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Abstract

A test-bed application, called Map Matched GPS (MMGPS) processes raw GPS output data,
from RINEX files, or GPS derived coordinates. This developed method uses absolute GPS position-
ing, map matched, to locate the vehicle on a road centre-line, when GPS is known to be sufficiently
accurate. MMGPS software has now been adapted to incorporate positioning based on odometer
derived distances (OMMGPS), when GPS positions are not available. Relative GPS positions are
used to calibrate the odometer. If a GPS position is detected to be inaccurate, it is not used for posi-
tioning, or for calibrating the odometer correction factor. In OMMGPS, GPS pseudorange obser-
vations are combined with DTM height information and odometer positions to provide a vehicle
position at ‘1 s’ epochs. The described experiment used GPS and odometer observations taken on
a London bus on a predefined route in central of London. Therefore, map matching techniques
are used to test GPS positioning accuracy, and to identify grossly inaccurate GPS positions. In total,
over 15,000 vehicle positions were computed and tested using OMMGPS.

In general, the position quality provided by GPS alone was extremely poor, due to multipath
effects caused by the urban canyons of central London, so that odometer positioning was used much
more often to position the vehicle than GPS. Typically, the ratio is 7:3 odometer positions to GPS
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positions. In the case of one particular trip, OMMGPS provides a mean error of position of 8.8 m
compared with 53.7 m for raw GPS alone.
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1. Introduction

Global navigation satellite systems (GNSS), such as the Global Positioning System
(GPS), have been increasingly used in real time tracking of vehicles. Especially, when
GPS is integrated with ever powerful geographic information system (GIS) technologies,
the accuracy and reliability of low cost standalone GPS receivers can be significantly
improved to meet the technical requirements of various transportation applications of
GPS, such as vehicle navigation, fleet management, route tracking, vehicle arrival/sche-
dule information systems (bus/train) and on demand travel information. With the auton-
omous European Satellite Navigations System Galileo, expected in 2008, an opportunity
of a joint system ‘GPS + Galileo” with more than 50 satellites will provide many advanta-
ges for civil users, in terms of availability, reliability and accuracy. However, severe mul-
tipath effects will continue to be a problem in dense urban areas. The work explained in
this paper is focused on vehicle positioning. However, the method used can be adapted
for almost any Mobile GI Service, such as those described by Jiang and Yao (2006), Li
(2006) and Zipf and Jost (2006). The map matching techniques used to test GPS position-
ing accuracy are particularly relevant to a trajectory prediction approach for location (Liu
& Karimi, 2006).

To date, there have been many attempts to improve the reliability of vehicle positioning
through the fusion of observations obtained by the integration of various positioning and
navigation instruments. The vast majority of such systems use a GNSS, for absolute posi-
tioning, and a variety of other sensors to provide relative positioning. The usual model is
using GPS to position a vehicle whenever possible and some form of inertial navigation
system (INS) or dead reckoning (DR) system, such as odometer, gyro and compass, to
determine a vehicle’s position relative to an initial position.

Kealy, Tsakiri, and Stewart (1999) and Ramjattan (now Kealy) and Cross (1995)
describe a typical solution, integrating GNSS and DR using a Kalman filtering technique.
In this experiment a test route for the system was established in the centre of Perth, Wes-
tern Australia. The results of this work found that “DGPS/DR solution starts to degrade
from 1 m to errors as much as 35 m by the end of a 10 min period” (Kealy et al., 1999).
Kalman filtering techniques do have an inherent problem, for vehicle navigation, on road
networks, “in terms of stability, computational load, immunity from noise effects and
observability” (Chiang, Noureldin, & El-Shiemy, 2002). The performance of the filter is
heavily dependent on the models used. The model used is a compromise between a statis-
tical predictive dynamic model and the measurement (observation) model. If too much
weight is given to the dynamic model, an overly smooth track is the result, i.e. rapid
changes of direction are not recognised quickly enough. If too much weight is given to
the measurement model, errors would be construed as sharp changes in direction. Devising
the correct model is very difficult, and without a very good model a Kalman filter will
deliver the wrong result. Other accounts of using a Kalman filter for multi-sensor vehicle



G. Taylor et al. | Comput., Environ. and Urban Systems 30 (2006) 757-772 759

navigation are given by Stephen and Lachapelle (2000) using GPS and low cost gyro,
Petrovello, Cannon, and Lachapelle (2003) providing an informative discussion on levels
of integration, and also Mezentsev, Lu, Lachapelle, and Klukas (2002). Hailes (1999) uses
Kalman filtering with map matching.

