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terns. The simulation model is validated using historical data from the Indiana interurban network. Sta-
tistical analyses suggest that the simulation model performs well in predicting the sequence of link
abandonment in the interurban network as well as the temporal change of topological attributes. The
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Degeneration fall of places in terms of their relative importance are also observed, providing further evidence for the
Topology self-organization property of surface transportation networks.
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1. Introduction

Scientific interest in the structure of complex networks have
been aroused by the observation of a power-law distribution in a
variety of so-called “scale-free” networks, such as the World Wide
Web, metabolic networks, citation networks, and the network of
human sexual contacts (Albert, Jeong, & Barabasi, 1999; de Solla
Price, 1965; Jeong, Gombor, Albert, Oltwai, & Barabasi, 2000;
Liljeros, Edling, Amaral, Stanley, & Aberg, 2001). As the physics
community became interested in surface transportation networks,
however, it was recognized that they exhibit topological attributes
that differ from other classes of networks: Csanyi and Szendréi
(2004) demonstrated a clear dichotomy between large real-world
networks which are small worlds with exponential neighborhood
growth, and fractal networks with a power-law distribution. Typi-
cal examples of the latter are networks with strong geographical
constraints, including power grids and surface transport networks;
Gastner and Newman (2006), revealing that the structure of
geographical networks are distinct from non-geographical ones,
provided a connection between the two classes of networks in that
they both can result from the same optimization model with one
parameter varied. Specifically, Montis (2006) studied the interur-
ban commuting network of the Sardinia region in Italy, and dis-
closed that the statistical properties of traffic structure exhibit
complex features and non-trivial relations with the underlying

* Corresponding author. Tel.: +1 612 626 0024.
E-mail addresses: xiex0055@umn.edu (F. Xie), dlevinson@umn.edu (D. Levinson).
URLs: http://welelaw.umn.edu (F. Xie), http://nexus.umn.edu (D. Levinson).

0198-9715/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compenvurbsys.2008.09.009

topology; Jiang and Claramunt (2004) and Jiang (2005, 2007), after
analyzing the street-street intersection topology (in which all
named streets are represented as nodes, while street intersections
as links) of urban street networks across North America and Europe,
found that urban street networks exhibit a scale-free property char-
acterized by a connectivity distribution with a power-law regime
followed by a cutoff. The scale-free property with street topologies
further suggests that “street networks or street topologies are self-
organized” from an evolutionary perspective; Limmer, Gehlsen,
and Helbing (2006) analyzed urban road networks of the 20 largest
cities in Germany and discovered scaling of several aspects of the
networks, such as the number of nodes reachable within a travel
time budget, which were only known for non-spatial networks.
While the main efforts have been put to describe the topological
dynamics of the networks in statistical physics (Barabasi & Albert,
1999; Dorogovtsev & Mendes, 2002), it remains unclear how
surface transportation networks could spontaneously evolve into
unique topological patterns as they grow and decline over time.
This question unavoidably requires an evolutionary view. The
analysis and modeling of the evolution of transportation networks
has been the subject of interest for more than half a century, and
the literature has followed the following three main streams.
During the early days of the quantitative geography regional
science economic geography movement, a few studies modeled
the structural transformation of surface transportation networks.
Kansky (1969) developed a quantitative predictive model of net-
work structure and applied it to the Sicilian railroad. Taaffe, Morrill,
and Gould (Taaffe, Morrill, & Gould, 1963) proposed a four-stage
model to describe the process of road network development in an
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undeveloped country. Garrison and Marble (1962) simulated the
changing topology of the Northern Ireland railroad system between
1830 and 1930 using Monte Carlo methods, while Morrill (1965) re-
ported parallel studies on the rail networks of central Sweden.
These studies simply replicated the observation of network topolo-
gies using heuristics, while not taking into consideration inherent
demographic and behavioral mechanisms that drive the evolution
of transportation networks, largely due to limited data and comput-
ing abilities at that time. This stream of studies remained dormant
for the following 30 years.

The attempts to extract or generate the optimal structure of net-
works represent another strand of evolutionary studies. Gastner
and Newman (2006) presented an optimization model to minimize
the cost of building and maintaining a network. Optimized network
structures were able to replicate the qualitative features of the net-
works with or without spatial constraints, with one parameter in
the cost function varied. Barthélemy and Flammini (2006) pro-
posed a model of traffic networks via an optimization principle.
The topology of the optimal network turns out to be a spanning tree
and, by changing model parameters, different classes of trees are
recovered. Schweitzer, Ebeling, Rose,and Weiss (1998) investigated
the evolution of road networks during the optimization process by
which a minimized travel detour is compromised with a minimized
cost of constructing and maintaining roads. In the field of transpor-
tation planning, the prevalence of travel demand forecasting mod-
els since the 1970s made it possible to predict traffic flows on a
transportation network in a more realistic way, thereby enabling
the investigation into the optimal network structure that maxi-
mizes the efficiency of travel. In recent years, the travel demand
model has been widely adopted to solve the network design prob-
lems (LeBlanc, 1975; Yang & Bell, 1998), which derives the design of
an optimum amount of transportation supply given the constraints
of limited resources. Optimization studies have made significant
contributions in predicting travelers’ route choice behaviors at
the demand level and optimal network structures at the supply le-
vel. These studies, however, assume changes to networks are made
by a central authority subject to an explicit objective function,
neglecting the continuous interplay between decision-makers, sup-
pliers, and users with independent interests, which has served an
essential role in shaping the structure of transportation networks
from a long-term point of view. Moreover, little empirical evidence
has been provided to show that the sequential deployment of trans-
portation networks actually follows an optimal design.

