
Computers, Environment and Urban Systems
31 (2007) 4–18

www.elsevier.com/locate/compenvurbsys
A dual approach to cluster discovery
in point event data sets

Allan J. Brimicombe *

Centre for Geo-Information Studies, University of East London, University Way, London E16 2RD, UK

Received 30 April 2004; received in revised form 4 July 2005; accepted 4 July 2005
Abstract

Spatial data mining seeks to discover meaningful patterns in data where a prime dimension of
interest is geographical location. Consideration of a spatial dimension becomes important where
data either refer to specific locations and/or have significant spatial dependence which needs to be
considered if meaningful patterns are to emerge. For point event data there are two main groups
of approaches to identifying clusters. One stems from the statistical tradition of classification which
assigns point events to a spatial segmentation. A popular method is the k-means algorithm. The
other broad approach is one which searches for ‘hot spots’ which can be loosely defined as a localised
excess of some incidence rate. Examples of this approach are GAM and kernel density estimation.
This paper presents a novel variable resolution approach to ‘hot spot’ cluster discovery which acts to
define spatial concentrations within the point event data. ‘Hot spot’ centroids are then used to estab-
lish additional distance variables and initial cluster centroids for a k-means classification that pro-
duces a segmentation, both spatially and by attribute. This dual approach is effective in quickly
focusing on rational candidate solutions to the values of k and choice of initial candidate centroids
in the k-means clustering. This is demonstrated through the analysis of a business transactions data-
base. The overall dual approach can be used effectively to explore clusters in very large point event
data sets.
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1. Introduction

Prior to the 1990s the spatial sciences, and the application of geographical information
systems (GIS) in particular, suffered from a paucity of digital data sets. The 1990s were a
period of transition into data-richness, a trend which accelerates today. Digital spatial
data sets have grown rapidly in coverage, volume of records and numbers of attributes
per record (Gahegan, 2003; Miller & Han, 2001). This state change has come about as
a result of:

• improved technology and wider use of GPS, remote sensing and digital photogram-
metry for collecting data on topographic and other physical objects;

• the introduction of new approaches to obtaining lifestyle and preference data such as
through loyalty cards;

• dramatic increases in computing power to process raw data coupled with falling unit
costs of data storage and data processing;

• the advent of data warehousing technologies;
• more efficient means of accessing and delivering data on-line.

The technical advances in hardware, software and data have been so profound that they
have fundamentally affected the range of problems studied and the methodologies used to
do so (Macmillan, 1998). An exponential rise in the size of databases, their increasing com-
plexity and the rate at which they can accumulate on a daily basis have therefore lead to an
urgent need for techniques that can mine very large databases for the knowledge they con-
tain. Consequently, an active area of research has focused on spatial data mining which can
be defined as techniques for the discovery of meaningful patterns from large data sets where a

prime dimension of interest is geographical location. This paper focuses on clustering as a
central aspect of spatial data mining and seeks to demonstrate the benefits of using ‘hot
spot’ approaches to clustering in tandem with segmentation approaches to clustering. This
is demonstrated using a case study analysis of a business transactions database. The fol-
lowing section discusses the theoretical perspectives and the dichotomy between the two
different approaches to clustering. A form of ‘hot spot’ type clustering is then introduced
and is subsequently used in the case study to guide a k-means classification of spatial and
non-spatial attributes for a customer database. This forms the basis of a dual approach to
cluster discovery as alluded to in the title of the paper.