Fei, Qishan, and Zhongkan (2000) describe fuzzy logic techniques as an alternative to
Kalman filtering for GPS/INS integration. Furthermore, Mayhew and Kachroo (1998) com-
pare solutions using various configurations of GPS, steering position, odometer, gyroscope,
forward accelerometer and map matching, with sensor fusion methods Kalman filtering, rule
based and fuzzy logic. Chiang et al. (2002) developed a GPS/INS multi-sensor navigation
system that utilises an artificial neural network (ANN) as another alternative to Kalman fil-
tering. Wise-McLain and Murphy (1993) describe GPS and a DR system for tracking.

Over the past 4 years a group of researchers from the GIS Research Centre, School of
Computing, University of Glamorgan, have designed, developed and implemented a soft-
ware application package for researching algorithms and techniques to improve GPS
based on map matching for navigation and tracking. This test-bed application, called
Map Matched GPS (MMGPS) processes raw GPS output data, from RINEX files, or
GPS derived coordinates. It provides linkage to a GIS for access and analysis of appropri-
ate spatial and related attribute data (primarily road and height information). MMGPS
identifies the correct road, on which a vehicle is travelling on, and snaps the vehicle posi-
tion onto that road. Furthermore, MMGPS corrects the derived position using its own
computed correction parameters, ¢.g. Correction Dilution of Precision (CDOP) using his-
tory of previous position estimates and road geometry (Blewitt & Taylor, 2002). Various
research experiments utilising MMGPS have been conducted and results have been fully
described in Taylor, Blewitt, Steup, Corbett, and Car (2001).

Since the main objectives of this work are to determine both the accuracy and reliability
of position, of a public transport bus, that can be provided using GPS, odometer and map
matching techniques, a new algorithm has been developed that integrates odometer obser-
vations with the existing software, now called OMMGPS. In OMMGPS, height information
obtained from digital terrain models (DTM) are used to achieve 3D GPS point positions,
when only three GPS satellites are visible to the receiver. More importantly, height aiding
improves the accuracy of GPS point positions with poor satellite geometry (high PDOP),
and when severe signal multipathing occurs (multiple reflected GPS satellite signals).

The developed method uses absolute GPS positioning, map matched, to locate the vehi-
cle on a road centre-line, when GPS is known to be sufficiently accurate. When this is not
the case, odometer readings are used to locate the vehicle on a road centre-line. The odo-
meter is calibrated using relative GPS positions, based on map matching criteria, such as
the residuals of CDOP, for GPS precision determination (see also Section 2). The accuracy
of OMMGPS is a function of the frequency of accurate GPS points, reliable map match-
ing and correct odometer calibration.

Standard Ordnance Survey (OS) digital plan and height map products were used for
road map matching and height aiding. A number of trips along a bus route in central Lon-
don — Baker Street, Oxford Street, etc. — were made to test the method. A typical result of
map matched GPS positioning is shown in Fig. 1.

The innovative feature of this particular implementation is that map matching is actu-
ally used for GPS accuracy determination rather than to identify the correct road the bus
is driving on. This is achievable, since predefined bus routes are involved, hence the correct
road is always known. The trajectory of a sequence of GPS point positions is compared
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Fig. 1. Map matched GPS positioning with OMMGPS.

with an identified part of the bus route, using the map matching techniques described in
this paper. If this comparison meets the map matching criteria, described below, the points
are used for odometer calibration and bus positioning. Otherwise, they are discarded.

