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Abstract

In the past several years, social media (e.g., Twitter and Facebook) has
been experiencing a spectacular rise and popularity, and becoming a ubiquitous
discourse for content sharing and social networking. With the widespread of
mobile devices and location-based services, social media typically allows users
to share whereabouts of daily activities (e.g., check-ins and taking photos), and
thus strengthens the roles of social media as a proxy to understand human
behaviors and complex social dynamics in geographic spaces. Unlike conven-
tional spatiotemporal data, this new modality of data is dynamic, massive, and
typically represented in stream of unstructured media (e.g., texts and photos),
which pose fundamental representation, modeling and computational challenges
to conventional spatiotemporal analysis and geographic information science. In
this paper, we describe a scalable computational framework to harness massive
location-based social media data for efficient and systematic spatiotemporal
data analysis. Within this framework, the concept of space-time trajectories
(or paths) is applied to represent activity profiles of social media users. A hier-
archical spatiotemporal data model, namely a spatiotemporal data cube model,
is developed based on collections of space-time trajectories to represent the col-
lective dynamics of social media users across aggregation boundaries at multi-
ple spatiotemporal scales. The framework is implemented based upon a public
data stream of Twitter feeds posted on the continent of North America. To
demonstrate the advantages and performance of this framework, an interactive
flow mapping interface (including both single-source and multiple-source flow
mapping) is developed to allow real-time, and interactive visual exploration of
movement dynamics in massive location-based social media at multiple scales.
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1. Introduction

Social media represents “a group of Internet-based applications that are
built on the ideological and technological foundations of web 2.0, and that allow
the creation and exchange of user generated content” [21I]. Typical examples
include Twitter, Facebook, Foursquare, Flickr. In recent years, these on-line
applications have been attracting hundreds of millions of users for everyday
social networking and content sharing, and at the same time collecting a huge
amount of user-generated social media data (e.g., text messages, photos, videos,
and structure of social relationship). Twitter, for example, has grown at an
exponential rate since its founding. As of December of 2013, monthly active
Twitter users have reached more than 3.9 percent of global population and 17.9
percent of the United States, and have sent more than 300 billion of so-called
tweets (individual user posts)ﬂ On another front, with widespread of smart
mobile devices and location-based services, location-aware mobile devices have
become prevalent access points to social media services. Accordingly, location
has become a crucial aspect of social media data. Hundreds of millions of
smartphone users carry their location-enabled smartphones virtually every day,
record and share their whereabouts and experiences via social media. From a
perspective of geographic information science (GIScience), these users could be
viewed as ubiquitous “citizen sensors” that move in geographic spaces, sense
and share the surrounding environment using social media contents of various
kinds. The inclusion of location or spatial dimension blurs the interface between
the cyberspace of social media and geographic space of the real world [40], and
together with the temporal dimension, makes social media as promising proxies
to understand the social dynamics in geographic spaces.

With accesses to fine-grained social media footprints at individual levels,
location-based social media data provide a set of new lens to examine complex
social dynamics. By taking advantage of this new modality of data source, ex-
tensive studies with significant societal impacts have been recently reported.
In behavioral sciences, for example, massive individual geo-tagged social media
records can be used to study human activity (e.g., travel) patterns and the ef-
fects on human life [7]. By further leveraging friendship networking information,
one can quantitatively model the patterns of human activities and then make
predictions for the future [e.g., 2] B4]. At an aggregate level, a careful aggrega-
tion of social media footprints for a subpopulation (e.g., a geographic region)
could lead to a better understanding of this subpopulation [5], 23] and the con-
nections with others [e.g.,45]. In public health surveillance, studies have shown
that, for certain diseases (e.g., influenza), a careful analysis of geo-located Twit-
ter messages could provide surveillance capabilities comparable with the official
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CDC (US Centers for Disease Control and Prevention) reports, but in a much
more timely manner [e.g., [36] 27].

The initial successes in exploiting location-based social media data, demon-
strate great potentials and provide tremendous opportunities to gain new sci-
entific insights. Distinct characteristics of location-based social media data,
however, pose fundamental representation, modeling and computational chal-
lenges to GIScience, spatiotemporal databases and spatiotemporal analysis. As
described in [43], location-based social media data generated by a massive num-
ber of social media users are often big and produced continuously at an ever
fast rate. Millions of social media users frequently update or change their status
and locations. Consider the aforementioned case of daily new tweets and even
extend the desirable time window to months or years. Evidently, location-based
social media data and other user-generated geospatial contents are becoming
an important contribution source of big data [25]. Gray [12] suggests a fourth
paradigm, namely data-intensive inquiries or eScience, for scientific discoveries
to survive the deluge of big data. While GIScience is shifting rapidly to embrace
the fourth paradigm [44] 42], the big data nature of location-based social me-
dia is well beyond the capability of mainstream geographic information systems
(GIS). Furthermore, the dynamic and real-time characteristics of social media
data hinder direct applications of conventional GIS, which tends to represent
the real world as static forms instead of dynamic processes [I1]. In addition,
social media contents are usually produced in unstructured forms of media (e.g.,
texts, photos and videos) in contrast to the typical well-structured, ready-to-use
geospatial data sources. Extra efforts, such as data retrieving and data min-
ing processes, are often necessary to obtain the data and then make the data
meaningful and sensible.