2. Cluster detection in point event data

Transactions databases, be they for business, crime or health, can be regarded as point
event data sets if each record has a specific geographical identifier such that geocoding can
be achieved at the resolution of an address or postcode. From a location perspective the
point event is a binary occurrence – either it happened there or it did not. From a data
perspective, the binary occurrence may have added dimensions of attributes that describe
the nature or content of the transaction which may relate to the location, the individual or
the event that has been recorded. The traditional approach to non-spatial analyses of attri-
butes may reveal apparently meaningful knowledge but may well be lacking in perspicacity
or may even be misleading if underlying spatial distributions and dependencies are
ignored. The exploratory analysis of point event data seeks to identify patterns using all
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the dimensions of the data from which causal processes can be hypothesised or inferred
(Fotheringham, 1992; Unwin, 1996). The analysis of point event patterns in geography,
ecology and epidemiology has a long tradition (e.g. Clark & Evans, 1954; Cliff & Ord,
1981; Harvey, 1966; Knox, 1964; Mantel, 1967; Snow, 1855). Over the past decade, how-
ever, two broad thrusts have lead to a renewed interest in analysing point event patterns.
These are the rise of geocomputation and a re-focusing away from global towards local
analyses.

The adoption of geocomputational approaches to spatial data analysis represents a par-
adigm shift in which computers and hence computational tools play a pivotal role in the
form of analysis as an essential defining ingredient of the science alongside observation,
experimentation and theory (Armstrong, 2000; Couclelis, 1998; Fotheringham, 1998;
Longley, Brooks, McDonnell, & MacMillan, 1998; Openshaw & Abrahart, 2000). The
rationale for a geocomputational approach is driven by the advent of data-richness (dis-
cussed above), by the growing necessity in some areas for large data sets as a prerequisite
for non-trivial analyses and by the growth of computationally intensive simulation mod-
els. The tools for geocomputation naturally include GIS but they are increasingly viewed
as just one class of tool to be used alongside neural networks, artificial intelligence, heu-
ristics, spatial statistics, fuzzy computation, fractals, genetic algorithms, cellular automata,
simulated annealing and parallel computing (Brimicombe, 2003). The other broad thrust
has been a re-focusing within quantitative geography towards spatial variation at the local
level rather than in the search for global patterns (Fotheringham, 1997; Fotheringham &
Brunsdon, 1999; Fotheringham, Brunsdon, & Charlton, 2000). The new emphasis is on
exploring and understanding the spatial differences between localities rather than on quan-
tifying their more general, global similarities. Such approaches are often data-rich and
geocomputational.

Broad patterns detected in point event data are usually classified as random, uniform or
clustered. Spatially random data are assumed to have no underlying spatial process of
interest that can be modelled. Phillips (1999) has nevertheless pointed out that such appar-
ent randomness may be attributable to chaotic, complex deterministic patterns. For spatial
uniformity a space-filling, mutual exclusion process can be hypothesised. It is, however,
clustered patterns that raise the strongest hypotheses for and interest in identifying under-
lying processes. Thus, where data either refer to specific locations and/or have significant
spatial dependence which has to be considered if meaningful patterns are to emerge, spa-
tial cluster detection methods lie at the heart of spatial data mining (Estivill-Castro & Lee,
2002; Halls, Bulling, White, Garland, & Harris, 2001; Kiang, 2001; Miller & Han, 2001;
Murray, 2000; Murray & Estivill-Castro, 1998; Openshaw, 1998). Within the context of
geocomputation and local analyses, there are two broad approaches to cluster detection
and it is here that a significant dichotomy in the meaning of ‘cluster’ arises as discussed
in the remainder of this section.

One set of approaches is allied to mainstream statistics of cluster analysis arising from
the work of Sokal and Sneath (1963). Clustering in this context is a means of classification
or grouping where clusters are ‘‘groups of highly similar entities’’ (Aldenderfer & Blash-
field, 1984, p. 7). Spatially, cluster analysis will seek to form a segmentation into regions
which minimise within-cluster variation but maximise between-cluster variation. There is a
general expectation that the clustering mutually exclusively includes all point events and is
therefore space-filling within the geographical extent of the data under consideration.
Examples of this approach are to be found in Murray and Estivill-Castro (1998), Murray
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(2000), Han, Kamber, and Tung (2001) and Kiang (2001). A widely-used clustering algo-
rithm is the k-means classification (MacQueen, 1967) due to its relative efficiency in pro-
cessing large numbers of cases having many attribute variables. Its weakness, however, is
sensitivity to outliers (Han et al., 2001) and the need to specify ab initio the number (k) of
desired clusters and optionally the location of N initial candidate centroids. Such prior
specification is counter to the spirit of spatial data mining in which the data themselves
should indicate the number and location of clusters rather than as speculated by the ana-
lyst. This has lead Halls et al. (2001) and Estivill-Castro and Lee (2002) to use Dirichlet
and Delaunay diagrams respectively to define spatial clusters. These algorithms, however,
will fail where points occupy the same location (as will often happen with geocoding, say,
at postcode level) and to spatially de-duplicate the data set will lead to important data loss.
The case study given below uses k-means classification because of its general popularity
and its accessibility through many statistical packages. Though not inherently a spatial
tool, it can achieve spatial segmentations using X and Y co-ordinate values or, as will
be illustrated in the case study below, when converted into distance variables.

