, which was also the case for the supervised
learning models (except the Feed Forward model). Second,
the Isolation Forest model has higher performances across
all the four datasets.

5. Generalisability Evaluation

In the previous section we evaluated the performance of
both supervised and unsupervised learning NIDS algorithms
via a single domain approach, which is the current de-facto
standard in the NIDS literature. As it was shown, we were
able to get close to the high performance values reported in
the literature, using our simple non-fine-tuned models, for

most of the cases in both the supervised and unsupervised
learning methods.

While having a high performance in a single domain
evaluation is a necessary condition for any NIDS targeting
the real-world application, there are other conditions to be
met as well. One such condition is the generalisability, i.e.,
the ability to generalise and translate the high performance
on a single domain to other domains.

In order to evaluate the generalisability of an NIDS
model, we need to separate domains/datasets. The first do-
main/dataset, which is called the source domain, is used
for the training, and the second domain/dataset, which is
referred to as the target domain, is used for the evaluation.
In this way, the NIDS model is only trained on the source
domain and it does not see the target domain during training.

5.1. Supervised Learning

Here we evaluate the generalisability of the same four
supervised learning models considered in the previous sec-
tion. We ran a set of four experiments for each NIDS
model in which the model is trained on a source benchmark
dataset and evaluated against the other three benchmark
datasets without any further training. Hence, for each target
domain/dataset we have three different results for the same
NIDS model, each indicating the performance of the model
when trained on a different source domain/dataset.

Table 4 shows the results of these experiments, ordered
by the target domain and source domain, to allow easy
comparison with the single domain results shown in Ta-
ble 2. As can be seen, each supervised learning-based NIDS
model is evaluated for the 12 different source/target domain
combinations.

Figure 1 provides a more visual representation of both
the single-domain and the multi-domain evaluation results,
with each sub-figure showing the F1-Score results for a
different supervised model. The used colour map indicates
a very high F1-Score (100%) in dark blue, and a very low
value (0%) in light yellow, with the in-between values as
indicated. The source datasets are indicated on the vertical
axis, and the corresponding target datasets are shown on
the horizontal axis. In order to make the name of dataset
readable in this figure, we used larger font sizes, that neces-
sitated to remove the “NFv2-” prefix from the name of all
datasets to make them fit to the spaces. On the diagonal, we
observe the single-domain results, where a model is trained
and evaluated on the same dataset. The off-diagonal results
show the multi-domain results, which provide information
about the degree of generalisability of the different models.

The mostly dark colouring on the diagonal indicates
a generally high performance in the single-domain eval-
uation of all the four supervised models. However, the
mostly lighter colours, and hence lower F1-Scores, indicate
a generally poor ability of the models to generalise from a
source dataset to a different target dataset. There are some
exceptions though. For example, for the Extra Tree model
(Figure 1-a), UNSW-NB15 as the source domain generalises
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TABLE 4: F1-Score (%) of supervised learning-based NIDSs for a target domain when trained on three different domains

