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Abstract 

This paper aims to provide a new methodological and empirical contribution to the rising 
literature on the relative performance and benchmarking of large cities in a competitive world. 
On the basis of a recent detailed database on many achievement criteria of 35 major cities in the 
world, it seeks to arrive at a relative performance ranking of these cities by using Data 
Envelopment Analysis (DEA). A novel element is the use of a new type of ‘Super-Efficiency 
DEA’ to identify unambiguously the high performers (‘exceptional places’) in the group of 
world cities investigated.  This new productivity-based approach is complemented with two new 
directions in DEA research, viz. a Distance Friction Method and a Context-Dependent method.  
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1. Exceptional Cities 

The structural and worldwide urbanization trend has prompted the emergence of 

metropolitan areas of an unprecedented scale. Especially in the current globalization age, such 

areas act as international power stations, with a rich pluriformity of centripetal and centrifugal 

economic, political and technological forces. Such world cities have a strong global control and 

command impact, not only because of their sheer size, but more so because of their innovative 

and creative potential (Glaeser and Kerr 2009, Sassen 1991, Shefer and Frenkel 1998). In this 

context, the local R&D, knowledge and learning base also plays an important role (Acs et al. 

2002, van Geenhuizen and Nijkamp 2011, Kourtit et al. 2011).  

World cities are increasingly also involved in fierce competition on global product and 

service markets, and consequently these metropolitan areas have to create favourable conditions 

for economic agents, such as: a healthy entrepreneurial climate; a specialized basis of industrial 

clusters; a diversified economic structure; an ecologically sustainable urban environment; a high-

quality research and educational infrastructure; a balanced population structure with sufficient 

skills; international accessibility through majors hubs etc. (see also Cheshire and Magrini 2009). 

World cities are essentially involved in a permanent global battle that is concerned with the 

maximum development and exploitation of agglomeration externalities in international spatial 

networks. 

An interesting question is now how global players and local experts view the potential and 

performance of these cities. In recent years, various attempts have been made to develop a 

classification or ranking of world cities based on their actual performance or their perceived 

success (see e.g. Taylor et al. 2009, Grosveld 2002, Arribas-Bel et al. 2011; Kourtit et al. 2012a, 

Suzuki et al. 2011). Especially the seminal work of Taylor and associates has gained world-wide 

recognition. A main challenge in empirical research is the development of a consistent, 

quantitative data base that is appropriate for a comparative, strategic benchmark analysis.    

One of the most detailed databases on world cities can be found in a recent study on the 

‘Global Power City Index’ (GPCI) undertaken by the Institute for Urban Strategies (2010). A 

thorough analysis of various world cities, 35 in total, was made in this study report, including not 

only the megacities of New York, London, Paris, Tokyo or Beijing but also cities from emerging 

economies such as Sao Paulo, Mumbai, Kuala Lumpur or Cairo. The GPCI database contains six 

major clusters of relevant information on these cities. We employ this database for a benchmark 

analysis of these cities and, therefore, it is discussed in slightly greater detail in the next section. 
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The basic proposition of the present paper is that a pure ranking of world cities on the basis 

of their weighted achievement scores does not tell us very much about their economic efficiency, 

which in the long run will be decisive for their prosperity and sustainability. Therefore, our study 

aims to provide a more critical analysis of the performance data on these 35 metropolitan areas 

by using Data Envelopment Analysis (DEA) to position these cities on the basis of their relative 

performance, i.e. by relating their output to their input. This ratio is much more informative 

about the actual economic profile of the city concerned. In this study, we also make a new 

contribution to DEA analysis: namely, ‘Super-Efficiency DEA’, combined with a ‘Distance 

Friction Minimization’ model by introducing a new method for calculating and identifying 

super-efficient actors (in our case, cities). This methodology will be explained in Section 3. 

Then, Sections 4 and 5, respectively, present and interpret the various empirical findings for the 

database described above. Finally, the paper concludes with some suggestions for follow-up 

research and policy action.  

 

2. Description of the World Cities Database 

For a systematic comparison of cities’ performance analysis and their urban 

competitiveness, our empirical approach is based on a unique data set, the ‘Global Power City 

Index’ (GPCI),  produced by the Institute for Urban Strategies, under the aegis of the Mori 

Memorial Foundation (2010) in Tokyo for the year 2010.  

The GPCI index is used, as a strategic tool, to evaluate and rank the comprehensive power 

determinants of 35 major cities worldwide, in terms of the strengths and weaknesses of their  

performance in: creating wealth; enhancing social development; attracting investments; 

providing an open and attractive urban ‘milieu’ or climate; offering access to social capital and 

networks; encouraging integrated sustainability; and harnessing both human and technological 

resources in productivity and competitiveness at local and global scales. In other words, the aim 

of these world cities is to maximize urban XXQ (the highest possible urban quality) which may 

strengthen their foundations for securing socio-economic development and competitive 

advantage in a global playing field (Nijkamp 2010). 

The comprehensive performance scores and rankings of these global cities in the GPCI-

data set are based on six main categories, namely: "Economy", "Research & Development", 

"Cultural Interaction", "Liveability", "Ecology & Natural Environment", and "Accessibility". 

Each of these main indicators was subdivided into relevant and measurable sub-indicators, so 

that finally a consistent and tested database on 69 sub-indicators for 35 world cities was created. 

Thus, we have a complete, extensive and quantitative database for a great variety of relevant 

urban (sub-) indicators for all world cities under consideration.     

Next, a set of five worldwide types of actors was identified: managers, researchers, artists, 

visitors, and residents. These people were asked to score the importance of each of these 
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indicators, so that a weighted average importance score for each city could be calculated. All 

details can be found in the above-mentioned GPCI-2010 report. See Annex A in this paper for 

more details of the ranking results of these cities as presented in the above mentioned study 

(more details can also be found in Kourtit et al. 2012b). Figure 1 provides a concise analytical 

presentation of the main categories of performance indicators derived from the GPCI report.   
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Figure 1. An overview of the main categories of performance indicators used in GPCI-2010. 
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The GPCI-2010 database was collected systematically for all relevant cities in the sample. 

It was also carefully checked by both local experts and independent scientists, so that its 

reliability may be judged as satisfactory. Cleary, the sample of 35 World Cities may be extended 

in the future, but for our analytical purposes it meets our demands.  

This operational framework of empirical information is used in our DEA analysis in order 

to explore and represent in a comparative sense the super-efficiency performance of these global 

cities in terms of urban input (or resource) and output indicators and outputs regarding their 

economic achievement.  

