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A B S T R A C T

We propose a method which uses Flickr tags to predict a wide variety of environmental features, such

as climate data, land cover categories, species occurrence, and human assessments of scenicness. The

role of Flickr tags in our method is two-fold. First, we show that Flickr tags capture information

which is highly complementary to what is found in traditional structured environmental datasets. By

combining Flickr tags with traditional datasets, we can thus make more accurate predictions than

is possible using either Flickr tags or traditional datasets alone. Second, we propose a collective

prediction model which crucially relies on Flickr tags to define a neighbourhood structure. The use

of a collective prediction formulation is motivated by the fact that most environmental features are

strongly spatially autocorrelated. While this suggests that geographic distance should play a key role

in determining neighbourhoods, we show that considerable gains can be made by additionally taking

Flickr tags and traditional data into consideration.

1. Introduction

When users share their photos on websites such as Flickr1,

they often provide tags (i.e. short textual descriptions) to

make these photos discoverable. In many cases2, lati-

tude and longitude coordinates are also provided, describ-

ing where the photographs were taken. Since the tags as-

sociated with such georeferenced photographs often corre-

spond to descriptions of the corresponding locations, Flickr

can effectively be seen as a source of environmental informa-

tion. The usefulness of Flickr tags has already been demon-

strated in several disciplines. For example, in geography,

Flickr tags have been used to construct approximate bound-

aries for (vernacular) regions (Cunha and Martins, 2014;

Grothe and Schaab, 2009) and for describing properties of

places (Bahrehdar and Purves, 2018). In environmental

science they have been used for early warning of flooding

(Tkachenko et al., 2017). In linguistics, the tags of georef-

erenced Flickr photos have been found useful for generating

vector space representations of perceptual terms (Bolognesi,

2016). In the domain of ecology, Flickr has been used to

study species distribution (Barve, 2015; Jeawak et al., 2018,

2020).

The aim of this paper is to study the usefulness of Flickr

tags for predicting environmental features, such as climate

features (e.g. average temperature, wind speed, precipita-

tion, solar radiation, water vapor pressure), land cover cate-

gories, species occurrence, and scenicness. In seeking to ex-

ploit Flickr tags for mapping environmental features, it may

be remarked that we work with all tags that have been used

in the vicinity of each predicted location. The nature of these

tags can be expected to vary widely, with many different phe-

∗Corresponding author

JeawakSS@cardiff.ac.uk (S.S. Jeawak)

ORCID(s): 0000-0002-4753-8997 (S.S. Jeawak)
1http://www.flickr.com
2We were able to crawl around 350M georeferenced Flickr photos in

September 2015.

nomena being photographed and tagged with a wide variety

of possible terminology. We cannot know whether a user is

intending to describe accurately the subject of the photo as

opposed for example to making some arbitrary observation

or comment about it. In some sense the tags might therefore

be regarded as potentially misleading. The methods that we

employ here are however designed to identify those tags that

are consistently positively correlated with our target environ-

mental features, and hence serve as reliable indicators, while

downgrading or ignoring the significance other tags.

Our contribution is two-fold. First, we analyze to what ex-

tent Flickr tags can provide information that is complemen-

tary to the datasets that are traditionally used for ecological

analyses. To this end, we represent each location as the con-

catenation of a feature vector derived from Flickr tags and

a feature vector that encodes available information from tra-

ditional structured datasets, and then train a Support Vec-

tor Machine (SVM) or Support Vector Regression (SVR)

model to predict the features of interest. Note that while

the feature vectors include large numbers of tags, the train-

ing process enables the classifier to determine which par-

ticular tags are specifically associated with the target class,

thus distinguishing them from the more generic and hence

less indicative tags. Second, we propose a collective pre-

diction model, which takes advantage of the fact that most

environmental features are strongly spatially autocorrelated

(e.g. climate features typically do not vary much between

places that are just a few kilometres apart). Inspired by An-

gelova and Weikum (2006) and Dori-Hacohen et al. (2016),

a key feature of our approach is that the neighbourhood struc-

ture of the collective prediction model does not only depend

on purely metric geographic distance but also on attribute

similarity, which is estimated in our case from the Flickr

tags associated with each location. This use of attribute

similarity can be thought of as a form of categorical, i.e.

attribute-based, geographic distance that takes into account

non-spatial properties of location. Our use here of attribute
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Figure 1: Modeling locations based on Flickr tags, structured features, and neighbourhood structure.

similarity can be regarded as analogous to the way in which

measures of spatial autocorrelation are used in geostatistics

for purposes of interpolation (Webster and Oliver, 2007).

Geographic attribute similarity complements other alterna-

tive measures of geographic distance such as network dis-

tance and cognitive distance (Montello, 1991; Sack, 1980).

In this way, our model essentially uses Flickr tags to improve

how known measurements, as well as predictions, of a given

environmental feature are interpolated.

The problem we consider is to predict the value of a given

feature (e.g. average temperature or land cover category) for

a given set of locations, where we assume that for a subset

of these locations (i.e. the training data), the correct value

of the considered feature is available (e.g. temperature mea-

surements). The method proceeds in two steps. First, in

the bootstrap stage, an SVM model (for discrete features)

or SVR model (for numerical features) is learned from the

training data. To this end, each location is represented using

a feature vector, which encodes how strongly that location is

related to each Flickr tag, as well as the available structured

information about the location. This is illustrated in the ta-

ble in Figure 1 (where, in practice, the ground truth data is

only available for items from the training data). This model

is then used to predict the value of the considered feature

for the locations which are not in the training data. In the

second step a collective classification approach is adopted

in which for each location a set of neighbours is selected,

and a new classifier is trained, which aims to improve the

predictions by taking into account the earlier predictions in

addition to the true labels of the selected neighbours when

they are available. This whole process is then iterated until

the predictions converge.