To address these challenges, this paper presents a scalable computational
framework to harness the massive location-based social media data to support
systematic and efficient analysis of spatiotemporal dynamics. In the presented
framework, location-based social media data are firstly regularized in terms of
space-time trajectories or paths to represent the activity profile of each social
medial individual. To exploit the unstructured contents of social media, specific
data mining methods can be plugged into the described framework to gain valu-
able information of interests. As a particular example, this paper examines the
chance of influenza like illness (ILI) infection by monitoring text messages in
Twitter posts. Within the context of data warehouse and on-line analytical pro-
cessing (OLAP) [19], a data cube model for space-time trajectories is designed,
constructed and regularly maintained to support systematic and efficient spa-
tiotemporal analysis of massive location-based social media data. Specifically,
this data cube frames the spatiotemporal dynamics of location-based social me-
dia in a multidimensional space (or a cube) of location, time and social media
users, and decomposes this multidimensional space (cube) into a multi-scale,
hierarchical structure of cuboids. A set of measures that characterize the spa-
tiotemporal dynamics of location-based social media are specifically defined for
each cuboid (e.g, number of social media users and activities) and each pair
of cuboids (e.g., number of travels from one cuboid to another) of the data



cube. The measures of cuboids can be flexibly merged or split according to
the dimensional intervals of interest (e.g., administrative boundaries). Aggrega-
tion functions associated with these measures are also defined to support data
cube operations (e.g., merge and split measures of cuboids). With the data
cube model decomposed into arrays of cuboids, one can exploit the collective
spatiotemporal dynamics in particular regions of interest at multiple levels of
spatiotemporal scales (scale effects) and different aggregation boundaries (zon-
ing effects) in a very efficient manner. The presented framework thus transforms
the massive, dynamic and unstructured location-based social media data into
flexible geospatial datasets that could be easily compatible with the high per-
formance analytical environment of cyberGIS [42] and the typical work-flows
of conventional GIS analysis. Implementation details of the framework are de-
scribed based on an open access of Twitter post stream. An on-line visual
analytical interface, including single-source and multiple-source flow mapping,
is developed to allow near real-time, interactive visual exploration of multiple
scales of distribution and movement dynamics in massive location-based social
media data.

In the remainder of this paper, key concepts of data representation, partic-
ularly space-time trajectories, are first introduced in the Section 2. Section 3
introduces the spatiotemporal data cube model for efficient analysis of location-
based social media data. Based on a public data stream of Twitter feeds posted
on the continent of North America, the implementation details of presented
framework are discussed in Section 4. In Section 5 the on-line flow mapping
interface is introduced and demonstrated to showcase the advantages and ef-
fectiveness of the proposed framework. Section 6 summarizes the paper and
discusses future work.

2. Space-time trajectories

Consider a set of N individuals frequently sharing their activities (e.g., mes-
sage posts and check-ins) through a location-based social media platform, which
exhaustively collects activities of users. To ease the privacy and security con-
cerns of individual users, we suppose that the location-based social media plat-
form is designed to collect these data anonymously, that is, the social media
platform is unaware of the identities of individual users and no names or other
personal identifiers are shared. Each individual is assumed to move continu-
ously in geographic spaces, either freely in a Euclidean space, or restrictively
in a regularized network space, e.g., roads, railways, or airways, and frequently
share messages via social media channels.

The concept of space-time paths or trajectories has long been used as a
simple and effective means for representing and characterizing human mobil-
ity pattern [I6] and spatial trajectory analysis [46]. In this paper, we as-
sume that each user w;q(id € [1,N]) corresponds to a continuously moving,
lifetime space-time trajectory T;4 in a geographic space. This “true” trajec-
tory T;q is measured and approximated by TS;4, a series of footprints tu-
ples of location (s;q), timestamp (¢;4) and message content (m;q) of in social



media, i.e.: TSiq = {(s%,t%,m%), (sl thmly), ..., (st tiyymiy), ...}, where
9, <tl, <...ti, <.... Different from conventional trajectories of moving ob-
jects [46] where measurements are often abundant and sampled at regular time
intervals, measurements for trajectory of location-based social media T'S;4 (i-e.,
user activities) are often very temporally sparse and irregular [§]. Inactive social
media users could have long time of sedative period before next social media
activities, and yet due to privacy concerns, users have choice to disable loca-
tion options when posting activities. Consequently, the intermediate positions
between measurements on 7'S;4 cannot be reliably reconstructed by commonly
used methods (e.g., interpolation and map-matching) in spatial trajectory anal-
ysis. [I] referred to this particular type of trajectories as “episodic movement
data”. In the following analysis, we assume that T;4 is a step function of time
T defined by trajectory samples T'S;q4, i.e., a social media user u;q stays at the
same location during [t;,t;+1] as at ¢; until a new activity is posted at ¢;; when
u;q moves from s; to s;41.

