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Abstract 

Urban	 Morphometrics	 (UMM)	 is	 an	 expanding	 area	 of	 urban	 studies	 that	 aims	 at	 representing	 and	
measuring	objectively	the	physical	form	of	cities	to	support	evidence-based	research.	An	essential	step	in	
its	development	is	the	identification	of	a	suitable	spatial	unit	of	analysis,	where	suitability	is	determined	by	
its	 degree	 of	 reliability,	 universality,	 accessibility	 and	 significance	 in	 capturing	 essential	 urban	 form	
patterns.	 In	 Urban	 Morphology	 such	 unit	 is	 found	 in	 the	 plot,	 a	 fundamental	 component	 in	 the	
morphogenetic	 of	 urban	 settlements.	 However,	 the	 plot	 is	 a	 conceptually	 and	 analytically	 ambiguous	
concept	 and	 a	 kind	 of	 spatial	 information	 often	 unavailable	 or	 inconsistently	 represented	 across	
geographies,	 issues	 that	 limit	 its	 reliability	 and	 universality	 and	 hence	 its	 suitability	 for	 Urban	
Morphometric	 applications.	 This	 calls	 for	 alternative	methods	 of	 deriving	 a	 spatial	 unit	 able	 to	 convey	
reliable	plot-scale	information,	possibly	comparable	with	that	provided	by	plots.	

This	paper	presents	Morphological	Tessellation	(MT),	an	objectively	and	universally	applicable	method	that	
derives	a	spatial	unit	named	Morphological	Cell	(MC)	from	widely	available	data	on	building	footprint	only	
and	tests	its	informational	value	as	proxy	data	in	capturing	plot-scale	spatial	properties	of	urban	form.	Using	
the	city	of	Zurich	(CH)	as	case	study	we	compare	MT	to	the	cadastral	layer	on	a	selection	of	morphometric	
characters	capturing	different	geometrical	and	configurational	properties	of	urban	form,	to	test	the	degree	
of	informational	similarity	between	MT	and	cadastral	plots.	

Findings	suggest	that	MT	can	be	considered	an	efficient	informational	proxy	for	cadastral	plots	for	many	of	
the	tested	morphometric	characters,	that	there	are	kinds	of	plot-scale	information	only	plots	can	provide,	
as	well	as	kinds	only	morphological	tessellation	can	provide.	Overall,	there	appears	to	be	clear	scope	for	
application	of	MT	as	fundamental	spatial	unit	of	analysis	in	Urban	Morphometrics,	opening	the	way	to	large-
scale	urban	morphometric	analysis.	

1. Introduction 

Urban	morphometrics	(UMM)	is	an	expanding	area	of	Urban	Morphology	that,	through	the	application	of	
quantitative	spatial	analysis	techniques,	aims	at	capturing	the	composition	and	configuration	of	the	urban	
form	of	cities	and,	on	this	basis,	supporting	evidence-based	comparisons	between	different	urban	areas	and	
possible	correlations	with	non-spatial	dynamics.	To	fulfil	this	aim,	the	identification	of	a	reliable,	significant	
and	universal	spatial	unit	of	analysis	is	of	crucial	importance.		

In	 traditional	 Urban	Morphology,	 such	 unit	 of	 analysis	 is	 often	 the	plot,	 considered	 to	 be	 the	 smallest	
meaningful	unit	of	spatial	subdivision	and	a	fundamental	component	to	understand	the	spatial	structure	of	
the	ordinary	fabric	of	urban	settlements	(Panerai	et	al.	2004;	Porta	and	Romice	2014)	and	their	processes	
of	formation	and	transformation	in	time	(Whitehand,	1981).		

However,	despite	its	significance,	the	plot	remains	a	problematic	construct.	At	ontological	level,	there	is	no	
agreement	on	what	exactly	a	plot	 is:	 indeed,	 it	has	been	variously	defined	as	“a	 land-use	unit	defined	by	
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boundaries	on	the	ground”	(Conzen,	1969,	p.	128),	a	module	of	the	urban	tissue	constituted	by	a	built-up	
area	and	its	open	pertinent	area	(Caniggia	and	Maffei,	1979),	a	piece	of	property,	subject	to	subdivision	and	
amalgamation	 as	 a	 result	 of	 successive	 patterns	 of	 occupation	 (Moudon,	 1986),	 or	 again,	 according	 to	
Bobkova,	 et	 al.	 (2017),	 as	 “a	 basic	 unit	 of	 control”,	 “a	 fundamental	 link	 between	 spatial	 and	 non-spatial	
medium”,	 “a	 connection	 between	 built	 space	 and	 space	 of	 movement”	 and	 “the	 framework	 for	 building	
evolution	 over	 time”	 (p.	 47.5).	 And	 crucially,	more	 often	 than	not,	 these	definitions	may	 represent	 very	
different	entities	on	the	ground	“potentially	leading	to	misinterpretation	and	so	a	somewhat	obscured	picture	
of	the	dynamics	of	urban	form”	(Kropf,	1997,	p.	1).	

In	 addition	 to	 this	 issue,	 the	 identification	 of	 plots	 in	 the	 urban	 fabric	 also	 poses	 a	 series	 of	analytical	
problems:	given	a	map	or	a	satellite	image,	how	to	consistently	determine	plot	boundaries?	And,	in	case	of	
existing	datasets,	what	do	they	actually	represent?	What	definition	of	plots	do	they	adopt?	Are	different	
datasets	comparable?		

Not	all	mapping	agencies	explicitly	report	plots	and,	even	when	they	do,	not	all	of	them	define	or	represent	
plots	in	the	same	way.	In	some	spatial	databases,	as	in	the	Swiss	Katasterwesens,	plots	are	represented	as	
unitary	land	parcel,	whilst	in	other	cases,	ownership-based	plots	can	be	made	of	multiple	unlinked	features,	
as	 in	 the	 French	 Cadastre,	 limiting	 comparability	 between	 different	 datasets.	 In	 other	 cases,	 the	
identification	 of	 plots	 from	 available	 sources	 is	 inferred	 by	 the	 analyst	 via	 resource-intensive	 manual	
interpretation.	However,	that	makes	the	resulting	procedure	on	one	hand	unsuitable	for	large	scale	analysis,	
and	on	the	other	potentially	biased,	as	heavily	dependent	on	both	individual	interpretation	and	the	often	
uneven	quality	of	the	underlying	data.	Indeed,	while	through	open-data	policies	(Huijboom	and	Van	den	
Broek,	2011)	and	Voluntary	Geographical	Information	System	(VGIS)	(Barrington-Leigh	and	Millard-Ball,	
2017)	the	availability	of	free-to-use	geo-data	is	growing	dramatically,	their	quality,	coverage	and	resolution	
is	 often	 insufficient	 to	 determine	 individual	 plots	 and	 generally	 limited	 to	 building	 footprints,	 street	
centrelines,	natural	features	and	administrative	boundaries.	All	of	this	reduces	considerably	the	reliability	
of	the	analysis	and	the	universality	of	its	results.	