In contrast to optimization, the concepts of agent-based interac-
tion and self-organization have been introduced to interpret the
evolution of various complex systems (Barabasi, 2002; Newman,
2003). Agent-based simulation also found its application to interpret
the formation of surface transportation networks based on simple
individual travel behaviors. Lam and Pochy (1993) proposed an ac-
tive-walker model (AWM ) to describe the dynamics of a landscape,
in which walkers as agents moving on a landscape change the land-
scape according to some rule and update the landscape at every time
period. Helbing, Keltsch, and Molnr (1997) adopted the active walk-
er model to simulate the emergence of trails in urban green spaces
shaped by pedestrian motion. Starting from a homogenous ground,
frequently used trails got reinforced since they are chosen by
pedestrians more while rarely used trails withered. Consequently,
the trails bundled and emerged into different patterns, which the
authors claimed “reproduce many of the observed large-scale
spatial features of trail systems.” In recent years, limited efforts have
been put to model the evolution of large-scale transportation
networks employing agent-based simulation, bringing out some
interesting findings regarding the emergent topological features of
the networks studied. Yamins, Rasmussen, and Fogel (2003) pre-
sented a simulation of road growing dynamics on a land use lattice
that generates global features as beltways and star patterns

observed in urban transportation infrastructure, which however
did not consider the dynamics of traffic flows. Yerra and Levinson
(2005) and Levinson and Yerra (2006) demonstrated that a transpor-
tation network with a fixed structure can differentiate into a hierar-
chical structure from either a random or a uniform state, suggesting
that the hierarchy of roads, rather than necessarily following an
optimal design, is an emergent property of network and traffic
dynamics.

To summarize the literature, network scientists have widely
recognized that surface transportation networks, though different
from non-spatial ones, also exhibit scale-free properties, suggest-
ing surface transportation networks could be self-organized,
although little evidence has been provided in this regard. Efforts
to model the evolution of transportation networks have ranged
from geographical studies that aim to replicate network geome-
tries based on intuitive and heuristic rules, optimization studies
that predict optimal network designs subject to an explicit objec-
tive function, to simulation studies that model network formation
employing agent-based methods. These efforts, however, have
been limited in three folds: first, with a few exceptions, many stud-
ies impose a top-down design of network structure, thereby
neglecting the self-organization process that may drive the forma-
tion of transportation networks; second, the structural transforma-
tion of a network is not associated with a broader context that
allows for the interactions between demand (travelers) and supply
(infrastructure); third, little empirical evidence has been provided
for the claim that existing models can replicate the topological
change of transportation networks observed in reality.

The aim of this study is to fill these gaps. Differing from previ-
ous studies, our analysis implements a variable network topology
in a spontaneous process of demand-supply interaction based on
decentralized local optimal decisions. Another main contribution
of this study is to validate the model against empirical facts
extracted from historical observations and apply it to idealized
networks, providing both empirical and simulation evidence for
the self-organization property of surface transportation networks.

The rest of the paper takes the following form: we first intro-
duce a simulation model that incorporates individual links as inde-
pendently operating agents. While the weakest member in the
network is shuttered, it enables a variable network topology form-
ing from a bottom-up process. This is followed by a validation of
the model using historical data from the Indiana interurban net-
work. Then experiments are outlined applying the simulation
model on idealized networks, and results presented. The conclu-
sion summarizes our findings and indicates future directions.

2. Simulation model

The temporal development of a surface transportation network
can be viewed as a degeneration process: starting from an under-
developed area where all point-to-point paths can be used, those
paths which are more valuable are reinforced while less used ones
shrink and are finally abandoned. Taking road infrastructure as an
example, while dirt trails and turnpikes built in the early stage of
surface transportation disappeared on less used routes (such as
those connecting villages to villages), those on valuable routes
(such as those connecting towns to villages and to other towns)
survived and were replaced by paved roads, some of which may
be further upgraded into into arterial, highways or freeways. If
our focus were on paved roads rather than the whole spectrum
of road infrastructure, we would observe a network of paved roads
that gets increasingly connected through time until they are re-
placed by infrastructure constructed with a newer technology. In
this sense, the degeneration process represents the same “growth”
process of transportation networks we have observed in reality.
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A simulation model is constructed in this study to replicate the
evolutionary growth of transportation networks in a degeneration
process. Alternatively, the model can be thought of as simulating a
mature system where all links have been built, and some links are
abandoned while others are improved. As a whole, the evolution of
a network is represented as an iterative process over discrete time
(simulation) periods and each period implements topological
changes in a sequential process that includes five consecutive com-
ponents: network loading, travel demand dynamics, investment,
disinvestment, and topological measures, which will be explained
in turn.

2.1. Network loading

The model treats the distribution of land use as exogenous in-
puts. The region is divided into land blocks or land use cells which
hold the exogenous information of geographical location and
demographics. A land use cell loads all the trips generated from
this block onto the network at its nearest node. A land use cell will
re-allocate its trips to the second nearest node if the node to which
itis currently attached is removed. The distance from each land use
cell to its nearest node is also re-calculated.

2.2. Travel demand dynamics

A traditional travel demand forecasting model includes four
steps to predict the traffic flows on a given road network: trip gen-
eration, trip distribution, mode split, and traffic assignment (de
Dios Ortuzar & Willumsen, 2001). This study adopts the simplified
travel demand model developed by Levinson and Yerra (2006),
which considers only trips by a single abstract mode and assumes
infinite link capacity in traffic assignment. The steps of trip gener-
ation, shortest path finding, trip distribution, and all-or-nothing
traffic assignment are followed for each time period to predict
the through traffic of each link.

According to the travel demand model, the total travel time (T)
that travelers spent for each time period can be calculated as
follows:

dr L . ds
T % Ags <v0 + 2 v Oa ks + v0> (1)
where ggs is the number of trips between any pair of nodes from the
origin R to the destination S, estimated by the gravity model of trip
distribution.! The travel time of an average trip adds three parts:
the first part calculates the average access time from the land use
cells attached to R to this node. The variable dy is the average access
distance from an attaching land use cell to node R, while vq is a
specified minimal speed, which can be interpreted as the speed
for accessing the closest network nodes from the land use layer.
Similarly, the third part calculates the average egress time from
destination S to the land use cells attached to it. The second part
sums the travel time spent on the links along the shortest path be-
tween R and S, where &, ;. is a dummy variable equal to 1 if link a
belongs to this shortest path and 0 otherwise. The variable [, indi-
cates the length of link a and v, indicates its average speed.