To characterize the massive number of space-time trajectories associated
with social media users, several geometric measures of trajectories are partic-
ularly of interest. Individuals typically return to the same location frequently,
and the locations are ranked based on the number of visited times in each tra-
jectory. We refer the most frequently visited location area as the home of the
individual. To represent the mobility of an individual, radius of gyration [10]
is maintained based on an individual’s spatial footprint. Compared with GPS
logs or mobile phone records, location-based social media data provide access
to the contents of messages or activities (m). Despite of being unstructured,
these contents carry important clues to latent attributes of social media users.
Specific data mining methods could be applied to derive desirable attributes
about social media users, such as health statuses [36], socio-demographic infor-
mation [4] [33], and opinions on specific subjects [28]. As a specific example to
illustrate the proposed framework, this paper focuses on infection spread of ILI;
a previously developed text mining method [43] is applied to text messages to
diagnose the chance that a social media user is ILI affected during a time period
of space-time trajectories.

3. A data cube model for location-based social media data analytics

A space-time trajectory provides a representation of individual activity foot-
print in the cyberspace of social media. Oftentimes, researchers are interested
in collective characteristics of a subpopulation, e.g., distribution of activities of
a certain group of social media users at specific regions during specific time pe-
riods. As mentioned in the previous section, the data characteristics of location-
based social media (e.g., massive and dynamic) hinder the application of con-
ventional database and analysis methods in these aggregated analysis. In the
remainder of this section, a spatiotemporal data cube model is described to
support efficient spatiotemporal analytics of aggregated statistics of massive
amount of space-time trajectories.



Data warehouse and on-line analytical processing (OLAP) were originally
designed for effective analytics of massive business transactions. In OLAP, data
are typically represented as a data cube [I3], defined by a set of fact tables asso-
ciated with a set of dimension tables, and hierarchies. According to the specifi-
cation of dimension tables, a data cube discretizes a multidimensional space into
a lattice of hierarchical cuboids, with base cuboids representing primitive com-
partments in the multidimensional space at the finest level. Base cuboids are
filled with values of measures specified in the fact tables against all the dimen-
sions. Data cube operations, such as roll-up (merging cuboids) and drill-down
(splitting cuboids) could be applied for different levels of aggregations. The
concepts of data warehousing and data cube have been adapted to spatial data
[I7]. Since then, an amount of efforts have been reported to exploit the power
of spatial data cube in traditional GIS and spatial analysis [e.g., 35l [3], visual
analytics of spatiotemporal processes [24], analysis of massive moving objects
[e.g., B0, 22], and closely related, analysis of mobile cyber-physical systems [e.g.,
32, [37].

In this paper, we extend the concept of data cube for spatiotemporal anal-
ysis of location-based social media data. Based on the space-time trajectories
introduced previously, we are particularly interested in investigating the human
population distribution and mobility patterns represented in location-based so-
cial media. Due to the effect of population heterogeneity or the well known
modifiable areal unit problem (MAUP) [29], conclusion drawn from a group
of individuals (a subpopulation) would probably not be applicable to another
group or aggregation of groups (population). Data cubes provide an effective
tool to examine the collective spatiotemporal dynamics of massive social media
users (space-time trajectories) at multiple levels of spatiotemporal scales (scale
effects) and different aggregation rules (zoning effects). In the spatiotemporal
data cube, we specify the dimension tables with spatial, temporal and human
(social media users) dimension. Cuboids in the data cube are indexed by in-
tervals at these three dimensions. To facilitate the spatiotemporal analysis of
location-based social media data, we consider two different kinds of facts, facts
for a single cuboid and facts for interactions between pairs of cuboids. Similar
as in Leonardi et al. [22], a graphical conceptual model for data warehouses,
namely a Dimensional Fact Model [9], is adopted to represent the fact schema
within a single cuboid (Figure , and the fact schema between pair of cuboids
(Figure . For each fact schema, we introduce a list of measures that are com-
mon and significant for characterizing population distribution and movement
dynamics represented in location-based social media data, which will be specifi-
cally defined later in this section. Depending on application scenarios, this data
cube model is extensible for additional appropriate measures.

Each of the three dimensions is organized at hierarchical levels of granu-
larities, and details of the hierarchical structures are depicted in Figure [1| and
Figure [2| For the spatial dimension, we consider a spatial grid with high reso-
lution in the finest granularity. In the following discussion, we choose the cell
size as 1km x 1km to be compatible with the commonly used global population
grid datasets, such as LandScan Global Population Database [6] and the Global
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Figure 1: Fact schema of a spatiotemporal data cube (cuboid)

Rural-Urbana Mapping Project (GRUMP) [20]. Different resolution could be
applied depending on application scenarios. Two different kinds of spatial hi-
erarchies are considered based on the primitive spatial grid. The size of spatial
grid cells keeps increasing by merging adjacent cells in the first spatial hier-
archy, and in the other hierarchy, base grid cells aggregated by administrative
boundaries such as cities, then cities by counties, counties by states and so on.
Similarly for the temporal dimension, we choose fine temporal intervals as base
intervals. Empirically, we choose the base temporal intervals as 1 hour in the
following discussion. The base temporal intervals either keep merging with ad-
jacent intervals or aggregated by days, days aggregated by weeks or months
and so on. For the dimension of human (social media users), we start from
individuals, which can be further organized according to the health status (e.g.,
ILI affected or not) or socio-demographic characteristics (e.g. age groups). It
should be noted that, based on base cuboids, flexible hierarchy structures at
each dimension could be defined. In the spatial dimension, for example, base
cuboids could be aggregated according to arbitrarily specified spatial regions.