 

3. Data Envelopment Analysis (DEA): New Roads 

 

3.1  The CCR model 

In this section, we will outline the various steps of our DEA experiment, starting from a 

standard DEA tool and proceeded towards a Super-Efficient DEA, while using two additional 

techniques, viz. a Distance Friction Minimization (DFM) and a (Stepwise) Context-Dependent  

(CD) method. The standard Charnes et al. (1978) model (abbreviated hereafter as the CCR-input 

or CCR-I model) for a given Decision-Making Unit DMUj ),,1( Jj   to be evaluated in any 

trial o (where o ranges over 1, 2 …, J) may be represented as the following fractional 

programming (FPo) problem: 

 (FPo)      
uv,

max   





m
mom

s
sos

xv

yu
  

s.t.      1



m
mjm

s
sjs

xv

yu
 ),,1( Jj        (1) 

  0mv , 0su , 

where   represents an objective variable function (efficiency score); xmj is the volume of input m 

(m=1,…, M) for DMU j  (j=1,…,J); ysj is the output s (s=1,…,S) of DMU j; and vm and us are the 

weights given to input m and output s, respectively. Model (1) is usually called an input-oriented 

CCR model, while its reciprocal (i.e. an interchange of the numerator and denominator in 

objective function (1), with a specification as a minimization problem under an appropriate 

adjustment of the constraints) is usually known as an output-oriented CCR model. Model (1) is 

obviously a fractional programming model, which may be solved stepwise by first assigning an 

arbitrary value to the denominator in (1), and then maximizing the numerator. But it is preferable 
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to transform (1) into a linear programming model, as the CCR model (1) can be shown to have 

the following equivalent linear programming (LPo) specification for any DMU j: 

 

(LPo)      
uv,

max    
s

sos yu    

s.t.       1
m

momxv                                              (2) 

0 
s

sjs
m

mjm yuxv  

0mv , 0su . 

 

The dual problem of (2), DLPo, can be expressed by means of a real variable  , using the 

following vector notation: 

(DLPo) 
 ,

min     

s.t.           0  Xxo                      (3) 

              oyY   

0 , 

 where the transposed (T) presentation  TJ ,1 is a non-negative vector 

(corresponding to the presence of slacks for each DMU),  X an (M× J) input matrix, and Y an 

(S× J) input matrix. 

We can now define the input excesses mRs  and the output shortfalls sRs  , and 

identify them as ‘slack’ vectors as follows: 

 Xxs o  ;                       (4) 

oyYs   .                  (5) 

These equations indicate that the efficiency of (xo, yo) for DMUo can be improved if the 

input values are reduced radially by the ratio  , and the input excesses s  are eliminated (see 

Figure 2). The original DEA models presented in the literature have thus far only focused on a 

uniform input reduction or a uniform output increase in the efficiency-improvement projections, 

as shown in Figure 2 (  =OC’/OC).  
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Figure 2. Illustration of original DEA projection in input space 

 

We also observe that the maximum efficiency score to be achieved by efficient DMUs 

based on the CCR model is 1. In practice, this often means that the CCR model usually computes 

more than one high-ranking DMU. And that prompts the question whether out of the  group of 

high-ranking DMUs the highest-ranking (super-efficient) DMU can be identified.  This will be 

discussed in subsection 3.2. 

 

3.2  The Super-Efficiency model 

The unsatisfactory identification of efficient firms in a standard DEA model – where all 

efficient firms get the score 1 – has led to focused research to discriminate between efficient 

DMUs, in order to arrive at a ranking – or even numerical rating – of these efficient firms, 

without affecting the results for the non-efficiency. In particular, Andersen and Petersen (1993) 

developed a radial Super-Efficiency model, while later on Tone (2002, 2003) designed a slacks-

based measure (SBM) of super-efficiency in DEA. In general, a Super-Efficiency model aims to 

identify the relative importance of each individual efficient firm, by designing and measuring a 

score for its ‘degree of influence’ if this efficient firm is omitted from the efficiency frontier (or 

production possibility set). If this elimination really matters (i.e. if the distance from this DMU to 

the remaining efficiency frontier is large), and thus the firm concerned has a high degree of 

influence, and outperforms the other DMUs, it gets a high score (and is thus super-efficient). 

Thus, for each individual firm a new distance result is obtained, which leads to a new ranking – 

even a rating – of all original efficient firms. 

The main problem in Super-Efficiency DEA is how to define the distance between an 

efficient DMU and the production possibility set that emerges after the elimination of one single 

efficient DMU. In the literature, the SBM (see Tone, 2002, 2003) has been advocated. And this 

method will also be applied in our empirical investigation.1  

                                                            
1 In the meantime, the above mentioned literature has also mentioned some more refinements of the SMB approach, 
such as the Super-SBM-I-C (the super-efficiency SBM method with DEA input-orientation under constant returns to 
scale), the Super-SBM-I-V (under variable returns to scale), the Super SBM-O-CC (with output orientation under 

Input 1 

Input 2 

O 

A 
C 

B 

C’ 
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Anderson and Petersen (1993) have developed the Super-Efficiency model to arrive at a 

ranking of all efficient DMUs. The efficiency scores from a super-efficiency model are thus 

obtained by eliminating the data on the DMUo to be evaluated from the solution set. For the input 

model, this can then result in values which may be regarded – according to the DMUo – as a state 

of super-efficiency. These values are then used to rank the DMUs and, consequently, efficient 

DMUs may then obtain an efficiency score above 1.000. The super-efficiency model may be 

suitable to find for our comparative data base on big cities in the world the set of highest 

performing smart cities. These can be ranked in descending order and are coined ‘Exceptional 

World Cities’ or ‘Exceptional Places’. 

The super-efficiency model based on a CCR-I model can now be written as follows: 

            
 SS ,,,

min


    eses  

s.t.           


  sxx

J

oj
jjo

,1

                             (6) 

              


  syy

J

oj
jjo

,1

  

0,,  ssj  

where e is a unit vector (1,...,1), representing a utility factor for all elements. This model will be 

used in our search for ‘Exceptional Places’ from which an ambiguous ranking will emerge. 

 

3.3  A new Super-Efficiency DEA based on a Distance Friction Minimization (DFM) 

3.3.1  Outline of the Distance Friction Minimization (DFM) approach  

As mentioned, the efficiency improvement solution in the original CCR-input model 

requires that the input values are reduced radially by a uniform ratio  (  =OD’/OD in Figure 2). 