The other broad set of approaches treat a cluster as a ‘hot spot’ which can be loosely
defined as a localised excess of some incidence rate, though there is no generally accepted
definition of a ‘hot spot’. This approach is typified by Openshaw’s Geographical Analysis
Machine (GAM) and its descendants (Openshaw, 1994, 1998; Openshaw, Charlton,
Wymer, & Craft, 1987). Similar approaches are based around kernel density functions
in which the highest densities are accepted as ‘hot spots’ (e.g. Gatrell & Rowlingson,
1994; Gatrell, Bailey, Diggle, & Rowlingson, 1996; Rowlingson & Diggle, 1993). The
‘hot spot’ approach is the mainstay of spatial epidemiology (Lawson, 2001) which seeks
to identify any significantly elevated risk above that which might be expected from an
at-risk background population. Defining a population at risk is clearly critical to this
approach and in some, if not many, data mining applications this may not be possible
at the outset. Mis-specification of an at-risk background population is likely to lead to
erroneous results. Furthermore, intrinsic to this approach is that some of the points form
‘hot spots’ and the rest are no longer the focus of analysis. This is a fundamental difference
from the set of techniques discussed in the previous paragraph where every point is
assigned mutually exclusively to a group. Section 4 of this paper demonstrates how these
two approaches can be usefully brought together. The choice of a ‘hot spot’ technique to
use in such a demonstration remains problematic. Where an at-risk population is not ini-
tially specified (in other words, ‘hot spot’ detection is based solely on the distribution of
point events), kernel density mapping is popularly used and is accessible through, for
example, the Spatial Analyst extension to ArcView� and public domain MapBasic� soft-
ware for MapInfo� (see Atkinson & Unwin, 2002). The kernel density algorithm requires
the setting of two parameters: the underlying grid size and bandwidth of the kernel. Rea-
sonable values for these parameters can be difficult to estimate. There are rules of thumb
suggested, for example, in Fotheringham et al. (2000) and Atkinson and Unwin (2002),
and some software provide default values. Nevertheless, best practice would suggest a
form of sensitivity analysis by varying the parameters as illustrated in Fig. 1. The point
event data in Fig. 1(a) has a very obvious main cluster as well as a possible number of
other smaller clusters. Fig. 1(b)–(d) show the effect of increases in bandwidth on the kernel
density mapping. All of these have been clipped from a broader geographical set so as to
avoid edge effects (Atkinson & Unwin, 2002; Koch & Denike, 2001). Whilst the obvious
main cluster continues to dominate at all bandwidths, the smaller ‘hot spots’ denoted



Fig. 1. Kernel density mapping: (a) distribution of point event data, (b) 250 m grid, 500 m bandwidth, (c) 250 m
grid, 1000 m bandwidth, (d) 250 m grid, 1500 m bandwidth.
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by the higher densities are less permanent and very much dependent on the bandwidth
selected; the smaller the bandwidth the more ‘hot spots’ that can be made to appear. This
problem is shared with many interpolation techniques and for this reason an alternative
approach to ‘hot spot’ detection using a form of spatial segmentation is deployed in the
case study. This alternative approach is described in the next section.
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3. A variable resolution approach to the analysis of point event data