Target Source
Classifier

Extra Tree Random
Forest

Feed
Forward

LSTM

NFv2-BoT-IoT

NFv2-CIC-2018 0.14% 12.91% 91.83% 54.74%

NFv2-ToN-IoT 24.42% 46.75% 0.56% 0.04%

NFv2-UNSW-NB15 94.83% 7.61% 71.38% 81.78%

NFv2-CIC-2018

NFv2-BoT-IoT 22.32% 22.32% 22.32% 28.15%

NFv2-ToN-IoT 44.83% 4.50% 57.55% 21.82%

NFv2-UNSW-NB15 17.47% 7.70% 34.89% 14.20%

NFv2-ToN-IoT

NFv2-BoT-IoT 85.50% 85.50% 85.50% 83.65%

NFv2-CIC-2018 62.25% 30.28% 69.01% 48.03%

NFv2-UNSW-NB15 73.39% 0.00% 3.82% 81.40%

NFv2-UNSW-NB15

NFv2-BoT-IoT 4.90% 4.90% 4.90% 4.41%

NFv2-CIC-2018 0.57% 0.84% 0.05% 9.63%

NFv2-ToN-IoT 0.00% 0.25% 0.00% 0.40%
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Figure 1: F1-Score (%) of supervised learning-based NIDSs when trained and tested on different datasets for (a) Extra Tree,
(b) Random Forest, (c) Feed Forward, and (d) LSTM models. The diagonal entries show the single domain evaluation and
off-diagonal values indicate the generalisability evaluation.
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TABLE 5: Average performance (F1-Score (%)) decay per
model and source domain for the supervised learning models

Source/Training
dataset

Extra
Tree

Decay
(avg.)

Random
Forest
Decay
(avg.)

Feed
Forward

Decay
(avg.)

LSTM
Decay
(avg.)

Average
Decay per

Source

NFv2-BoT-IoT 62.24% 62.25% 62.19% 61.18% 61.96%

NFv2-CIC-2018 63.63% 80.77% -7.36% 52.70% 47.43%

NFv2-ToN-IoT 54.55% 60.16% 74.60% 68.96% 64.57%

NFv2-UNSW-NB15 29.84% 87.07% 53.93% 33.70% 51.13%

Average Decay per
Model 52.57% 72.56% 45.84% 54.13% 56.28%

well to the BoT-IoT dataset as the target domain, with an
F1-Score of 94.83%.

Interestingly, this result is highly asymmetrical. If we
swap the source and target domain, and use BoT-IoT as the
source and UNSW-NB15 as the target, the Extra Tree only
achieves 4.90%. While this is the most prominent example,
we observe a generally high degree of asymmetry of the
generalisability across different source/target domain pairs
and supervised learning models.

If we compare the generalisability results across the four
different ML models, we observe some consistent patterns,
but we also notice some significant differences. The Random
Forest model seems to perform quite differently from the
other three modeles, in particluar for the UNSW-NB15
dataset as the source domain (bottom row).

Finally, we also observe significant differences among
the datasets. Most strikingly, we see that if the UNSW-
NB15 dataset is chosen as the target domain, the results
are very poor for any of the other datasets chosen as the
source domain (rightmost column). This is consistent across
all four ML models.

Table 5 shows the average performance decay per model
when evaluated on a dataset not used for training ver-
sus datasets used for the training. Each column indicates
a supervised learning model and each row indicates a
source/training dataset. For instance, the cell in the first
row and first column shows the average decay of the per-
formance of the Extra Tree model trained on NFv2-BoT-
IoT when tested on NFv2-CIC-2018, NFv2-ToN-IoT and
NFv2-UNSW-NB15 datasets, compared to its performance
when tested on NFv2-BoT-IoT dataset. Investigating the
performance decays presented in Table 5 indicates that:

(a) There is no supervised learning-based NIDS generalis-
ing over all combination of source-target domains.

(b) Deep learning-based NIDSs generalise better than shal-
low learning-based NIDSs in average.

(c) There is an average performance decay of 56.28%
when a supervised learning model is evaluated on a
dataset other than its training dataset.

5.2. Unsupervised Learning

Similar to the supervised learning algorithms, we eval-
uated the generalisability of unsupervised learning-based

NIDSs using the same four benchmark datasets as we
used for the single domain evaluation. As per the single
domain evaluation, training is performed using only the
normal/Benign class of the source domain, while the trained
model is exposed to both the Benign and Attack classes of
the target domain for the evaluation of its generalisability.

Table 6 shows the results of generalisability evaluation of
the unsupervised learning algorithms. Similar to supervised
learning algorithms, each model is trained on one dataset
and evaluated on the other three datasets that were not used
for training. For each of the four datasets used as the source
domain, we consider the other three as the target domain,
resulting in 12 target/source domain combinations that are
the basis for the generalisability evaluation.