3.1. Measures

For a fixed group of social media users, a cuboid in the data cube corresponds
to a contiguous spatial region and a temporal interval. Given a cuboid ¢ in the
data cube, the measures listed in Figure [I] can be defined for a group of users
u. For notation simplicity, w is dropped in the denotation.

1. R(c) (residents): the number of distinct social media users in u whose
homes locate within spatial boundary of ¢;
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V(e) (visitors): the number of distinct social media users in w who has
posted activities in ¢ (one user could post multiple activities);

A(e) (activities): the number of social media activities by individuals in
u occurring in ¢;

O(c) (out): the number of moves made by u from ¢ to other cells;

I(¢) (in): the number of moves made by w into ¢ from other cells;

S(c) (centroid): the expected location of social media activities by indi-
viduals in w occurring in c;

. Viu(c) (occurrences): the number of distinct social media users in w that

post activities in ¢ diagnosed as ILI affected occurrences;

Apparently, O(c) < V(c), I(c) < V(e), Vi(c) < V(e) and V(e) < Ace).
Figure [2] defines a list of measures quantifying the interactions between pairs of
cuboids ¢; and c¢;:

1.

2.

F(ci,c;) (travel flows): the number of moves made by social media users
u starting from cuboid ¢; and ending in cuboid c¢;;

Ftiu(ci, ¢;) (flu travel flows): the number of moves made by social media
users w starting from cuboid ¢; and ending in cuboid ¢; made by ILI
occurrences;

Frigration(Ci, ¢j) (migration flows): the number of social media users in
u migrating home location from cuboid ¢; to cuboid ¢;;

A move will be flagged as a ILI-related one if either the starting or ending
social media activity is diagnosed as an ILI activity by the text mining method

[43].

Apparently, Fy,(ci,c;) < F(ci,¢;) and Fpigration(€i,cj) < F(ci,cj).




All of these three flow measures are asymmetry, i.e., F(c;,cj) # F(cj,¢;),
Friu(cisc;) # Friu(€j, €i); Frigration(Ci, €5) # Frigration(cj, €;). We assume
that F(ci,¢;) = 0, Fru(ci,¢j) = 0 and Fiigration(Ci, ¢j) = 0 when i equals
j. As mentioned in the previous section, a space-time trajectory is essentially
a collection of step functions. Therefore, flow is an aggregation of space-time
trajectories based on points of trajectories instead of the segments in-between.

8.2. Aggregation functions

Aggregation functions of measures are critical for the construction and query
operations of date cubes [I3]. It allows for aggregating measures at higher
levels of the hierarchy (super-aggregates) based on those of lower levels (sub-
aggregates). Let H denote a spatiotemporal hierarchy corresponding to a group
of social media users w, and without losing generality, let ¢; and c; be two
disjoint cuboids in ‘H which can be further decomposed into K disjoint sub-
cuboids {e1i,i = 1,..., K} with ¢; = UK ¢14, and {ca,,j = 1,..., K} with
Ccy = Uf c2 ;. Suppose we already have the measures for sub-cuboids (¢; ; and
¢y ;), aggregation functions define how to get measures for cuboids ¢; and cs.
For measures A of ¢;, and flow measures F' and F;, between ¢; and ¢z, super-
aggregates can be written as recursive functions of sub-aggregates:

Aler) = ZA(CM) (1)

1,j=K

01702 Z F C1 zyCZJ (2)
3,j=1

=K
Friu(er,e2) = Z Friu(cii,ca,5) (3)

ij=1
i,j=K
Fmig'ration(cla 02) = Z Fmig'ration(cl,ia c2,j) (4)
ij=1
For measure S, I and O, the super-aggregates ¢; needs the support of other
measures. Specifically for S:

ity Aler)S(en)
ey Aler)

For measures I and O on ¢1, we need to remove the space-time trajectories
that occurred within the boundaries of ¢; according to the definition of I and
O. Hence, we have:

K K K
0le) =3 0ler) = 33 Flevsen) (©)
i=1 i=1 j=1

S(er) = (5)

A(Cl,i)S(Cl,i) =

-



K

K K
I(ey) =Y I(eri) = .Y Fleriery) (7)
i=1j=1

i=1

The super-aggregates of A, F', Fjy, and Frigration can be computed directly
from the sub-aggregates. Gray et al. [I3] categorize aggregation functions of
such measures as distributive functions. For S, I and O, the computation of
super-aggregates needs help from other auxiliary variables, such as A, F, and
thus S, thus aggregation functions of I and O are algebraic functions according
to [13].