A recursive decomposition of space into gradually smaller spatial units that are never-
theless space-filling is generally referred to as a hierarchical tessellation. Any such decom-
position requires some predefined criteria such as decomposition ratio and minimum size
of spatial units in order to guide and finally terminate the algorithm. Possibly the most
studied hierarchical tessellation is the quadtree (Samet, 1984) in which an initial square
region covering the entire study area is repeatedly decomposed into quadrants using a
fixed decomposition ratio of 1:4 until a predefined level of cell homogeneity or atomic
(minimum) size is reached. A more generalised framework for hierarchical tessellations
that includes variable decomposition ratios and rectangular cell shapes has been estab-
lished by Tsui and Brimicombe (1997a). These adaptive recursive tessellations allow a var-
iable resolution approach to the decomposition of space, in other words, no longer are
scale and resolution treated as being uniform across an area but are allowed to vary spa-
tially in response to patterns within the point event data. General applicability of adaptive
recursive tessellations to spatial analysis are given in Tsui and Brimicombe (1997b) with
more a specific application to point pattern analysis in Brimicombe and Tsui (2000).

The algorithm, as implemented here, uses a divide and conquer approach which treats
each point as a binary occurrence of some phenomenon without reference to further
descriptive attributes. Firstly, the most important parameter, the atomic or minimum cell
size, is established by comparing the median nearest neighbour distance between point
events with the average expected nearest neighbour distance. The larger of the two is
accepted and squared to give the atomic cell size. Where the areal extent of the study area
is ambiguous (i.e. not defined by some administrative or other boundary), the calculation
of the average expected nearest neighbour distance is rendered intractable. In such cases a
convex hull is established around the point event data set and buffered by 1% of the convex
hull area so that no points lie on the boundary. The initial bounding rectangle is taken as a
2n multiple of the atomic cell size to cover the study area. Variable resolution decomposi-
tion into different size cells is then carried out such that a quadrant is left undivided if it
contains no points, if it has reached the atomic cell size or if the variance of points at the
next level of decomposition is greater than or equal to one. On completion of the algo-
rithm, cells containing zero point events are deleted and the remainder can be displayed
as density classes or, if data on an at-risk population are available, incident rates can
be calculated and tested for significance. In general a two stage process is adopted: an ini-
tial visualisation of density clusters and a subsequent visualisation of rates or risk (Brimi-
combe, 2003). Whilst the authors of GAM-type and epidemiological approaches are
dismissive of identifying clusters without reference to an at-risk or control population,
count data on their own do reflect workload, revenue stream or commitment of resources
in meeting a spatially distributed demand (such as in response to crime). Once point event
densities and any additional attribute dimensions are clearly understood, then a second
stage analysis of risk can be carried out, if necessary, for the application at hand. Tests
have shown the variable resolution decomposition algorithm to be consistently effective
in comparison with other approaches of point event cluster detection (Brimicombe & Tsui,
2000). The resulting polygons are termed Geo-ProZones (GPZ) as they represent zones of
geographical proximity in the point event pattern (see example in the next section) and
may be interpreted as ‘hot spots’ should they have either a localised excess in density or
incident rate. One important difference of this approach to, say, the kernel density
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mapping, is that GPZ are spatial segmentations into polygons rather than an interpolation
into a surface. As such there are no edge effects and because all parameters are set consis-
tently within the algorithm, there is a unique solution.

The method being proposed in this paper is to use GPZ cluster centroids as a guide to
setting up and running the k-means clustering. GPZ clusters are used to analyse the spatial
distribution of binary events, typical of a ‘hot spot’ approach, in order to suggest an initial
value for k and for identifying N candidate centroids located within the ‘hot spots’. The k-
means clustering can then include other descriptive attributes of the point events to derive
a spatial segmentation inclusive of all point events and all data dimensions. This would
bring together the two broad approaches to cluster detection in spatial data mining dis-
cussed above.