Figure 2 visualises the results for the three consid-
ered unsupervised algorithms, and also includes the single-
domain results on the diagonal, corresponding to Figure 1.
As can be seen, while the performance of the models is
not as high as the supervised learning algorithms, in the
single domain experiments, there are many cases in which
the generalisability is equal or higher than single domain
evaluation.

Table 7 quantifies these outcomes in terms of the perfor-
mance (F1-Score) decays. It shows the average performance
decay for each unsupervised learning model when evaluated
on three datasets not used for the training compared to
evaluation on the training dataset. Each column indicates an
unsupervised learning model, each row indicates a source
domain, and each value indicates the average of three F1-
Score values. Investigating these performance decays indi-
cates that

(a) There is no unsupervised learning model that gener-
alises over all combination of source-target domains.

(b) The two unsupervised algorithms oSVM and SGD-
oSVM are better generalised than Isolation Forest, even
though their single domain performance is weaker.

(c) There is an average performance decay of 28.33%
when an unsupervised learning model is evaluated on
a dataset other than its training dataset.

TABLE 6: F1-Score (%) of unsupervised learning-based
NIDSs for a target domain when trained on three different
domains

target source IsolationForest oSVM SGD-oSVM

NFv2-BoT-IoT-b

NFv2-CIC-2018-b 49.35% 77.87% 77.87%
NFv2-ToN-IoT-b 60.52% 80.38% 80.86%

NFv2-UNSW-NB15-b 34.33% 0.23% 0.23%

NFv2-CIC-2018-b

NFv2-BoT-IoT-b 0.18% 56.86% 58.71%
NFv2-ToN-IoT-b 0.25% 56.24% 58.12%

NFv2-UNSW-NB15-b 13.84% 56.66% 57.74%

NFv2-ToN-IoT-b

NFv2-BoT-IoT-b 66.75% 29.20% 30.45%
NFv2-CIC-2018-b 62.12% 22.23% 22.17%

NFv2-UNSW-NB15-b 0.00% 7.10% 7.10%

NFv2-UNSW-NB15-b

NFv2-BoT-IoT-b 0.00% 76.29% 76.28%
NFv2-CIC-2018-b 26.22% 64.80% 64.80%
NFv2-ToN-IoT-b 0.00% 64.85% 64.85%
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Figure 2: F1-Score (%) of unsupervised learning-based
NIDSs when trained and tested on different datasets for (a)
Isolation Forest, (b) oSVM, and (c) SGD-oSVM models.
The diagonal entries show the single domain evaluation and
off-diagonal values indicate the generalisability evaluation.

5.3. Supervised vs Unsupervised Learning Models:

Comparing the results shown in Table 5 and Table 7
indicates

TABLE 7: Average performance (F1-Score (%)) decay per
model and source for the unsupervised learning models

Source/Training dataset Isolation Forest
Decay (avg.)

oSVM
Decay
(avg.)

SGD-oSVM
Decay (avg.)

Decay per
source (avg.)

NFv2-BoT-IoT-b 39.51% 19.80% 19.71% 26.34%

NFv2-CIC-2018-b 80.29% 9.04% 7.41% 32.25%

NFv2-ToN-IoT-b 14.19% 35.14% 34.73% 28.02%

NFv2-UNSW-NB15-b 64.93% 7.61% 7.60% 26.72%

Decay per Model
(avg.) 49.73% 17.90% 17.36% 28.33%

(a) The unsupervised learning models generalise better
with an overall average performance decay of 28.33%,
compared to the supervised learning models with an
overall average performance decay of 56.28%.

(b) The superiority of unsupervised learning models is
consistent across all source domains, i.e., the average
per source domain decay (last column of Tables 5
and 7) is significantly lower for unsupervised learning
models for all the four datasets.

6. Explaining Generalisability

Explaining the behavior of a machine learning model
usually requires to investigate the impact of the features
of input data on output. There are a range of tools and
techniques to study and estimate the feature importance and
how much each feature impacts the model output. SHapley
Additive exPlanations (SHAP) values [26] is one of the
recent trends in explaining and interpreting the output of
the AI/ML models in terms of the features of the datasets.
It provides a value for each feature in the train/test datasets,
which indicates how much a feature has contributed to the
generated output. Hence, these values depend on the training
dataset, the ML model, and the evaluation dataset.