The (v*, u*) values obtained as an optimal solution for formula (1) result in a set of optimal 

weights for DMUo; (v*, u*) is the set of most favourable weights for DMUo , in the sense of 

maximizing the ratio scale. vm
* is the optimal weight for the input item m, and its magnitude 

expresses how much in relative terms the item is contributing to efficiency. Similarly, us
* does 

the same for the output item s. These values show not only which items contribute to the 

performance of DMUo, but also to what extent they do so. In other words, it is possible to 

calculate the distance frictions (or alternatively, the potential increases) in improvement 

projections. Suzuki et al. (2010) used the optimal weights us
* and vm

* from (1) as the basis for the 

efficiency improvement projection model. A visual presentation of this approach is given in 

Figures 3 and 4.  
                                                                                                                                                                                                
constant returns to scale), the super-SBM-O-V (under variable returns to scale), and even the Super-SBM-GRS 
(under general returns to scale) . 
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In this approach, a generalized distance friction is employed to assist a DMU to improve its 

efficiency by a movement towards the efficiency frontier surface. The direction of efficiency 

improvement depends, of course, on the input/output data characteristics of the DMU. It seems 

appropriate to define the projection functions for the minimization of distance friction by using a 

Euclidean distance in weighted spaces. This forms the key of the DFM (Distance Friction 

Minimization) model. Thus, the DFM approach can generate a new contribution to efficiency 

enhancement problems in decision analysis by employing a weighted Euclidean projection 

function, and, at the same time, it may address both input reduction and output increase. We will 

not provide a detailed description of the various steps involved, but details can be found in 

Suzuki et al. (2010). 

By means of this DFM model, it is possible to present a new efficiency-improvement 

solution based on the standard CCR projection. This means an increase in new options for 

efficiency-improvement solutions in DEA. The main advantage of the DFM model is that it 

yields an outcome on the efficient frontier that is as close as possible to the DMU’s input and 

output profile (see Figure 5).  

 

 

 
Figure 3. Illustration of the DFM approach (Input- vi

*xi space) 
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Figure 4. Illustration of the DFM approach (Output - ur

*yr space) 

 

 

 
Figure 5. Degree of improvement of the DFM and the CCR projection in weighted input space 

 

3.3.2 A proposal for a Super-Efficiency DFM model 

We now design a Super-Efficiency DFM model that is integrated with a Super-Efficiency 

DEA model. 

In a normal DFM model, the (v*, u*) values obtained as an optimal solution for formula (1) 

result in a set of optimal weights for DMUo. Our new Super-Efficiency DFM model (hereafter 

SE-DFM) is now based on the idea that these optimal values result from the application of the 
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Super-Efficiency model. The advantage of the SE-DFM model is that it yields an unambiguous 

and measurable outcome in a ranking of efficient DMUs, i.e. this new integrated model can be 

suitable to find the highest performing DMUs, while retaining all the advantages of the DFM 

model. 

 

3.4  A Stepwise SE-DFM model in DEA  

3.4.1 Outline of a Context-Dependent model 

The Context-Dependent (hereafter CD) model can generate efficient frontiers in successive 

stages (levels), and can yield a stepwise level-by-level improvement projection (for details, see 

Seiford and Zhu, 2003). A concise formulation of the CD model follows now. 

Let  JjDMUJ j
l ,,1,   be the set of all J DMUs. We interactively define lll EJJ 1 , 

where    1,   klJDMUE l
k

l  and  kl, is the optimal value by using formula (1) (see Figure 

6). When l = 1, the model becomes the original CCR model, while the DMUs in set E1 define 

the first-level efficient frontier. When l = 2, it gives the second-level efficient frontier after the 

exclusion of the first-level efficient DMUs, and so on. In this manner, we identify several levels 

of efficient frontiers. We call El the lth-level efficient frontier. The following algorithm 

accomplishes the identification of these efficient frontiers.  

Step 1:  Set l = 1. Evaluate the entire set of DMUs, J1. We then obtain the first-level 

efficient DMUs for set E1 (the first-level efficient frontier).  

Step 2:  Exclude the efficient DMUs from future DEA runs, i.e. lll EJJ 1  (If 1lJ , 

then stop.) 

Step 3:  Evaluate the new subset of “inefficient” DMUs. We then obtain a new set of 

efficient DMUs 1lE (the new efficient frontier). 

Step 4:  Let l = l + 1. Go to step 2. 

Stopping rule: 1lJ , the algorithm is terminated. 

 

A visual presentation of the CD model is given in Figure 6. 

 

3.4.2  An operational Stepwise SE-DFM Model 

Any efficiency-improving projection model which includes the standard CCR projection 

supplemented with the SE-DFM projection is always directed towards achieving “full efficiency”. 

This strict condition may not always be easy to achieve in reality. Therefore, in this section we 

will integrate the CD model with the SE-DFM approach; this will be called the “Stepwise SE-

DFM” model. It can yield a stepwise efficiency-improving projection that depends on l-level 

efficient frontiers (l-level DFM projection), as shown in Figure 7. 
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Figure 6. Illustration of the CD model 
 

For example, a second-level DFM projection for DMU10 (D10) aims to position DMU10 

on a second-level efficient frontier. In addition, a first-level DFM projection is just equal to an 

SE-DFM projection. We observe here that the second-level DFM projection is easier to achieve 

than a first-level DFM projection. A Stepwise SE-DFM model can yield a more practical and 

realistic efficiency improving projection than a CCR projection or a SE-DFM projection. 

The advantage of the Stepwise SE-DFM model is that it also yields an outcome on a l-level 

efficient frontier that is as close as possible to the DMU’s input and output profile, which means 

that the Stepwise SE-DFM projection can compute more effective solutions than the CD 

projection model (see Figure 7). This set of new DEA applications will now be applied to the 

GPCI database on world cities described in Section 2.  
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Figure 7. Illustration of the Stepwise DFM model 

 

4. In Search of Exceptional World Cities 

In our empirical application we will use the GPCI-2010 database-2010. But rather than 

seeking to achieve a ranking of cities based on a comprehensive set of indicators, we aim to look 

at the efficiency (or productivity) of these cities, by investigating more carefully the ratio 

between multi-attribute outputs and multi-attribute inputs. To that end, DEA is an appropriate 

tool.  

In our application, we will first apply the CCR model and the Super-efficiency model in 

our search for exceptional world cities based on a super-efficiency DEA. In addition, we will 

apply the CD model based on the super-efficiency concept; in this way, the cities in our sample 

can be categorized according to efficiency-levels based on successive levels of  efficient frontiers. 