4. Geo-ProZones and k-means clustering in tandem: a case study

The case study focuses on an analysis of a business transactions database for one year.
The database contained details of 2390 customers of whom 2361 (98.7%) could be geocoded
to postcode level. This is a relatively small database by data mining standards but is suffi-
ciently tractable to allow experimentation and tracking of special cases and checking results
without being deluged by the data. The distribution of geocoded customers is given in
Fig. 2(a). This particular business operates a service from a single hub or outlet situated
to the north east of London, UK. The owner sees the business as serving a regional market
rather than a national one with customers from outside the immediate region representing
opportunist sales to customers passing through the area or temporarily visiting. Although
the ‘region’ is spatially undefined (i.e. does not correspond to any particular administrative
boundaries), from an inspection of the spatial distribution and the database, 327 customers
were deemed as being from outside the target regional market and excluded from further
analysis. The study data set of 2034 customers is given in Fig. 2(b) with an enlargement
of the core area in Fig. 2(c) which is the same as Fig. 1(a). As well as the visually obvious
clustering of customers in certain locations, there is a discernible linear trend from south-
west to northeast following the alignment of a motorway through the area. The additional
Fig. 2. Distribution of customers: (a) nationally, (b) regionally (�60 km · 70 km), (c) locally (�17 km · 21 km).



Table 1
GB-Profiles classification in 10 classes (based on Openshaw and Blake, 1996)

1 Struggling: Multi-ethnic areas – pensioners and single parents – high unemployment – local
authority rented flats

2 Struggling: Council tenants – blue collar families and single parents – local Authority rented terraces
3 Struggling: Less prosperous pensioner areas – retired blue collar residents – local authority

rented semi-detached houses
4 Struggling: Multi-ethnic areas; less prosperous private renters – young blue collar families

with children – privately renting terraces and bedsits
5 Aspiring: Academic centres & student areas – young educated white collar singles and

couples – privately rented bedsits and flats
6 Aspiring: Young married suburbia – young well-off blue collar couples and families – mixed

tenure terraces
7 Climbing: Well-off suburban areas – young white collar couples and families – buying

semi-detached and detached houses
8 Established: Rural farming communities – mature well-off self-employed couples and

pensioners – owning or privately renting large detached houses
9 Prospering: Affluent achievers – mature educated professional families – owning and buying

large detached houses
10 Established: Comfortable middle-agers – mature white collar couples and families – owning

and buying semi-detached houses
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attributes for each customer were SPEND (total amount of purchases by each customer for
the year) and a geodemographic lifestyle classification based on customer postcode. In this
instance the GB-Profiles classification into 10 classes (Openshaw & Blake, 1996) has been
used and their characteristics are given in Table 1. These were assigned as 10 binary vari-
ables GB-PROF1 through GB-PROF10. It is recognised that in any geodemographic lifestyle clas-
sification there can be variability at the level of the neighbourhood, but that this is
outweighed by the degree of similarity to be found amongst residents (Sleight, 1997). Also,
the classes themselves may overlap in the characteristics they describe. This might militate
against the use of binary variables. Nevertheless, GB-Profiles (using the 10 class option)
returns a single class type for a given postcode based on majority characteristics and it is
on this basis that binary variables have been deployed.

Turning now to the k-means classification, the number of clusters needs to be specified
ab initio and furthermore there is an option to choose the first N observations as candidate
centroids where N = k. The problem is in identifying suitable (or hypothesised) starting
values of k and whether N candidate spatial centroids are to be specified. Clearly it would
be useful to have some guideline and this is where, in this study, a ‘hot spot’ approach to
clustering (in this case GPZ) has been used to inform the k-means classification.

The spatial distribution of customers in Fig. 2(b) requires a bounded study area for the
GPZ algorithm and this is established using a slightly buffered convex hull (Fig. 3(a)). The
GPZ algorithm is then applied and the results displayed as density classes. GPZ for density
classes n >= 2 are given in Fig. 3(b) and (c) where the density value n in the legend repre-
sents a point event density of 2n points per atomic cell size. The density pattern in Fig. 3(c)
is visually comparable to that of Fig. 1(b) but represents a spatial segmentation into poly-
gons that has a unique solution for the point event data set. Which of these GPZ can be
classed as a ‘hot spot’ for guiding the k-means classification? This is a recurring problem of
density mapping met, for example, on an almost daily basis in crime mapping. Generally,
higher densities are interpreted as ‘hot spots’. In this instance there are six GPZ of density