Figure 3 shows the mean absolute SHAP value for the
top ten features where the Feed forward model is trained
on NFv2-BoT-IoT and evaluated on (a) NFv2-BoT-IoT and
(b) NFv2-UNSW-NB15. These figures, called the feature
importance plot, show the features in descending order (of
their mean of absolute SHAP values) on the vertical axis
and the mean SHAP value on the horizontal axis.

Comparing the two feature importance plots clearly
shows that feature orders and the mean SHAP values
of features significantly varies between the two. For in-
stance, in Figure 3-(a), PROTOCOL is the most im-
portant feature with a mean SHAP value of 0.005,
while in Figure 3-(b), the most important feature is
FLOW DURATION IN MILLISECONDS with a mean
SHAP value of 0.014, and PROTOCOL is fifth impor-
tant feature with a mean SHAP value of 0.008. This is
a clear indication that the behaviour of the Feed Forward
model trained on NFv2-BoT-IoT is entirely different when
tested on NFv2-BoT-IoT datasets and when tested on NFv2-
UNSW-NB15. This conclusion is consistent with the results
shown in Figure 1-(C) for the Feed Forward model.
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Figure 3: Feature importance (Mean absolute SHAP value) of top 10 features for the Feed Forward model trained on
NFv2-BoT-IoT dataset and evaluated on(a) NFv2-BoT-IoT and (b) NFv2-UNSW-NB15 datasets

Accordingly, comparing the feature importance across
all the 16 combinations of source-target domains will reveal
the overall model behaviour. For this purpose, we computed
the mean SHAP value of all features across all the experi-
ments, and plotted their distributions side by side. Figure 4
shows the distribution of these mean SHAP values for the
three unsupervised learning models, the Isolation Forest,
oSVM and SGD-oSVM respectively plotted in Figure 4-(a),
(b), and (c). The horizontal axis indicates the features and
vertical axis indicates the normalized mean SHAP value.
Since the range of mean SHAP values for different features
were different, they have been normalized to make them
comparable. The features are sorted in terms of their overall
average in descending order, and the overall average of the
mean SHAP value of each feature is also shown by a red
circle.

As can be seen, the variance of the mean SHAP values
of features in the case of Isolation Forest, Figure 4-(a), is
significantly larger than the other two models, oSVM and
SGD-oSVM shown in Figure 4-(b) and (c) respectively. As
it was shown in Figure 3, the variations of feature order
and importance values are directly linked to the variations
of model behaviour. Similarly, the considerable variations
of the importance and order of the features across different
source-target combinations for the Isolation Forest model in-
dicates variations of its behaviour across these experiments.

The next two model, oSVM and SGD-oSVM, shown in
Figure 4-(b) and (c) respectively, have much lower variations
compared to Isolation Forest. As such, it is expected that
their behaviour is more similar across different combinations
of source-targets, which means these two model are more
generalisable compared to Isolation forest. This can be
easily verified by comparing the average decay per model as
shown in Table 7, which is 49.73%, 17.90% and 17.36% for
the Isolation Forest, oSVM and SGD-oSVM, respectively.
The oSVM and SGD-oSVM models, in addition to the lower
variance of mean SHAP values, share the same order/rank
for many of the features. This similarity in the distribution
of mean SHAP value of features, which is an indicator
of model behaviour similarity, explains their close average

model decays (17.90% and 17.36%).
While the analysis of feature importance values explains

the overall behaviour of the models in terms of generalisabil-
ity, it cannot answer a question like why a model performs
well on one dataset and not well on another dataset. To
answer this kind of questions about the behaviour of the
models, we need a more detailed analysis of the SHAP
values.