2.3. Investment

For each time period, each link agent invests in its speed level
according to its revenues and costs in the preceding period. Suppose

! In analogy with physics, the gravity model illustrates the macroscopic relation-
ship between homes and workplaces, in which the interaction between two locations
declines with increasing time cost and monetary cost (user toll in this case) between
them, but is positively associated with the amount of activity at each location (Isard,
1956).

link ab is an agent autonomously operating two parallel and oppo-
site one-way links a and b that connect two nodes. In each time per-
iod, the agent gathers revenues from the toll collected by both
member links, computes the overall maintenance cost it spends
on both links, and then decides to invest in its speed level.

Let f, and f;,, respectively represent the flows of link a and link b
for iteration i. Earnings accruing to the link result from tolls that
are collected by link agent ab as follows:

Eab = Tlab(fa +fb) (2)

where I, is the length of each link (given that link a and link b have
the same length) while 7 represents the specified toll rate.

The cost to maintain links in their present usable conditions falls
into two parts: the variable cost depends on link length, flow and
speed, while the fixed cost is independent of flow and speed and
only depends on link length. The overall maintenance cost spent
by the agent operating links a and b for iteration i is calculated by
adding up the fixed and variable costs spent by both links as:

Cfixed,ab = z(lab)QCI (3)
Cvar,ab = (lab)oc1 [(fa)“z + (fb)“z}(vab)“g (4)

where o, o and o3 represent specified length, flow, and speed
powers in the cost equation, respectively.

It is assumed each link agent myopically decides to spend all
available revenue at the end of each iteration without saving for
the next time step. If the revenue (net of fixed costs) gathered from
links a and b exceeds the maintenance cost spent for iteration i,
remaining revenue will be invested to improve the speed level,
that is, the running speed of links a and b. In contrast, if the reve-
nue is insufficient to cover the cost, the running speed will drop
(this speed degradation differs from the disinvestment process
above which results in link abandonment). This myopic investment
policy adopted by each link agent can be expressed as:

(L Chreaan) "

var,ab

i+1 __ )i
Vab = Vab

where vl and vi; are respectively the speed levels of link agent ab
for iteration i+ 1 and iteration i, while g is a specified speed
improvement coefficient.

2.4. Disinvestment

The disinvestment process eliminates the least used link(s)
from the collection of existing links for each time period. In this
case, the usage of a link is surrogated by the volume of its through
traffic. The disinvestment criterion specifies how the weakest links
are selected and ensures a minimal number of links to be
eliminated for each time period.? The idea of the “weakest link”
heuristic arose from the concept of the “greedy algorithm” (Cormen,
Leiserson, Rivest, & Stein, 1990), in which locally optimum choice are
made in a discrete optimization process at each stage with the hope
of finding the global optimum. Similar to the greedy algorithm, the
purpose of the “weakest link” assumption is not to be as realist as
possible, but to capture the myopia of local optimal decisions made
in a sequential process of transport development.

2 For an asymmetric network, one and only one link agent that operates at the
lowest flow level will be killed at a time among removable links. A removable link
agent is one which, by removing both its member links, does not disconnect the
network. For a symmetric network with symmetric demand, all the links on the
symmetric positions operate at the same speed and flow level. Thus once a link agent
is selected to be killed, all its symmetric counterparts will be selected automatically
as well.
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2.5. Measures of topological attributes

At the end of each simulation period, a series of topological
measures are computed to evaluate the collective structural fea-
tures of the emergent network from four different dimensions,
including the gamma index (y), the measure of network density
(D), the measure of entropy (H), the Gini index (G), and the mea-
sures of connection patterns.

The gamma index is one of a wide range of existing measures of
connectivity that quantify the interconnection of nodes in a net-
work (Harggett & Chorley, 1969; Rodrigue, Comtois, & Slack,
2006). The index compares the actual number of links with the
maximum number of possible links in the network:

e
“/Zm (6)

where e is the number of edges (directional links) and v is the num-
ber of vertices (nodes). Values for the gamma index range from 0 to
1 and a higher value represents a more connected network.

Network density measures the length of links per unit of sur-
face. The higher it is, the more a network is developed. The density
of a network (D) is measured by the length of examined links (L)
divided by the area of the territory (B).

L

D-3 (7)

The entropy of link speeds (H) measures the heterogeneity (hier-
archy) of roads in terms of their speeds, viewing a road network as a
collection of individual roads. The concept of entropy was initially
proposed to measure information uncertainty (Shannon, 1948).
The speed entropy of a road network can be approximated by:

H=- ipklng(pk) 8)

k=1

where py is the proportion of links of the kth level with regard to the
total number of existing links; speeds are organized into a histo-
gram and links whose speeds fall into the range k — 1 to k are cat-
egorized into the kth level.

Following Limmer et al. (2006), the Gini index G is adopted to
reflect the concentration of traffic along links in a network. The
importance of a links can be characterized by the number of vehi-
cles or passenger that pass through it within some time interval.
Accounting for the effect of heterogeneous link lengths, the actual

b
a L
f

use of a link is measured by the daily vehicle kilometer travel (VKT)
or passenger kilometer travel (PKT) that occurs on a link. As the
travel demand model allows the prediction of traffic volume on
each link, the Gini index of VKT or PKT distribution on the network
is approximated in a discrete form as follows:

e

G=1-> (X — Xic))(Yi + Yirr) 9)
k=1

where Xg represents the cumulative portion of links for
k=0,1,...,e while Y represents the cumulative portion of total
VKT or PKT. Links are sorted ascendingly according to VKT or PKT
that occurs on individual links.