Given	the	aforementioned	issues,	and	despite	plots	being	still	widely	used	in	Urban	Morphology	to	capture	
the	“pattern	of	human	intention	and	activity”	(Kropf,	1997,	p.	5),	they	are	ill-suited	as	basic	unit	for	UMM	
applications.	
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Figure	1.	Comparison	of	traditional	(left)	and	modernist	(right)	urban	tissues	in	Glasgow.	Plots	are	clearly	
better	identifiable—even	just	visually—in	the	former,	where	distinction	of	public	and	private	space	is	clear-
cut,	than	in	a	modernist	housing	estate,	where	the	transition	between	public	and	private	is	blurred.	Source:	

Ordnance	Survey	MasterMap,	January	2019	(EDINA	Digimap	Service)	

To	 this	 end,	 this	paper	presents	Morphological	Tessellation	 (MT),	 a	method	of	deriving	a	 spatial	unit	 of	
analysis,	the	Morphological	Cell	(MC),	which	is	able	to	convey	reliable,	universal	and	meaningful	plot-scale	
information	 and,	 at	 the	 same	 time,	 to	 minimise	 manual	 labour,	 subjective	 interpretation	 and	 data	
dependence.	After	presenting	the	MT	method,	MC	and	plots	are	compared,	to	test	whether	the	two	entities	
hold	similar	informational	value	and	similar	capacity	to	capture	meaningful	spatial	patterns.	This	is	done	
using	Zurich,	a	city	characterised	by	a	relatively	heterogeneous	urban	fabric,	as	explorative	case	study,	and	
comparing	the	MC	generated	via	the	MT	method	with	plots	derived	from	the	cadastre.	

The	remainder	of	the	paper	is	structured	as	follows:		

• Section	2	introduces	the	Voronoi	tessellation	and	its	use	in	urban	form	studies;		
• Section	3	describes	the	MT	method;	

• Section	4	proceeds	to	the	validation	of	the	method	in	the	case	of	Zurich;		

• Section	5	presents	and	discusses	the	findings	of	the	analysis;		
• Section	6	offers	some	final	conclusions	and	some	reflections	on	limitations	of	the	method	and	future	

research.	

2. Voronoi tessellation in urban form: a state of the art 
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At	the	core	of	the	proposed	MT	lies	the	Voronoi	tessellation	(VT),	a	method	of	geometric	partitioning	that	
from	a	planar	set	of	‘seeds’	generates	a	series	of	polygons,	known	as	Voronoi	Cells	(VC).	Each	VC	encloses	the	
portion	of	the	plane	that	is	closer	to	its	seed	than	to	any	other	(figure	2),	ideally	representing	its	‘influence	
zone’	1.	

 

Figure	2.	Voronoi	tessellation	based	on	randomised	seeds.	Each	colour	represents	the	area	of	one	tessellation	
cell	(influence	zone).	Dashed	lines	end	in	infinity.	

VT	has	been	already	used	in	relation	to	urban	form,	in	the	context	of	spatial	clustering	algorithms	(Dogrusos	
and	 Aksoi,	 2007)	 and	 built-form	 geometry	 generalisation	 techniques	 (Li	 et	 al.,	 2004;	 Liu	 et	 al.,	 2014;	
Basaraner	and	Selcuk,	2004;	Ai	and	Zhang,	2007),	or	as	input	for	image-based	pattern	recognition	(Yu	et	
al.,2017).	In	recent	years,	VT	was	used	to	study	the	micro-scale	properties	of	the	urban	fabric	(Hamaina	et	
al.,	2012;	2013)	in	order	to	produce	a	reliable	method	for	urban	form	patterns’	recognition,	which	pioneered	
the	generation	of	VC	from	building	footprints.	Later,	Schirmer	and	Axhausen	(2015;	2019)	devised	a	method	
to	 define	 “influence	 zones”	 around	 buildings	 using	 a	 “topological	 skeleton”	 of	 unbuilt	 space	 that	 is	
mathematically	similar	to	VT.	In	parallel,	Usui	and	Asami	(2013;	2018;	2019)	included	the	street	network	
as	an	additional	input	alongside	the	building	footprint	to	the	VT	algorithm,	to	mimic	the	plot	structure	of	
traditional	 Japanese	urban	 fabrics.	 	Whilst	 the	generated	mesh	 shows	 remarkable	 similarity	 to	 the	plot	
pattern,	its	main	limitation	is	the	inability	to	capture	the	spatial	pattern	of	modernist	(post	WWII)	urban	
tissues	and	the	highly	variable	distance	between	building	and	street	 that	 is	 typical	of	such	 fabrics.	On	a	
similar	vein,	Araldi	and	Fusco	(2017;	2019)	developed	an	approach	based	on	VT	and	street	segments	to	
define	a	spatial	unit	based	on	the	pedestrian	point	of	view.	

In	 all	 these	 cases,	 the	 use	 of	 Voronoi	 tessellation	helped	 to	 rigorously	 and	 reliably	 cluster	 components	
according	 to	 their	 configuration	 although,	 as	 pointed	 out	 by	 Usui	 and	 Asami	 (2019),	 the	 relationship	
between	VC	and	‘conventional’	plots	has	never	been	directly	tested	to	date.	In	this	sense,	the	MT	approach	
is	to	be	intended	as	a	continuation	of	this	line	of	works,	insofar	it	too	utilises	the	VT	procedure.	However,	
unlike	previous	studies,	this	paper	aims	to	provide	a	fully	operational	and	replicable	method	by	examining	

	
1	The	term	Voronoi	Tessellation	can	be	used	to	describe	both	the	process	of	partitioning	space	(method)	
and	the	geometric	mesh	it	generates	(output).	In	this	text,	the	two	meanings	are	used	interchangeably.	
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the	 details	 of	 the	 tessellation	 process	 and	 its	 parameters,	 and	 testing	 the	 similarity	 of	 morphometric	
characters	as	measured	on	both	MC	and	plots	through	direct	comparison.	

3. Morphological Tessellation: the method  

Whenever	observing	a	map	or	a	satellite	view	of	a	city,	the	eye	of	the	observer	is	caught	by	the	existence	of	
a	 fundamental	relationship	between	buildings	–	 their	geometry	and	spatial	configuration	–	and	the	plot	
pattern.	This	‘intuitive’	relationship	is	the	reason	why	approaches	based	on	VT	appear	to	‘make	sense’	when	
applied	to	the	urban	form	of	cities:	by	partitioning	the	space	into	cells,	they	capture	the	way	buildings	relate	
to	each	other	in	space	and,	more	precisely,	give	a	spatial	meaning	to	the	“morphological	influence”	that	each	
building	exerts	on	its	immediate	spatial	context	(Usui	and	Asami,	2017).	This,	in	turn,	implicitly	captures	
how	spatial	configuration	affects	visibility,	light	penetration,	ventilation,	movement,	etc.	around	each	and	
every	building	(Hamaina	et	al.,	2012).	