2. Methodology

The general approach was to use GPS to position the vehicle, and also to calibrate the
odometer readings, but only if GPS was available and of sufficient accuracy. At all other
times odometer readings were used to position the bus. Odometer positioning was achieved
by tracing the distance measured by the odometer along the bus route road centre-line —
actually, a 5 m offset centre-line was used, left of direction of travel, see Fig. 1. Map match-
ing techniques are used to improve the GPS positioning accuracy, and to identify grossly
inaccurate GPS positions. The previous 10 GPS/odometer positions are used for map
matching calculations.

2.1. Map matching

The existing MMGPS software has been adapted to incorporate positioning based on
odometer derived distances, when GPS positions are not available. This new version of
map matching software, OMMGPS, works in the following way:

1. A GPS observation is read from the GPS RINEX file, and an odometer count is read
from the odometer file.

2. A Raw vehicle position is computed using all satellites visible to the receiver, above a
15° elevation mask, plus height aiding, where height is obtained from a DTM. This
height is interpolated (bilinear) at the vehicle’s previous reference (Ref) position, i.e.
snapped on the road centre-line (Li, Taylor, & Kidner, 2003). This DTM derived height
of the receiver is used to provide an extra equation in the least squares pseudorange
computation of GPS coordinates, i.e. computation with a minimum of three satellites
is possible. For each epoch (instant time of observation) GPS points within 100 m of
the road centre-line are considered.
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3. An odometer correction is calibrated using odometer count at the current epoch and
relative GPS distance travelled. Only if GPS position useable, otherwise this step is
skipped for this epoch.

4. Road geometry based on DGPS corrections (from step 9, previous epoch) is added to
the Raw position to give a corrected (Cor) position.

5. This Cor position is now snapped to the nearest point on the nearest road centre-line to
give the current Ref position, and then a DTM height is calculated. That is, a Ref posi-
tion is available that can be used to generate road geometry based on DGPS corrections
for use with the next epoch’s computed Raw position. The resultant Ref positions are
checked for correctness using tests against map matching criteria (Taylor & Blewitt,
1999, 2000; Taylor et al., 2001); see below.

6. The odometer position is calculated, using previous Ref position, as well as the odo-
meter distance.

7. A position error vector is estimated in a formal least squares procedure, in which the
Correction Dilution of Precision (CDOP) is computed. This estimate is a map matched
correction that provides an autonomous alternative to DGPS, fully described in Blewitt
and Taylor (2002). The residuals of this process are used to determine the goodness of
fit of the position error vector.

8. Position error vector (step 7) is used to adjust the Ref position used for step 9. This pro-
vides a long-track correction, especially when CDOP is low (rapid change of road
direction).

9. DGPS corrections for each satellite pseudorange are computed using the current Ref
position. These are retained for future use.

The main map matching criteria for snapping a Raw GPS position to a road centre-line
Ref GPS position are each of the following, which have to be below a set maximum value:

¢ Distance error (absolute value of the difference between Raw distance and Ref distance,
between the current and previous epochs).

o Bearing error (absolute value of the difference between Raw bearing and Ref bearing,
between the current and previous epochs).

e Residuals of CDOP.

e Maximum distance of Raw GPS position from the road centre-line.

The number of satellites visible to the receiver has to be the same for current and pre-
vious epochs.

If a Ref GPS position passes the check, it is used for positioning the bus and calibrating
the odometer correction factor. Otherwise, the position of the bus is derived from the cal-
ibrated odometer distance, and the odometer calibration correction factor is not updated.
The values used for map matching are obviously open to adjustment and tuning, for dif-
ferent road geometry and environmental scenarios.