The SHAP summary plot seems an appropriate tool for
this kind of analysis. A SHAP summary plot shows the
SHAP value of features for individual data points. It shows
how much impact each feature of a single data point has
on generating the corresponding output. Figure 5 shows
two examples of SHAP summary plots. In each SHAP
summary plot the horizontal axis indicates the SHAP value,
the vertical axis indicates the features, and the feature values
are shown using the color range, from blue (low) to red
(high). A positive SHAP value in our experiments indicates
the impact of the feature towards the Benign class and
a negative SHAP value indicates the impact towards the
Attack class.

Each point in this plot is created by two values, the
feature and the SHAP values. Accordingly, a single instance
of a dataset sample corresponds with the number of points
equal to the number of features. Since in these summary
plots, only ten features are shown, a sample form a dataset
corresponds with ten dots (data points) in a summary plot,
one point per feature. Wherever multiple samples have the
same SHAP value, their representative dot-points are piled
up in a histogram manner. Hence, the larger height of the
pile of dots indicates features of more sample points have
the same SHAP value.

Since it is not possible to investigate the SHAP summary
plots of all the experiment pairs separately, we chose three
pairs of experiments with the maximum contrasting results
that explain the main aspects of generalisability observed in
the results.

The first aspect is the high performance of a model
evaluated against the datasets it was trained on compared
to the low performance of the same model when evaluated
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(a) Isolation Forest
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(b) oSVM
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Figure 4: Distribution of mean SHAP values of features for
(a) Isolation Forest, (b) oSVM and (c) SGD-oSVM models
in 16 different experiments. Each Boxplot shows the range
of mean SHAP values of a feature for the same model in
16 different combinations of the source-target domains.

against other datasets (not seen during training). Figure 5-
(a) and (b) are examples of SHAP summary plots for such a
case in which the Feed Forward model is trained on NFv2-
UNSW-NB15 dataset and is evaluated against (a) the NFv2-
UNSW-NB15 dataset and (b) the NFv2-ToN-IoT dataset.

As can be seen, in Figure 5-(a) the feature values have
a clear correspondence with the Benign and Attack classes.

Most of the Blue dots (low feature values) have positive
SHAP values (Benign) and most of the Red dots (high
feature values) have negative SHAP values (Attack). This
is a simple multi-rule classifier that can separate the Attack
and Benign classes based on the simple rules in terms of
the feature values.

In Figure 5-(b), however, this correspondence of the
feature values with the Attack and Benign classes hardly
can be seen and most of the feature values either indicate
the Benign class or mixes of two classes. This is obviously
due to the difference of the feature distribution in the
new target domain, NFv2-ToN-IoT with the source domain
NFv2-UNSW-NB15 dataset. The result shown in Figure 1-
(c) confirms our conclusion from the SHAP summary plots
and show a significant performance drop for the this case.

The other aspect of generalisability observed in our
results is its asymmetric behaviour, i.e., while a model has
a high performance in a combination of the source-target
domains, it has a low performance when the source and
target domains are swapped. Figure 6-(a) and (b) illustrate
an example of SHAP summary plots for such a case. The
Extra Tree model in (a) is trained on NFv2-UNSW-NB15
dataset and evaluated on NFv2-BoT-IoT dataset, and in (b) it
is trained on NFv2-BoT-IoT dataset and evaluated on NFv2-
UNSW-NB15 dataset.

As can be seen, in both SHAP summary plots most of
the features have a zero SHAP value, indicating no impact
on model output. Though, in Figure 6-(a) the low (blue) and
high (red) values of the first important feature, MAX TTL,
have a clear correspondence with the Benign and Attack
classes (low feature values have positive and high feature
values have negative SHAP values). However, in Figure 6-
(b) most of the MAX TTL values have positive SHAP
values. This means that the model has almost assigned
all the MAX TTL values to the Benign class while other
features have not been used in the classification at all.

Hence, while a high performance is expected for the
observed single-rule classifier in Figure 6-(a) (with a huge
difference between the SHAP values of the low and high
MAX TTL values), it is hard to imagine a similar perfor-
mance for the model in Figure 6-(b) that has a single feature
mostly indicating to the Benign class. Both of these conclu-
sions are consistent with the results shown in Figure 1-(a).