Compared to Egs. the super-aggregates of R, V' and Vyy,, i.e., the dis-
tinct number of residents, social media users and social media users diagnosed
as flu occurrences in a cuboid, cannot be obtained as a recursive function of sub-
aggregates. The aggregation function of R, V' and V},,, are holistic function [13],
since the raw space-time trajectories are needed to compute the aggregation at
all levels of scales. It is computationally impractical, particularly considering
the location-based social media data are massive and increasing continuously.
It amounts to the distinct counting problem in spatiotemporal database, and
considerable attention has been paid to approximate the number of distinct ob-
jects in a database with auxiliary measures. [31] simply represented the super-
aggregates of such measures as the sums of sub-cells. Tao et al. [38] applied a
probabilistic counting approach, namely Flajolet and Martin algorithm, to ag-
gregate the count of distinct objects. By following [22], this paper approximates
the distinct number of social media users and those diagnosed as flu occurrences
as:

K K K
V(er) = Z V(ewi) — Z Z F(ewi,ery) (8)
i=1 i=1 j=1
K K K
Viu(er) = valu(cl,i) - ZZFflu(cl,i;cl,j) (9)
i=1 i=1j=1
K K
R(c1) = Z R(c1,) — Z Z Frigration(C1,i, €1,5) (10)
i=1 i=1j=1

As a simple illustration of this approximation in a special case, suppose
cuboids ¢; and ¢y share the same spatial boundaries, and correspond to two
adjacent temporal intervals 7; and T3. There are N active social media users
within the spatial boundaries posting activities both at 77 and T3. There-
fore, V(c1) = V(e2) = F(c1,¢2) = N. According to Equation (§)), the super-
aggregates for ¢; Uca, V(e Uey) = N+ N — N = N, which is obviously the
case.

10
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Figure 3: Framework architecture

4. Implementation

In this section, we discuss the implementation of the data model introduced
in the previous sections based on a public data stream of Twitter feeds. Figure
shows the system architecture of the framework and the data flow through
different components.

The first step is to retrieve data from Twitter. While it is millions of social
media users that are generating massive social media contents, social media
service, as hosts of these data, usually limit direct or full access to these contents.
Twitter, in particular, provides multiple levels of interfaces to access the corpse
of Twitter feeds collection. Twitter streaming API (application programming
interface), particularly, allows anyone to near real-timely retrieve a 1% sample
of all the data by specifying a set of filters, such as geographic boundaries of
interests. Despite the 1% limit of sampling, it has been reported recently that
the streaming API returns almost the complete set of the geo-tagged tweets
that are of interest of this paper [26]. A tweets crawler was developed based on
the Twitter streaming API to collect tweets posted in the continent of North
America. The returning tweets were organized as a set of tuples (u,s,t,m).
In the second step, a text mining method was applied to unstructured text
messages m [43] to diagnose the chance that a twitter user infected by ILI
by monitoring a dictionary of keywords related to the ILI symptoms, such as
“flu”, “cough”, “sneeze” and “fever”. It should be noted that, depending on

11
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Figure 4: Schema of a space-time trajectories database

application scenarios, other data mining methods could be plugged in this step
to gain interested information of each tweet.

The resulted tweets are then organized into space-time trajectories and
loaded into a moving objects database [I5] developed in-house based on Mon-
goDBE| - a NoSQL database. As discussed previously, we assume that each
social media user corresponds to a continuously evolving space-time trajectory
to continuously record activities. The schema of the moving objects database is
shown in Figure |4l Specifically, the Users profile table (Figure [4] (b)) describes
the socio-demographic and related information (e.g., age, gender, profession) of
Tweeters indexed by wuser-id. Similar with the detection of ILI infection cases,
some demographic information of Twitter users could be learned based on the
contents of tweets (e.g. [4, B3]). Figure 4| (a) describes the schema of resulted
tweets of the preceded data mining process, where tweet-id and user-id respec-
tively identify a tweet and the Twitter user (described in the Users table) that
posted this tweet, flu-flag indicates whether a tweet was diagnosed as ILI in-
fection case, location and time-stamp represent the spatiotemporal information
that the tweet was posted. Compared to the detection of ILI infection cases, it
is usually difficult to tell based on the social media contents when the infected
case would recover from the infection. Empirically, we use an average recovery
period of seven days and flag a Twitter user, once diagnosed, as an infected
case for a week. The table of Trajectories (Figure [4] (c)) describes the life-
long space-time trajectories associated with user profiles described in the Users
table. In addition to the spatiotemporal footprints forming space-time trajec-
tories, the geometric measures characterizing a space-time trajectory discussed
in the previous section, including home location and radius of gyration, are also
computed and updated. Empirically, the initial home location of a space-time
trajectory corresponds to the most frequently visited place of the first 50 geo-
located tweets activities, and keep updated afterwards. Algorithm [I] describes
the basic procedures in the construction of space-time trajectories.