The second step crucially relies on how the neighbours

are selected. As a baseline, we could choose the neighbours

of a given location as those locations which are geograph-

ically closest. For example, consider the locations shown

on the map in Figure 1 for the task of predicting scenic-

ness. To improve the prediction for location 8, based on

geographic distance, we could select location 2, 5 and 7 as

neighbours. However, location 1 and 4 are actually more rel-

evant for the purposes of prediction, as they are both more

similar to the target location in that, like location 8, they are

close to railway train stations, which is an important indi-

cator of low scenicness. To determine these more relevant

locations, we first apply a term selection method to identify

those Flickr tags that are most strongly related to the con-

sidered feature. For example, when predicting scenicness,

relevant tags include ‘mountain’ (which is predictive of high

scenicness) and ‘station’ (which is predictive of low scenic-

ness). Then, from the geographically sufficiently close loca-

tions, as neighbours we select those locations whose associ-

ated tags (after term selection) are sufficiently similar.

The remainder of the paper is organized as follows. Sec-

tion 2 gives an overview of related work. Then, in Section

3 we explain how locations are modeled using both Flickr

tags and structured data, while Section 4 describes our col-

lective prediction framework. Subsequently, in Section 5 we

provide a detailed discussion about our experimental results.

Finally, Section 6 summarizes our conclusions.

Some parts of this paper extend our work in Jeawak

et al. (2017), where we demonstrated the complementarity

of Flickr tags and structured information. However, the col-

lective prediction model from Section 4 is completely new.

2. Related work

The related work falls broadly under three themes: citizen

science, geo-spatial analysis of social media, and collective

prediction.

2.1. Citizen science

Considerable progress has been made in recent years in

citizen science projects in the environmental sciences that

recruit participants to actively contribute to particular cam-

paigns such as in land cover mapping (Fritz et al., 2012),

hydrological surveys (Lowry and Fienen, 2013), ornithology

and many forms of ecological study (Dickinson et al., 2010).

In parallel with these initiatives there is growing interest in

the potential of “passive” survey methods that exploit so-

cial media to provide additional useful data. For instance,

S. Jeawak et al. Page 2 of 17
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Wang et al. (2013) analysed the visual features of the pho-

tographs on Flickr (in an automated way) to observe natural

world features such as snow cover and particular species of

flowers. In (Zhang et al., 2012) photos from Flickr were used

to estimate snow cover and vegetation cover, and to compare

these estimations with fine-grained ground truth collected by

earth-observing satellites and ground stations. Both the text

associated with Flickr photographs and their visual features

were used in Leung and Newsam (2012) to perform land-use

classification. The approach was evaluated on two university

campuses and three land-use classes were considered: Aca-

demic, Residential, and Sports. In Estima et al. (2014) and

Estima and Painho (2014), they classified a sample of geo-

referenced Flickr photos according to CORINE land cover

classes. They also evaluated the use of Flickr photos in sup-

porting Land Use/Land Cover (LULC) classification for the

city of Coimbra in Portugal and for comparison with Corine

Land Cover (CLC) level 1 and level 2 classes. Note that their

approach did not use machine learning and the results were

evaluated manually by experts. Their results suggest that

Flickr photos cannot be used as a single source to achieve

this purpose but they could be helpful if combined with other

sources of data.

The authors of (Stadler et al., 2011) explored the rela-

tionship between CORINE land cover classes and the val-

uation of natural scenery, namely scenicness, scenic beauty,

landscape beauty, aesthetics, or cultural ecosystem services

(CES), through user evaluated georeferenced photos from

the ScenicOrNot3 website. They employed the user’s rat-

ing of a photo in a specific area as an evaluation of the land

cover of that area. The results of this study showed that the

highest rated areas belong to the forest and semi natural ar-

eas, and water bodies classes. In another work, Chesnokova

et al. (2017) developed and evaluated a predictive model to

predict the average scenicness of 5km grid cells. They used

text describing the rated images in the ScenicOrNot website

as input to train a Random Forest regression model. Mea-

sures of scenicness are important since they reflect human

well-being and can be taken into consideration in land plan-

ning and decision-making processes. Nonetheless, people’s

perceptions of landscapes are subjective and cannot easily be

quantified (Stadler et al., 2011). Some authors have assessed

the beauty of the landscape through groups of evaluators

using images, videos and/or questionnaires (Stadler et al.,

2011; Pierskalla et al., 2016), while others used geographic

information system (GIS) data such as elevation together

with visual assessments and/or questionnaires to predict the

scenicness (Bishop and Hulse, 1994; Schirpke et al., 2013).

Another group of works, such as Casalegno et al. (2013),

Gliozzo et al. (2016), and Tenerelli et al. (2016), quantify

landscape aesthetics according to the number of photos taken

near a given location (Casalegno et al., 2013) or the num-

ber of people who published photos (Gliozzo et al., 2016) in

photo-sharing websites such as Flickr and Panoramio. Con-

sidering popularity on social media as a surrogate for the

level of appreciation of a place might work with some types

3http://scenic.mysociety.org/

of landscapes, but the results might be liable to be biased

towards more accessible places (one of our experiments re-

ported in Section 5.1 provides evidence to that effect).

Another growing area of interest is in the use of so-

cial media data for ecological monitoring. For example,

Barve (2015) examined Flickr biodiversity data quality by

analysing its metadata and comparing it with ground-truth

data, using Snowy owls and Monarch butterflies as a case

study. They concluded that Flickr data has potential to add

to knowledge of these species in terms of geographic, tax-

onomic, and temporal dimensions, which tends to be com-

plementary to the information contained in other available

sources. In another similar work, based on a manual analy-

sis of Twitter posts, Daume (2016) confirm that social me-

dia mining for ecological analysis is as important as tra-

ditional monitoring and the features derived from Twitter

could be integrated with and hence improve the value of ex-

isting sources of such information. In Richards and Friess

(2015) the content of the Flickr photos was analysed manu-

ally to assess the quality of cultural ecosystem services and

derive useful information to manage Singapore’s mangroves.

2.2. Geo-spatial analysis of social media

Many recent studies have focused on analysing social me-

dia data, with the aim of extracting useful information in

domains such as geography (e.g. Hollenstein and Purves

(2010)). In particular, there is a large number of studies that

derive such information from georeferenced Flickr photos.