Finally, we investigate another case of asymmetric gen-
eralisability with a different distribution of SHAP values as
shown in Figure 7. In Figure 7-(a) the Extra Tree model is
trained on NFv2-BoT-IoT dataset and evaluated on NFv2-
ToN-IoT dataset, and in (b) it is trained on NFv2-ToN-IoT
dataset and evaluated on NFv2-BoT-IoT dataset.

As can be seen in Figure 7-(a) the SHAP values of all
features except the MAX TTL is zero, i.e. they do not affect
either of classes. The dataset samples with a low MAX TTL
value are classified as Benign and samples with a high
MAX TTL value are classified as Attack. In Figure 7-(b),
however, it is not possible to identify such a simple corre-
spondence between the feature values and classes. A mix
of low and high feature values can be seen in the positive
and negative ranges of the SHAP value. Accordingly, it is
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Figure 5: SHAP summary plots for the top 10 features in the experiments using the Feed Forward model where in (a)
source: UNSW and target: UNSW and in (b) source: UNSW and target: ToN.

expected that the model in Figure 7-(a) that is equivalent to
a simple single threshold classifier perform much better than
the model in Figure 7-(b). These conclusions are consistent
with the results shown in Figure 1-(a).

7. Conclusion

Machine learning (ML) based network intrusion detec-
tion systems (NIDSs) have been around for many years to
address the shortcomings of signature-based NIDSs. While
a large number of methods have been proposed in the
academic literature of NIDS with near perfect detection
and classification performances, the ML-based NIDSs rarely
have been used in the real-world scenarios. Since the eval-
uation of these methods is predominantly based on the
datasets used for their training, we assume generalisability
is the missing link to use these models in the real world
applications.

In this paper we extensively evaluate the generalis-
ability of seven supervised and unsupervised ML-based
NIDSs across four recently published publicly available

NIDS datasets. In these experiments, each ML-based NIDS
is trained on a dataset and evaluated against all the four
datasets, including the one used for its training. This makes
it possible to compare a model’s performance in a single-
domain and multi-domain (generalisability) evaluation.

The results indicate that while some models are able to
generalise over one or two datasets, none of the studied mod-
els generalise well across all datasets. The other observation
is that generalisability can be asymmetric, which means
performance of the model can significantly change when the
source and target domains are swapped. The last observation
indicates that the unsupervised ML-based NIDSs generalise
better than the supervised ML-based NIDSs, even though
their single domain performance is lower than the supervised
ML-based NIDSs.

We have further explained our results by finding the
SHAP values for the model outputs. Comparing the SHAP
values of different dataset-model combinations indicates
that the high classification performances in a combination
of the model and source-target domains is mainly due to
having one or more features that have strong correspon-
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Figure 6: SHAP summary plots for the top 10 features in the experiments using the Random Forest model where in (a)
source: BoT and target: ToN, and in (b) source: ToN and target: BoT.
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Figure 7: SHAP summary plots for the top 10 features in the experiments where in (a) source: BoT and target: ToN, and
in (b) source: ToN and target: BoT, and in c) source: UNSW and target: BoT, and in (d) source: BoT and target: UNSW
using Extra Tree model.

dence with the Attack/Benign classes (positive and negative
SHAP values). Clearly, when such a simple rule (single or
multi-threshold classifier) defines a model’s performance, it
can hardly be generalised to another target domain where
features can have different distributions. As such, the lack
of generalisation of the model performance from one do-
main to the other, and the asymmetric behaviour of models
generalisability can all be attributed to the presence of these
simple rule classifiers for one combination of model-source-
target datasets and its absence in other combinations due to
different feature distributions.

As for our future research direction, we are investigating
the ML-based approaches that can deal with/compensate for
this feature distribution shifts in the alternate target domain,
to enhance the generalisability of ML-based NIDSs.
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