Fig. 3. Geo-ProZone clustering (a) buffered convex hull, (b) clusters, (c) detail of clusters at local scale.
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class 6 or above that can be usefully interpreted as separate ‘hot spots’ (numbers 1–6 in
Fig. 4) together with a seventh at density class 5 that represents a comparatively large, sep-
arated and distinct unit (number 7 in Fig. 4). An eighth has been inserted to represent a
group of lower density GPZ (number 8 in Fig. 4) that whilst not as ‘hot’ as the others,
nevertheless represents a sizeable number of more dispersed (rural) customers. Thus the
suggestion is that k = 8 and that the N initial centroids are the centroids of the eight cho-
sen GPZ polygons. The choice of ‘hot spots’ and therefore initial values for k and N do
admittedly have a subjective element. However, whilst sensitivity analysis can be carried
Fig. 4. k = 8 centroids suggested by Geo-ProZone clustering (note: for clarity, numbers 3–8 have been placed
adjacent to the density polygon used to establish centroid co-ordinates).
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out as part of the analysis (see below), this juncture of sentient human intervention allows
an important pause for reflection and interpretation of the outcome of the GPZ (or any
other chosen method of ‘hot spot’ clustering) and what the implications are likely to be
for the next stage of analysis.

The decision to go forward with k = N = 8 initiates further structuring of the data prior
to being submitted to the k-means algorithm. The N = 8 customers nearest to the candi-
date centroids from the GPZ clustering were ordered as in Fig. 4 and placed at the top of
the data set to represent the candidate centroids from within the data set. In order to make
the spatial relationship of each data record to the candidate centroids more explicit, a
set of distance measures were used instead of the two X and Y co-ordinate variables.
Although the k-means algorithm would use the two X and Y co-ordinate variables (along
with all the other dimensions) in calculating distance in the data space to the N candidate
centroids, it is argued that a set of distance measures would give more weight to the spatial
relationships. Thus eight new variables DIST1 to DIST8 were calculated to represent the
Euclidean distance from each customer to each candidate centroid. These new distance
variables and SPEND were then normalised using the technique of robust normalisation

(Brimicombe, 1999, 2000). Robust normalisation produces a distribution of median 0,
lower quartile of �1 and upper quartile of +1 and is not sensitive to long tails as would
normalisation using z-scores. The binary GB-Profiles variables were given a slight stretch
so that binary absence [0] was re-scaled to [�1] to fall in line with the interquartile range
[�1,+1] of the robust normalised variables. An analysis of the robust normalised values of
SPEND showed that 10 cases could be deemed outliers and likely to bias the k-means clus-
tering; they were omitted from further analysis. The k-means clustering could then be run.
The first run used only the distance variables without other attributes (Fig. 5(a)) and then
Fig. 5. k-means classification: (a) k = 8, distance only, (b) k = 8, all variables.



Table 2
Characteristics of k = 8 clusters (zones 1–8 in Fig. 5(b)); med. = median, tri. = trimean

k = 8 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

n 602 469 178 185 107 70 218 195
Med. dist. 1164 1082 17100 5230 7228 1764 5929 13640
Tri. spend 153 213 249 208 209 2884 226 247

GB-Prof1 2%
GB-Prof2 2% 1% 30%
GB-Prof3 8% 5% 4% 5% 2% 4% 14% 7%
GB-Prof5 2% 2% 3% 3% 3%
GB-Prof6 6% 4% 3% 6% 3% 5% 18%
GB-Prof7 47% 17% 24% 52% 7% 36% 9% 12%
GB-Prof8 7% 32% 25% 12% 36% 21% 28% 6%
GB-Prof9 15% 27% 28% 24% 52% 29% 35% 10%
GB-Prof10 15% 13% 10% 4% 6% 6% 12%
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using the SPEND and GB-Profile variables (Fig. 5(b)). The characteristics of each of the
resulting clusters are summarised in Table 2.