For example, Grothe and Schaab (2009) describe two meth-

ods for the automatic delineation of imprecise regions based

on geotagged photos. The first one is a method based on ker-

nel density estimation (KDE) and the second is based on one

class support vector machines (SVMs). Similarly, Cunha

and Martins (2014) present an approach for automatically

defining the geographic boundaries of vague regions by us-

ing one class support vector machines (SVMs) and learning

multiple kernels. To describe regions, they rely on a com-

bination of the Flickr tags of the photos that were tagged

with the region’s name, and external features such as the land

cover data, population count, elevation and the geographi-

cal coordinates (latitude and longitude) of Flickr photos that

are tagged with the region’s name. They showed that their

method performs better than the simpler methods described

by Grothe and Schaab (2009). The first step of our method

is analogous to these approaches, in applying support vector

machine learning methods to Flickr tags in combination with

other geo-spatial data, but we are concerned with character-

izing and predicting information about the environment.

The authors of (Serdyukov et al., 2009) presented and

evaluated methods for automatically geo-referencing Flickr

photos using the textual annotations of photos to predict the

single most probable location where the image was taken.

They showed that location-specific language models, based

on sets of distinctive tags, can be estimated effectively by

analysing the terms people use to describe images taken at

particular locations. They demonstrated how to incorpo-

rate the GeoNames database and they defined extensions to

S. Jeawak et al. Page 3 of 17
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improve their language models using cell based smoothing

and tag based smoothing, and by leveraging spatial ambi-

guity. In Van Canneyt et al. (2014), a language modelling

approach was used to discover and characterize places of

interest (POIs). They experimented with both Flickr data

and Twitter data, finding that Flickr data on its own is more

useful than Twitter data for this task, while combining both

sources led to the best results. Similar to this latter work, we

explore the possibility that sets of tags cannot just distinguish

one location from another, but can contribute to classifying

aspects of the environment.

Our aim of predicting environmental features from vari-

ous attributes might be regarded as analogous to the use of

geostatistical methods such as Co-Kriging and Geograph-

ically Weighted Regression, but in the application of these

methods the numbers of predictor, explanatory or other inde-

pendent variables is very small compared to our task, often

being less than 10 (e.g. Ristea et al. (2018); Liu et al. (2016)).

This contrasts with our data in which, following weighting

and filtering there may be hundreds of thousands of social

media tags each of which is treated as a potentially useful

predictor in addition to conventional environmental data at-

tributes. It should also be noted that the benefits for envi-

ronmental data interpolation of machine learning classifiers

such as support vector machines and random forests in com-

bination with an interpolation method such as inverse dis-

tance squared, or ordinary kriging, have been demonstrated

relative to a variety of conventional interpolation methods

(Li et al., 2011). The latter study used structured environ-

mental data as the predictors.

2.3. Collective prediction

Many machine learning problems involve making predic-

tions about networks of entities, where links in the network

connect entities that are related in some way. The idea of col-

lective prediction is to incorporate additional features in the

learning process, summarizing information about the enti-

ties that are related to the considered one. A standard exam-

ple is the problem of web page categorization (Chakrabarti

et al., 1998; Angelova and Weikum, 2006; Dori-Hacohen

et al., 2016): to determine the category of a website, in addi-

tion to the contents of the website itself, we can also take into

account the categories of the websites it links to. Note that

this creates a cyclic dependency between the predictions for

the different entities in the network. To address this, a vari-

ety of collective prediction methods have been proposed. In

this paper, we will use the Iterative Classification Algorithm

(ICA) from Neville and Jensen (2000), which is conceptu-

ally simple but often highly effective. Other approaches are

based on inference in joint probabilistic models using Gibbs

sampling (Geman and Geman, 1984). However, Gibbs sam-

pling tends to be slow (Sen et al., 2008), which is an impor-

tant limitation in our setting, as we will consider hundreds

of thousands of regions.

The authors of (Chakrabarti et al., 1998) experimentally

demonstrated the effectiveness of taking into account link

structure for web page categorization. More recent meth-

ods often take into account content similarity to improve

the network structure, i.e. better results can often be ob-

tained by only taking into account links from websites that

are sufficiently similar. For example, Angelova and Weikum

(2006) select a reliable set of neighbours for each test doc-

ument by means of a similarity threshold. They only con-

sider the links for which the similarity between the contents

of the two documents (nodes) is sufficiently high. In Dori-

Hacohen et al. (2016), a method is proposed which classifies

Wikipedia pages as controversial or not, using a combina-

tion of intrinsic features (page meta-data) and predictions of

controversy from related pages. They constructed a subnet-

work by choosing for each page the k most similar in-links

(in terms of cosine similarity between the text of the pages)

and the k most similar out-links, where k was chosen as ei-

ther 10 or 300. They then use a stacked model on top of

this constructed network. The stacked approach introduced

in (Kou and Cohen, 2007) uses a non-relational base model

to produce inferred class labels on related instances where

the stacked relational model is trained on these predicted la-

bels rather than the true labels. In Jiang et al. (2017), a col-

lective prediction algorithm based on community structure

(CPC) was proposed. Firstly, they obtained the community

that each node belongs to by using a community detection

algorithm. Then they used the node attribute features and

community structure features as inputs to the local classifi-

cation model in an iterative way. Their experimental results

show that CPC performs better than both a standard predic-

tion method which only utilizes the node attributes and an it-

erative classification algorithm which utilizes neighbour fea-

tures in addition to the node attributes.

Although many studies have been conducted in collec-

tive classification, less effort has been focused on collec-

tive regression. Chopra (2008) proposed a relational fac-

tor graph framework for performing regression on relational

data. The proposed models are learned with collective infer-

ences which take a single instance of the entire collection of

samples along with their relationship structure as input. The

framework was applied to the problem of predicting house

prices, taking into account spatiotemporal influences on the

price of every house. Their experiments demonstrate that

identifying and using the relational structure associated with

this problem considerably improves performance. The au-

thors of (Loglisci et al., 2016) presented an algorithm called

CORENA (COllective REgression in Network dAta) which

studies the transduction of collective regression in a sparsely

labeled network. In particular, they iteratively augmented

the descriptive and the target information of the labeled node

set, the descriptive information of the unlabeled node set,

as well as the link structure of the network, in order to col-

lectively determine the numerical targets of the unlabeled

part of the network. Thus, their proposed method can de-

tect the autocorrelations of labels over a group of related

instances and feed back the reliably predicted labels only.