The measures of connection patterns including ringness (¢, ),
webness (¢ ), Circuitness (i), and treeness (¢,..) are devel-
oped by Xie and Levinson (2007). An algorithm was developed to
identify the pre-defined structural elements of ring, web, circuit,
and branch in a network, and their relative significance can be
evaluated as follows:

(l;57me
Zl( 1 ) (1 O)
>ili
where [; is the length of an individual link i; is equal to 1 when a link
belongs to a ring. Similarly,

(l;eP
Zl( (g} ) (-l 1)
Dili
Note that if a link is located on one and only one circuit, it be-
longs to a ring; if it is located on more than one circuit, it belongs

to a web. If a link belongs to a web or ring, it is defined as a circuit
link; otherwise it is defined as a branch link. Therefore,

¢circuit = ¢ring + ¢Web (12)
(rbtree =1~ d)ring - d)web (13)

¢ring =

Pweb =

3. Model validation

Previous studies have revealed the similarity between topolog-
ical patterns generated in their simulation models and those ob-
served in reality. Visual similarity, however, is not sufficient for
the validity of these models. This section validates our model by
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Fig. 1. Snapshots of the interurban network in observation versus in simulation during dynamics. The figure in parenthesis indicates the cumulative number of links closed
from the first year of decline till the year of examination. Starting from the "complete” interurban network in (a) year 1916, the observed networks in (b) year 1930 (4 links
closed), (c) year 1932 (21 links closed), (d) year 1935 (34 links closed), and (e) year 1940 (52 links closed), are respectively compared to the simulated ones in (f) iteration 5 (4
links closed), (g) iteration 22 (21 links closed), (h) iteration 35 (34 links closed), and (i) iteration 53 (52 links closed) with the same number of links remaining.
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extracting empirical data from a historic transportation network
that actually experienced decline and comparing historical obser-
vations with simulation results based on statistical analysis.

Among those surface transport modes that have degenerated
through time (canals, turnpikes, passenger rails, streetcars, interur-
bans, etc.), the interurbans in North America probably experienced
the most dramatic change. Most interurban rails were built be-
tween 1901 and 1908, and by 1912 the interurban network had ta-
ken its final shape (15,500 miles or 25,000 km in the US). A marked
decline set in about 1918, and within two decades the network was
virtually annihilated. As the interurbans experienced such a short
and relatively recent life cycle, their history is well documented
and retrievable (Hilton & Due, 1960).

Reaching a maximum of 1825 miles (2937 km), Indiana was
second only to Ohio in the absolute size of its interurban network,
and Indiana is the only state where a large-scale grid-like interur-
ban network emerged. Therefore the Indiana network has been the
subject of interest to researchers for a long time (Haley, 1936;
Marlette, 1959). The network had its first line in 1887, started to
decline from 1917, and completely disappeared in 1941. As shown
in Fig. 1a, the interurban network of Indiana in 1916 represents the
network in its full shape.® As can be seen, the topological pattern of
the network can be best described as a series of irregular wheels,
with their spokes radiating from major cities such as Indianapolis
and Fort Wayne. The decline phase of the network is taken as a
case to validate our simulation model as follows.

Starting from the 1916 interurban network, a simplified travel
demand model* is adopted to estimate the traffic flows on individ-

3 For the purpose of this study, the network of Indiana is separated from those
other states basically along the state border. The portion in north Indiana is excluded
because it was more connected to Chicago and the Michigan cities around Lake
Michigan, than to the main body of the Indiana network. For simplicity, detour lines
shorter than 2 miles (3.2 km) are neglected and the locations of the places as the
terminals of these lines are adjusted as if they were located on the main line,
including Milton, Richmond, Gas City, and Riverside Park. Consequently, a network of
total 53 places and 62 interurban rail segments (124 one-way links) is identified.

4 The travel demand model takes population data by county as exogenous input.
The state of Indiana consists of 92 counties, and the historical population records of
each county are available every decade from 1890 to 1990 (Forstall, 1990). Population
of each county for each year was estimated by interpolation. Assuming the population
of a county is allocated to the nearest station (city), measured by the linear distance
from the centroid of this county to the station, 10 out of 53 stations will be assigned
no passengers, which is obviously unrealistic. To resolve this issue, the census tract is
instead used as the geographical unit to hold population information. The population
of a county is assumed to be evenly distributed. With no historical population data by
census tracts available in digital form, the population of a county is assumed to be
evenly distributed and allocated to tracts within its boundary in proportion to their
areas. Trips generated by each tract are then allocated to the nearest station.
Considering people have to access the stations on foot or by horse or carriage at that
time (auto ownership was not yet widespread, and auto drivers would be less likely to
use an interurban), it is also assumed that only people living in the tracts within 20
miles (32 km) stations would consider taking interurban rail. An estimated 94.4% of
the revenues of electric lines in 1902 came from passenger traffic (Hilton & Due,
1960). Thus this study considers only passenger traffic on the network, and estimates
trip generation from a station as a linear function of its assigned population. It is
assumed that each person will generate one trip per annum by interurban regardless
of other modes. As no historical evidence shows that the interurban had a notable
speed change, the interurban speed is assumed to be fixed over time and uniform over
space. Specifically, it is assumed that interurban lines have a uniform generalized
speed of 15 mi/h (24 km/h) (taking into consideration a uniform fare per mile) while
centroid connectors have a speed of 5 mi/h (8 km/h). A doubly constrained trip
distribution model is adopted and the decay factor is set as 0.01 as it is in the
simulation experiments. A doubly constrained trip distribution model is adopted and
the decay factor is set as 0.01 as it is in the simulation experiments, and an all-or-
nothing assignment is performed which assigns all the trips between an origin station
and a destination station on the shortest path between both stations. Note that the
predicted traffic flows on individual links need not be calibrated against the actual
traffic level because the “weakest link” heuristic is concerned only with the relative
flow level on links. Thus the parameters in trip generation, although arbitrarily
specified, will not affect the predicted course of link abandonment. The sensitivity of
model results on the decay factor in the trip distribution model, on the other hand,
will be examined.

ual links, and the link operated on the lowest flow level is removed
for each time period based on the “weakest link” heuristic until the
whole network disappears (i.e. in this case no stopping rule is im-
posed). A Spearman’s rank-order correlation test (Higgins, 2003) is
then taken to correlate the predicted sequence of link closure in sim-
ulation with the actual sequence of link closure (in which links are
ranked according to the actual years of closure extracted from his-
toric records). Spearman’s rank-order correlation test assesses how
well an arbitrary monotonic function describes the relationship be-
tween two variables, without making any assumptions about the
frequency distribution of the variables.