 

4.1  Efficiency scores for super-efficiency and CCR-I 

The efficiency evaluation results for the 35 world cities based on the CCR model and the 

Super-efficiency model using 4 inputs ("Cultural Interaction", "Liveability", "Ecology & Natural 

Environment", "Accessibility") and 2 outputs ("Economy", "Research & Development") are 

given in Figure 8. The standard CCR model assigns an equal efficiency to 9 world cities, viz. 

New York, Boston, Genève, Moscow, Beijing, Hong Kong, Tokyo, Los Angeles and Fukuoka, 

so that it is not possible to discriminate among these cities. However, by applying a Super-
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Efficient DEA model a clear difference in performance of these 9 cities can be observed (see 

Figure 8). 
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Figure 8. Efficiency score based on the CCR model and the Super-Efficiency model 

 

In Figure 8, the rankings of the super-efficiency values for 9 of the 35 world cities (i.e. 

New York, 1.659; Boston, 1.628; Geneva, 1.527; Moscow, 1.325; Beijing, 1.248; Hong Kong, 

1.060; Tokyo, 1.059; Los Angeles, 1.048; and Fukuoka, 1.022) were identified on the basis of 

their high Super-Efficiency score. It is noteworthy that in our analysis “New York” is the 

‘Exceptional World City’ based on the Super-Efficiency model. This is an unambiguous result 

that originates from the advantages of the design of the Super-Efficiency model. 

It should be added that these results differ quite considerably from those achieved in the 

original GPCI-2010 report (see Annex). The reason is that our productivity-based analysis allows 

non-megacities (such as Boston or Geneva) to achieve a favourable efficiency outcome, in which 

size and agglomeration effects are combined with smart management of the urban area 

concerned. Nevertheless, metropolitan areas like New York or Tokyo have managed to maintain 

their high ranking in our efficiency analysis. Clearly, there are economies of scale for world 

cities, but some medium-sized world cities appear to perform exceptionally well.  
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4.2  Efficiency scores and categorization based on CD-Super-Efficiency  

The detailed efficiency evaluation results for the 35 world cities based on the CD-Super-

Efficiency model with the six performance categories E1-E6 are given in Figure 9. 
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Figure 9. Efficiency scores and categorizations based on CD-Super-Efficiency 

 

In Figure 9, the DMUs in set E1 (New York, Boston, Geneva, Moscow, Beijing, Hong 

Kong, Tokyo, Los Angeles, and Fukuoka) represent the cities with the highest efficiency (these 

cities correspond to D1, D2 and D3 in Figure 6, which define the first-level efficient frontier 

group). These nine are identified on the basis of the Super-Efficient DMU concept.  

The eight DMUs in set E2 (Zurich, Copenhagen, Taipei, Shanghai, Seoul, Singapore, San 

Francisco, and London) are the second-tier efficient cities (these cities correspond to D4, D5, D6 

and D7 in Figure 6, which define the second-level efficient frontier group), after the exclusion of 

the first-level efficient cities. The seven DMUs in set E3 (Vancouver, Osaka, Sydney, Paris, 

Chicago, Toronto, and Frankfurt) relate to the third-level efficient cities, after the exclusion of 

the second-level efficient cities. Next, the five DMUs in set E4 (Vienna, Amsterdam, Sao Paulo, 

Brussels, and Berlin) are fourth-level efficient cities, while the DMUs in set E5 (Mumbai, Milan, 

Kuala Lumpur, and Madrid) and the DMUs in set E6 (Bangkok and Cairo) represent the fifth-
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level and sixth-level efficient frontier, respectively. 

On the basis of these more differentiated performance categories, we will compute in a 

quantitative sense an efficiency-improvement projection for the nearest upper-level efficient 

frontier for inefficient cities in the next section. 

 

5.  Efficiency Improvement Projection for Inefficient Cities 

 

5.1  Direct efficiency-improving projection based on SE and SE-DFM models 

 The direct efficiency improvement projection results based on the SE and the SE-DFM 

model for inefficient cities are presented in Tables 1a and 1b.  

 