They (Loglisci et al., 2016) show that their proposed method

is able to improve regression performance in the areas of so-

cial and spatial networks.
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In this paper, we focus on both collective classification

and regression problems by developing SVM/SVR models

in an iterative way. We consider several nested sets of neigh-

bours for each location based on their spatial and attribute

similarity. Then, we aggregate the true and the predicted la-

bels of these selected neighbours to generate the collective

features.

3. Modelling locations

In this section we explain how locations are represented

in our framework. Section 3.1 explains how feature vectors

describing locations can be obtained from the tags associated

with georeferenced Flickr photos. In Section 3.2 we then

give an overview of the structured information sources that

we will additionally consider.

3.1. Modelling locations using Flickr tags

Many of the tags associated with Flickr photos tell us

something about the locations where these photos were

taken. For example, tags might correspond to city and region

toponyms (e.g. United Kingdom, England, London), land-

marks (e.g. London Eye, Westminster Abbey, Hyde Park)

or land cover types (e.g. forest, beach, airport). Using the

Flickr API, we collected the metadata of all geo-referenced

Flickr photos that were uploaded before the end of Septem-

ber 2015, leading to a total of over 70 million photos with

coordinates in Europe (which is the region our experiments

will focus on).

Let L = {l1, ..., lm} be a set of locations, each character-

ized by latitude and longitude coordinates. Our aim is to as-

sociate with each of these locations a weighted bag of tags,

intuitively encoding for each tag how strongly it is associ-

ated with photos near that location. To this end, we first use a

BallTree4 to retrieve the setFl of all Flickr photos whose dis-

tance to the considered location l is at most D. Let us write

Ut,c for the set of users who have assigned tag t to a photo

with coordinates c. Then we define n(t, l) =
∑

d(c,l)≤D |Ut,c|,
with d the Haversine distance. Intuitively, n(t, l) is the num-

ber of times tag t appears among the photos in Fl. However,

to reduce the impact of bulk uploading, we count a tag occur-

rence only once for all photos by the same user at the same

location.

One problem with using n(t, l) to measure the importance

of tag t for location l is that it gives equal weight to all pho-

tos, whereas intuitively we want photos which are closer to l

to influence our characterization of l more than photos which

are further away. To this end, following Van Canneyt et al.

(2014), we use a Gaussian kernel to weight the tag occur-

rences:

w(t, l) =
∑

d(c,l)≤D

|Ut,c| ⋅ exp
(
−

d2
(
l, c

)

2�2

)

where � is a bandwidth parameter.

4http://scikit-learn.org/stable/modules/generated/sklearn.

neighbours.BallTree.htm

The weight w(t, l) still has the problem that common

words (e.g. iphone) are given the same importance as more

specific words. Intuitively, we want the weight of tag t to re-

flect how strongly it is associated with location l. A standard

way of measuring this in bag-of-words models is to use Pos-

itive Pointwise Mutual Information (PPMI), which is based

on comparing the actual number of occurrences with the ex-

pected number of occurrences (given how many tags occur

overall near l and how common the tag t is). Specifically,

the weight of tag t in our bag-of-words representation of l is

then given by:

PPMI(t, l) = max

(
0, log

(
P (t, l)

P (t)P (l)

))

where:

P (t, l) =
w(t, l)

N
P (t) =

∑
l′∈Lw(t, l′)

N

P (l) =

∑
t′∈T w(t′, l)

N
N =

∑

t′∈T

∑

l′∈L

w(t′, l′)

with T the set of all tags that appear in the collection. Fi-

nally, each location l is represented as a sparse vector, en-

coding the weights PPMI(t, l) for all the tags in T .

3.2. Modelling locations using structured data

There is a wide variety of structured data that can be used

to describe places. The most obvious type of structured data

are the coordinates of the photo itself. Clearly, latitude and

longitude degrees can be helpful for predicting a range of en-

vironmental phenomena (e.g. southern areas of Europe tend

to be warmer than northern areas). In addition to geographic

coordinates, we will consider the following sources of scien-

tific data:

• CORINE Land Cover 20065 is a European dataset

which describes land cover with a 100 meter spatial

resolution. CORINE uses three levels of description:

a top level with 5 classes, an intermediate level with 15

classes and a detailed level with 44 classes.

• SoilGrids6 is a global raster dataset, which classifies lo-

cations into 116 types of soil, using a 250 meter spatial

resolution.

• The Digital Elevation Model over Europe (EU-DEM)7

is a Europe-wide digital surface model, encoding ele-

vation with a spatial resolution of about 30 meter.

• European Population Map 20068 is a digital raster grid

that reports the number of residents (night-time popu-

lation) with a 100 meter spatial resolution.

5http://www.eea.europa.eu/data-and-maps/data/

corine-land-cover-2006-raster-2
6https://www.soilgrids.org
7http://www.eea.europa.eu/data-and-maps/data/eu-dem
8http://data.europa.eu/89h/jrc-luisa-europopmap06
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• WorldClim9 is a global raster dataset, containing aver-

age monthly recordings of the following climate fea-

tures, over the period 1970-2000, using a 1 km spatial

resolution: temperature, precipitation, solar radiation,

wind speed and water vapor pressure. In this work, we

convert the monthly averages reported in the dataset to

a single overall average.

To encode locations, we consider a feature vector that con-

tains one binary feature for each CORINE land cover class

(being 1 if the location belongs to that class and 0 otherwise),

one binary feature for each SoilGrids class, and 9 real-valued

features (encoding latitude, longitude, elevation, population,

and the 5 climate features). The real-valued features have

been normalised using the standard z-score.

In most of our experiments, we will use Flickr tags in com-

bination with structured information. In such cases, we sim-

ply concatenate the PPMI-based feature vector from Section

3.1 with the feature vector modeling the structured informa-

tion.

4. Collective prediction model

Many real world problems can be described as graphs,

where the nodes correspond to objects about which we want

to predict something, and edges denote relationships be-

tween these objects. In collective prediction frameworks,

the class label (in classification problems) or feature value

(in regression problems) of a given object can be used to im-

prove the predictions about related objects.