The	main	advantage	of	methods	based	on	VT	is	the	capacity	to	derive	objective	spatial	partitions	that	are	
applicable	 to	 every	 type	 of	 urban	 tissue	 in	 a	 way	 independent	 from	 the	 researcher’s	 subjective	
interpretation.	In	addition,	most	of	these	methods	(Hamaina	et	al.	2012;	2013)	require	minimum	data	input,	
as	they	fundamentally	rely	on	the	polygon	that	describes	the	footprint	of	a	building.	Similarly,	the	proposed	
MT	method	only	requires	a	polygon	layer	representing	building	footprints	(figure	3a).	From	this,	MT	moves	
forward	in	five	steps:	

1. Inward	offset	 from	building	 footprint	 (figure	3b).	The	offset	 is	necessary	 to	 avoid	overlaps	between	
boundaries	 of	 adjacent	 buildings	 and	 generate	 a	 gap	between	 adjacent	 geometries	which	will	 later	
define	the	boundaries	of	the	cell.		

2. Discretization	of	polygons’	boundaries	into	points	(figure	3c).	As	VT	can	only	be	generated	from	point	
features,	the	polygonal	shape	of	the	building	footprint	needs	to	be	approximated	as	series	of	points	to	
be	placed	at	regular	intervals	along	its	boundary,	where	generated	points	retain	the	ID	of	the	building	
they	belong	to.	

3. Generation	of	Voronoi	cells	(figure	3d).	VC	are	generated	around	each	of	the	points	representing	the	
building	footprint.	Again,	the	original	ID	of	the	building	is	preserved	in	the	resulting	VC.	

4. Dissolution	of	Voronoi	cells	(figure	3e).	All	VCs	sharing	the	same	building	ID	–	and	hence	generated	from	
the	same	building	–	are	dissolved	in	unitary	geometries.	This	step	provides	a	preliminary	boundary	of	
the	MC.	

5. Clip	 of	 preliminary	 tessellation	 (figure	 3f).	 As	 a	 geometrical	 construct,	 VCs	 tends	 to	 infinity	 as	 the	
boundaries	of	each	cell	are	only	defined	by	proximity	with	adjacent	‘seeds’.	However,	when	applied	to	
the	analysis	of	urban	form,	for	obvious	reasons	no	cell	can	tend	to	infinity.	To	avoid	this,	it	is	necessary	
to	limit	the	maximum	spatial	extent	of	the	tessellation	by	setting	defined	study	area	boundaries.	
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Figure	3.	The	proposed	MT	method.	Grey	polygons	represent	building	footprints,	while	red	lines	show	the	
edges	of	tessellation	at	each	step.	3a)	Building	shapes	within	boundary	of	study	area	(blue);	3b)	inward	offset	
from	building	footprint	polygon;	3c)	discretization	of		boundaries	of	polygons	into	points;	3d)	generation	of	
VCs	around	points:	at	this	stage,	the	edges	of	cells	(red)	tend	to	infinity;	3e)	dissolution	of	Voronoi	cells	based	

on	original	building	ID;	3f)	clip	of	preliminary	tessellation	by	study	area.	

Three	of	the	five	steps	listed	above,	namely	inward	offset	distance	(step	1),	discretization	interval	(step	2)	
and	clipping	method	(step	5),	require	setting	parameters	that	can	have	a	significant	effect	on	the	resulting	
tessellation.	As	such	these	need	to	be	evaluated	in	greater	detail.	More	specifically,	in	the	case	of	inward	
offset	distance	(step	1),	the	selection	of	too	large	values	may	cause	the	collapse	of	narrow	parts	of	building	
shapes	 and	 loss	 of	 detail,	while	 too	 small	 ones	may	 generate	 unwanted	 “saw-like”	 geometries	 between	
adjacent	 buildings.	 Similarly,	 a	 large	 discretization	 interval	 (step	 2)	 may	 produce	 the	 same	 “saw-like”	
geometry	 issue,	 whilst	 the	 opposite	 would	 increase	 exponentially	 computational	 demand	 (figure	 4).	
Additionally,	since	the	two	parameters	are	interlinked,	their	individual	effect	on	the	shape	of	each	cell	is	not	
independent:	as	such,	their	combined	effect	needs	to	be	balanced	to	generate	geometries	with	insignificant	
shape	deviation	and	minimum	computational	burden.	Finally,	 the	adoption	of	a	clipping	method	for	 the	
tessellation	(step	5)	also	requires	considerations	in	order	to	appropriately	limit	the	focus	of	the	analysis	to	
the	 urbanized	 footprint	 and	 exclude	 large	 open	 un-built	 spaces	 while	 limiting	 potential	 MAUP	 effects	
(Openshaw,	1984).	Due	to	the	importance	of	correctly	setting	these	parameters,	Section	4.2	will	discuss	the	
adopted	method	for	the	determination	of	inward	offset	distance	(step	1),	discretization	interval	(step	2)	
and	method.	



	 8	

	

Figure	4.	Illustration	of	the	effect	of	improper	combination	of	inward	offset	distance	and	discretisation	
interval	causing	“saw-like”	geometry	on	the	boundary	bethween	adjacent	buildings	(4b)	compared	to	ideal	
combination	(4a).	

The	conceptual	sequence	described	in	this	section,	was	translated	into	a	Python	code,	building	its	key	parts	
on	 the	 capability	 of	 SciPy	 (Jones,	 Oliphant	 and	Peterson,	 2001),	 Shapely	 (Gillies,	 2007)	 and	GeoPandas	
(Jordahl	et	al.,	2019).	Computation	was	run	on	Ubuntu	Bionic	18.04	running	at	Amazon	Web	Services	EC2.	
The	resulting	Python	script	is	released	as	part	of	the	open	source	Python	package	named	“momepy:	Urban	
Morphology	Measuring	Toolkit"	(Fleischmann,	2019).	

4. Morphological Tessellation and plots: data and comparison 

method 

4.1. The dataset 

The	MT	method	and	the	informational	value	of	MCs	compared	to	plots	were	tested	within	the	administrative	
area	of	Zurich	(figure	5).	This	was	chosen	for	its	historically	characterised	and	heterogeneous	urban	fabric	
as	well	as	for	the	availability	of	the	‘Amtliche	Vermessung’	dataset2,	a	freely-accessible	resource	containing	
high-quality	 information	on	cadastral	plots	and	building	 footprints.	Before	generating	 the	MT,	data	was	
cleaned	as	follows:	

a) From	the	cadastral	layer,	which	covers	the	100%	of	study	area,	all	features	not	containing	
buildings	(e.g.	streets	or	large	open	spaces)	were	removed,	as	they	do	not	represent	built-up	
form;	

b) From	the	building	layer,	features	smaller	than	30	m2	were	filtered	out,	as	such	smaller	objects	are	
likely	ancillary	structures	rather	than	actual	buildings.	

	
2	The	Amtliche	Vermessung	dataset	is	accessible	from	the	municipal	GIS	open	data	portal	(https://maps.zh.ch).	From	it	can	be	
extracted	the	cadastral	layer	(Liegenschaften_Liegenschaft_Area)	and	the	layer	of	buildings	(all	features	named	‘Gebäude’).	
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Figure	5.	The	selected	study	area,	defined	by	the	administrative	boundary	of	the	Zurich	Kanton	(left);	the	
Langstrasse	area	in	Zurich	(right)	was	selected	for	testing	the	tessellation	algorithm	parameters:	the	red-line	

boundaries	follow	the	street	centerlines.	

4.2. Definition of MT Parameters: inward offset distance, discretization interval and 

clipping method. 