The k-means clustering in Fig. 5(a) is based solely on the distance attributes DIST1 to
DIST8 and has resulted in a mutually exclusive spatial segmentation (zones) with all vari-
ables significant at p < .001. Of note is that cluster 5 in Fig. 5(a) has resulted in two spa-
tially separated zones to the east and west of the hub. This may be influenced by the fact
that the N candidate centroids formed a broadly linear arrangement from southwest to
northeast permitting the two parts of cluster 5 to emerge orthogonal and roughly equidis-
tant to this axis. Fig. 5(b) has included all variables. From a spatial perspective clusters 1–
5 and 8 in Fig. 5(a) remain as zones 1–5 in Fig. 5(b) with only slight modification; clusters
6 and 7 in Fig. 5(a) have merged into zone 7 in Fig. 5(b). With only seven spatially mutu-
ally exclusive zones in Fig. 5(b) one cluster, zone 6, has ‘floated free’ to be a cluster that is
not spatially mutually exclusive with the others and is a surprise outcome of the k-means
clustering. All variables are significant at p < .001 except for GB-PROF5 which is not signi-
ficant with p > 0.1. If GB-PROF5 is removed from the k-means clustering, cluster mem-
berships remain exactly the same and all variables are significant at p < .001. Table 2
summarises the characteristics of the zones (Z1–Z8) including median distance of custom-
ers within each zone to the business hub and trimean of SPEND where trimean (Tukey,
1977) is defined as:

ðlower quartileþ ðmedian� 2Þ þ upper quartileÞ=4

From inspection of Table 2, the eight zones have quite different characteristics, either
spatially and/or in their attributes. That variable GB-PROF5 is not significant is perhaps
not surprising given that it accounts for only a small percentage of customers and is spread
across five zones. Although zones 1 and 2 could initially be viewed as being part of the
same cluster in Figs. 1(b) and 3(c), their characteristics have emerged as being quite differ-
ent. Z1 in Table 2 has the lowest trimean SPEND and is dominated by GB-PROF7 (climbing) in
contrast to its spatial neighbour Z2 which has higher trimean SPEND and more than half of
its membership characterised by GB-PROF8 (established) and GB-PROF9 (prospering). Another
surprise is Z8, which is comparatively far from the hub, has 39% of its membership in three
struggling geodemographic classes and yet has the third highest trimean of SPEND. But
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probably of most interest from a business perspective is Z6, the cluster that spatially over-
laps with the others. The customers from this cluster are the highest spenders, an order of
magnitude above the others. They come predominantly from the aspiring, established and
prospering geodemographic classes.

Whilst this result can be deemed ‘useful’ from a business perspective in as much as:

• the five important spenders (Z6) have been separated out and profiled;
• a profiled segmentation of customers (spatially and by attribute) for the regional mar-

ket area has been achieved;

it has to be recognised that an unknown number of other ‘useful’ and statistically signif-
icant segmentations may be achievable. Whilst it is not feasible to exhaustively test for all
other possibilities, a level of sensitivity can be quickly and easily established by systemat-
ically reducing the initial number of ‘hot spots’ and thus reducing k and N. This is illus-
trated firstly in Fig. 6(a) and Table 3 for initial centroids 1 to 7 in Fig. 4 and secondly in
Fig. 6(b) and Table 4 for initial centroids 1 to 6 in Fig. 4, in other words, the successive
omission of ‘hot spots’ having lower densities of point events. As the number of ‘hot spots’
is reduced, so the clusters become increasing concentric around the hub. By k = 6, both
GB-PROF3 and GB-PROF5 are not significant with p > 0.05 (their removal nevertheless results
in all variables used having p < 0.05) and Z1 and Z2 are neither spatially distinct nor com-
pact as segmentations (differentiated primarily by SPEND) and for mapping purposes have
had to be combined (Fig. 6(b)). Z6, the higher spenders, remain distinct. Both k = 8 and
k = 7 have little to choose from as significant market segmentations (spatially and by
attribute), the difference resting on the inclusion of initial centroid 8 as a subjective
Fig. 6. Testing sensitivity: (a) k = 7, all variables, (b) k = 6, all variables.