Based on the space-time trajectories database (a moving object database)
of a group of social media users U, the fourth step is generating and regu-
larly maintaining the spatiotemporal data cube, which is known as extract-
transformation-load (ETL) process in the context of data warehouse [I9]. We
consider tweets posted in the area of North America (longitude ranging from

2http://www.mongodb.org
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Algorithm 1 Construction of space-time trajectories

Input: p: a list of Twitter posts pi1,po,...
Output: T a set of space-time trajectories T4, id € [1, N]
1: for each p; € p do
id < p;.user-id
if T;4 € T then
T}a-append(p;)
else
T;q < new trajectory
T}q-append(p;)
T .insert(T;q)
: end if
10: update—home—location(TZ- ) > update home location of T;4
11: update-gyration-radius(7T;q) > update gyration radius of Tiq
12: end for

2
3
4
5:
6:
7
8
9

—167.276413° to —56.347517° and latitude from 5.499550° to 82.296478° in
WGS84 datum), which was divided into a lattice of cuboids with spatial cell
size as 0.008333°, or approximately 1km, and temporal resolution as I hour
in the finest granularity (level 1), corresponding to a 13312 x 9216 spatial grid
evolving over time. The cell size of the spatial grid doubles as the level (scale)
increases (see Figure[f[a) for an illustration), and on the top level (level 10), the
PPS area is decomposed into a 26 x 18 spatial grid. Based on the configuration
of spatiotemporal data cube, Algorithm [2| can be used to compute measures for
each cuboid and it has been implemented in MongoDB. It is worth noting that
function update-measures at line 4 of Algorithm [2is a recursive function based
on Egs. Corresponding to the conceptual models in Figure[T]and Figure 2]
Figure [5| shows the detail table schema for the facts of a single cuboid (Figure
(a)) and flows between cuboids (Figure |5| (b)). The fields of level and geometry
in the spatial dimensional table specify the structures of spatial hierarchy, and
the equivalent for the table of temporal dimension are the fields of level and
interval. With the temporal interval fixed (e.g., level = 1,interval = 1), Figure
|§| gives an illustrative example for the schema of a single cuboid. Figure |§| (a)
demonstrates two levels of spatial hierarchies, and Figure@ (b) shows the joining
result of three associated tables of spatial dimension, temporal dimension and
cuboid fact tables. In addition to the uniform spatial grids and temporal in-
tervals, conventional concepts of spatiotemporal databases, such as spatial join
and spatial queries, could be applied to such tables as Figure |§| (b), for further
aggregating the measures according to arbitrary spatiotemporal regions.

5. An on-line mapping interface for exploration of movement dynam-
ics in location-based social media
The analytical framework based on the spatiotemporal data cube model

frames the massive, dynamic and unstructured location-based social media data
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Algorithm 2 Construction of a spatiotemporal data cube

Input: T': a set of space-time trajectories Tjq,id € [1, N]
Output: C': a spatiotemporal data cube, or a lattice of cuboids ¢;
1: for each T; € T do

2 mbb < get—mbb(Tl) > mbb: the minimum bounding box of T}
3 for each c¢; overlaps with mbb do
4: update-measures(ci7 Tl) D> recursively update measures according to Egs
5 end for
6: end for
Tweets Fact Table
Spatial Dimension spatial-id - -
- +temporal-id » Temporal Dimension
+cell-id +residents
+level ivisitors +cell_id
+geometry +;ct1vities +level
+centroid +interval
+out
+in
+occurrences
(@)
Flow Fact Table
- - - from
Spatial Dimension from-spatial-id
el 1d to-spatial-id from
lovel to +from-temporal-id Temporal Dimension
eve +to-temporal-id » -
+geometry +travel flow to +§elli1d
+flu travel flow :i(:z:rval
+migration flow

(b)

Figure 5: Schema of a spatiotemporal data cube for Twitter feeds. There are two fact tables,
one is for the facts of a single cuboid (a), and the other for facts of flows between cuboids (b).

o spatial: spatial: temporal: | temporal: visitors | activities residents
% 2
5 i & i level cell-id level cell-id
; i 1 1 1 1 5 10 8
0
1 2 1 1 3 5 6
1 3 1 il 2 4 3
1 4 1 1 5 8 7
e 2 1 1 1 10 2 24
13,
oncim 1 5 1 1 5 3 5
B =¥ 1 6 1 1 4 9 7
'
15 16 = 1 1
i 2 2 1 1 12 20 18

(a) (b)

Figure 6: An example table of a data cube with two levels of hierarchy on spatial dimension.
(a) shows an example map and the boundaries of two levels of spatial hierarchy. Black dashed
lines indicate the spatial boundaries of the cuboids at (fine) level 1, and red solid lines indicate
the spatial boundaries of cuboids at (coarse) level 2; (b) is the fact table associated with each
cuboid defined in (a).
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into a structured data model to support systematic and efficient spatiotempo-
ral analysis of location-based social media data. To illustrate the previously
introduced concepts and showcase the advantages of the framework, we devel-
oped an on-line interactive visual analytical interface for the spatiotemporal
data cube. Due to the limitation of space, not all of the concepts introduced
above could be illustrated. In this section, a flow mapping service is specifi-
cally presented based on the spatiotemporal data cube for visual exploration of
movement dynamics at multiple spatiotemporal scales. Readers are referred to
http://www.flumapper.org for further demonstrations of the presented frame-
work.