In particular, the goal of collective prediction is to jointly

determine the labels of all nodes in the graph, taking into

account their interrelationships. To apply the collective pre-

diction framework to our setting, we consider each of the

locations li ∈ L as a node. Two nodes are connected by

an edge if they represent sufficiently similar locations. The

underlying notion of similarity will be partially based on

geographic closeness, but will also take the Flick tags and

structured data that are associated with these locations into

account. We assume that a partition L = T 1∪T 2∪T 3∪T 4

of the locations is given, where T 1 ∪ T 2 ∪ T 3 will be used

as training data and T 4 will be used as testing data. The lo-

cations in T 1 will be used for training a bootstrap classifier,

while those in T 2 will be used for learning how to improve

predictions based on related locations. The locations in T 3,

finally will be used for tuning the classifiers.

The overall method involves the following steps, which

are illustrated in Figure 2.

Bootstrap: In this step, we use the training data in T 1∪T 2

to learn an SVM or SVR model, using the feature vector rep-

resentation for each location as explained in Section 3. When

applying our overall model, this classifier (P 1 in Figure 2)

will be used to make an initial prediction for the unlabeled

locations (i.e. for the locations from T 4). This prediction

will later be used to generate the collective features. We also

learn a second classifier (P2 in Figure 2), which is trained in

the same way as P1 but only using the locations from T 1 as

9http://worldclim.org

training data. This variant is needed to allow us to train an it-

erative collective classifier, which will intuitively be learned

by comparing the true labels of T 2 with the predictions that

are made by classifier P2.

Identifying distinctive Tags: A key property of our

method is that it uses Flickr tags to find relevant neighbours,

i.e. to find nearby locations that are sufficiently related to the

considered target location. Clearly, the required notion of re-

latedness depends on what we are trying to predict. For ex-

ample, when predicting scenicness as in the locations shown

on the map in Figure 1, we may want to select location 1 and

4 as the most relevant neighbours to location 8 because all

three of them are close to train stations. To estimate related-

ness, we therefore first determine which tags are most rele-

vant for the considered prediction problem, using a term se-

lection method based on Kullback-Leibler (KL) divergence.

Let us first consider a classification problem with classes

C1, ..., Cn. Given that we are interested in predicting proper-

ties of locations, each class Ci here corresponds to a subset

of locations from L that share a particular property (such as,

for example, having a type of land cover).

In particular, we select the 1000 tags that score highest on

the following score:

KL(t) =

n∑

i=1

P (Ci|t) log
P (Ci|t)
Q(Ci)

(1)

where P (Ci|t) is the probability that the location a photo

with tag t belongs to Ci, whereas Q(Ci) is the probability

that an arbitrary tag occurrence is assigned to a photo with

location l. We estimate Q(Ci) as follows:

Q(Ci) =
1

N

∑

l∈Ci

∑

t′∈T

w(t′, l)

N =

n∑

j=1

∑

l∈Cj

∑

t′∈T

w(t′, l)

Since P (Ci|t) often has to be estimated from a small number

of tag occurrences, it is estimated using Bayesian smoothing:

P (Ci|t) =

(∑
l∈Ci

w(t, l)
)
+ � ⋅Q(Ci)

N + �

where � is a parameter controlling the amount of smooth-

ing, which will be tuned in the experiments. Intuitively, we

can think of � as a number of samples from the background

distribution Q that are added to our data about tag t. Larger

values of � will have a penalizing effect on rare terms.

For regression problems, we discretize the feature values

and then proceed in the same way. In particular, we dis-

cretize the feature values into three classes C1, C2 and C3

based on feature dependent thresholds. For example, to iden-

tify a set of tags that are related to scenicness, we classify

tags into C1 if they occur in locations whose scenicness rate

is at least 7 , C2 for the tags that occur in locations whose

scenicness rate is between 3 and 7, and C3 for the tags that
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Figure 2: The collective prediction model.

occur in locations whose scenicness rate is at most 3. Then,

because the most informative tags are likely to be found in

the extreme cases, we only consider tags that are distinctive

for classes C1 and C3 which are determinant as for classifi-

cation problems.

Selecting neighbours: The effectiveness of collective

prediction relies on the assumption that neighbouring nodes

have similar labels. Since environmental features tend to be

spatially autocorrelated, in our setting it is natural to choose

nearby locations as neighbours. However, while only taking

into account geographic closeness already leads to a strong

baseline, as we will see in the experiments, further improve-

ments are possible by additionally taking into account the

structured environmental data and Flickr tags. The underly-

ing motivation is that such tags can reveal whether nearby

locations are actually similar. Consider, for example, a train

station which is located very close to a beach. Despite their

close locations, these places belong to different land cover

classes, and may have a considerably different scenicness

degree. Specifically, to select the neighbours of a given lo-

cation l, we first determine the set of nearby locations (i.e.

those whose location is within a given radius r) and then pick

the k most similar ones among these nearby locations. For

this last step, locations are represented as PPMI-weighted

feature vectors from Flickr data, as in Section 3.1 but only

considering the 1000 tags that were selected based on (1),

concatenated with the structured feature vectors from Sec-

tion 3.2. These feature vectors are then compared using the

cosine similarity.

Iterative inference: In order to improve the predictions

for a given target location, we train a classifier whose input

is derived from the earlier predictions of that location and

its neighbours (see below). Note that all locations from L

are considered as possible neighbours, including the loca-

tions from the training data T 1 and the tuning data T 3. For

neighbours that come from T 1 and T 3, we use the corre-

sponding ground truth instead of a predicted value. In this

sense, we could intuitively think of our proposed method as

a refinement of the K-nearest neighbours method. Note that

while we are using the actual ground truth for neighbours

from T 1, we cannot do the same for neighbours from T 2

during the training phase, since that would lead the iterative

SVM/SVR model (P3 in Figure 2) to simply pick pL as the

only relevant feature, given that this value would correspond

to the ground truth for all training items.

In standard collective prediction only a single set of neigh-

bours is considered, but in this paper we instead consider

several nested sets of neighbours for each target location.