Table 1a. Direct efficiency improvement projection of the SE and SE-DFM model 

DMU Score DMU Score

Difference % Difference % Difference % Difference %

d io
x* -s -** d io

x* -s -**

d ro
y* +s +** d ro

y* +s +**

London 0.752 Vienna 0.747
(I)Cultural Exchange 60.6 -18.5 -30.6% 0.0 0.0% (I)Cultural Exchange 24.9 -11.7 -47.2% 0.0 0.0%
(I)Livability 44.3 -11.0 -24.8% 0.0 0.0% (I)Livability 47.5 -12.0 -25.3% 0.0 0.0%
(I)Environment 57.8 -14.3 -24.8% -13.0 -22.5% (I)Environment 64.3 -18.9 -29.3% 0.0 0.0%
(I)Accessibility 56.0 -15.8 -28.2% 0.0 0.0% (I)Accessibility 28.7 -7.3 -25.3% -6.7 -23.1%
(O)Economy 50.5 0.0 0.0% 7.2 14.2% (O)Economy 36.7 0.0 0.0% 5.5 14.9%
(O)R&D 44.1 15.4 34.9% 0.0 0.0% (O)R&D 15.6 0.0 0.0% 0.0 0.0%
Paris 0.612 Zurich 0.967
(I)Cultural Exchange 51.3 -20.2 -39.4% 0.0 0.0% (I)Cultural Exchange 8.0 -0.3 -3.3% 0.0 0.0%
(I)Livability 55.6 -23.9 -42.9% 0.0 0.0% (I)Livability 45.7 -1.5 -3.3% -0.9 -1.9%
(I)Environment 56.2 -21.8 -38.8% -18.5 -32.9% (I)Environment 71.4 -5.5 -7.7% -4.3 -6.1%
(I)Accessibility 57.9 -22.4 -38.8% 0.0 0.0% (I)Accessibility 29.6 -6.3 -21.3% -5.6 -18.8%
(O)Economy 42.9 0.0 0.0% 12.5 29.1% (O)Economy 41.3 0.0 0.0% 0.7 1.8%
(O)R&D 40.3 0.0 0.0% 0.0 0.0% (O)R&D 19.2 0.0 0.0% 0.0 0.0%
Singapore 0.829 Frankfurt 0.876
(I)Cultural Exchange 31.0 -5.3 -17.1% 0.0 0.0% (I)Cultural Exchange 10.5 -1.3 -12.4% 0.0 0.0%
(I)Livability 38.6 -6.6 -17.1% -6.3 -16.3% (I)Livability 45.2 -5.6 -12.4% -4.5 -9.9%
(I)Environment 59.0 -10.1 -17.1% 0.0 0.0% (I)Environment 66.5 -8.2 -12.4% 0.0 0.0%
(I)Accessibility 42.1 -7.2 -17.1% 0.0 0.0% (I)Accessibility 38.5 -14.3 -37.3% 0.0 0.0%
(O)Economy 43.0 0.0 0.0% 4.0 9.4% (O)Economy 38.5 0.0 0.0% 2.5 6.6%
(O)R&D 29.7 3.5 12.0% 0.0 0.0% (O)R&D 13.8 4.5 32.8% 0.0 0.0%
Berlin 0.639 Madrid 0.610
(I)Cultural Exchange 28.2 -14.3 -50.7% 0.0 0.0% (I)Cultural Exchange 21.4 -8.4 -39.0% 0.0 0.0%
(I)Livability 48.7 -17.6 -36.1% 0.0 0.0% (I)Livability 48.6 -18.9 -39.0% -20.3 -41.7%
(I)Environment 66.8 -24.5 -36.7% 0.0 0.0% (I)Environment 60.6 -23.6 -39.0% 0.0 0.0%
(I)Accessibility 32.6 -11.8 -36.1% -11.0 -33.9% (I)Accessibility 35.4 -13.8 -39.0% 0.0 0.0%
(O)Economy 33.8 0.0 0.0% 7.8 23.0% (O)Economy 32.1 0.0 0.0% 7.8 24.2%
(O)R&D 22.7 0.0 0.0% 0.0 0.0% (O)R&D 10.9 2.8 25.8% 0.0 0.0%
Amsterdam 0.791 Vancouver 0.825
(I)Cultural Exchange 17.9 -3.7 -20.9% 0.0 0.0% (I)Cultural Exchange 12.4 -2.2 -17.5% 0.0 0.0%
(I)Livability 48.2 -10.1 -20.9% -9.2 -19.0% (I)Livability 60.7 -25.8 -42.6% -22.4 -36.9%
(I)Environment 65.3 -13.7 -20.9% 0.0 0.0% (I)Environment 56.4 -9.9 -17.5% -10.1 -17.9%
(I)Accessibility 41.0 -10.8 -26.4% 0.0 0.0% (I)Accessibility 25.9 -4.5 -17.5% 0.0 0.0%
(O)Economy 40.1 0.0 0.0% 4.7 11.7% (O)Economy 34.6 0.0 0.0% 3.7 10.8%
(O)R&D 18.5 3.1 17.0% 0.0 0.0% (O)R&D 17.8 0.0 0.0% 0.0 0.0%
Seoul 0.854 Copenhagen 0.914
(I)Cultural Exchange 20.9 -3.0 -14.6% 0.0 0.0% (I)Cultural Exchange 11.2 -1.0 -8.6% 0.0 0.0%
(I)Livability 38.8 -5.7 -14.6% -4.5 -11.6% (I)Livability 46.7 -4.0 -8.6% -3.1 -6.7%
(I)Environment 55.8 -10.9 -19.5% 0.0 0.0% (I)Environment 62.7 -5.4 -8.6% 0.0 0.0%
(I)Accessibility 36.1 -6.8 -19.0% 0.0 0.0% (I)Accessibility 31.3 -3.4 -11.0% -3.2 -10.2%
(O)Economy 36.4 0.0 0.0% 3.8 10.5% (O)Economy 41.1 0.0 0.0% 1.8 4.5%
(O)R&D 40.2 0.0 0.0% 0.0 0.0% (O)R&D 13.5 6.0 44.3% 7.4 54.8%
Sydney 0.776 Osaka 0.839
(I)Cultural Exchange 23.2 -7.9 -34.0% 0.0 0.0% (I)Cultural Exchange 12.9 -2.1 -16.1% 0.0 0.0%
(I)Livability 45.2 -10.1 -22.4% 0.0 0.0% (I)Livability 51.6 -16.9 -32.7% -13.5 -26.1%
(I)Environment 60.4 -14.1 -23.4% 0.0 0.0% (I)Environment 52.8 -8.5 -16.1% -9.4 -17.8%
(I)Accessibility 29.7 -6.7 -22.4% -5.8 -19.6% (I)Accessibility 30.5 -4.9 -16.1% 0.0 0.0%
(O)Economy 37.8 0.0 0.0% 5.0 13.1% (O)Economy 34.0 0.0 0.0% 3.8 11.2%
(O)R&D 22.2 0.0 0.0% 0.0 0.0% (O)R&D 24.1 0.0 0.0% 0.0 0.0%

SE model SE-DFM model

Score(θ**) Score(θ**)

 I/O Data

SE model SE-DFM model

Score(θ**) Score(θ**)

 I/O Data

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

 

Legend:    I = Input ;  O = Output 
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Table 1b. Direct efficiency improvement projection of the SE and SE-DFM model 