2.2. Distance correction factor
The previous section assumes that distances obtained from odometer readings are mul-

tiplied by a correction factor C, so that the distance supplied to OMMGPS is actually Cd
rather than just d. It is not reasonable to assume C is fixed, as different roads and, indeed,
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different road conditions on the same road will influence C. For this reason, when GPS
and odometer signals are both available, C will be calibrated over a time window by com-
paring distances travelled, based on odometer readings with those estimated from GPS
(i.e. relative distances between two GPS points). If GPS goes offline, the value of C
obtained just before the GPS signal is lost (or regarded as unreliable) is used together with
the odometer method to estimate location, i.e. the current odometer position is calculated
based on the previous GPS or odometer position, and the current odometer reading is
multiplied by the correction factor C.

2.2.1. Estimating C

C can be regarded as a correction factor between odometer-based distance estimates as
used above, and those obtained from the GPS-based method. At each second ¢, an odo-
meter distance d, and GPS-based coordinate estimates (X,, Y,,Z,) are obtained. Here, it
is assumed d, is a cumulative variable, so that the distance travelled between ¢ [J 1 and ¢
is d; [1 d;1. This is called Dd. Also, from the GPS measurements the cumulative distance
travelled can be computed using OMMGPS. These distances are called D,. Similar to the
odometer distances, DD is defined as D, [1 D,;;. Thus, a model of the relationship between
Dd and DD is

DD; “aCDd; p error

This model can be calibrated by estimating C using least squares techniques, i.e. C is
chosen to minimise the expression

X
@D, (1 CDd;P

1

It may be verified that, in this case, the estimate for C is
X
DD;Dd;

C%_XTIZ olp

However, this assumes that C is a constant correction factor. In reality, C is likely to
change, depending on traffic conditions, such as road shape, weather and so on. A more
realistic model allows C to vary with time, so that at each time ¢ a distinct C, is obtained.
One approach in this situation is to estimate C according to the same model, i.e. using a
‘moving window’ least squares estimate. At each time #, only the values for DD; and Dd;
are considered in a time window of k seconds, ie. only data from times
tOk,itO0k+1,..,¢ At time 7+ 1, data is dropped for time 7 (] k and added for time
t+ 1. Also, a weighting scheme is used in the least squares method, so that the squared er-
rors for data close to 7 have a higher weighting. This gives an estimation method, which
places more emphasis on minimising errors close to time ¢. In this case, the least squares
expres}s(ion to be minimised is

w,®D, ; [1C,Dd, ;B
V40 ..k

where w; is )t(he weight placed on the error at lag i seconds before time ¢. In this case, C, is

W,DD 1Dd i
S (R @b
i%@..kwiDdt i
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2.2.2. Weighting scheme for w;

Some thought should be given to the weighting scheme for the w;s. Obviously, a time-
decay effect is expected, so that wy > w; > [I1> wy. One possibility is to choose an expo-
nential fall-off up to wy, so that wy = c* could be chosen, assuming ¢ < 1. Note that
wo =1 can be fixed without loss of generality. In order to obtain the best performance
of the tracking algorithm as a whole, it may be experimented with different values of &
and c. Thu;(, the estimate for C; may be written as

Ci DDt iDdt i

C VoKL Bb
. ¢ Ddg
%0 ..k 1

2.2.3. Implementing the correction factor algorithm

The estimate of C, needs to be updated each second, where the odometer reading is reli-
able and the GPS position is available. Providing the GPS is available for & seconds, it
may be worked with an iteratively updated ‘moving window’ estimate. Using Eq. (2), C,
may be written as

suml
C. Vi ob
' 4sumZt
where
8 X
3 suml, % c'DDy; Ddy 5
Xk ' &b
3 sum2, % c'Dd};
%40 .k

If a record of the last k values of Dd; and DD; is available, sum1 and sum?2 may be updated
at each second, as well as the estimate C,. This can be seen in

suml, Yacsuml, ; p Dd,DD; [ ¢*'Dd, DDy «
sum2, Yacsum2, | p Dd} [1c®!'Dd? |

Since the algorithm requires only the values of DD and Dd at times ¢ and ¢ [1 k£ but not
those in between, a ‘first in first out’ (FIFO) of size k + 1 is a useful method of handling
the information. Unlike the more usual ‘last in first out’ (LIFO) stack, popping a value
from the stack returns the oldest item on the stack rather than the newest. Thus, at each
second, the current values of Dd, and DD, are computed and pushed onto a FIFO stack.
For the first k seconds GPS data is online, no values are popped from the stack. However,
after k seconds, values of Dd and DD are also popped from the stack. Since the oldest val-
ues are popped from the stack, and the stack has had items pushed on to it for k seconds, it
implies that Dd,;, and DD, ; will be popped.