According to the rank-order correlation test, the correlation
coefficient is equal to 0.287. The z-test of correlation significance
scores —2.245 with the p-value equal to 0.024, suggesting the
two sequences are positively correlated at a 95% significance level.
The correlation test implies that although based on a simple heu-
ristic that the links with the least traffic will be closed first, the
“weakest link” heuristic predicts well the sequence of link closure
during the decline phase of the Indiana interurban network. Addi-
tional runs with different decay rates in the travel demand models
show that the correlation is robust over the change of the decay
factor and is even more prominent with a smaller decay rate.’

Fig. 1b-i present the snapshots of the interurban network dur-
ing the decline process in simulation versus in observation. To bet-
ter illustrate, the topological change of the network is depicted in
Fig. 2 as the fluctuations of proposed topological measures both
from simulation and from observation (the measure of circuitness
is not included but treeness provides a complement measure). As
can be seen in Fig. 2¢, the measures of ringness in simulation indi-
cate the emergence and collapse of a ring in the network, which is
exactly what we observed in reality, although it is several
iterations lagged as compared to reality. The series of each
topological measure in simulation are compared to their counter-
parts in observation using Two-sample Wilcoxon rank-sum
(Mann-Whitney) test, which is a non-parametric significance test
assessing if two independent samples come from the same popula-
tion (Higgins, 2003). Viewing the measures over time periods as
time-series data, this test essentially assesses if two series of data
fluctuate over time following the same trend. The statistical results
for each topological measure are also presented. Provided that the
null hypothesis of the rank-sum test is that the two samples are
drawn from a single population, none of the presented z-values
provide sufficient evidence to reject the null hypothesis. Thus we
can conclude that the computed attributes in simulation approxi-
mate the actual topological attributes of the network over time.

It is important to point out that, although empirical evidence
from Indiana Interurbans lends credibility to our model, it does
not necessarily mean this model can be universally applied to other
transportation networks with different scales, of different modes, or
in different regions without re-calibration or modifications. After all,
given the complexity transport development involves, the purpose

5 The decay factor in the trip distribution model indicates the rate of decline of the
interaction between places across the interurban network. To test the sensitivity of
the statistical results on the decay factor, model validation was re-executed with two
different values of 0.005 and 0.02, and the Spearman correlation coefficient was re-
calculated. With a lower rate of decline of the interaction (0.005), the Spearman
correlation test results in a more significant correlation (the correlation coefficient
equals 0.429 with a p-value of 0.0006), suggesting that under a higher degree of
interaction, the “weakest link” heuristics performs even better in predicting the
sequence of link abandonment. With a higher decline rate of 0.02, on the other hand,
the Spearman correlation coefficient, though still with the positive sign, is much
smaller and statistically not significant (the correlation coefficient equals 0.125 with a
p-value of 0.289). This could be explained by the fact that as the decay factor
increases, people become reluctant to travel farther. Provided that the interurban
lines attract mainly intercity travel, the travel demand on the network may be
underestimated, especially on strategic routes that connect big cities. This accordingly
undermined the predictive performance of the “weakest link” heuristics.
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Fig. 2. Topological measures in simulation versus in observation are calculated from the dimensions of (a) connectivity (z = 0.014; p-value = 0.989); (b) density (z = —1.262; p-
value = 0.207); (c) Ringness (z=-0.375; p-value =0.707);(d) webness (z=1.352; p-value=0.176); (e) treeness (z=-1.352; p-value=0.176); (f) Gini (z=1.347; p-
value = 0.178); the results of the Mann-Whitney test are also presented comparing the series of measures in simulation versus that in observation.

of our model is not to be realist as possible, but to capture the self-
organization property of transportation networks in an evolutionary
process based on heuristic assumptions.

4. Simulation experiments

As the simulation model is validated on the Indiana interurban
network, it is applied on idealized network structures with different
initial conditions to explore (1) the temporal change of topological
attributes from different network structures (2) typical topological
properties that emerge during the autonomous evolution of net-
works, and (3) the sensitivity of emergent patterns to initial net-
work conditions and to the parameters of the simulation model. A
different stopping rule is also used. To ensure the connectivity of
the network, an existing node must connect to at least another
existing node, and neither isolated nodes nor sub-networks are al-
lowed during the disinvestment process. In the idealized ultra-con-
nected networks developed for this study, a secondary node will be
removed if all links connected to it are removed while a primary
node is not removable and it must be connected by at least one link.

4.1. Idealized network structures

Most cities have rather complex geometries of surface transport
infrastructure. But from most origins in a city, one can travel lo-
cally in only four directions on its surface transportation network.
In this sense, a surface transportation network has properties sim-
ilar to a rectangular grid, in which travelers can only make a turn of
90° or a multiple of 90° from each node. The more directions which
one can travel from any point, the shorter will be the average travel
distance between points; at the same time the network will be
more redundantly connected (Newell, 1980).

Aside from a grid network that simulates an actual urban road
network, two ultra-connected networks are also tested, respec-
tively referred to as the complete network and the hexagon net-
work, which represent undeveloped networks where more
directions are available moving from point-to-point.

A network developed by directly connecting every pair of two
nodes among an original node set, which come from the intersec-
tion nodes of a grid network, is referred to as a complete network
in this study. When links intersect, a new secondary node is created,
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and the longer link is replaced by shorter links that ultimately con-
nect the same original nodes. A complete network does not neces-
sarily directly connect each secondary node to an original node or
another secondary node. Where links overlap, the longer link is
eliminated. Note that theoretically the turning directions included
in a complete network range from 0° to 360°, depending on the size
of the original grid network.