DMU Score DMU Score

Difference % Difference % Difference % Difference %

d io
x* -s -** d io

x* -s -**

d ro
y* +s +** d ro

y* +s +**

Brussels 0.652 Taipei 0.899
(I)Cultural Exchange 21.4 -7.4 -34.8% 0.0 0.0% (I)Cultural Exchange 7.3 -0.7 -10.1% 0.0 0.0%
(I)Livability 46.9 -16.3 -34.8% -17.8 -37.8% (I)Livability 45.4 -12.6 -27.7% -10.7 -23.5%
(I)Environment 52.7 -18.3 -34.8% 0.0 0.0% (I)Environment 48.5 -4.9 -10.1% -3.9 -8.1%
(I)Accessibility 34.4 -12.0 -34.8% 0.0 0.0% (I)Accessibility 28.4 -7.7 -27.0% -5.9 -20.7%
(O)Economy 32.8 0.0 0.0% 7.0 21.4% (O)Economy 30.2 0.0 0.0% 2.0 6.6%
(O)R&D 14.7 0.0 0.0% 0.0 0.0% (O)R&D 16.7 0.0 0.0% 0.0 0.0%
San Francisco 0.809 Kuala Lumpur 0.706
(I)Cultural Exchange 16.3 -3.1 -19.2% 0.0 0.0% (I)Cultural Exchange 14.0 -4.1 -29.4% 0.0 0.0%
(I)Livability 40.0 -7.7 -19.2% -8.2 -20.6% (I)Livability 38.7 -11.4 -29.4% -10.9 -28.1%
(I)Environment 54.8 -10.5 -19.2% 0.0 0.0% (I)Environment 54.2 -15.9 -29.4% 0.0 0.0%
(I)Accessibility 29.3 -5.6 -19.3% 0.0 0.0% (I)Accessibility 30.5 -9.5 -31.2% 0.0 0.0%
(O)Economy 33.9 0.0 0.0% 4.1 12.1% (O)Economy 28.7 0.0 0.0% 4.9 17.2%
(O)R&D 28.1 0.0 0.0% 0.0 0.0% (O)R&D 4.4 11.0 250.6% 0.0 0.0%
Toronto 0.798 Bangkok 0.527
(I)Cultural Exchange 16.9 -3.4 -20.2% 0.0 0.0% (I)Cultural Exchange 22.6 -10.7 -47.3% 0.0 0.0%
(I)Livability 46.4 -12.1 -26.0% -8.3 -17.8% (I)Livability 39.4 -18.6 -47.3% -20.5 -52.0%
(I)Environment 52.2 -10.6 -20.2% -12.8 -24.5% (I)Environment 47.5 -22.5 -47.3% 0.0 0.0%
(I)Accessibility 30.8 -6.2 -20.2% 0.0 0.0% (I)Accessibility 29.1 -13.8 -47.3% 0.0 0.0%
(O)Economy 35.8 0.0 0.0% 4.6 12.7% (O)Economy 24.0 0.0 0.0% 7.4 31.0%
(O)R&D 20.1 0.0 0.0% 0.0 0.0% (O)R&D 6.9 5.7 82.1% 0.0 0.0%
Chicago 0.754 Sao Paulo 0.671
(I)Cultural Exchange 20.8 -5.1 -24.6% -1.4 -6.5% (I)Cultural Exchange 9.9 -7.1 -71.5% -6.5 -65.8%
(I)Livability 36.9 -9.1 -24.6% -9.1 -24.8% (I)Livability 40.2 -13.3 -33.0% -7.9 -19.8%
(I)Environment 46.0 -11.3 -24.6% 0.0 0.0% (I)Environment 63.0 -23.0 -36.4% -15.1 -23.9%
(I)Accessibility 32.8 -8.7 -26.5% 0.0 0.0% (I)Accessibility 18.8 -6.2 -32.9% -3.7 -19.7%
(O)Economy 31.5 0.0 0.0% 5.1 16.3% (O)Economy 24.0 0.0 0.0% 4.7 19.7%
(O)R&D 28.9 0.0 0.0% 0.0 0.0% (O)R&D 3.0 6.7 224.4% 8.6 288.4%
Shanghai 0.894 Mumbai 0.637
(I)Cultural Exchange 23.9 -2.5 -10.6% -2.2 -9.3% (I)Cultural Exchange 9.4 -5.9 -63.3% 0.0 0.0%
(I)Livability 46.4 -9.1 -19.6% -6.2 -13.3% (I)Livability 42.7 -20.2 -47.2% 0.0 0.0%
(I)Environment 40.8 -4.3 -10.6% -2.2 -5.4% (I)Environment 51.1 -18.5 -36.3% 0.0 0.0%
(I)Accessibility 31.6 -3.4 -10.6% 0.0 0.0% (I)Accessibility 17.4 -6.3 -36.3% -5.1 -29.3%
(O)Economy 42.3 0.0 0.0% 2.4 5.6% (O)Economy 20.7 0.0 0.0% 4.6 22.2%
(O)R&D 11.5 2.5 21.7% 4.6 40.0% (O)R&D 3.9 4.1 104.0% 0.0 0.0%
Milan 0.588 Cairo 0.573
(I)Cultural Exchange 20.2 -8.3 -41.2% -4.8 -24.0% (I)Cultural Exchange 11.9 -5.1 -42.7% 0.0 0.0%
(I)Livability 49.4 -23.8 -48.2% -16.4 -33.2% (I)Livability 33.0 -14.1 -42.7% -14.4 -43.7%
(I)Environment 46.9 -19.3 -41.2% -19.6 -41.7% (I)Environment 42.5 -18.1 -42.7% 0.0 0.0%
(I)Accessibility 30.8 -12.7 -41.2% 0.0 0.0% (I)Accessibility 29.3 -14.3 -48.6% 0.0 0.0%
(O)Economy 27.5 0.0 0.0% 7.1 25.9% (O)Economy 19.6 0.0 0.0% 5.3 27.1%
(O)R&D 9.5 0.2 2.1% 7.0 73.4% (O)R&D 1.3 9.2 721.5% 0.0 0.0%

SE model SE-DFM model

Score(θ**) Score(θ**)

 I/O Data

SE model SE-DFM model

Score(θ**) Score(θ**)

 I/O Data

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

 

Legend:    I = Input ;  O = Output 

We will now offer a concise interpretation of the results presented in these tables. We will 

take Amsterdam as an illustrative example.  From Table 1a, the SE projection shows that, for 

instance, Amsterdam – in order to achieve a super-efficiency state – should reduce its input 

volumes Cultural Exchange, Liveability, and Environment by 20.9 per cent, and Accessibility by 

26.4 per cent in order to become efficient. On the other hand, the SE-DFM projection results 

show that a reduction in the Liveability of 19.0 per cent and an increase in the Economy of 11.7 

per cent is required to become efficient. It should be added that in a deterministic DEA model 

these findings are numerically correct, but that in policy practice such accurate adjustments will 

hardly be achieved. Nevertheless, this information is indicative for the direction and intensity of 

necessary policy handles in a city to become efficient.  
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For the sake of illustration, a comparison of the projection results of Amsterdam is 

presented in Figure 10. This result clearly shows that a different – and more efficient and 

effective – solution is available than the SE projection to reach the efficiency frontier. 

    

(I)Cultural
Exchange

(I)Livability (I)Environment (I)Accessibility (O)Economy (O)R&D

SE ‐20.9% ‐20.9% ‐20.9% ‐26.4% 0.0% 17.0%

SE‐DFM 0.0% ‐19.0% 0.0% 0.0% 11.7% 0.0%

‐30.0%

‐25.0%

‐20.0%

‐15.0%

‐10.0%

‐5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

 

Figure 10. Projection results of Amsterdam, based on SE and SE-DFM  

 

5.2  Stepwise efficiency-improving projection based on SE and SE-DFM models 

The stepwise efficiency-improvement projection results based on the SE and SE-DFM 

model for inefficient cities are presented in Tables 2a and 2b. 

In Tables 2a and 2b, it appears that the ratios of change in the Stepwise SE-DFM projection 

are smaller than those in the Stepwise SE projection, as might be expected. In Tables 2a and 2b, 

this particularly applies to Sao Paulo, Brussels, Mumbai, and Kuala Lumpur, which are non-

slack type DMUs (i.e. s-** and s+** are zero). Apart from the practicality of such a solution, the 

models show clearly that a different – and perhaps more efficient – solution is available than the 

Stepwise SE projection to reach the efficiency frontier. 