To	determine	the	optimal	setting	for	inward	offset	distance	(step	1)	and	discretization	interval	(step	2),	a	
test	was	run	on	a	portion	of	the	Langstrasse	area	in	Zurich	(Figure	5),	a	heterogeneous	fabric	predominantly	
characterised	by	adjacent	buildings	(significantly	more	prone	to	error	than	isolated	buildings)	limited	by	
the	 street	 network3.	 We	 considered	 several	 combinations	 of	 inward	 offset	 (from	 0.1	 to	 1	 meter)	 and	
discretisation	interval	(from	0.05	to	5	meters)	and	evaluated	them	against	the	most	precise	setting	(0.1	/	
0.05),	which	provides	the	highest-resolution	tessellation	with	minimal	effect	on	the	building	shape.	We	then	
assessed	deviation	of	 cell	perimeter	and	area	values	 for	each	combination,	 as	well	 as	 its	 computational	
demand:	the	latter	is	a	function	of	the	number	of	discretization	points,	as	these	directly	impact	on	memory	
demand.	The	result	of	this	test	is	presented	in	Section	5.1.	Based	on	it,	the	optimal	combination	of	the	two	
parameters	was	adopted	to	generate	the	MT	in	later	stages.		

Finally,	 in	order	to	clip	the	tessellation	(step	5)	we	adopted	a	definition	of	urban	footprint	aligned	with	
Angel	et	al.	(2007,	2018),	and	limited	the	study	area	extent	by	setting	a	100m	buffer	from	the	built-up	area.	
However,	to	test	the	robustness	and	stability	of	the	buffer	and	avoid	arbitrary	selection,	we	also	tested	14	
other	buffers,	ranging	from	10	to	300	metres.	The	stability	of	the	15	buffer	distances	is	discussed	alongside	
the	comparative	analysis	in	Section	5.2.	

	
3	It	would	not	be	possible	to	run	this	analysis	on	the	whole	area	of	Zurich	due	to	the	computational	demands	of	the	
high-resolution	tessellation	(0.1m	offset	and	0.05m	discretization	intervals).	
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4.3. The informational value of MT vs plots: the 12 morphometric characters 

To	test	the	informational	value	of	the	MCs	compared	to	plots,	12	morphometric	characters	(table	1)	grouped	
into	 the	six	morphometric	 categories	 (dimension,	 shape,	 spatial	distribution,	 intensity,	 connectivity	and	
diversity)4	proposed	by	Fleischmann	(2017),	are	selected	and	measured	on	both	the	cadastral	layer	and	MT	
layer,	at	the	15	buffer	distances	mentioned	in	section	3.1.	With	the	exclusion	of	Reach	Centrality,	which	is	
measured	using	the	Urban	Network	Analysis	(UNA)	Toolbox	(Sevtsuk	and	Mekonnen,	2012),	all	characters	
are	computed	using	Python	scripts	released	as	part	of	the	momepy	package	(Fleischmann,	2019).		

	Table	1.	Selection	of	morphometric	characters	used	for	comparison.	
Category	 Character	 Formula	 Reference	
Dimension	

Area	 𝑎𝑟𝑒𝑎	 (Song	and	Knaap,	2003)	

Longest	Axis	
Length	(LAL)	

max	{𝑑*, 𝑑,, … , 𝑑.	}*	 	

Shape	 Circular	
Compactness	

𝑎𝑟𝑒𝑎
area	of	enclosing	circle	 (Dibble,	2016)	

Shape	Index	 1𝑎𝑟𝑒𝑎𝜋
0.5 ∗ LAL	

(Steiniger	et	al.,	2008)	

Rectangularity	
𝑎𝑟𝑒𝑎

𝑎𝑟𝑒𝑎789**
	 (Dibble,	2016)	

Fractal	Dimension	 2𝑙𝑜𝑔(𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟4 )
𝑙𝑜𝑔(𝑎𝑟𝑒𝑎) 	

(McGarigal	and	Marks,	
1995)	

Spatial	
Distribution	 Orientation	 E

𝑎𝑧𝑖𝑚𝑢𝑡ℎ789***, 𝑎𝑧𝑖𝑚𝑢𝑡ℎ789 < 45°
𝑎𝑧𝑖𝑚𝑢𝑡ℎ789 − 2(𝑎𝑧𝑖𝑚𝑢𝑡ℎ789 − 45°), 𝑎𝑧𝑖𝑚𝑢𝑡ℎ789 ≥ 45°	

Intensity	
Frequency	 M 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

OPP

QRSTU*

	 (Hallowell	and	Baran,	2013)	

	 Coverage	Area	
Ratio	(CAR)	

𝑎𝑟𝑒𝑎VWRXQR.Y
area 	

(Schirmer	and	Axhausen,	
2015)	

Diversity	
Gini	Index	of	Area	 𝐺 =

\ (2𝑖 − 𝑛 − 1)𝑎𝑟𝑒𝑎R
.
RU*
𝑛 ∑ 𝑎𝑟𝑒𝑎R.

RU*
	

	
4	In	the	current	study	only	a	limited	number	of	connectivity-based	characters	was	considered,	due	to	their	focus	on	
the	street	network,	which	is	not	particularly	significant	in	the	comparison	between	MCs	and	plots.	
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Gini	Index	of	CAR	 𝐺 =
\ (2𝑖 − 𝑛 − 1)𝐶𝐴𝑅R

.
RU*
𝑛∑ 𝐶𝐴𝑅R.

RU*
	

Connectivity	 Reach	
Centrality****	

𝑅b[𝑖] =∥ {𝑗 ∈ 𝐺 − {𝑖}: 𝑑[𝑖, 𝑗] ≤ 𝑟} ∥	 (Sevtsuk,	2010)	

*	d1	…	dn	are	diagonals	of	convex	hull	of	element.	
**	MBR	is	minimum	bounding	rectangle.	
***	Azimuth	is	defined	as	orientation	of	axis	between	1st	and	3rd	quadrant	
****	“The	reach	centrality,	𝑅b[𝑖],	of	a	building	𝑖	in	a	graph	𝐺	describes	the	number	of	other	buildings	in	𝐺	that	are	
reachable	from	𝑖	at	a	shortest	path	distance	of	at	most	𝑟	”	(Sevtsuk,	2010,	p.	9).	

Once	all	morphometric	characters	are	calculated	for	cadastral	plots	and	the	15	MT	layers	(at	each	buffer	
distance),	the	similarity	of	the	resulting	values	for	the	two	datasets	is	evaluated	using	three	methods:	1)	
Spearman’s	 rank	 correlation;	2)	Normalised	 root	 squared	mean	deviation	 (NRSMD)	and	3)	Accuracy	of	
significant	patterns	defined	by	local	Moran’s	I	indicator	of	spatial	autocorrelation	(LISA)	(Anselin,	2010).	

Spearman’s	rank	correlation	is	“a	measure	of	the	correlation	between	ranks,	calculated	by	using	the	ranks	in	
place	of	the	actual	observations	in	the	formula	for	the	correlation	coefficient	r”	(Kokoska	and	Zwillinger,	2000,	
p.	372)	(see	Equation	1)	and	was	used	due	to	non-normality	of	distribution	of	measured	values.	It	ranges	
from	-1	(negative	correlation)	to	1	(positive	correlation),	with	values	>	0.5	or	<	–0.5	indicate	moderately	
significant	positive	or	negative	correlation	(Hinkle	et	al.,	2003).	