&b

2.2.4. Calibration if GPS data recently online

In the previous section, the method for estimating C, is used when GPS data is avail-
able. If the GPS data is offline, the calibration of C, cannot take place. Previous section
assumed that GPS data is online for a sufficient period of time, so that

e at least k£ observations are pushed onto the stack, as well as
o the supplied GPS positions ‘settled” and are reliable.
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Thus, there is a ‘run-in’ period of / seconds, where the methods in the previous section
cannot be applied. Clearly, / cannot be less than k, but a much larger value may be
required. This is to be determined by experiment.

How C; should be estimated in this /-second time interval, and how the position should
be estimated? One possibility is to work initially with a global estimate of C to provide the
odometer based estimate. As time during the burn-in period passes, the estimate should
‘drift’ towards the estimate produced using (5). This can be done by combining C, and
C using a weighted average, with the weighting gradually favouring C, rather than C.
The trial method here uses the formula:

C’%qiCp al [ ke, &b
where j is the time into the run-in period, and C? is the ‘combined’ estimate of the cor-
rection factor, assuming 0 <q <1.

Finally, suml and sum?2 need to be ‘rebuilt’ in the first k seconds of this period. That is,

for times up to k seconds, the current DD, and Dd, need to be included into the running
mean computation, but DD, and Dd,; are not being dropped. Here, it may be written as

- suml, ¥acsuml,,; p Dd,DD;

&b
sum2; ¥a csum2,; p Ddt2

The estimate of the global Cis updated on an ongoing basis when GPS and odometer data
are available. From Eq. (3), it may be noted that

gsuml,
Va=—— fo?]>]
gsum2,
and gsuml, and gsum?2, may be updated each second, since
gsuml, ¥4 gsuml,; p DD,Dd, 510D

gsum?2, V4 gsum2,; p Ddt2

It may be sensible to scale gsuml, and gsum?2, to avoid rounding errors, for example a run-
ning mean computation such as
8

01 1
2 gsuml, A gsuml, | p —~DD,Dd,
n n al1p
> nll1 1,
gsum2, V4 " gsum2, ;| p HDdt

could be used. At any time both sums are reduced by a factor n, where n is the number of
times the updating algorithm is called. This has no effect on the estimate of C as the
numerator and denominator are scaled by the same factor, but it stops them from becom-
ing very large, leading to overflow errors.

2.3. Putting it all together

The above algorithms are used on an event-driven basis. Each time a new set of obser-
vations is provided, one of three conditions applies:

e GPS and odometer data both available, not during run-in period.
e GPS and odometer data both available, during run-in period.
e Odometer data only available.
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The set of actions to be taken in each case are outlined in the algorithms listed in
Appendix A.

2.3.1. Alterations to the correction factor algorithm

After the algorithms, described in the previous sections, were implemented, experiments
took place in which the algorithms were applied to test data. On the basis of this a number
of adjustments were made. In particular, it was found that on occasions the GPS signal was
only available for very short periods of time. This occurred either due to a lack of positions
provided by the GPS, or because the GPS position provided was rejected as unreliable. As a
result of this, there were situations when a GPS location was available for two or three sec-
onds, then unavailable for a similar length of time and so on. This led to a problem with
Algorithm 6 in Appendix A. Essentially, each time the GPS signal was available the stack
was reset, as were suml, sum?2 and j, effectively ‘forgetting’ the value of C, prior to GPS sig-
nal cut-out. An associated difficulty was that, if the run-in period was longer than 2 or 3 s,
C, was never being properly updated during these periods of intermittent GPS availability.