Flow mapping is a widely used visual analytical method to depict and rep-
resent geographical dynamics of movement, in which each edge represents a
movement (flow) between pair-wise interacting geographical regions. Location-
based social media data provide individual-level moving trajectories at real-time
or near real-time, and thus an appealing opportunity to investigate geographi-
cal movements, people migration in particular, across multiple spatiotemporal
scales, from macro migration trends across the globe to characteristics of in-
dividual daily activity. Based on the spatiotemporal data cube built for the
continent of North America, an interactive, near real-time flow mapping service
for location-based Twitter data is developed to explore the multiple scales of
flow information derived from the data cube.

5.1. Single-source flow mapping

Since Tobler [39] introduced a generic method to produce flow maps with
the assistance of computers, considerable efforts have been put to improve the
layout of flow maps. To remove the possible visual clutters (e.g., edge cross-
ings), a recent method was presented for single-source flow mapping [41] by
taking advantage of unique features of spiral trees. To facilitate the multi-scale
visual analytics of the flow information in the spatiotemporal data cube, this
spiral tree-based flow mapping method was adopted and implemented within
an interactive environment of cyberGIS [42]. Based on the spatiotemporal data
cube model, the number of travels (i.e., flow) made by hundreds of millions of
Twitter users between pairs of specified areas during a specified time window
could be efficiently retrieved. This flow mapping service, back-boned by the
spatiotemporal data cube model, thus allows users to interactively explore the
movement dynamics of hundreds of millions of Twitter users implied in mas-
sive location-based T'witter feeds collection. As mentioned previously, the flu
status of each Twitter users was also learned from the contents of tweets, and
it thus makes possible that one can monitor the movement patterns of poten-
tially flu-affected Twitter users. In this context, this flow mapping service with
support of spatiotemporal data cube provides a promising tool for public health
researchers and practitioners.

As discussed in the previous section, the spatiotemporal data cube organizes
the collective dynamics of social media as hierarchical levels of scales. Depending
on the granularity of study, one could select appropriate levels of details in
the data cube. To investigate the movement dynamics in location-based social
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media at a city level, for example, lower levels with finer cell size could be more
useful and for dynamics at national level, upper levels with large cell size might
be more appropriate. In the city of Los Angeles, Figure [7] maps seven days
(16:00 January 29th, 2014 to 15:59 February 05th, 2014) of flows (number of
travels in location-based social media) that traveled out from the neighborhood
of Los Angels International airport (LAX) at the 2nd level (cell size as 2km)
of the data cube to the other areas of the city. The solid dots represent the
centroid of each cell and the edges represents the movements (flows) between
different cells with thicker edges means more number of flows. Users can query
the exact number of flow associated with a segment by hovering the mouse over
that segment as the green segment show in Figure -@ This map with cell
size of 2km might contain much trivial details for investigating the movement
dynamics at continental levels, in which case one could increase the aggregation
size. At the 9th granularity level of the data cube (cell size as 256km), Figure
B] shows a map of flow that traveled from the same origin and during the same
period as in Figure [7] to the other areas of the North America.

For the same origins, Figure [J] demonstrates a flow map of flu-affected Twit-
ter users who traveled during the same time period as the previous two Figures
(Figure [ and[8). One can easily check to where the potential flu-affected Twit-
ter users of LAX neighborhood travel. There are totally 73 potential flu-acted
Twitter users who made travels out of the area of Los Angels during the speci-
fied time period. As indicated in the highlighted segment in Figure[d} 41 of 73
potential flu-affected Twitter users made travels to the northeastern area of the
United States. The background map in Figure [0] shows a risk map generated
from the occurrences of flu-affected tweets by kernel density estimation [43]. By
rendering the areas with higher potential flu risk redder and areas with lower
risk greener, the background map demonstrates near real-time distribution of
flu risk across the United States. Combined with the flow maps of travels, this
mapping service could be a promising alternative tool for the surveillance and
management of flu risk at multiple levels of spatiotemporal scales.

5.2. Multiple-source flow mapping

The single-source flow maps provide valuable insights into how social media
users move in and out of a particular region during a time period. With the
source location fixed, the single-source flow maps usually lead to clean and less
clutter maps. It might be difficult, however, to glean a comprehensive view
of overall move patterns of the area of interest by considering one source at
each time. The multi-source flow mapping approach attempts to address this
challenge by visualizing all the significant movements of an area [I4]. As we
increase the spatial granularity level (e.g. from level 2 to level 1 in Figure @,
the number of cuboids and associated movement flows increases exponentially,
which tends to lead to maps with dramatic visual clutters. To address this
issue, we developed an interactive scalable level-of-detail approach to visualize
all-to-all movements of a specific area based on the spatiotemporal data cube
model.
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Figure 7: A flow map of number of travels during seven days (January 29th to February 5th,
2014) from the LAX neighborhood to the rest area of Los Angeles.

Figure 8: A flow map of number of travels during seven days (January 29th to February 5th,
2014) from the Los Angeles to the other areas of North America.
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Figure 9: A flow map of number of travels made by potential flu-affected T'witter users during
seven days (January 29th to February 5th, 2013) from the Los Angeles to the other areas of
North America.