Equation	1)	
𝑟S = 1 −

6∑𝑑R,

𝑛(𝑛, − 1)	

Where:	
𝑑R = rg	(𝑋R) − rg	(𝑌R)	is	the	difference	between	the	rank	of	observed	and	expected	
value	and	𝑛	is	the	number	of	observations	(Kokoska	and	Zwillinger,	2000).	

NRSMD	is	a	frequently	used	measure	of	“an	estimate	of	the	standard	deviation	of	residuals	from	the	model”	
(Alexander	 et	 al.,	 2015,	 p.	 5)	 normalised	 by	 the	 range	 (see	 Equation	 2),	 and	 it	 is	 used	 to	measure	 the	
difference	between	the	expected	and	observed	values,	normalised	by	the	range.	As	a	ratio	of	deviation,	it	
ranges	from	0	to	1,	where	0	means	no	deviation	and	1	means	deviation	equal	to	the	range	of	values.	As	the	
range	is	sensitive	to	outliers,	NRSMD	might	not	be	relevant	for	characters	of	Dimension	category.	

Equation	2)	
NRMSD(𝑦, 𝑦p) =

qMSE(𝑦, 𝑦p)
𝑦rst − 𝑦ruv

	

Where:	

MSE(𝑦, 𝑦p) = *
.
\ (𝑦R − 𝑦pR),

.w*
RUP 	where	𝑦, 𝑦p	are	observed	and	expected	values.	
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Accuracy	is	“closeness	of	computations	or	estimates	to	the	exact	or	true	values	that	the	statistics	were	intended	
to	measure”	(OECD,	2006)	and	is	here	used	to	measure	the	similarity	of	significant	spatial	clusters	identified	
from	the	cadastral	layer	and	those	identified	from	each	version	of	the	tessellation	(see	Equation	3).	Since	
studies	in	Urban	Morphometrics	are	more	interested	in	uncovering	recurrent	patterns	in	urban	form	rather	
than	actual	values	(Feliciotti	et	al.	2018),	this	method	is	probably	the	most	relevant	of	the	three.	In	fact	it	
measures	whether	corresponding	features	from	both	datasets	(cadastral	plots	and	morphological	cells	in	
this	case)	significantly	fall	within	the	same	cluster	(i.e.	p	<=	0.05),	with	values	ranging	from	0	(no	match)	to	
1	(perfect	match).	

Equation	3)	
aLISA =

𝑆𝐶yzT{|
𝑆𝐶yz}

	

Where:	
	𝑆𝐶yzT{|	is	the	number	of	the	elements	belonging	to	the	same	significant	cluster	(HH,	
HL,	LH,	LL)	in	both	𝑦, 𝑦p	and	𝑆𝐶yz}	is	the	number	of	the	elements	𝑦p	belonging	to	any	
significant	cluster.	

The	adjacency	matrix	used	for	LISA	represents	200	metres	Euclidean	distance	from	each	building.	

It	must	be	noted	that,	 for	the	statistical	comparison	of	selected	morphometric	characters	across	the	MT	
layers	 and	 the	 cadastral	 layer,	 these	must	 correspond	 perfectly.	 	 However,	whilst	 there	 is	 a	 1:1	match	
between	MCs	and	buildings,	the	same	does	not	apply	to	MCs	and	plots,	as	the	latter	may	contain	one	building	
(single-building	plots)	or	more	than	one	(multi-building	plot).		To	resolve	this	issue,	the	building	layer	is	
used	as	a	proxy	between	tessellation	and	cadastre	and,	therefore,	all	morphometric	characters	computed	
on	both	MCs	and	plots	are	associated	to	the	building	layer	(i.e.	each	building	is	linked	to	the	value	of	its	MC	
and	of	the	plot	it	sits	on).	However,	to	better	understand	the	impact	of	‘single-building’	and	‘multi-building’	
plots	(79%	and	21%	of	all	plots	respectively),	the	three	methods	described	above	are	applied	to	the	whole	
dataset	and,	separately,	for	single-building	and	multi-building	plots.	In	particular,	we	expected	that	multi-
building	plots,	although	important	for	their	effect	on	the	overall	analysis,	would	hold	limited	comparative	
value	for	most	of	the	assessed	morphometric	characters	(perhaps	with	the	only	exclusion	of	covered	area	
ratio	and	Gini	index	of	CAR,	which	capture	compatible	concepts).	

5. Results & Discussion 

5.1. Determination of optimal parameters of the MT algorithm 

The	test	performed	on	the	selected	inward	offset	ranges	(from	0.1	to	1	meter)	and	discretisation	intervals	
(from	0.05	to	5	meters)	allowed	to	assess	computational	demand	(i.e.	number	of	discretization	points)	and	
deviation	of	cell	perimeter	and	area	for	each	combination.	In	terms	of	computational	demand,	as	shown	in	
figure	 6,	 it	 appears	 that	 the	 discretisation	 segment	 length	 has	 an	 exponential	 effect	 on	 the	 number	 of	
generated	 points.	 For	 values	 below	 the	mean	 (tail	 of	 the	 distribution),	 computational	 demand	 remains	
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relatively	stable,	whilst	for	higher	values	(head	of	the	distribution)	it	grows	sharply,	more	than	doubling	at	
each	step.	Discretization	intervals	≥	0.5m	are	therefore	preferred	as	more	computationally	effective.	

 

Figure 6.	Relation	of	discretization	segment	length	and	number	of	points	generated.	The	red	line	illustrates	

the	mean	value	above	which	the	number	of	points	more	than	doubles	at	each	step 

The	effect	of	inner	buffer	and	discretization	interval	on	the	deviation	of	the	MC’s	area	compared	to	the	high-
resolution	tessellation	is	insignificant	for	all	tested	combinations	(0.00	and	0.01%),	showing	that,	no	matter	
the	 parameters,	 results	 are	 stable.	 In	 turn,	 the	 same	 effect	 on	 the	MC’s	 perimeter	 is	more	 pronounced	
(Figure	7)	due	to	the	aforementioned	phenomenon	of	“saw-like”	geometries	(see	section	3.1)	with	percent	
deviation	ranging	from	0.05%	to	7.4%.	Focusing	on	the	0.5	metres	discretisation	interval,	providing	the	
balance	between	the	MC	shape	detail	and	computational	demands,	deviation	values	range	from	0.47%	to	
3.1%	(figure	8).	This	suggests	that	the	combination	of	0.5m	metres	discretisation	interval	and	0.4m	inward	
offset	distance	provides	the	optimal	balance	in	terms	of	effectiveness	of	computation	and	minimisation	of	
error.	These	values	are	hence	adopted	as	parameters	in	the	computation	of	the	MT	in	the	next	stages.	
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Figure 7: The	mean	deviation	(%)	of	perimeter	of	each	cell	for each combination of inward offset distance 

(vertical axis) and discretization interval (horizontal axis).	

Figure 8: Relation of inward offset distance and error margin, showing that for 0.4 meter, the error margin 

reaches its minimum.	