To determine the neighbours of a target location, we have

to choose a radius r and the desired number of neighbours
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k. Rather than fixing a single value for these parameters, we

consider a sequence of radii r1, ..., rn and a corresponding

sequence of numbers k1, ..., kn. Let Ni be the ki most sim-

ilar locations within the radius ri (i.e the set of neighbours

corresponding to the choice (ri, ki)). With each setNi we as-

sociate a corresponding prediction xi, which is the average

prediction for the locations in Ni in the case of regression

problems, and the average of the confidence scores associ-

ated with each class in the case of classification problems.

We can give higher weight for those neighbours that have

ground truth (i.e. locations from T 1 and T 3) when com-

puting xi. Let ground(l) be the ground truth value of loca-

tion l, NG
i

be the set of neighbouring locations for which the

ground truth is known, while pred(l) be the prediction value

or confidence score of the unlabeled neighbouring location

l. We estimate xi as follows:

xi =

∑
l∈NG

i
� ⋅ ground(l) +

∑
l∈Ni⧵N

G
i

pred(l)

� ⋅ |NG
i
| + |Ni ⧵N

G
i
|

where the weight � is used to control how much we want to

boost the evidence coming from neighbours with a known

ground truth.

For this iterative classification step (P3 in Figure 2), the

location l is represented as the n-dimensional feature vector

(pl, x1, ..., xn), where pl is the earlier prediction for the loca-

tion l itself. From these feature vectors, we learn an SVM or

SVR model, using the locations from T 2 as training data, to

find an improved prediction for the unlabeled locations (i.e.

for the locations from T 4). This step is then repeated, us-

ing the new predictions as input, until convergence or reach

the maximum number of iterations. We evaluate the con-

vergence here according to the locations in T 3 set. This is

illustrated in Figure 2, which provides an overview of the

whole process.

5. Experiments

In the following experiments, we evaluate how well we

can predict a number of environmental features using Flickr

tags and the considered structured environmental data. For

the variables in Section 3.1, we have set the maximum

Haversine distance D (cluster radius) to 1 kilometre and the

bandwidth � to D/3. The choice of D represents a trade-

off, where larger values can potentially lead to better results

but also lead to a higher computational cost. The choice of

� = D∕3 was found to be reasonable in a small set of ini-

tial experiments. For the variables in Section 4, we exam-

ined various smoothing values to select the distinctive tags

in KL divergence (� = 10, 100, 1000) and chose the best

value for each experiment separately based on held-out tun-

ing data (T 3). The feature dependent thresholds used to dis-

cretize the regression problem data into C1 and C3 classes

when computing KL divergence are listed in Table 1, these

values having been chosen as reasonable values from ini-

tial experiments. To generate the collective feature vector,

we combine the earlier prediction pl with seven collective

Table 1

High and low boundaries for discretizing the regression prob-
lems data into classes.

C1 C3

Scenicness ≥ 7 ≤ 3
Temperature (°C) ≥ 15 ≤ 5
Precipitation (mm) ≥ 100 ≤ 50

Solar Rad (kJ m−2day−1) ≥ 17000 ≤ 10000
Wind Speed (m s−1) ≥ 5 ≤ 3

Water Vapor Press (kPa) ≥ 1 ≤ 0.7

Figure 3: Modeling locations based on collective features.

features where r1-r7 are chosen as 1, 2, 5, 10, 20, 50 and 100

kilometres for each location. We test with different numbers

of similar neighbours, choosing ki as ri+1, ri+10 or ri+100,

again based on the held-out tuning data (T 3). Figure 3 shows

examples of the collective feature vectors of different loca-

tions with their ground truth labels. We set the ground truth

labels weight � to 5. Finally, we set the maximum number

of iterations to 10.

To make predictions, we use Support Vector Machines

(SVMs) for classification problems and Support Vector Re-

gression (SVR) for regression problems. In both cases, we

used the SVMlight implementation10 Joachims (1998). For

each experiment, the set of locations L was randomly split

into training (T 1 and T 2), tuning (T 3), and testing (T 4) sets

because the effectiveness of collective prediction may de-

pend quite drastically on the amount of training/testing data

that is available. In particular, we have considered three dif-

ferent training/test splits: 5/85, 20/70 and 80/10 while the re-

maining 10% of the data have used for tuning. Each training

set has been split into two equal size subset T 1 and T 2. We

compared the results for seven different variants and baseline

methods:

• “Structured” uses the feature vector modeling the struc-

tured scientific information from Section 3.2 only to

train SVM/SVR model using locations in T 1 and T 2,

and predict label or feature value for locations in T 4.

• “Flickr” uses the PPMI-based feature vector modeling

Flickr tags from Section 3.1 only to train SVM/SVR

model using locations in T 1 and T 2, and predict label

or feature value for locations in T 4.

• “Structured + Flickr” uses the combination of both

Structured data and Flickr data by concatenating the

10http://www.cs.cornell.edu/people/tj/svm_light/
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Figure 4: Structured+Flickr prediction model.

two corresponding feature vectors. This process is il-

lustrated in Figure 4.

• “KNN-All” computes the average result (i.e. predic-

tion values for regression problems and confidence

scores for classification problems) over the K geograph-

ically nearest neighbours where these neighbours are

selected according to the latitude and longitude coordi-

nates only. We consider the neighbours from the train-

ing data T 1 and T 2 sets and tune the value of K using

the tuning data T 3.

• “KNN-K” computes the average result of the K most

similar neighbours. Similarity is defined here as for our

collective prediction method, i.e. based on a feature

vector that contains the PPMI values of the 1000 top

selected Flickr tags together with the structured data.

Again, we consider the neighbours from the training

data T 1 and T 2 sets and tune the value of K using the

tuning data T 3. This process is illustrated in Figure 5.

• “Collective-All” uses the collective features derived

from all neighbours. It is very similar to the method

described in Figure 2 except that the neighbours are se-

lected according to their geographical distance (latitude

and longitude coordinates) only.

• “Collective-K” is our proposed method, as described in

Section 4.