This led to a problem, since either the run-in period had to be very short, as did the size
of the stack, or very out-of-date values of C, were used. Neither option was acceptable. In
the first instance, C, was undersmoothed, leading to erratic odometer based estimates (i.e.
a lack of precision) — in the second case, C, does not vary wildly but is biased, since much
of the time values closer to the global C would be supplied — this led to a lack of accuracy.

To overcome this problem, it was noted that GPS cut-outs were never very long, so that
calibration of C, prior to the cut-out would still provide useful information. To this end,
Algorithm 6 was modified so that the resetting of the stack did not occur when a GPS loca-
tion became available. The modified algorithm, labelled Algorithm 6m, is listed in Appen-
dix B. Experimentation indicated better performance. For the training data, a run in a
period of 10 s was found, as well as a stack size of 10 — together with ¢ = 0.8 the best per-
formance was achieved, in terms of offset error to beacons (for detailed discussion of the
methodology see Section 4). It was also found at a later stage that a policy of always
returning the odometer-based location estimate (even when GPS was available) improved
the accuracy of predictions — this is also reflected in Algorithm 6m.

2.4. Height aiding

In OMMGPS height aiding is used throughout to add an extra equation in the least
squares approximation computation of GPS position. Height information obtained, using
bilinear interpolation, from a digital terrain model (DTM) are used to achieve 3D GPS
point positions, when only three GPS satellites are visible to the receiver.

More importantly, height aiding improves the accuracy of GPS point positions with
poor satellite geometry (high PDOD), and when severe signal multipathing occurs (multiple

Table 1

Number of GPS positions computed

Trip no. GPS only GPS + height aiding
34 3834 3834

4 3468 3635

6 3320 3991

9.2 3713 4014
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reflected GPS satellite signals). The number of GPS positions computed is nearly always
increased by using additional height information, displayed in Table 1. Trip 3.4 is the
exception.

3. Implementation

OMMGTPS consists of a Dynamic Link Library (DLL), written in C++, together with a
GUI for use in ESRI’s GIS products ArcView or ArcGIS. The GUI was originally written
in ArcView’s Avenue and has recently been translated to Visual Basic for use in ArcGIS
(Steup & Taylor, 2003). The GIS is used to visualise the results graphically, using back-
ground OS mapping.

4. Data processing and results

A number of separate trips along a bus route in central London (Baker Street, Oxford
Street, etc.) were made to test the method. During each of these trips, GPS observations
using low cost GPS L1 receivers and odometer observations using existing mechanical
odometers were taken at each second, on the bus. In total, over 15,000 vehicle positions
were computed using OMMGPS. Also, on each trip, the bus recorded the time when it
detected a beacon at the beacon’s known location, actually to a normal intersect with a
5 m offset centre-line, see Fig. 2.

The positions of the bus at these times were used as the ‘true’ position of the bus. There
are altogether 13 beacons on the bus route, which are used for determining OMMGPS
accuracy. Using this data the exact equivalent OMMGPS positions used to calculate dis-
tances were obtained by interpolation, applying the OMMGPS positions at the nearest
second before and after the beacon detection time. This is simple linear interpolation.

A bus position was available at each second, either computed by GPS or odometer
observations. For the whole route, odometer positions are used much more than GPS
positions: 70% odometer positions, 30% GPS positions. For the calculation of OMMGPS,
position at beacon detection time for the 13 beacons used; four positions were calculated
using only GPS, and nine positions were calculated using only odometer. The results

Beacon

Fig. 2. Beacon detection.
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Table 2
OMMGPS statistics for all beacons — for 95% — trip 4
Error for 100% (m) Error for 95% (m)
Mean 8.8 5.2
Standard deviation 6.6 3.6
Range 18.7 11.2
Minimum 0.9 0.9
Maximum 19.6 12.2
Table 3
Average errors for all trips
Trip no. GPS only (m) OMMGPS (m) 95% cut-off OMMGPS (m)
34 27.9 11.3 6.6
4 53.7 8.8 5.2
6 >100 28.3 14.1
9.2 40.7 22.8 14.4

obtained for trip 4 are presented in Table 2. This bus trip is the one, on which the algo-
rithm was developed and tuned, and it shows the excellent potential of the method. The
results of the other three trips processed, i.e. trip 3.4, 9.2 and 6, are shown in Table 3.