5.2. Comparison between the cadastral layer and morphological tessellation 

Having	 determined	 the	 optimal	 combination	 of	 the	 tessellation	 parameters	 (inward	 offset	 =	 0.4m	 and	
discretisation	intervals	=	0.5m),	the	MT	for	Zurich	is	computed	using	“momepy"	(Fleischmann,	2019).		From	
a	first	visual	inspection	of	the	generated	layer,	it	is	already	possible	to	appreciate	how	the	MT	is	able	to	
nicely	capture	variations	in	size,	grain	and	compactness	of	buildings	(figure	9),	not	dissimilar	what	observed	
in	 a	 typical	 cadastral	 layer.	We	 subsequently	 calculate	 the	 12	morphological	 characters	 in	 Table	 1	 for	
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cadastral	plots	and	tessellation	cells.	In	the	next	section,	their	correlation	at	each	buffer	of	tessellation	is	
studied.	

	

Figure	9.	Morphological	tessellation	cells	as	generated	across	four	different	areas	of	Zurich;	4a)	organic	
tissue	of	Niederdorf;	4b)	compact	tissue	of	Langstrasse;	4c)	detached	villas	of	Hottingen;	4d)	mixed	post-war	

development	of	Friesenberg.	

	

5.2.1. Spearman’s rank correlation 

Using	Spearman’s	rank	correlation,	we	find	that	correlation	of	measured	characters	ranges	between	0.25	
(fractal	dimension)	to	0.89	(reach),	with	differences	between	morphometric	categories	and	between	single-	
or	multi-building	plots.	Characters	in	the	Shape	category	exhibit	the	worst	performance,	with	insignificant	
correlation	for	the	whole	sample	(~0.27)	and	multi-building	plots	(~0.09)	and	low	significance	for	single-
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building	 plots	 (~0.42).	 This	 result	was	 expected,	 due	 to	 the	 intrinsically	 different	 geometry	 of	 the	 two	
spatial	units	(MC	and	plots)	and	to	the	existence	of	multi-building	plots.	

Dimension	 characters	 inherently	 differ	 between	 multi-	 and	 single-	 building	 plots,	 showing	 only	 low	
significance	 for	 the	 former	 (~0.35,	 ~0.4)	 and	 high	 significance	 for	 the	 latter	 (~0.83,	 ~0.7).	 Remaining	
characters	show	moderate	or	high	significance	for	all	samples,	with	higher	values	for	single-building	plots	
(Figure	10	 and	Table	2).	Results	 for	 all	 buffers	 are	 quite	 consistent,	with	 fluctuations	 observed	only	 at	
smaller	distances	(<	50m),	indicating	stability	of	the	selected	value	of	100m.			

 

Figure	10:	Spearman’s	rho	rank	correlation	between	cadastral	values	and	each	of	the	selected	buffers	of	
tessellation	based	on	the	whole	dataset	(figures	for	single	and	multi-	building	plots	are	found	in	the	

supplementary	materials).	

	

Table	2:	Spearman’s	rank	correlation	of	the	whole	dataset,	single-building	plots	and	
multi-building	plots	at	100m	buffer	(emphasis	reflects	significance	of	correlation).	

Category	 Character	 All	 Single-building	
plots	 Multi-building	plots	

Dimension	
Area	 0.4767	 0.8273	 0.3583	

Longest	Axis	
Length	(LAL)	 0.4943	 0.7055	 0.4073	

Shape	

Circular	
Compactness	 0.2758	 0.4203	 0.0864	

Shape	Index	 0.2758	 0.4203	 0.0864	

Rectangularity	 0.2940	 0.4040	 0.1214	
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Fractal	
Dimension	 0.2593	 0.4407	 0.0360	

Spatial	
Distribution	 Orientation	 0.6859	 0.7985	 0.5713	

Intensity	
Frequency	 0.7995	 0.9103	 0.7093	

Coverage	Area	
Ratio	(CAR)	 0.6721	 0.7649	 0.5567	

Diversity	

Gini	Index	of	
Area	 0.6882	 0.7291	 0.6312	

Gini	Index	of	
CAR	 0.5963	 0.6263	 0.5551	

Connectivity	 Reach	 0.8851	 0.9371	 0.8282	

5.2.2. Normalised RMSD 

Overall,	 the	 RMSD	 test	 indicates	 a	 high	 level	 of	 similarity	 between	 datasets	 (Figure	 11	 and	 Table	 3),	
excluding	Dimension	characters	which,	as	mentioned	in	Section	3.2	are	heavily	skewed	by	large	outliers,	
hence	not	 comparable	with	 the	 rest	of	 the	data.	Apart	 from	Orientation,	which	 is	 the	worst-performing	
character	 in	 the	 set	 (~0.22	 for	 the	whole	 dataset,	 ~0.26	 for	multi-building	 plots	 and	~0.18	 for	 single-
building	plots),	all	other	characters	score	RMSD	values	lower	than	0.2	(~0.15	for	single-building	plots	and	
~0.18	for	multi-building	plots).	This	suggests	that,	even	though	the	spatial	coverage	of	the	morphological	
tessellation	is	different	from	plots,	this	difference	is,	in	terms	of	information,	only	minor.	Even	the	poorer	
performance	 of	Orientation	 depends	more	 on	 the	way	 this	 is	measured	 than	 on	 dissimilarity	 between	
datasets:	unlike	other	metrics,	Orientation	is	calculated	as	a	deviation	of	the	orientation	of	the	longest	axis	
of	MBR	from	cardinal	directions	in	degrees	and,	as	such,	it	ranges	from	0	to	45º.	Hence,	a	deviation	of	0.2	
corresponds	to	a	difference	of	only	9º.		It	is	worth	noting	that	for	smaller	buffers	(15	to	40m)	results	show	
high	instability,	where	some	characters	exhibit	the	highest	correlation	values	and	others	the	lowest:	this	
confirms	that	smaller	buffers	are	unsuitable	as	parameters	to	limit	the	tessellation.	In	turn,	the	100-metre	
buffer	is	confirmed	as	robust	and	stable	across	all	characters.	
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Figure	11.	NRMSD	of	cadastral	values	and	each	of	the	selected	buffers	of	tessellation	based	on	the	whole	
dataset	(figures	for	single	and	multi-	building	plots	are	found	in	the	supplementary	materials).	

Table	3:	NRMSD	for	the	whole	dataset,	single-building	plots	and	multi-building	plots	at	
100m	buffer.	