5.1. Predicting the scenicness of a place
In this first experiment, we consider the problem of pre-

dicting people’s opinions of landscape beauty, using the

UGC dataset from the ScenicOrNot website11 as ground

truth. This website allows people to evaluate places in

Britain by rating photos collected from Geograph12. The

dataset ratings for 217,000 photos (at distinct locations),

each of which has been rated by at least three people on a

11http://scenic.mysociety.org/
12http://www.geograph.org.uk/

Figure 5: K nearest neighbours prediction model.

scale from 1 (not scenic) to 10 (very scenic). For 25,395 of

the photos in this dataset, our Flickr collection did not con-

tain any georeferenced photos within a 1 km radius. There-

fore, we only report results for the remaining 191,605 photos

(i.e. 88.3% of the full dataset). The number of Flickr photos

within a 1km radius of these locations varies between 1 and

397982.

For this experiment, L thus contains the locations of these

191,605 photos. To compute KL divergence, we discretize

the locations that have been rated between 7 and 10 as high

scenicness class while those that have been rated between

1 and 3 as low scenicness class. The results in Figure 6a

show the mean absolute error between the predicted and ac-

tual scenicness scores, as well as the Spearman � correla-

tion between the rankings induced by both sets of scores for

the seven considered methods. The mean and standard de-

viation of the data is shown in Table 2. Although the dif-

ferences between the results are small, we find that using

Flickr outperforms using structured data, and that combining

both leads to better results than using them separately. We

also find that all these setups (Structured, Flickr, and Struc-

tured+Flickr) perform better than the K Nearest neighbours

(KNN) method even when we select the most related neigh-

bours in KNN-K. The collective prediction method leads

to the best results overall especially when selecting the K

most similar neighbours (Collective-K). Looking at the top

tags, in terms of KL divergence, we find terms relating to

natural landscape which represent high scenicness such as

highlands, mountains, and beach and names of artificial and

urban phenomena which are representative of low scenic-

ness such as station, bus, and supermarket. This reinforces

the finding from Stadler et al. (2011) that land cover cate-

gories are strongly correlated with scenicness scores. We

also tested whether the number of photos (or users) could be

used to predict scenicness, as was suggested in Casalegno

et al. (2013); Tenerelli et al. (2016); Gliozzo et al. (2016) for

particular restricted settings. However, we actually found

a negative correlation of around -0.12 (resp. -0.1) between

scenicness and the number of photos (resp. users who have

posted photos) near a given location.
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Table 2

Mean and Standard deviation of regression problems data.

Mean STDEV
Scenicness 4.372 1.6

Temperature (°C) 9.268 3.490
Precipitation (mm) 66.625 24.827

Solar Rad (kJ m−2day−1) 11478 2388
Wind Speed (m s−1) 3.605 1.126

Water Vapor Press (kPa) 0.958 0.186

We also analyzed whether the performance could be im-

proved by using a different type of model to make the ini-

tial prediction. In particular, we first used the method from

Jeawak et al. (2019), which learns a low-dimensional vector

space embedding that jointly captures the information from

the Flickr tags and the structured scientific data. The result

of applying this method is that each location is represented

as a dense low-dimensional vector, which has the advantage

that a much wider range of regression models can be used.

In Table 3, we compare our standard model (Collective-K)

with the performance we get with these dense vectors, for

two different cases. First, we again use Support Vector Re-

gression (SVR). Second, we use a Multi-layer Perceptron

(MLP). Note that an MLP model cannot be used directly on

the bag-of-words representations, due to the excessive mem-

ory requirements this would entail. The results are presented

in Table 3. They show that changes in the bootstrap classi-

fier only have a minimal impact on the overall performance,

with our standard approach performing slightly better in the

80% setting, and slightly worse in the other settings. Given

the small differences, for the remaining experiments we will

only focus on the bag-of-words based representation.

5.2. Predicting species distribution

The next experiment we considered was to predict the dis-

tribution of species across Europe, using as ground truth the

dataset of the European network of nature protected sites

Natura 200013. This dataset contains information about

35,600 species from 7 classes: Amphibians, Birds, Fish, In-

vertebrates, Mammals, Plants and Reptilia. In particular, it

specifies which species occur at 26,425 different sites across

Europe. For this experiment, L is defined as the set of these

sites.

For species that only occur at a few of the sites in L, it is

clearly not possible to estimate a reliable distribution model.

Therefore, we focused our evaluation on 100 species which

occur at more than 500 sites. For each of these species, we

consider a binary classification problem, i.e. predicting at

which of the sites the species occurs. Note that as in all

analyses we use all Flickr tags, some of which might in-

clude the species name. The results of predicting species

distribution are reported in Figure 7a in terms of the aver-

age precision, average recall and macro average F1 score

over the 100 species. Note that we do not consider accu-

racy as it is not informative here, given the high class im-

13http://ec.europa.eu/environment/nature/natura2000/index_

en.htm

balance (i.e. a baseline classifier predicting that a species

occurs nowhere would already have a very high accuracy).

The results are clearly showing that combining structured

data with Flickr data leads to substantially better results than

both variants of structured data alone, Flickr data alone and

K Nearest neighbours. However, the collective predictions

(Collective-K) lead to the best results overall especially in

term of F1 score. Note that we used the same set of struc-

tured and Flickr features in KNN-K and Collective-K. We

compute KL divergence for each species separately to iden-

tify the most relevant Flickr tags. In this case, to use the KL-

divergence feature selection method, we treat the locations

where the species is present as one class and all the other lo-

cations where the species is not present at the second class.

Table 4 contains examples of the top tags of some species

as selected by the KL-divergence feature selection method.

Interestingly, most of these tags are place names and land

cover categories and this applies to many of the 100 species.

5.3. Predicting CORINE land cover classes
In this section we consider the task of predicting CORINE

land cover classes. For this experiment, we have used the

same set L of locations as for species distribution. Since

the task is about predicting CORINE land cover classes, for

the results reported in this section we do not consider any

CORINE features in the representations of the locations as

the CORINE data serve as ground truth. We experimented

with predicting CORINE land cover classification at level 1

(5 sub classes), level 2 (15 sub classes) and level 3 (44 sub

classes), each time treating the task as a binary classifica-

tion problem. The results of predicting CORINE land cover

classification at levels 1, 2 and 3 are presented in Figure 7b,

Figure 7c, and Figure 7d respectively in terms of the aver-

age precision, average recall and macro average F1 score.

Again, the results show that combining structured data and

Flickr data clearly leads to better performance than using

them separately, and that the collective prediction method

(Collective-K) leads to the best results overall. We compute

KL divergence for each land cover classes separately where

we treat the locations belonging to the target land cover type

as one class and all the other locations as the second class.