A hexagon network is also developed based on a grid network,
in which the included angle of two intersecting links can be 30° or
its multiples. Note that in the hexagon network, the primary nodes
with 12 links connected are scattered on a lattice of equilateral tri-
angles, and the secondary nodes connected to a primary node form
a hexagon. This type of network has the same topology as the hex-
agonal landscape developed according to the transportation princi-
ple of central place theory (Christaller, 1933; King, 1985), where
smaller places are always located on the major transportation
routes between the nearest larger places.

Since all these networks are based on a square grid, their size
can be indicated by the number of nodes along each side of the ori-
ginal square grid. For example, a 3 x 3 complete network is a net-
work developed on a 3 x 3 grid. With the extent of a grid network
fixed, its size also determines the average length of links and the
spacing of parallel roads in the network.

These idealized networks are developed to represent transporta-
tion networks with geographical constraints, which as disclosed by
Csanyi and Szendr6i (2004) are subject to the following scaling law:

Ns(r) ~ 1 (14)

where Ns(r) denotes the size of neighborhood of node S within ra-
dius r, i.e., the number of nodes which can be reached from S in at
most r steps. The scaling exponent is defined by Gastner and
Newman (2006) as the effective dimension of a network. In an
infinite network it is calculated as:
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As transportation networks are finite, Limmer et al. (2006)
approximated the calculation by computing the average neighbor-
hood size from a node in the network, plotting it over radius in
double logarithmic scale. The slope of the curve at its inflection
point gives the lower bound for an estimate of the dimension.

Fig. 3 displays the estimated dimension of each idealized net-
work, as well as that of the Indiana Interurban network in 1916
for comparison. As can be seen, the idealized networks demon-
strate scaling properties that are similar to the Interurban network
but distinct from scale-free networks, that is, the estimated dimen-
sions for all the networks are strictly between 1 and 2, represent-
ing networks on the two-dimension surface of the Earth with
limited sizes.

4.2. Simulation experiments and parameters

The model is run on different initial specifications in a series of
six experiments listed in Table 1. The simulator of ultra-connected
network disinvestment (SOUND) is developed to implement the
simulation model and visualize the results. Specifically, links are
classified into five levels according to their speed values (0.01-5,
5-10, 10-15, 15-20, 20+), with different levels of links displayed
with different colors and thickness.

A square 2500-cell land use layer is adopted for all the experi-
ments while three different network structures are tested: the
10 x 10 grid network, the 4 x4 complete network, and the
15 x 15 hexagon network. For simplicity, a uniform distribution is
specified for land uses under which each land use cell generates
and attracts 10 trips at the beginning of each time period. The initial
speeds of links are also pre-specified as exogenous inputs and they
determine the symmetry of a network. A network with a symmetric
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Fig. 3. Estimated effective dimension of (a) the 1916 Indiana Interurban network (d = 1.63); (b) the 10 x 10 grid network (d = 1.50); (c) the 4 x 4 complete network (d = 1.76);

and (d) the 15 x 15 hexagonal network (d = 1.77).
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Table 1

Specifications of experiments

No. Initial conditions?® Iterations
Network Link speeds Land use

1 10 x 10 grid Random Uniform 200

2 10 x 10 grid Uniform 50

3 4 x 4 complete Random 800

4 4 x 4 complete Uniform 120

5 15 x 15 hexagon Random 1000

6 15 x 15 hexagon Uniform 300

2 Random speeds are initial speeds specified for each link which are randomly
distributed from 1 to 10; uniform speeds are initial speeds specified for each link
which are equal to 5; uniform land uses are specified initial land uses which gen-
erate 10 trips from and attract 10 trips to each cell.

Table 2

Model parameters and their specified values

Parameters Description Value
Vo Walking speed in Eq. (1) 0.01
© Toll rate in Eq. (2) 1

al Length power in Eq. (3) 1

a2 Flow power in Egs. (3) and (4) 0.75
a3 Speed power in Egs. (3) and (4) 0.75
B Speed improvement coefficient in Eq. (5) 1

base structure, uniform land uses, and uniform link speeds evolves
symmetrically in its topology, and thus it is called a symmetric net-
work. Experiments 2, 4, and 6 were implemented on symmetric

networks with uniform initial speeds and a symmetrical algorithm
is included to ensure that the network evolved symmetrically; on
the other hand, a network with random initial link speeds evolves
asymmetrically and it is called an asymmetric network. Experi-
ments 1, 3, and 5 were implemented on asymmetric networks with
random initial speeds. Experiment 3 was repeated three times with
different sets of random initial speeds, labeled as 3a, 3b, and 3c,
respectively. Before the disinvestment process is started, the net-
work growth model presented by Levinson and Yerra (2006) is ap-
plied with the network topology fixed. Since all the experiments
reached a stable equilibrium in the network growth model before
the 20th iteration, the disinvestment process was started at the
20th iteration and iterated until the minimally connected network
was derived. After the disinvestment process was terminated, the
network growth process continued until it became stable again.
Note also that the minimal number of links to be eliminated de-
pends on the number of axes in a symmetric network. For example,
in a complete network with 3 axes, up to 8 link agents, i.e., 16 one-
way links will be removed at a time.

Table 2 lists model parameters and their values for these exper-
iments. The values are specified based on our best knowledge of
economies of scale in transportation economics, and the sensitivity
to these parameters will be discussed later.

4.3. Experimental results
To illustrate the dynamics of network topologies in simulation,

the snapshots of test networks in Experiments 1-6 are respectively
displayed, including the initial network, an interim network, and
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Fig. 4. Snapshots of grid networks in (a) Experiment 1 and (b) Experiment 2 with topological measures. According to the measures of connection patterns, typical connection
patterns of arterials are identified at different stages, including rings (Iteration 100 of Experiment 1; iterations 20 and 50 of Experiment 2), hub-and-spoke (Iteration 200 of
Experiment 1), and cul-de-sacs (Iterations 150 and 200 of Experiment 1). The legend bar applies to idealized networks in other figures as well.
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the final minimally connected network. Proposed topological mea-
sures of these networks are also presented. To reduce the running
time, the measures were computed every five iterations. As most of
the networks have rather complicated topologies, the links are
classified into arterials and collectors according to their absolute
speeds (links with their speeds above 10 are categorized into arte-
rials) and the measures of connection patterns are computed only
for the arterials whose topological patterns are of greater impor-
tance in a network.