Category	 Character	 All	 Single-building	
plots	 Multi-building	plots	

Dimension	
Area	 0.0213 0.0075 0.0326 

Longest	Axis	
Length	(LAL)	 0.0469 0.0162 0.0645 

Shape	

Circular	
Compactness	 0.1545 0.1270 0.1788 

Shape	Index	 0.1252 0.1000 0.1479 

Rectangularity	 0.1671 0.15627 0.1773 

Fractal	
Dimension	 0.0754 0.0566 0.0970 

Spatial	
Distribution	 Orientation	 0.2229 0.1775 0.2601 

Intensity	
Frequency	 0.1862 0.15074 0.2163 

Coverage	Area	
Ratio	(CAR)	 0.0366 0.0432 0.1224 

Diversity	

Gini	Index	of	
Area	 0.1618 0.1509 0.1724 

Gini	Index	of	
CAR	 0.0752 0.0691 0.0838 
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Connectivity	 Reach	 0.1685 0.1528 0.18279 

	

5.2.3. Recognition of significant patterns using LISA 

 

Figure	12.	Example	of	LISA	patterns	of	Frequency	measured	on	the	MT	

The	analysis	of	patterns	with	LISA	(Figure	12)	captures	differences	across	measured	characters;	however,	
given	the	dissimilarity	of	the	datasets	due	to	multi-building	plots,	the	accuracy	scores	are	not	expected	to	
reach	 values	 close	 to	 1.	 Highest	 pattern	 similarity	 is	 recognised	 for	 the	 Frequency	 character	 (~0.78,	
corresponding	to	an	almost	80%	match)	(Figure	13),	followed	by	Orientation	and	Diversity	characters	(Gini	
Index	of	Area	and	Gini	Index	of	CAR)	and	CAR	(0.74	–	0.66),	while	Dimension	characters	are	around	~0.5	
depending	on	the	sample	considered	(single-	or	multi-	building	plots).	Shape	characters	are	consistently	the	
ones	providing	lowest	accuracy,	apart	from	Reach	Centrality,	due	to	the	single-building	vs.	multi-building	
deviation	 in	 the	 datasets.	 Overall,	 the	 difference	 between	 samples	 is	 relatively	 consistent,	 with	 single-
building	plots	 reaching	 values	between	0.1	 and	0.2	higher	 than	multi-building	plots.	While	none	of	 the	
values	indicates	an	equality	of	both	datasets,	some	are	close	enough	to	be	considered	as	proxies	of	each	
other.	The	effect	of	buffer	distance	confirms	already	observed	pattern	and	the	stability	of	the	100m	buffer.	
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Figure	13:	LISA	accuracy	of	cadastral	values	and	each	of	the	selected	buffers	of	tessellation	based	on	the	
whole	dataset	(figures	for	single	and	multi-	building	plots	are	found	in	the	supplementary	materials).	

Table	4:	aLISA	for	the	whole	dataset,	single-building	plots	and	multi-building	plots	at	
100m	buffer.	

Category	 Character	 All	 Single-building	
plots	 Multi-building	plots	

Dimension	
Area	 0.5938 0.64475 0.5090 

Longest	Axis	
Length	(LAL)	 0.5181 0.6138 0.4028 

Shape	

Circular	
Compactness	 0.4235 0.5061 0.3319 

Shape	Index	 0.4449 0.5312 0.3475 

Rectangularity	 0.3330 0.3930 0.2761 

Fractal	
Dimension	 0.4644 0.5652 0.3489 

Spatial	
Distribution	 Orientation	 0.7389 0.8055 0.6711 

Intensity	
Frequency	 0.7763 0.8240 0.7318 

Coverage	Area	
Ratio	(CAR)	 0.6610 0.7313 0.5908 

Diversity	

Gini	Index	of	
Area	 0.7050 0.7333 0.6759 

Gini	Index	of	
CAR	 0.65858 0.6742 0.6423 
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Connectivity	 Reach	 0.4007 0.3363 0.4644 

5.3 Discussion of results 

Our	results	suggest	that	the	proposed	method	contributes	to	resolve	some	of	the	limitations	associated	with	
using	the	plot	as	unit	of	UMM	analysis.	However,	the	picture	resulting	from	testing	the	similarity	between	
cadastral	plots	and	MCs	is	rather	complex.		

Notably,	 the	 significance	 of	 similarity	 between	 plots	 and	 MCs	 varies	 considerably	 depending	 on	 the	
morphometric	character	selected:	this	is	generally	high	for	all	Intensity	characters	(Frequency,	CAR),	whilst	
Shape	 characters	 (Rectangularity,	 Circular	 Compactness,	 Shape	 Index,	 and	 Fractal	 Dimension)	 report	 a	
comparatively	 poorer	 performance	 and	 a	 higher	 deviation.	 This	 means	 that	 if,	 for	 several	 of	 the	
morphometric	characters	assessed,	MT	is	able	to	retain	plot-level	information	which	is	comparable	to	that	
provided	by	 the	cadastral	 layer,	 for	other	characters	MCs	are	 less	efficient	proxies	of	plots	and	capture	
comparatively	different	information.		

It	is	also	evident	that	the	similarity	of	datasets	is	higher	across	all	measured	characters	for	single-building	
plots	compared	to	multi-building	plots.	Considering	that	the	former	ones	are	predominantly	found	in	pre-
industrial	urban	tissues	while	the	latter	are	more	typical	of	modern	and	contemporary	development,	it	is	
suggested	that	MT	might	be	a	better	proxy	of	plots	in	the	context	of	traditional	fabrics	than	it	is	in	modernist	
and	contemporary	ones.	

Overall,	there	appears	to	be	substantial	scope	for	the	MC	to	be	utilised	as	basic	unit	of	UMM	analysis,	given	
its	 ability	 to	 capture	meaningful	 patterns	 of	 urban	 form	 at	 the	 plot	 scale,	 the	 degree	 of	 reliability	 and	
universality	of	the	underlying	method	and	the	wide	accessibility	of	the	data	required	to	generate	it.	Indeed,	
while	the	recognition	of	plots	can	be	very	troublesome	and	resource	intensive,	morphological	tessellation	
is	consistent	throughout,	since	it	is	only	based	on	building	footprint	information	which	is	equally	present	in	
all	 kinds	 of	 urban	 areas.	Moreover,	 by	 using	morphological	 tessellation	 instead	 of	 traditional	methods	
relying	on	buildings,	street	networks	and	plots,	data	dependency	is	reduced	by	a	third	as	the	tessellation	is	
generated	from	the	building	layer	alone.		

5.4.  Limits of the method 

Whilst	MT	and	MC	appear	to	be	promising	new	addition	to	the	tools	available	for	UMM	applications,	a	first	
limit	of	this	work	is	that	the	cadastral	parcels	in	Zurich,	which	we	have	loosely	treated	as	‘plots’,	are	solely	
based	on	land-ownership.	That	causes	discrepancy	between	the	generated	tessellation	and	the	cadastral	
layer	 which	 includes	 multi-building	 plots.	 However,	 as	 only	 21%	 of	 plots	 are	 affected	 and	 results	 are	
reported	 for	 both	 groups,	we	 believe	 that	 the	 presented	method	 is	 robust	 enough	 to	 provide	 relevant	
results.	
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Second,	whilst	it	is	true	that	a	MT	can	be	generated	directly	from	a	building	layer	alone,	it	cannot	be	created	
from	any	building	layer,	as	this	needs	to	comply	to	certain	quality	requirements.	Notably,	since	the	method	
sees	every	feature	of	GIS	layer	as	an	individual	input	for	tessellation,	it	is	important	not	to	have	buildings	
composed	of	multiple	features	each	representing,	for	example,	different	heights	or		different	parts	of	the	
same	(as	in	the	case	of	British	Ordnance	Survey).	Similarly,	it	is	important	not	to	have	different	independent	
buildings	collapsed	into	a	single	simplified	feature	(as	in	the	case	of	vast	portions	of	Open	Street	Maps).	