The more advanced Stepwise SE-DFM model is able to present a more realistic efficiency-

improvement result, which we can compare with the results of Tables 1b and b. For instance, the 

SE-DFM results in Table 1b show that Mumbai should reduce its accessibility indicator by 29.3 

per cent, and increase the Economy by 22.2 per cent in order to become entirely efficient. On the 

other hand, the Stepwise SE-DFM results in Table 2b show that a reduction in Accessibility of 

3.1 per cent, and an increase in the Economy of 1.3 per cent are required to become efficient (this 

means that Mumbai can attain the E4 level efficient frontier moving up from the E5 level). It 

should be noted that also in this case the same proviso on the interpretation holds, as indicated 
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above.  

 

Table 2a. Stepwise efficiency-improvement projections based on SE and DFM 

DMU Score DMU Score

Difference % Difference % Difference % Difference %

d io
x* -s -** d io

x* -s -**

d ro
y* +s +** d ro

y* +s +**

Vancouver 0.999 Vienna 0.994
(I)Cultural Exchange 12.4 -2.6 -20.5% -2.6 -25.9% (I)Cultural Exchange 24.9 -3.8 -15.4% -3.8 -18.2%

(I)Livability 60.7 -22.0 -36.2% -22.0 -56.7% (I)Livability 47.5 -0.3 -0.6% 0.0 0.0%

(I)Environment 56.4 -0.1 -0.1% 0.0 0.0% (I)Environment 64.3 -5.5 -8.6% -5.3 -9.1%

(I)Accessibility 25.9 0.0 -0.1% 0.0 -0.1% (I)Accessibility 28.7 -0.2 -0.6% -0.1 -0.3%

(O)Economy 34.6 0.0 0.0% 0.0 0.1% (O)Economy 36.7 0.0 0.0% 0.1 0.3%

(O)R&D 17.8 0.0 0.0% 0.0 0.0% (O)R&D 15.6 5.6 35.9% 5.6 26.6%

Osaka 0.998 Amsterdam 0.983
(I)Cultural Exchange 12.9 0.0 -0.3% 0.0 0.0% (I)Cultural Exchange 17.9 -0.3 -1.7% 0.0 0.0%

(I)Livability 51.6 -10.0 -19.3% -9.8 -23.6% (I)Livability 48.2 -0.8 -1.7% 0.0 0.0%

(I)Environment 52.8 -0.1 -0.3% -0.1 -0.2% (I)Environment 65.3 -1.1 -1.7% -1.1 -1.7%

(I)Accessibility 30.5 -0.1 -0.3% 0.0 0.0% (I)Accessibility 41.0 -0.7 -1.8% -0.9 -2.2%

(O)Economy 34.0 0.0 0.0% 0.1 0.2% (O)Economy 40.1 0.0 0.0% 0.3 0.9%

(O)R&D 24.1 0.0 0.0% 0.0 0.0% (O)R&D 18.5 5.3 28.5% 5.4 22.8%

Sydney 0.995 Sao Paulo 0.974
(I)Cultural Exchange 23.2 -9.8 -42.3% 0.0 0.0% (I)Cultural Exchange 9.9 -0.3 -2.7% 0.0 0.0%

(I)Livability 45.2 -2.3 -5.0% 0.0 0.0% (I)Livability 40.2 -1.1 -2.7% 0.0 0.0%

(I)Environment 60.4 -0.3 -0.5% 0.0 0.0% (I)Environment 63.0 -24.0 -38.1% 0.0 0.0%

(I)Accessibility 29.7 -0.1 -0.5% -8.1 -27.6% (I)Accessibility 18.8 -0.5 -2.7% -0.5 -2.8%

(O)Economy 37.8 0.0 0.0% 0.1 0.3% (O)Economy 24.0 0.0 0.0% 0.3 1.3%

(O)R&D 22.2 0.0 0.0% 3.4 15.3% (O)R&D 3.0 9.6 322.3% 0.0 0.0%

Paris 0.951 Brussels 0.898
(I)Cultural Exchange 51.3 -2.5 -4.9% 0.0 0.0% (I)Cultural Exchange 21.4 -2.2 -10.3% 0.0 0.0%

(I)Livability 55.6 -15.5 -27.8% -14.4 -35.9% (I)Livability 46.9 -4.8 -10.2% 0.0 0.0%

(I)Environment 56.2 -2.8 -4.9% -1.5 -2.9% (I)Environment 52.7 -5.4 -10.2% -4.4 -9.4%

(I)Accessibility 57.9 -9.5 -16.5% -7.8 -16.0% (I)Accessibility 34.4 -3.5 -10.2% 0.0 0.0%

(O)Economy 42.9 1.4 3.4% 2.9 6.6% (O)Economy 32.8 0.0 0.0% 1.8 5.4%

(O)R&D 40.3 0.0 0.0% 1.0 2.5% (O)R&D 14.7 6.5 44.4% 0.0 0.0%

Chicago 0.948 Berlin 0.882
(I)Cultural Exchange 20.8 -1.1 -5.2% 0.0 0.0% (I)Cultural Exchange 28.2 -7.0 -24.8% -6.7 -31.5%

(I)Livability 36.9 -3.6 -9.7% -2.2 -6.5% (I)Livability 48.7 -8.5 -17.4% -8.7 -21.6%

(I)Environment 46.0 -2.4 -5.2% -1.4 -3.3% (I)Environment 66.8 -14.0 -20.9% -15.0 -28.3%

(I)Accessibility 32.8 -2.8 -8.5% -1.8 -5.9% (I)Accessibility 32.6 -3.9 -11.8% -2.1 -7.1%

(O)Economy 31.5 0.0 0.0% 1.4 4.3% (O)Economy 33.8 0.0 0.0% 0.0 0.0%

(O)R&D 28.9 0.0 0.0% 0.0 0.0% (O)R&D 22.7 0.0 0.0% 2.3 10.3%

Toronto 0.938
(I)Cultural Exchange 16.9 -1.1 -6.2% 0.0 0.0%

(I)Livability 46.4 -7.0 -15.1% -3.5 -9.0%

(I)Environment 52.2 -3.2 -6.2% -3.0 -6.2%

(I)Accessibility 30.8 -1.9 -6.2% 0.0 0.0%

(O)Economy 35.8 0.0 0.0% 1.4 4.0%

(O)R&D 20.1 0.0 0.0% 0.0 0.0%

Frankfurt 0.937
(I)Cultural Exchange 10.5 -0.7 -6.3% 0.0 0.0%

(I)Livability 45.2 -2.8 -6.3% -2.2 -5.3%

(I)Environment 66.5 -4.2 -6.3% 0.0 0.0%

(I)Accessibility 38.5 -10.5 -27.2% -8.7 -30.9%

(O)Economy 38.5 0.0 0.0% 1.2 3.2%

(O)R&D 13.8 3.4 24.7% 5.7 33.4%

1.000 1.0001.000 1.000

1.000 1.000

1.000

1.000 1.000

1.000 1.000

1.000 1.000

E3

E4

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000

 I/O Data  I/O Data

Stepwise SE Stepwise SE-DFM Stepwise SE Stepwise SE-DFM

Score(θ**) Score(θ**) Score(θ**) Score(θ**)
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Table 2b. Stepwise efficiency-improvement projections based on SE and DFM 