4.3.1. Experiments on grid networks

The snapshots of an evolving grid network in asymmetric
(Experiment 1) and symmetric (Experiment 2) scenarios are dis-
played in Fig. 4. As can be seen, both scenarios generate hierarchi-
cal network topologies over time, but an asymmetric network
evolves into a tree-like structure with cul-de-sacs, while a sym-
metric network evolves into four symmetric sectors connected by
a ring in the center.

4.3.2. Experiments on complete networks

The snapshots of Experiments 3a and 4 are displayed in Fig. 5,
starting from the 4 x 4 complete network with random and uni-
form speeds, respectively. Fig. 6 displays different minimally con-
nected networks derived from Experiment 3a-c for comparison.

The topological change of the networks can be further corrobo-
rated by the fluctuations of topological measures over iterations.
Taking Experiment 3a as an example, Fig. 7 plots the measures
of network topology from different dimensions. In Fig. 7a, the

a
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0, =00 ¢,,=00 ¢,,=00

Iteration 400
y=052 D=121 H=217 G=035
0 =00 ¢,,=00 ¢, =10

disinvestment process is characterized by a continuous decrease
of connectivity (the gamma index), as the weakest links are repeat-
edly removed from the network. Not surprisingly, the fluctuation of
network density displays a similar downward-sloping pattern. The
dynamics of speed entropy, as shown in Fig. 7b, displays more fluc-
tuations: the initial disordered status with a random distribution of
link speeds corresponds to a high initial value of speed entropy
(3.18). As some links at lower levels are abandoned while others be-
come faster and enter higher levels, the entropy slopes downwards
until about the 400th iteration, when most links serve as collectors
operated at a speed below 10. Then the entropy gradually increases
from about 2.10 to 2.60 because more and more links are improved
to arterials. When the network shrinks close to the minimal size, a
substantial jump of the entropy is observed at the 780th iteration.
As can be seen, the entropy measure reflects how the heterogeneity
of the structure changes over time as autonomous links develop
into different hierarchies. Fig. 7c displays the change of the Gini in-
dex, which indicates the concentration of traffic on the network. The
curve slopes down as links with lowest volumes are removed and
traffic becomes less concentrated across remaining links, while a
substantial increase is observed at the 780th iteration. Fig. 7d de-
picts the change of the connection patterns of arterials in terms of
their relative significance since the first arterial appears at the
170th iteration. As more and more links improve themselves into
arterials, individual arterial links that appear at scattered locations
on different routes eventually merge into a contiguous network.
The arterial network becomes more and more connected in the
beginning, reflected by a decrease of treeness and an increase of
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Fig. 5. Snapshots of complete networks in (a) Experiment 3a (Experiments 3b and 3c are identical except for different random starting speeds) and (b) Experiment 4. The
asymmetric network eventually evolves into a hub-and-spoke structure with faster links connecting hubs in the center, and slower links between hubs and terminals in the
suburb; the symmetric network, on the other hand, evolves into a ring. Both experiments, however, disclose a similar dynamic process: as less used links are removed, more
traffic is directed to remaining links among which the ones on more used routes collect more revenue and improve themselves over iterations into arterials, which are

initially scattered in the network, and then emerge into a contiguous arterial network.
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Fig. 6. Emergent networks of (a) Experiment 3a, (b) Experiment 3b, and (c) Experiment
result in hub-and-spoke networks with quite similar measures of topological attributes.
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webness, since the first ring appears in the 530th iteration and the
first web in the 535th iteration. When all the remaining links be-
come arterials and weaker arterial links have to be removed from
the network, however, the arterial network shrinks and eventually
evolve into a hub-and-spoke structure. In a reverse process, the
treeness increases while the webness and ringness decrease. It is
worthy noting that the collapse of the last ring (when measure of
ringness drops to null) occurs also at the 780th iteration, when
speed heterogeneity (entropy) and traffic concentration (Gini) sub-
stantially increase. This could be explained by the fact that the sig-
nificant transformation of network structure leads to the
redirection of a large volume of traffic on the network when a few
links remain.

4.3.3. Experiments on hexagon networks

The snapshots of Experiments 5 and 6 are displayed in Fig. 8.
Note that the original hexagon network is designed with nodes
evenly distributed on a homogenous landscape. Initially, different

Entropy

3c with different sets of random initial speeds. The three experiments interestedly
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levels of nodes (differentiated by number of connections) have dif-
ferent scopes of “market”, within which the cells are allocated to
the most dominant place. Without considering the nodes on the
border of the network, the primary nodes (centers of hexagons)
are allocated more cells. Thus they are expected to represent more
important places which serve more traffic. As the network evolves,
however, the function and relative importance of places changed.
As arterials connected into spokes or beltways, minor places along
these links are reinforced, eventually serving a majority of though
traffic. This finding suggests that instead of assuming a static land-
scape as in the central place theory, the potential impact from an
evolving transportation network on the land use pattern needs to
be incorporated for a more realistic simulation of network
dynamics.