6. Conclusions 

6.1. Summary of key findings 

Plots	are	commonly	seen	as	the	ideal	spatial	division	for	morphological	analysis,	but	they	also	have	their	
drawbacks,	 causing	 the	 limited	applicability	of	plot-based	methods	 and,	more	 importantly,	 the	 reduced	
reliability	of	results	obtained	by	employing	them.	The	aim	of	 this	work	is	 to	address	some	of	 the	 issues	
characterising	the	definition	of	plot	and	plot	boundaries,	the	availability	and	accessibility	of	plot	data	and	
the	 labour	 intensiveness	 of	 manually	 extracting	 reliable	 plot-level	 information,	 aspects	 that	 limit	 the	
potential	of	Urban	Morphometrics.	The	need	 to	objectively	define	a	unit	of	 analysis	 able	 to	 capture	 the	
smallest	and	arguably	most	fundamental	level	of	spatial	subdivision,	and	to	develop	a	reliable	and	replicable	
method	 to	 generate	 and	 measure	 it,	 is	 the	 rationale	 behind	 the	Morphological	 Cell	 (MC)	 unit	 and	 the	
Morphological	Tessellation	(MT)	method.		

The	universal	and	algorithmic	nature	of	the	proposed	MT	has	the	potential	to	scale	up	UMM	analysis	with	
minimum	effort	to	the	large	scale5,	while	significantly	reducing	the	interpretative	input	of	the	analysts	along	
the	 process.	 This	 latter	 property	 of	MT	 appears	 to	 be	particularly	 relevant	 to	making	 large	 scale	UMM	
analysis	viable	and	take	full	advantage	of	big	data	in	the	GIS	area.	The	robustness	of	the	proposed	method	
and	 the	 validity	 of	 the	 proposed	 spatial	 unit	 of	 analysis	 is	 verified	 through	 the	 assessment	 of	 12	
representative	morphometric	characters	and	 the	application	of	 three	different	quantitative	 comparative	
methods,	 Spearman’s	 correlation,	 NRMSD	 and	 accuracy	 of	 LISA,	 aimed	 at	 evaluating	 the	 similarity	 of	
information	between	MCs	and	cadastral	plots.			

The	MT	method,	as	tested	and	presented	in	this	paper,	offers	a	different	approach	to	spatial	division	whilst	
still	capturing	a	level	of	quality	of	information	on	urban	form	that	is	similar	to	that	conveyed	by	the	plot.	
Findings	 presented	 in	 this	 paper	 indicate	 that	 there	 is	 overlap	 between	 the	 information	 derived	 from	
cadastral	plots	and	the	one	derived	from	morphological	tessellation.	The	degree	of	this	overlap	depends	on	
the	category	of	morphometric	characters	and	the	type	of	urban	context,	but	for	certain	types	of	morphologic	
analysis	 it	 is	 large	enough	 to	consider	MCs	reliable	proxies	of	plots.	At	 the	same	time,	MCs	cannot	 fully	
replace	plots	in	the	understanding	and	analysis	of	urban	form	patterns.	

	
5	Prime	examples	would	be	French	cities,	having	high-quality	building	data	provided	by	national	mapping	
agency,	while	ownership-based	plot	data	of	French	cadastre	do	not	hold	the	properties	fit	for	
morphometric	analysis	(Kropf,	2018).	
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By	the	same	token,	it	should	be	pointed	out	that	the	MCs	do	offer	added	values	that	are	relevant	on	their	
own,	regardless	to	their	similarity	to	the	plots.	These	have	to	do	with	the	potential	innovations	–	yet	largely	
unexplored	–	which	are	triggered	by	the	very	nature	of	this	geometry.	For	example,	unlike	other	methods	
of	urban	form	partitioning,	the	MT	covers	uniformly	the	totality	of	space	within	the	set	study	area,	allowing	
to	 capture	 the	 topology	 of	 contiguous	 space	 at	 the	 plot-level.	 Indeed,	 since	 all	MCs	 are	 determined	 by	
adjacency,	by	using	MT	it	is	possible	to	think	in	terms	of	topological	distance	(set	number	of	topological	
steps	between	cells)	rather	than	geographic	distance	(set	metric	distance	around	elements,	either	“as	the	
crow	flies”	or	along	the	street	network).	Moreover,	thinking	in	terms	of	topological	distance	as	opposed	to	
metric,	the	MT	can	be	used	to	define	new	aggregated	analytical	units	that	are	able	to	capture	the	immediate	
area	of	influence	of	a	building	on	its	surrounding	fabric	and,	at	the	same	time,	of	the	surrounding	fabric	on	
the	building.	Indeed,	since	the	size	of	each	MCs	depends	on	the	granularity	of	the	urban	structure,	the	spatial	
representation	of	a	set	topological	distance	would	be	far	smaller	for	a	MC	located	in	a	fine-grained	built-up	
area	than	for	the	same	located	in	a	coarse	one	(Figure	14).	Crucially,	this	is	a	kind	of	information	that	would	
not	be	possible	to	access	with	plots	alone,	which	allows	to	reframe	the	very	idea	of	‘proximity’	by	rethinking	
the	relationship	between	scale	and	spatial	meaning,	thereby	enhancing	the	ability	to	capture	the	context	in	
UMM	analysis.	

	

 

Figure	14.	Relationship	between	morphological	cells	of	topological	distance	2:	the	red	geometry	represents	
the	adjacency	network	of	neighbouring	elements	(buildings,	MC)	at	topological	distance	1	(adjacent	

neighbour	of	first	order),	while	blue	geometry	represents	the	boundary	of	the	aggregated	analytical	unit	of	
topological	distance	2	for	each	of	the	highlighted	buildings.	In	the	image,	a	fabric	characterised	by	fewer	and	
sparser	buildings	(b)	generate	larger	cells	and	aggregated	units	compared	to	a	denser	and	more	compact	

fabric	(a).	
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6.2. Further research 

Keeping	in	mind	the	novelty	of	the	method	proposed,	future	work	should	focus	on	testing	its	generalisability	
beyond	the	case	presented	in	this	paper,	as	well	as	over	a	wider	selection	of	case	studies	and	urban	tissues.	
Another	 promising	 development	 area,	 as	 briefly	 anticipated	 in	 Section	 6.1,	 is	 the	 exploration	 of	 the	
implications	 of	 this	 new	 geometry	 in	 capturing	 unique	 configurational	 and	 geometrical	 properties	 of	
different	 types	 of	 urban	 form	 and	 understanding	 the	 level	 of	 difference	 and	 similarity	 between	
heterogeneous	morphological	patterns.	

In	addition	to	this,	and	to	increase	the	value	of	the	proposed	method,	there	is	clear	scope	for	expanding	the	
assessment	framework	adopted	by	employing	new	characters,	this	time	selected	uniquely	thinking	at	how	
best	express	the	intrinsic	potentials	of	the	tessellation	in	itself,	rather	than	merely	as	a	potential	surrogate	
of	plots.	To	this	regard	there	is	a	vast	untapped	potential	in	the	combination	of	MT	and	VGIS	(i.e.	Open	Street	
Map),	which	could	vastly	extend	the	applicability	of	UMM	models	to	potentially	any	human	settlement	in	
the	world.	
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