To illustrate how Flickr tags are used to select the neigh-

bours of CORINE land cover classes, Table 5 shows ex-

amples of the top 5 tags of some CORINE level 1 classes

which are clearly informative and semantically related to

those classes. For some classes, especially for CORINE

level 3, we found that the collective prediction converged al-

ready after the first iteration. This seems related to the small

number of locations belonging to these classes where it is not

possible to find the optimal neighbours if only few locations

belong to that class.

5.4. Predicting climate data
In the last experiment, we assess the usefulness of Flickr

tags in the task of predicting climate data. We again use the

same set of sites L as in the species distribution experiment.

In this case, we omit all the climate related features from
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(a) Scenicness (b) Temperature

(c) Precipitation (d) Solar Radiation

(e) Wind Speed (f) Water Vapor Pressure

Figure 6: Results of regression problems.
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(a) Species distribution (b) CORINE1

(c) CORINE2 (d) CORINE3

Figure 7: Results of classification problems.

S. Jeawak et al. Page 12 of 17



The collective prediction model

Table 3

Results for predicting scenicness.

5% 20 % 80 %
� MAE � MAE � MAE

Collective-K 0.566 1.041 0.583 1.011 0.627 0.972
Collective-K-embeddings-SVR 0.571 1.038 0.591 0.998 0.615 0.984
Collective-K-embeddings-MLP 0.588 1.022 0.600 0.991 0.623 0.969

Table 4

Top 5 Flickr tags of Aquila chrysaetos, Dryocopus martius, and
Lacerta bilineata species in terms of KL divergence.

Aquila chrysaetos Dryocopus martius Lacerta bilineata
montagna nationalpark italy

spain forest tuscany
huesca harz umbria
aragon mountains lombardia

mountain hautesavoie lucertola

Table 5

Top 5 Flickr tags for some CORINE level 1 classes in terms of
KL divergence.

Forest & semi nat. areas Wetlands Water bodies
forest bog sea
woods moor beach

mountains marsh coast
trees swamp lake
wald saline pier

the feature vector representations as they are used as ground

truth. We consider five different regression problems: pre-

dicting average annual temperature, average annual precip-

itation, average annual solar radiation, average annual wind

speed, and average annual water vapor pressure. The results

of these experiments are reported in Figure 6b, Figure 6c,

Figure 6d, Figure 6e and Figure 6f respectively. The mean

and standard deviation of each of those features are shown in

Table 2. As regression problems, we evaluate the results in

terms of Spearman � and mean absolute error (MAE). Over-

all, combining both structured and Flickr data outperforms

using them separately, showing that the information we ob-

tain from Flickr is complementary to what is available as

structured data and using collective prediction leads to an

impressive improvement over the basic prediction methods,

especially with the collective-K variant leading to the best

results overall. Looking at the top selected tags in terms

of KL divergence, we find names of countries, regions, or

weather phenomena, which are indicative of either high or

low values of the corresponding feature as shown in Table 6.

5.5. Qualitative analysis

We present two examples to illustrate how Flickr tags can

help to determine the neighbourhood structure. First, look-

ing at Figure 8, we can clearly see a scenic coastal area rated

with 7.2 by the users in the SenicOrNot dataset. We note that

considering the neighbours according to geographic prox-

imity leads to a predicted value of 5.4. This is close to the

average value, hence the model has failed to identify the lo-

cation as being scenic in this case. However, using Flickr

tags to filter these neighbours helps to make a more accurate

prediction, with the value 7.8. The most characteristic tags

used to select these neighbours are sand, beach, and coast,

showing that the method has correctly identified that what

matters most in determining the scenicness of the target lo-

cation is that it is at the coast. Another interesting example is

shown in Figure 9; looking at the image, we can see a hous-

ing development, which has been rated as not scenic with a

value of 1.2. Considering the neighbours according to their

geographic distance leads to a poor prediction, with the value

of 5.7. However, using Flickr tags (and scientific features)

to choose the neighbours leads to a much better prediction

of 2.3. The most characteristic tags in this case were road,

houses, and buildings.

6. Conclusions

In this paper, we have proposed a method which uses

Flickr tags in tasks that rely on characterizing the environ-

ment. To this end, we have considered four different evalua-

tion tasks. The first experiment aimed to predict the scenic-

ness of a place, as assessed subjectively by humans on the

ScenicOrNot website. In the second experiment, we fo-

cused on modelling the distribution of species across Eu-

rope, using observations from the Natura 2000 dataset as

ground truth. The third experiment consisted in predicting

CORINE land cover categories. Finally, we looked at pre-

dicting five climate related properties. The role of Flickr

tags in our method is two-fold. First, we showed that Flickr

tags can be used to supplement structured scientific data.

We found that the combined model substantially and con-

sistently outperformed the model that relied on either struc-

tured data sources or Flickr tags alone. This strongly sug-

gests that Flickr can indeed be valuable, as a supplement

to more traditional datasets in environmental analyses. Al-

though all experiments demonstrated the benefits of using

Flickr for selected environmental features, it may be specu-

lated that in practice its use may be most beneficial in future

for tasks such as species distribution modelling and scenic-

ness prediction where, unlike temperature for example, there

are no existing methods for direct instrumental recording of

the phenomena. Second, we proposed a collective prediction

model which again relied on both Flickr tags and structured

data to define a neighbourhood structure. The use of a col-

lective prediction formulation was motivated by the fact that

most environmental features are strongly spatially autocor-

related. While this suggests that geographic distance should
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Table 6

Top 5 Flickr tags for different climate related features in terms of KL divergence.

Temperature Precipitation Solar Radiation Wind Speed Water Vapor Pressure
sweden scotland finland island sea
finland ireland sweden sea sardegna
snow canaryislands spain denmark mallorca
spain nubes italy highlands portugal
italy clouds france beach spain

Figure 8: Neighbourhood structure for location coordinates (50.827,-4.559), photo link:
https://www.geograph.org.uk/photo/130830

play a key role in determining neighbourhoods, we showed

that considerable gains can be made by additionally taking

Flickr tags and traditional data into consideration.
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