The core part of this approach is to adaptively select the locations or nodes
(i.e., centroids of cuboids) that are critical to represent the movement flow
patterns at each level of spatial granularity. A node is considered as critical if
its score, which amounts to sum of incoming and outgoing degree, is ranked high
enough both global (among all the nodes) and locally (among its neighbor cells).
To address the scalability issue for massive number of nodes, we implemented
this filtering process using an Apache Hadoolﬂ cluster to take advantage of
the distributed computation resources across multiple computing cores. The
commonly used flow mapping algorithms, namely Force Directed Edge Bundling
[18], is then applied to visualize the flows between the selected critical nodes.
This algorithm bundles the close movements together to further reduce the
clutter.

As an example, Figure shows a result of multi-source flow map for the
movement flows at a regional scale between major cities in the southwest of the
United States (e.g., Los Angeles, San Francisco, Las Vegas, Phoenix, Denver and
Salt Lake city) during the time period between 22:00 of January 31st, 2014 and
21:59 of February 7th, 2014. The resulting flow maps are presented according
to a coloring schema with color of red for larger number of movement flows and
color of blue for smaller number of movement flows. It should be noted here that
only the movement flows within the extent of display window are visualized,
although the data cube is built for the entire North America. In Figure
travels between selected pairs of cities are listed along the connecting edges.
From Los Angels to Phoenix, for example, the listed label ‘Flow#: (118,158)’
means there were 118 number of travels made from Los Angels to Phoenix and

3http://hadoop.apache.org/
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Figure 10: Multiple-source flow maps of the travel flows between major cities in the southwest
of the United States during the 22:00 of January 31st, 2014 to the 21:59 of February T7th,
2014.
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158 for the opposite direction. In Figure [I0] one can clearly see the travel
patterns among the listed cities captured in the cyberspace of Twitter. During
the specified time period, it is apparent that most travels happen between the
listed cities and the associated suburb areas, and more travels between Denver
and western cities (e.g., Las Vegas, Los Angels and Phoenix) than Denver and
Salt Lake city, although Salt Lake city is significantly closer to Denver than the
western cities. Figure [11|shows a resulting flow map that covers the entire area
of the North America during the same time period as in Figure Similarly,
the number of travel between cities are labeled. One can clearly see the overall
travel patterns at a continental scale between major cities in the North America
through the multiple-source flow mapping.

6. Conclusion and future work

In this paper, we presented a general framework to harness the massive
location-based social media data for scalable and efficient spatiotemporal anal-
ysis of massive location-based social media data. In the presented framework,
we first adopted the concept of space-time trajectories (or path) to represent
the activities of social media users. An individual social media user corresponds
to a continuously evolving space-time trajectory. By representing the potential
path space as a lattice of primitive cuboids, a hierarchical multi-scale model,
namely a data cube model, is designed, constructed and regularly maintained to
support systematic spatiotemporal analysis of location-based social media data.
Based on the data cube, one can easily query and summarize the spatiotemporal
distribution and dynamics in location-based social media by specified aggrega-
tion boundaries, such as spatial regions, time duration and population group
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at multiple scales. The system architectures and implementation details based
on an public Twitter feeds collection of the Untied States were discussed. To
showcase the effectiveness of the presented framework, we developed an on-line
interactive flow mapping service based on the spatiotemporal data cube model
to effectively represent the movement dynamics of groups of social media users
(e.g., ILT affected users) from a continent scale to a fine blocks level of scale.
The findings of this paper lay solid foundations for the future research in
spatiotemporal analysis of location-based social media data. On the applica-
tion side, the data cube model provides a novel structured spatiotemporal data
source that can be easily integrated with conventional GIS and spatiotemporal
analysis tools for mapping, modeling, and analyzing large-scale complex spa-
tiotemporal dynamics at different scales. In this paper, we did not explicitly
consider the structure of social network of social media users, which conveys
important interaction information between social media users. People do things
together with friends on a daily basis, and interact with and get influenced
by them. Valuable information could be discovered for social media users by
accounting for the activities of their friends and their interaction with them.
For example, social media users identified as infected cases of ILI also put their
frequently interacted friends at high risks to get infected. Social medial data
provide access to the social interactions between friends, and thus make it possi-
ble to investigate the spread of infection in a very fine individual level. Another
example is that we assumed the space-time trajectories are step functions con-
sisting of a sequence of moves between time-stamps and locations. It is appar-
ently not the case in reality. With the help of the locations of close friends’, we
could estimate locations of social media users at un-sampled time-stamps. The
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proposed data model is rather general and flexible. In addition to the Twitter
streams, data from other forms of social media could also be incorporated. We
are particularly interested in the integration with the Foursquare data, which
make senses of the geographic coordinates with names and attributes of lo-
cations (e.g., restaurants, hospitals) and thus provide more detail information
about daily activities. How to deal with uncertainty of the location-based social
media data in the proposed data model is another topic that warrants further
investigation. In location-based social media data and the data model, all of the
spatiotemporal information, social media contents, and the data mining results
of contents are uncertain in reality. Characterization of such uncertainties is
desirable for effective use of such data sources and the data model.
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