DMU Score DMU Score

Difference % Difference % Difference % Difference %

d io
x* -s -** d io

x* -s -**

d ro
y* +s +** d ro

y* +s +**

Mumbai 0.973 1.000 1.000 Bangkok 0.933
(I)Cultural Exchange 9.4 -0.2 -2.7% 0.0 0.0% (I)Cultural Exchange 22.6 -7.5 -33.1% -6.9 -45.3%

(I)Livability 42.7 -10.2 -23.9% 0.0 0.0% (I)Livability 39.4 -2.6 -6.7% 0.0 0.0%

(I)Environment 51.1 -1.4 -2.7% 0.0 0.0% (I)Environment 47.5 -3.2 -6.7% -2.6 -5.8%

(I)Accessibility 17.4 -0.5 -2.7% -0.5 -3.1% (I)Accessibility 29.1 -2.8 -9.6% -1.8 -6.9%

(O)Economy 20.7 0.0 0.0% 0.3 1.3% (O)Economy 24.0 0.0 0.0% 0.9 3.7%

(O)R&D 3.9 0.2 4.2% 0.0 0.0% (O)R&D 6.9 0.0 0.0% 0.0 0.0%

Madrid 0.875 1.000 1.000 Cairo 0.859
(I)Cultural Exchange 21.4 -2.7 -12.5% 0.0 0.0% (I)Cultural Exchange 11.9 -1.7 -14.1% 0.0 0.0%

(I)Livability 48.6 -6.5 -13.5% -0.8 -1.8% (I)Livability 33.0 -5.3 -16.0% -1.5 -5.5%

(I)Environment 60.6 -7.6 -12.5% -5.4 -10.3% (I)Environment 42.5 -6.0 -14.1% -3.9 -10.7%

(I)Accessibility 35.4 -4.4 -12.5% 0.0 0.0% (I)Accessibility 29.3 -8.4 -28.5% -6.6 -31.3%

(O)Economy 32.1 0.0 0.0% 2.1 6.7% (O)Economy 19.6 0.0 0.0% 1.5 7.6%

(O)R&D 10.9 3.4 31.4% 4.5 31.3% (O)R&D 1.3 2.3 178.6% 3.3 91.9%

Milan 0.942 1.000 1.000
(I)Cultural Exchange 20.2 -2.3 -11.3% -1.7 -9.7%

(I)Livability 49.4 -10.1 -20.4% -8.9 -22.6%

(I)Environment 46.9 -2.7 -5.8% -1.4 -3.2%

(I)Accessibility 30.8 -1.9 -6.3% -1.1 -3.7%

(O)Economy 27.5 0.0 0.0% 0.8 3.0%

(O)R&D 9.5 2.8 29.5% 3.2 25.8%

Kuala Lumpur 0.930 1.000 1.000
(I)Cultural Exchange 14.0 -1.0 -7.0% 0.0 0.0%

(I)Livability 38.7 -2.7 -7.0% 0.0 0.0%

(I)Environment 54.2 -4.3 -8.0% 0.0 0.0%

(I)Accessibility 30.5 -2.1 -7.0% -2.3 -8.1%

(O)Economy 28.7 0.0 0.0% 1.0 3.6%

(O)R&D 4.4 7.8 177.8% 0.0 0.0%

E5

 I/O Data  I/O Data

1.000 1.000

Stepwise SE Stepwise SE-DFM Stepwise SE Stepwise SE-DFM

Score(θ**) Score(θ**) Score(θ**) Score(θ**)

1.000 1.000

E6

 

 

6.  Policy Lessons and Suggestions 

Our DEA analysis has aimed to shed new light on the rankings of world cities. Most 

comparative studies are based on an aggregate (weighted or unweighted) average of a set of 

background factors that have been translated into operational indicators. The approach adopted in 

the present study has focused attention much more on the efficiency and productivity of large 

cities, using a comparative data set. These research presented in the present study has offered 

interesting insights into the benchmark position of world cities, based on an extensive data set. 

Our findings reveal striking differences compared with standard ranking and benchmarking 

procedures. In particular, the new methods to arrive at unambiguous DEA ranking results provide 

promising findings.  

The Stepwise SE-DFM model provides the policy maker with practical and transparent 
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solutions that are available in the SE-DFM projection to reach the nearest upper-level efficiency 

frontier. These results offer a meaningful contribution to decision support and planning for the 

efficiency improvement of strategic urban policy. And therefore, this Stepwise SE-DFM model 

may become a policy vehicle that may have great added value for operational decision making 

and planning in cities. Clearly, cities have the possibility to increase their potential. This 

improvement potential differs for each city, but our results offer operational guidelines on a case-

by-case city basis.  

In this paper we have in particular presented a new methodology, the SE-DFM and 

Stepwise SE-DFM model, which integrates a Super-Efficiency model, a DFM model and a CD 

model. The new method minimizes the distance friction for each input and output separately. As 

a result, the combined reductions in inputs and increases in outputs that are necessary to reach an 

efficiency frontier are smaller than in the standard model. Furthermore, the new model could be 

adapted to reflect realistic conditions in an efficiency-improvement projection. In addition, the 

stepwise projection allows DMUs to include various levels of ambition regarding the ultimate 

performance in their strategic judgment. Clearly, our deterministic DEA modeling results have to 

be interpreted with some caution, as the level of precision implied by our findings is in practical 

situations not achievable. Nevertheless, our results offer an indication of the level of intensity 

and the direction of policy efforts that are needed to upgrade the efficiency profile of world cities.   

In conclusion, our Stepwise SE-DFM model is able to present a more realistic efficiency-

improvement urban policy strategy, and may thus provide a significant support contribution to 

decision making and planning for the efficiency improvement of the relevant agents involved. 
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ANNEX. GPCI-2010 on attribute categories of World Cities 

 

 