There is a substantial improvement in the accuracy of bus position using OMMGPS
instead of only raw GPS. In the case of trip 4, OMMGPS provides a mean error of
8.8 m compared with 53.7 m for raw GPS without odometer.

5. Conclusions

A new algorithm that integrates odometer observations with the existing MMGPS map
matching software was developed and successfully implemented. This new algorithm,
called OMMGTPS, utilises map matching criteria, not to determine which road a vehicle
is on, but to determine GPS position precision, in order to calibrate an odometer with
the help of GPS. In OMMGPS, GPS pseudorange observations are combined with odom-
eter positions and DTM height information to provide a vehicle position at ‘1 s’ epochs.
Generally, odometer positioning is used much more often to position the vehicle than
GPS. Typically, the ratio is 7:3 odometer positions to GPS positions. This predominant
use of odometer positioning is due either to GPS not being available or GPS positions
being considered to be too inaccurate to use. This lack of GPS positions is due to satellite
masking by buildings or the result of severe GPS signal multipath in the urban canyons of
central London.

Four bus trips along the same bus route were used to test OMMGPS. The results
obtained from these four trips are most encouraging. In total, over 15,000 vehicle positions
were computed using OMMGPS. The positions provided by OMMGPS at the time of
beacon detection can be considered to be a random sample of the accuracy provided by
OMMGPS, compared to the accuracy provided by GPS alone. That is, if a GPS position
was available at all, on or near the beacon detection time. The average error of OMMGPS
positions, over all vehicle positions, using the random sample of beacon detection times, is
17.8 m overall, and 10.1 m for a 95% cut-off. This compares with an average error for GPS
alone of at least 55.6 m overall.
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Moreover, the effectiveness of OMMGPS is entirely dependent on the frequency and
accuracy of GPS derived positions. The GPS data provided for testing compared very
poorly with similar raw L1 pseudorange GPS data collected independently along the same
bus routes, albeit using a much more expensive receiver and antenna for the independent
test observations. Similarly, receiver coordinates collected using another low cost L1 GPS
receiver also provided improved positions, although this was most probably due to
smoothing provided by this particular receiver’s own navigation filter.

In conclusion, the technique developed in OMMGPS works well, and can be further
improved with more superior low cost GPS receiver technology or a more careful attention
to its operational application. Due to the fact that the method is based on known routes, it
is not only appropriate for bus positioning but also for the use on railways.
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Appendix A. Qutline of algorithms
Algorithm 1 (Estimate location of bus from odometer signal)

input: float xlast, ylast, d, xroute[1:n], yroute[1:n]; integer position
currentx  xlast

currenty  ylast

nextx  xroute[position]

nexty  yroute[position]

DI 0

D2  distance3d(currentx, currenty, nextx, nexty)
position  position + 1

currentx  nextx

currenty  nexty

nextx  xroute[position]

nexty  yroute[position]

DI D2

D2 DI + distance3d(currentx, currenty, nextx, nexty)
beta (d 1 D1) (D211 DI1)

xestimate (1 [ beta) X currentx + beta X nextx
yestimate (1 [J beta) X currenty + beta X nexty
output: position, xlocation, ylocation

Algorithm 2 (‘distance3d’ function used by Algorithm4). NB. This assumes the existence of
a function DTMZ(x,y), which interpolates the z-coordinate of a location (x,y) from a DTM.

input: float x1,x2,y1,y2
zl  DTMZ(x1,yl)
z2 DTMZ(x2,y2)
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d Pl 022+ (51 022 + (21 0 2
output: d