Another interesting finding is the temporal change of link spac-
ing. There exist 12 directions for traffic from each hexagon center in
the initial hexagon network. Along 6 directions, parallel links have
smaller spacing. When the network becomes less dense, as we can
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Fig. 8. Snapshots of hexagon networks in (a) Experiment 5 and (b) Experiment 6. Experiment 5 starts from an asymmetric hexagon network and evolves into a hub-and-
spoke structure which holds topological attributes similar to those emerge in the complete network as shown in Fig. 6. Experiment 6 starts with uniform initial speeds. As the

network grows, scattered arterials emerge and connect into a ring at the 200th iteration, and finally expand into a mesh-like network.

observe in Fig. 7a (Iteration 500) and Fig. 7b (Iteration 200), the
spacing of parallel links along these directions is enlarged. This
can be explained by the fact that autonomous links on two parallel
routes have to compete for through traffic; since the initial hexagon
network is dense (as we can see by comparing it to initial grid and
complete networks with regard to connectivity and density),when
the traffic is insufficient to support both routes, links on one route
have to degenerate while those on the other survive. This finding
suggests that link spacing in an urban transportation network is a
spontaneously emergent property of network dynamics.

4.4. Sensitivity tests

As the values of the model parameters listed in Table 2 are spec-
ified, changing these values may lead to different results. Therefore,
a sensitivity test is taken by re-running the experiments with differ-
ent parameter values. Taking Experiment 1 as an example, the mea-
sures of resultant network topologies are depicted in Fig. 9 with
regard to heterogeneity (to save space, only the flow coefficient
out of the three coefficients in the cost function is presented).

Increasing the specified walking speed (vo) from 0.01 to 1.0 de-
creases the access cost to the network, thereby increasing the travel
demand on the network. Since the “weakest link” criteria is con-
cerned only with the relative travel demand across links, however,
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Fig. 9. The sensitivity of topological dynamics on the model parameters with
respect to heterogeneity. Each experiment changes the value of one parameter only.
The experiments display different fluctuations of entropy.

changing the walking speed did not affect the topological attributes
of emergent networks significantly.

A higher toll rate (7) means more revenue will be collected on a
link with the same amount of through traffic. Raising the toll rate
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from 1.0 to 10.0 significantly increases the average speed of links in
equilibrium when the disinvestment starts, therefore resulting in a
higher measure of entropy as compared to the default settings.
structures.

A lower flow coefficient (o) in the cost function indicates a
higher economy of volume in maintenance. Decreasing the coeffi-
cient from 0.75 to 0.25 favors the links with higher volumes, which
essentially intensifies the differentiation of links during the
dynamics. This is corroborated by the observation of higher entro-
py throughout the experiment.

The speed improvement coefficient () specifies how intensively
each individual link invests or disinvests in the infrastructure in
response to its profit or deficit. Changing the speed improvement
coefficient, however, did not change the link speeds in equilibrium
when the disinvestment starts. Therefore, no significant effect on
the emergent networks has been observed after increasing this
coefficient from 1.0 to 2.0.

5. Conclusions

While fully recognizing that central authorities such as regula-
tors and planners have in recent decades played an active role in
transport development, this study tests the evolution of surface
transportation networks as a purely spontaneous process which
is played out as the outcome of independent decisions made by
users and infrastructure suppliers. This research provides an inno-
vative understanding of transport development in terms of demon-
strating how decentralized decisions could be translated into
facilities on the ground based on myopic local optimal criteria. This
research has demonstrated, with both empirical and simulation
evidence, independent and sequential decisions that did not follow
an optimal design could reproduce the basic features of surface
transportation networks. This implies that the formation of surface
transportation networks, although different from that of non-spa-
tial “scale-free” networks, could also be self-organized. Addition-
ally, this study contributes to identify and evaluate pre-defined
topological features quantitatively and trace their changes in an
evolutionary process.

A simulation model is developed to include a process of interac-
tion, investment and disinvestment, thereby enabling a variable
topology over time. Meanwhile, the temporal change of topological
attributes for networks is evaluated across dimensions of connec-
tivity, density, heterogeneity, and connection patterns. The model
is validated using historical data from the Indiana interurban net-
work. Statistical analyses disclose that the model based on myopic
investment rules and the intuitive “weakest link” heuristic per-
forms well in predicting the sequence of link abandonment in
the interurban network as well as the temporal change of its topo-
logical attributes.

The model is then applied on different idealized network struc-
tures with different initial conditions. Typical connection patterns
such as rings, webs, hub-and-spokes, and cul-de-sacs are observed
during network evolution. The fact that the same type of connec-
tion patterns may emerge with different initial conditions, or from
different network structures, even based on completely decentral-
ized decisions, suggests that surface transportation networks pos-
sess robust topological properties that spontaneously emerge from
the interaction of demand and supply. Measurement of entropy
suggests the spontaneous organization of network hierarchies in
a variable network, which agrees with the finding by Yerra and
Levinson (2005) and Levinson and Yerra (2006) with fixed network
topologies.

The spontaneous change of spacing between parallel links pro-
vides further evidence for the interaction between demand and
supply during network evolution. The enlargement of spacing is

accompanied with the abandonment of links on alternate routes,
which is a natural reaction to the over-competition for demand
in a dense network. This finding also indicates a future direction
of model enhancement to explicitly include the cooperation and
competition between decentralized infrastructure suppliers in dif-
ferent ownership structures.

The rise-and-fall of places in terms of their relative importance
is also observed as transportation networks evolve, suggesting a
coupled evolution of land use and transportation. Following an
abundant literature on integrated transport-land use analysis, we
have examined the co-evolution of transportation and land use
in a parallel study (Levinson, Xie, & Zhu, 2007).

Due to the complexity our model involves, compromises have
to be made between realism and feasibility. In order for an afford-
able running time, we adopt a simplified four-step travel demand
model which neglects congestion effect by assuming infinite link
capacity in traffic assignment (it is worthy noting, though, while
congestion effect is neglected in the travel demand model, it is
indirectly accounted for in the investment models, as congested
links generate higher revenue, and therefore get more investment).
More sophisticated modeling techniques such as user equilibrium
and combined travel demand models would definitely improve
model performance by taking into better account congestion and
feedback loops between trip distribution and traffic assignment.
In fact, one of our ongoing studies on the deployment of transpor-
tation networks (Xie & Levinson, accepted for publication) has
introduced user equilibrium travel demand models to produce
more realistic traffic estimates.
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