Table 3
Characteristics of k = 7 clusters (zones 1–7 in Fig. 6(a)); med. = median, tri. = trimean

k = 7 Z1 Z2 Z3 Z4 Z5 Z6 Z7

n 643 480 199 186 208 78 230
Med. dist. 1127 1248 18057 5265 12354 2326 5862
Tri. spend 142 243 240 201 222 2762 223

GB-Prof1 2%
GB-Prof2 3% 27% 1% 0.4%
GB-Prof3 7% 5% 4% 5% 7% 4% 13%
GB-Prof5 2% 2% 3% 3% 3%
GB-Prof6 7% 3% 7% 6% 13% 4% 4%
GB-Prof7 47% 13% 23% 52% 11% 35% 8%
GB-Prof8 9% 33% 24% 12% 12% 21% 26%
GB-Prof9 14% 31% 27% 24% 16% 29% 39%
GB-Prof10 15% 13% 11% 9% 6% 6%

Table 4
Characteristics of k = 6 clusters (zones 1–6 in Fig. 6(b)); med. = median, tri. = trimean

k = 6 Z1 Z2 Z3 Z4 Z5 Z6

n 836 227 359 199 338 65
Med. dist. 1068 1349 14,673 5163 6188 3685
Tri. spend 114 930 246 196 169 3073

GB-Prof1 1%
GB-Prof2 17% 0.3% 2%
GB-Prof3 7% 5% 6% 5% 8% 3%
GB-Prof5 2% 1% 3% 2%
GB-Prof6 6% 2% 11% 6% 4% 5%
GB-Prof7 36% 30% 19% 49% 6% 32%
GB-Prof8 16% 22% 13% 15% 32% 25%
GB-Prof9 18% 25% 18% 26% 43% 31%
GB-Prof10 14% 15% 11% 5% 3%
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interpretation of the ‘hot spot’ clustering. However, any reduction on k = 7 in this instance
breaks down as a segmentation that provides clusters that can be distinctively character-
ised both spatially and by attribute. The dual approach has thus, overall, allowed the anal-
ysis to quickly focus on k = 8 and k = 7 as rational candidate solutions. One might go on
to speculate on increasing the N candidate centroids and hence k = 9 or higher as part of
the sensitivity analysis. This is problematic as further ‘hot spots’ need to be recognised in
the GPZ clustering and may not be justified. The outcome would be influenced by the spa-
tial location of additional candidate centroid(s) and would result in further splits in the
zones. Zones most likely to be split as k increases would be those with least homogeneity
in their attributes, a likely candidate for k = 9 being Z8 in Table 2.

5. Conclusions

This paper has explored and demonstrated a dual approach in spatial data mining of
point event data. The sequence has been:



A.J. Brimicombe / Comput., Environ. and Urban Systems 31 (2007) 4–18 17
• use a ‘hot spot’ style clustering of point events (in this instance, Geo-ProZones) treating
each point as a binary event to suggest k number of classes centred on N initial candi-
date centroids (the ‘hot spots’) where k = N;

• create k new attributes for each point event being the Euclidean distance to each initial
candidate centroid;

• bring the records spatially nearest to the N initial candidate centroids in order to the top
of the data set;

• if necessary, normalise the data and check for outliers;
• run k-means clustering on all attributes using the first N records as candidate centroids;
• analyse the effectiveness of the approach.

The technique has been demonstrated on a business transaction database in order to
achieve a significant customer segmentation both spatially and by attribute. Although
the example used here has been a relatively small data set, it has allowed the workings
of the technique to be explained and visualised. The variable resolution approach to pro-
ducing GPZ clusters has shown itself to be effective for interpreting density ‘hot spots’.
Whilst the identification of ‘hot spots’ can be carried out by ranking the density of the
GPZ clusters, it remains subjective. Hence the need for sensitivity analysis of rational can-
didate solutions. The overall dual approach can be used effectively to explore clusters in
very large point event data sets.
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