Algorithm 3 (Update the value of Cy)

input: integer k; float gamma, suml, sum2, delta.d0, delta.DO0, delta.dk, delta.Dk
suml  gamma X suml

suml  suml + delta.d0 x delta.DO0

suml  suml [J power(gamma,k + 1)x delta.dk x delta.Dk

sum2  gamma X sum2

sum2  sum?2 + delta.d0 x delta.d0

sum?2  sum?2 [] power(gamma,k + 1) x delta.dk x delta.dk

Ct  suml [J sum2

output: Ct, suml, sum2

Algorithm 4 (Update the value of C)

input: integer n; float gamma, gsuml, gsum?2, delta.d0, delta.D0
factor (nUJ1)0On

gsuml  gsuml X factor + delta.d0 x delta.D0 x (1 [J factor)
gsum?2  gsum? X factor + delta.d0 xdelta.d0 x (1 [ factor)

C gsuml [J gsum?2

n n-+1

output: C, gsuml, gsum?2, n

Algorithm 5 (Combine C)

input: integer j; float rho, Ct, C
output: (1 [J power(rho,])) x Ct + power(rho,j) x C

Algorithm 6 (Overview of events)

initialise: Set n, suml, sum2, gsuml, gsum?2 to 0
loop
Repeat each reading
if GPS and odometer available, not during run-in then
Compute delta.D0 and delta.d0
Push delta.DO0 and delta.dO onto FIFO stack
Pop delta.Dk and delta.dk from FIFO stack
Update estimate of Ct using Algorithm 4
Update estimate of C using Algorithm 4
Return GPS location estimate as current position
end if
if GPS and odometer available, during run-in then
if GPS just became available then
set j, suml, sum2 to 0
Reset FIFO Stack
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end if
Obtain current value of C
if j <k then
Return odometer based location estimate (Algorithm 4) with correc-
tion factor C.
Compute delta.D0 and delta.d0 and push onto FIFO stack
suml  suml x gamma + delta.DO0 x delta.d0
sum2  sum?2 x gamma + delta.d0 x delta.d0
else
Compute delta.D0 and delta.d0 and push onto FIFO stack
Pop delta.Dk and delta.dk from FIFO stack
Update estimate of C using Algorithm 4
Update estimate of Ct using Algorithm 4
Obtain estimate of C°using Algorithm 4
Return odometer based location estimate (Algorithm 4) with correc-
tion factor C°
end if
end if
if odometer only available then
Return odometer-based location estimate (Algorithm 4) with correction fac-
tor of the last C, before the GPS data went offline.
end if
end loop

Appendix B. Modification of Algorithm 6

Algorithm 6m (Overview of events (modified))

initialise: Set n, suml, sum2, gsuml, gsum?2 to 0
loop
Repeat each reading
if GPS and odometer available, not during run-in then
Compute delta.D0 and delta.d0
Push delta.D0 and delta.d0 onto FIFO stack
Pop delta.Dk and delta.dk from FIFO stack
Update estimate of Ct using Algorithm 4
Update estimate of C using Algorithm 4
Return odometer-based location estimate as current position
end if
if GPS and odometer available, during run-in then
Obtain current value of C
if j <k then
Return odometer based location estimate (Algorithm 4) with correction
factor C.
Compute delta.D0 and delta.d0 and push onto FIFO stack



G. Taylor et al. | Comput., Environ. and Urban Systems 30 (2006) 757-772 771

suml  suml X gamma + delta.D0 x delta.d0
sum2  sum2 X gamma + delta.d0 x delta.d0
else
Compute delta.D0 and delta.d0 and push onto FIFO stack
Pop delta.Dk and delta.dk from FIFO stack
Update estimate of C using Algorithm 4
Update estimate of Ct using Algorithm 4
Obtain estimate of C°using Algorithm 4
Return odometer based location estimate (Algorithm 4) with correction
factor C°
end if
end if
if odometer only available then
Return odometer-based location estimate (Algorithm 4) with correction fac-
tor of the last C, before the GPS data went offline.
end if
end loop
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